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Abstract—Schematic metro maps in practice as well as metro
map layout algorithms usually adhere to an octilinear layout style
with all paths composed of horizontal, vertical, and 45◦-diagonal
edges. Despite growing interest in non-octilinear metro maps,
generic algorithms to draw metro maps based on a system of k ≥
2 equidistant slopes have not been investigated thoroughly. In this
paper we present and implement an adaptation of the octilinear
mixed-integer linear programming approach of Nöllenburg and
Wolff (2011) that can draw k-linear metro maps.

I. INTRODUCTION

Algorithms for automated layout of metro maps have re-
ceived substantial interest in the graph drawing and net-
work visualization communities as well as in cartography
and geovisualization over the last 15 years [8]. The vast
majority of metro map layout algorithms focus on so-called
octilinear metro maps, which are limited to Henry Beck’s
classical and since then widely adopted 45◦-angular grid of
line orientations [4]. However, not all metro maps found in
reality are octilinear. There is empirical evidence that the best
set of line orientations used for drawing a metro map depends
on different aspects of the respective transit network, and it
may not always be an octilinear one [11], [12].

In this paper we present a first algorithmic approach using
global optimization for computing unlabeled metro maps in
the more flexible k-linearity setting, where each edge in
the drawing must be parallel to one of k ≥ 2 equidistant
orientations whose pairwise angles are multiples of 360◦/2k.
There exist a number of metro map layout algorithms (see [8]
for a comprehensive survey) that would technically permit an
adaptation to a different underlying angular grid, yet most
previous papers optimize layouts in the well-known octilinear
setting only and do not discuss extensions to k-linearity. A
few algorithms for generic k-linear layouts exist [1], [2], [5],
[7], but they are aimed at paths or polygons rather than entire
metro maps. In the field of graph drawing many algorithms
for planar orthogonal network layouts with k = 2 as well as
for polyline drawings with unrestricted slopes are known [3],
but they do not generalize to k-linearity.

We decided to adapt the octilinear (i.e., k = 4) mixed-
integer linear programming (ILP) model of Nöllenburg and
Wolff [9] by generalizing their mathematical layout constraints
to k-linearity. The main benefit of this model in comparison
to other approaches is that it defines sets of hard and soft
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constraints and guarantees that the computed layout satisfies
all the hard constraints, while the soft constraints are opti-
mized. The trade-off for providing such quality guarantees
from a global optimization technique is that computation time
is typically higher compared to other methods. By modeling
fundamental metro map properties such as strict adherence to
the k-linearity and topological correctness as hard constraints,
we obtain layouts that satisfy these layout requirements. The
soft constraints optimize for line straightness, compactness,
and topographicity [10], i.e., low topographical distortion. Our
modifications yield a flexible ILP model whose complexity
measured by the number of variables and constraints grows
linearly with k. Section II gives an overview of the ILP model
and introduces the additional constraints. We demonstrate
the effect of changing k with sample layouts of two metro
networks for small values of k = 3, 4, 5 in Section III.

II. MODEL

A. Preliminaries

We reuse the notation of Nöllenburg and Wolff [9]. The
input is an embedded planar1 metro graph G = (V,E) with n
vertices and m edges. Each vertex v ∈ V represents a metro
station with x- and y-coordinates and each edge e = (u, v) ∈
E is a curve linking vertices u and v that represents a physical
rail connection between them. Let L be a line cover of G, i.e.,
a set of paths of G such that each edge e ∈ E belongs to at
least one path L ∈ L. An element L ∈ L is called a line
and corresponds to a metro line in the underlying transport
network. Finally, k ≥ 2 is an input parameter that defines the
number of available edge orientations. Since every orientation
can be used in two directions this yields 2k available drawing
directions. Let K be the set of all directions. We note that since
every edge is assigned exclusively to one outgoing direction
of its incident vertex, this implies that the maximum degree
of G can be at most 2k.

The algorithmic problem is to find a k-linear schematic
layout of (G,L), i.e., a graph layout that preserves the
input topology, uses only the edge directions from K, and
optimizes a weighted layout quality function composed of line
straightness, topographicity, and compactness.

