
Branch-and-Price for the Steiner
Tree Problem with Revenues,
Budget and Hop Constraints

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Markus Sinnl
Matrikelnummer 0726419

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Ao. Univ. Prof. Dr. Günther R. Raidl
Mitwirkung: Univ.-Ass. Dr. Markus Leitner

Wien, 31.08.2011
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Markus Sinnl
Wollmannsberg 43, 2003 Leitzersdorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Abstract

This thesis deals with the Steiner tree problem with revenues, budget and hop constraints
(STPRBH), an NP-hard combinatorial optimization problem with applications in telecommu-
nications network design. An instance of the STPRBH is defined by a connected graph with a
dedicated root node, a set of nodes with nonnegative revenues and positive costs assigned to ed-
ges. Furthermore, a budgetB ≥ 0 and a hop limitH ∈ N are given. The set of feasible solutions
is given by all Steiner trees containing the root node, where every path from the root node to
any other node in the tree contains at most H edges. Furthermore, the total edge costs of such
a tree must be lower or equal to the given budget B. The goal is to find a feasible solution with
maximum revenue, i.e. to maximize the sum of revenues associated with nodes which are part
of the solution.

Several formulations for the STPRBH based on integer linear programming using exponen-
tially many variables are presented. Furthermore, branch-and-price approaches based on these
formulations are introduced that allow for solving instances of the STPRBH to proven optima-
lity. The practical implementations of these branch-and-price approaches do, however, suffer
from various problems. Thus, the applicability of various attempts to improve their efficiency
like stabilization techniques, different pricing strategies and heuristic methods to generate initial
solutions is analyzed. Furthermore, promising methods are correspondingly adapted and applied
to the STPRBH.

Tests on previously existing benchmark instances show that the presented branch-and-price
approaches are competitive with existing exact methods based on branch-and-cut when the hop
limit is rather restrictive or if the number of nodes with positive revenue is relatively small.
Furthermore, when the budget B does not play a role (i.e. is high enough to pose no restricti-
on), branch-and-price usually outperforms branch-and-cut. It should be noted, however, that this
specific variant of the STPRBH is not NP -hard. For instances with a large hop limit or a large
number of nodes with positive revenue the proposed branch-and-price approaches are not yet
competitive to branch-and-cut. Due to the implemented stabilization and acceleration methods a
significant speed-up of branch-and-price has, however, been achieved for these instances too.

iii

Kurzfassung

Diese Diplomarbeit behandelt das Steiner tree problem with revenues, budget and hop cons-
traints (STPRBH), ein NP-schweres kombinatorisches Optimierungsproblem mit Anwendun-
gen unter anderem im Design von Telekommunikationsnetzen. Eine Instanz des STPRBH be-
steht aus einem ungerichteten Graphen mit einem Wurzelknoten, Knoten, die nicht-negativen
Ertrag generieren, falls sie in einer Lösung mit dem Wurzelknoten verbunden sind und Kanten
mit positivem Gewicht. Weiters ist ein BudgetB ≥ 0 und ein HoplimitH ∈ N Teil einer Instanz.
Erlaubte Lösungen sind alle Steiner-Bäume dieses Graphen, die den Wurzelknoten enthalten und
in denen jeder Pfad vom Wurzelknoten bis zu einem anderen Knoten im Baum höchstens aus
H Kanten besteht. Weiters darf die Summe der Gewichte der Kanten im Baum höchstens B
betragen. Ziel ist es, eine gültige Lösung mit möglichst hohem Gewinn, der durch die Summe
der Erträge der in der Lösung vorhandenen Knoten definiert ist, zu finden.

Es werden mehrere Formulierungen für das STPRBH als ganzzahliges lineares Programm
(ILP) mit exponentiell vielen Variablen vorgeschlagen. Außerdem werden branch-and-price
Verfahren, die auf diesen Formulierungen basieren und das exakte Lösen von Instanzen des
STPRBH erlauben, eingeführt. Bei der Anwendung dieser branch-and-price Ansätze in der Pra-
xis treten aber verschiedenste Probleme auf. Deshalb wird die Anwendbarkeit verschiedener
Möglichkeiten deren Effizienz zu verbessern analysiert. Diese Möglichkeiten umfassen Stabili-
sierungstechniken, verschiedene Pricing-Strategien und Heuristiken, um Startlösungen zu gene-
rieren.

Tests auf schon existierenden Benchmark-Instanzen zeigen, dass die vorgeschlagenen
branch-and-price Ansätze kompetitiv mit schon existierenden exakten Verfahren, die auf branch-
and-price basieren, sind, falls das Hoplimit oder die Anzahl der Knoten mit positivem Ertrag
vergleichsweise klein ist. In Instanzen, in denen das Budget B keine Rolle spielt (d.h. hoch ge-
nug ist, um keine Einschränkung darzustellen), sind die branch-and-price Verfahren sogar meist
klar besser als die branch-and-cut Verfahren. Es muss aber beachtet werden, dass diese spezifi-
sche Variante des STPRBH nichtNP-schwer ist. Für Instanzen mit großem Hoplimit oder einer
großen Anzahl von Knoten mit positivem Ertrag sind die vorgeschlagenen branch-and-price
Verfahren noch nicht kompetitiv mit den branch-and-cut Verfahren. Durch die implementierten
Stabilisierungsmethoden und Beschleunigungsmethoden wurde aber eine signifikante Beschleu-
nigung der branch-and-price Verfahren erreicht.

v

Contents

Erklärung i

Abstract iii

Kurzfassung v

List of Figures ix

List of Tables x

List of Algorithms xiii

1 Introduction 1
1.1 Outline of the Thesis . 4

2 Preliminaries 5
2.1 Combinatorial Optimization . 5
2.2 Mathematical Background . 6
2.3 Linear Programming . 8
2.4 Integer Linear Programming . 12

3 Previous & Related Work 19

4 ILP Formulations for the STPRBH 23
4.1 Undirected Path-Formulation . 23
4.2 Directed Path-Formulation . 26
4.3 The Pricing Subproblem: Hop-Constrained Cheapest Path 31

5 The Branch-and-Price Algorithm 35
5.1 Discussion of the Dual Problem . 35
5.2 Overview of the Branch-and-Price Algorithm and Branching 39
5.3 Preprocessing of an STPRBH Instance . 40
5.4 Heuristics to Find an Initial Solution . 41
5.5 Stabilization Techniques . 44
5.6 Pricing Strategies . 48

vii

viii CONTENTS

6 Computational Results 53
6.1 Preprocessing . 54
6.2 Comparison of the Branch-and-Price Approaches 56
6.3 Influence of the Heuristics . 58
6.4 Comparison of the Stabilization Techniques 60
6.5 Comparison of Pricing Strategies . 63
6.6 In-depth Comparison of Three Settings . 65

7 Conclusion and Outlook 75

Bibliography 77

List of Figures

1.1 Graph of an exemplary instance of the STPRBH. 3
1.2 Solution of the instance given in Figure 1.1 with H = 2, B = 15. 3

2.1 The polyhedron corresponding to the LP of Example 2.1. 9
2.2 A LP with no feasible integer solution . 13
2.3 A branch tree . 15

4.1 Paths and graph for the proof P(4.37) ⊂ PDPF . 29

5.1 Two different paths with the same reduced cost 45

ix

List of Tables

2.1 Primal-Dual conversion rules . 11

6.1 Result of the preprocessing on the instances based on the MSteinb graphs 55
6.2 Result of the preprocessing on the instances based on the Steinc graphs 56
6.3 CPU-time in seconds for branch-and-price based on different formulations using

NORMALPRICING and no stabilization and no heuristic for instances based on
Steinc graphs and H = 15 . 58

6.4 CPU-times in seconds with different heuristics using formulation (DPFnt), NOR-
MALPRICING and no stabilization for instances based on Steinc graphs and H = 15 59

6.5 CPU-times in seconds using different heuristics and formulation (DPFnt), NOR-
MALPRICING and no stabilization for instances based on Steinc graphs and H = 25 60

6.6 CPU-times in seconds with different stabilization techniques using formulation
(DPFnt), NORMALPRICING and heuristic SHORTEST for instances based on
Steinc graphs and H = 15 . 62

6.7 CPU-times in seconds with different stabilization techniques using formulation
(DPFnt), NORMALPRICING and heuristic SHORTEST for instances based on
Steinc graphs and H = 25 . 63