1For non-planar metro graphs we temporarily introduce a dummy vertex
for each edge crossing, which preserves the crossing in the output layout.
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B. Hard constraints
The hard constraints of the ILP model comprise four

aspects: a k-linear coordinate system, assignment of edge
directions, combinatorial embedding, and planarity.
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Fig. 1. Coordinate axes for k-linear orientation systems

1) Coordinate system: Every vertex u of G has two Carte-
sian coordinates in the plane R2, specified as x(u) and y(u). In
order to address vertex coordinates for a flexible number k of
orientations, we define a redundant system of k coordinates
z0, . . . , zk−1, which are all real-valued variables in the ILP
model. The first coordinate z0 is defined as z0(u) = x(u).
The remaining orientations are obtained by rotating2 the x-
axis counterclockwise by multiples of θ = π/k.3 We define
the coordinate zi(u) using x(u) and y(u) as

zi(u) = cos (i · θ) · x(u) + sin (i · θ) · y(u). (1)

In order to be able to express later that two vertices u, v are
collinear on a line with slope in K, we need the orthogonal
orientation zoi for each coordinate zi. For an even number k,
zoi is one of the k coordinates, but for odd k we need an
additional coordinate zoi orthogonal to each zi, see Figures 1a
and 1b. Using a rotation by π/2 we obtain

zoi (u) = − sin (i · θ) · x(u) + cos (i · θ) · y(u) (2)

2) Edge directions and minimum length: Every edge
(u, v) ∈ E has an original direction in the input layout of G,
defined as the direction from u to v. Our k-linear coordinate
system splits the plane into exactly 2k sectors numbered from
0 to 2k− 1 for each vertex u ∈ V , see Figure 2. We store the
sector in which an edge (u, v) lies in the input drawing as a
constant secu(v) that we call the original sector of (u, v).

Next we define an integer variable dir(u, v) to encode the
selected direction of the edge (u, v) in a k-linear solution.
The range for dir(u, v) includes the original sector secu(v)
and s ≥ 1 admissible neighboring sectors in both directions.
The ILP model of Nöllenburg and Wolff [9] uses s = 1, which
results in a range of three admissible edge directions for each
edge.

For each edge (u, v) we define the set S(u, v) of admissible
directions4 as S(u, v) = {i | secu(v)− s ≤ i ≤ secu(v) + s}.

2All angles in this section are expressed in radian.
3Technically, any set of k angles {θ1, . . . , θk} ⊂ [0, π) can be chosen.
4All index calculations are modulo 2k.

For each i ∈ S(u, v) we define its corresponding direction
number as seciu(v) and define a binary variable αi(u, v) of
which only one can be true at any given time (3). These are
then used to assign the correct value of dir(u, v) (4).

∑

i∈S(u,v)

αi(u, v) = 1 (3)

dir(u, v) =
∑

i∈S(u,v)

seciu(v) · αi(u, v) (4)

We further define dir(v, u) = dir(u, v) + k for the opposite
edge (v, u).

To guarantee that the output layout draws the edge (u, v)
in the selected direction dir(u, v) we need to ensure that the
variables of u and v for the orthogonal coordinate axis zoi
are equal, i.e., zodir(u,v)(u) = zodir(u,v)(v) (5a) and that the
coordinates zdir(u,v)(u) and zdir(u,v)(v) differ by at least the
minimum edge length Lmin, i.e., zdir(u,v)(v)− zdir(u,v)(u) ≥
Lmin (5b).

zoi′(u)− zoi′(v) ≤ M(1− αi(u, v))

−zoi′(u) + zoi′(v) ≤ M(1− αi(u, v))
(5a)

zi′(v)− zi′(u) ≥ −M(1− αi(u, v)) + Lmin if i < k

zi′(u)− zi′(v) ≥ −M(1− αi(u, v)) + Lmin if i ≥ k
(5b)

Note four things. First, the constraints are created for every
i ∈ S(u, v). Second, we use i′ = i mod k, since we only have
k coordinates, but 2k possible directions. Third, we need to
distinguish whether the direction i is smaller than the number k
of orientations, in which case u must have a smaller value than
v in coordinate zi, or otherwise if i ≥ k then v must have the
smaller coordinate and we need to invert the difference in (5b).
And fourth, every triple of constraints for which αi(u, v) = 0
is trivially satisfied by using a sufficiently big constant M in
the constraints. Due to (3), αi(u, v) = 1 for exactly one index
i and only for that index i the constraints have an actual effect
on the coordinates.
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Fig. 2. For edges
(u, n3), (u, n0) the direction
value decreases from 5 to 0.

3) Combinatorial embedding:
We want to keep the combinatorial
embedding, i.e., the topology of
the input layout, which translates
into preserving the cyclic order of
the neighbors of each vertex. This
can be expressed by requiring that
the edge direction values strictly
increase when visiting the incident
edges in counterclockwise input
order. There is exactly one excep-
tion, namely when going from the
last used sector to the first one.
Figure 2 illustrates this situation, where the crossover point
lies between the neighbors n3 and n0, marked in red. Here
we can add an offset of 2k instead to make the condition
hold. Since this must happen exactly once, we can use binary
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variables β1(v), β2(v), . . . , βdeg(v)(v) to select the respective
edge pair (6), (7).

deg(v)∑

i=1

βi = 1 (6)

dir(v, u1) + 1 ≤ dir(v, u2) + 2k · β1(v)

dir(v, u2) + 1 ≤ dir(v, u3) + 2k · β2(v)

...
dir(v, udeg(v)) + 1 ≤ dir(v, u1) + 2k · βdeg(v)(v)

(7)

4) Planarity: For every pair of non-adjacent edges e =
(u, v) and e′ = (u′, v′) we need to find (at least) one separation
line between e and e′ in a direction of K to guarantee that e, e′

do not intersect. We define a set of 2k binary variables γi(e, e′)
for which we require that at least one of them is set to true.

∑

i∈K
γi(e, e

′) ≥ 1 (8)

Now we ensure that every pair of edges e, e′ has a minimum
distance dmin in the selected directions, i.e., both endpoints of
e have a distance of at least dmin to both endpoints of e′.

zi′(u
′)− zi′(u) ≥ −M(1− γi(e, e

′)) + dmin

zi′(u
′)− zi′(v) ≥ −M(1− γi(e, e

′)) + dmin

zi′(v
′)− zi′(u) ≥ −M(1− γi(e, e

′)) + dmin

zi′(v
′)− zi′(v) ≥ −M(1− γi(e, e

′)) + dmin

(9)

Note that the constraints are created for every 0 ≤ i < 2k, that
we use i′ = i mod k and that the first k sets of these equation
look like (9), while the rest needs to invert the differences,
e.g., −zi′(u

′) + zi′(u), since they change sides with respect
to direction zi′ .

C. Soft constraints

The soft constraints model the aesthetic quality criteria that
should be optimized in the layout. We adapt the three criteria
of Nöllenburg and Wolff [9] to k-linearity: line straightness,
topographicity, and compactness. Each requires a set of linear
constraints together with a corresponding linear term in the
objective function.

1) Line straightness: We optimize for line straightness by
minimizing the number and angles of bends along the metro
lines in L. First we create a variable θ(u1, u2, u3) for all
pairs of consecutive edges e1 = (u1, u2), e2 = (u2, u3)
along some path L ∈ L that represents the cost of a
potential bend between e1 and e2 on the metro line L. To
assign θ(u1, u2, u3) we subtract the direction of e2 from
the direction of e1. If the edges do not have the same
direction, the difference dir(u1, u2) − dir(u2, u3), which we
will call Δdiru1,u2,u3

, will either be positive or negative and
Δdiru1,u2,u3

∈ [−2k + 1, 2k − 1]. From [9] we know that
θ(u1, u2, u3) = min{|Δdiru1,u2,u3

|, 2k − |Δdiru1,u2,u3 |},
i.e., θ ∈ [−k + 1, k − 1]. By using two binary correction
variables δ1 and δ2 we can ensure that θ takes the desired

minimal value (10), which then lets us define the bend cost
function (11).

−θ(u1, u2, u3) ≤ Δdiru1,u2,u3
−2k · δ1 + 2k · δ2

θ(u1, u2, u3) ≥ Δdiru1,u2,u3
−2k · δ1 + 2k · δ2

(10)

costbends =
∑

L∈L

∑

(u1,u2),(u2,u3)∈L

θ(u1, u2, u3) (11)

2) Topographicity: In order to support the mental map [6]
of the user, we want the shape of the output drawing to
resemble the input drawing as closely as possible. For this we
try to preserve the input directions of the edges. Formally we
want to minimize the difference between the input direction
and the output direction, i.e.,

∑
(u,v)∈E | dir(u, v)− secu(v)|.

In order to minimize the absolute value we define a new
variable ξ(u, v) = | dir(u, v)− secu(v)| by imposing (12) and
minimizing ξ(u, v) in the cost function (13). The topographic-
ity cost function is simply the sum over all ξ-variables (13).

dir(u, v)− secu(v) ≤ ξ(u, v)

− dir(u, v) + secu(v) ≤ ξ(u, v)
(12)

costtopo =
∑

(u,v)∈E

ξ(u, v) (13)

3) Compactness: To ensure a compact layout we minimize
the total edge length of the output drawing. Here we note that
the Euclidean length of an edge e = (u, v) in a k-linear layout
is defined by the maximum absolute value |zi(u) − zi(v)|
in all k coordinates (the projections in all other directions
are shorter), which we model by a variable λ(u, v). The
compactness cost function is the sum of all edge lengths.

zi(u)− zi(v) ≤ λ(u, v)

−zi(u) + zi(v) ≤ λ(u, v)
(14)

costlength =
∑

(u,v)∈E

λ(u, v) (15)

4) Objective function: The objective function, which we
want to minimize, is put together from the three different terms
costbends, costtopo and costlength defined above. Each term can
be weighted with factors f1, f2, f3 depending on their relative
importance.

minimize f1 · costbends + f2 · costtopo + f3 · costlength (16)

D. Model size and improvements

Our first observation from generalizing the model of
Nöllenburg and Wolff [9] is that their numbers of constraints
and variables now scale linearly with the number k of orien-
tations. So as long as k is a (small) constant the asymptotics
with respect to the graph size parameters n and m remain the
same. Yet, in practice, doubling the size of the model may
yield a significant slow-down in the actual solution time.

Further, Nöllenburg and Wolff [9] devised several practical
improvements to accelerate their method. For instance, the
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(a) topographic layout (b) k = 3 (c) k = 4 (d) k = 5

Fig. 3. Vienna metro map in different linearities

number of planarity constraints (Sect. II-B4) grows quadrati-
cally with the number of edges, but most of them are never
critical as any reasonable layout satisfies them trivially. So
they suggested ways of reducing the number of necessary
constraints and to add them only on demand, which imme-
diately carries over to our generalized model. Similarly, their
proposed techniques for reducing the graph size by temporarily
removing degree-2 vertices from the graph can be adapted to
the k-linear setting. This is not yet included in our algorithm.

III. EXAMPLES

To showcase the different types of metro maps that can be
generated with our method we generated schematic layouts
of the metro networks of Vienna (n = 90, m = 96) and
Washington DC (n = 97, m = 101) for k = 3, 4, 5, see
Figures 3 and 4. For these layouts we added planarity con-
straints on demand and concentrated on the layout geometry
and interchanges without drawing individual stops along the
lines. The weights in the objective function were set to the
default values of f1 = 3, f2 = 2, f3 = 1 and we used s = 1
admissible neighboring sectors for each original edge direction
(recall Section II-B2).

The layouts were computed by IBM CPLEX 12.8.0.0 on an
Intel Core i7-2600 CPU @ 3.4GHz running an Ubuntu 18.04.1
LTS system with 8GB RAM. Table I provides model sizes and
measured running times. While the model size grows only
moderately with k, the effect on the observed running times
is much higher. The additional layout flexibility obtained from
introducing more edge directions results in a strong increase
in the running times for computing optimal solutions. While
for k = 3 optimal layouts can be computed in less than 20
seconds and for k = 4 within a few minutes, the layouts for
k = 5 took already up to three hours to compute. Yet near-
optimal solutions with a remaining optimality gap of less than
5% could be computed in under two minutes even for k = 5.

In terms of layout appearance, larger values of k typically
improve the topographicity of the map since the angular
distance between input slopes and the available directions in
K decreases, yet strictly speaking this does not need to be

TABLE I
MODEL PARAMETERS AND RUNNING TIMES (WALL CLOCK TIME)

Vienna Washington DC
k = 3 k = 4 k = 5 k = 3 k = 4 k = 5

# var 21463 28205 34947 29379 38725 48071
# constr 6306 6675 7047 7895 8293 8691
time (sec) 8 254 10043 19 20 2401

true unless one value of k is a multiple of the other. On
the other hand, one often sees fewer parallel lines and less
symmetries for larger k, which means that the layouts can get
a less structured and less uniform appearance.

IV. CONCLUSIONS

We presented an algorithm to generate k-linear metro maps
for arbitrary values of k as an extension of an existing ILP
model for octilinear metro maps [9]. Our initial experiments
show that this approach can generate metro maps of medium-
sized benchmark instances in different linearity systems. It
may thus serve as a useful tool for a map designer to examine
the effect of different values of k on the potential general
appearance of a map. Finding the linearity value that works
best for a given input map is currently left to the map designer,
although one could also try to define suitable quantitative
measures and then optimize these over different linearity
values. As future work, we want to include station labeling
and investigate additional improvements of the practical per-
formance, as well as integrating it into a human-in-the-loop
tool for schematic map design.
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APPENDIX

(a) topographic layout (b) k = 3

(c) k = 4 (d) k = 5

Fig. 4. Washington DC metro map in different linearities
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