6.8 CPU-times in seconds with different pricing techniques using formulation (DPFnt),
heuristic SHORTEST and no stabilization for instances based on Steinc graphs and
H = 15 . 64

6.9 CPU-times in seconds with different pricing techniques using formulation (DPFnt),
heuristic SHORTEST and no stabilization for instances based on Steinc graphs and
H = 25 . 65

6.10 Detailed computational results for three settings using formulation (DPFnt) for
instances based on Msteinb graphs and H = 3 . 67

6.11 Detailed computational results for three settings using formulation (DPFnt) for
instances based on Msteinb graphs and H = 6 . 68

6.12 Detailed computational results for three settings using formulation (DPFnt) for
instances based on Msteinb graphs and H = 9 . 69

6.13 Detailed computational results for three settings using formulation (DPFnt) for
instances based on Msteinb graphs and H = 12 70

6.14 Detailed computational results for three settings using formulation (DPFnt) for
instances based on Steinc graphs and H = 5 . 71

x

List of Tables xi

6.15 Detailed computational results for three settings using formulation (DPFnt) for
instances based on Steinc graphs and H = 15 . 73

6.16 Detailed computational results for three settings using formulation (DPFnt) for
instances based on Steinc graphs and H = 25. 74

List of Algorithms

1 A generic branch-and-bound template . 16
2 Hop-constrained cheapest path . 33
3 Branch-and-price-framework . 40
4 Column generation with acceleration methods 40
5 A basic heuristic . 42
6 A greedy algorithm . 42
7 Heuristic using different hop constraints . 43
8 Heuristic based on the knapsack-like structure of the STPRBH 44
9 Algorithm to add more than one column for a terminal 49
10 Basic pricing strategy . 50
11 Another simple pricing strategy . 50
12 Pricing strategy based on a tabu list . 51
13 Pricing strategy based on the hop constraints 52

xiii

CHAPTER 1
Introduction

A central problem when designing and planning modern communication networks consists of
selecting certain entities with minimum total cost for establishing the necessary connections.
An example would be the cheapest network connecting a server to all clients. This problem
can be modeled as Steiner tree problem on graphs. Often, however, there are more restrictions
and constraints necessary to model a real-world problem accurately. Connected clients could
generate (different) revenues, leading to the goal of maximizing the difference between revenue
gained by connecting clients and the total costs of realizing the network. This more general
problem is known as prize-collecting Steiner tree problem and Steiner tree problem with profits
[14].

Maximizing the difference between the collected revenue and the total costs frequently does
not describe real-life situations in an adequate way. On the contrary to above assumptions, in
real world the available budget is often fixed and companies are interested in maximizing the
obtained revenue while not exceeding the given budget.

Another problem frequently encountered by telecommunication companies is the need to
provide good Quality-of-Service (QoS) for their customers. QoS demands can be addressed in
the following way: If each link in a network has the same reliability α (i.e. probability that the
link is working) and the reliability of the links is independent, the probability that a connection
consisting of H links has no failure is αH [17, 38]. Moreover, in a network with low traffic,
the maximum delay between the server and any client is directly proportional to the number of
links between the server and the client [37, 38]. Such a limit for the number of links between a
dedicated root node and any other node in a network can be modeled as hop constraints [14, 17,
37, 38].

Thus, additionally considering the budget constraint and the hop constraints, we end up
with a more realistic model, the Steiner tree problem with revenues, budget and hop constraints
(STPRBH), which is the topic of this thesis.

Given a central server or some existing infrastructure, the goal is to connect those clients,
which generate the maximum revenue, while a given budget-constraint for establishing this net-
work must hold. Moreover the connections between the server and each client must provide

1

2 CHAPTER 1. INTRODUCTION

good QoS. To achieve this, every connection between the server and a client is not allowed to
exceed a given number of links.

More formally, the STPRBH is defined as follows:

Definition 1.1 (STPRBH).
We are given a graph G = (V,E) with vertex set V , edge set E, and a dedicated root node
0 ∈ V . Furthermore, we are given a cost function ce > 0, ∀e ∈ E, assigning a positive cost
value to each edge and a revenue function rv ≥ 0, ∀v ∈ V , assigning a nonnegative revenue to
every node. Each instance is further defined by the maximum available budget B ≥ 0, and the
hop limit H ∈ N.

A feasible solution to the STPRBH is a tree GS = (VS , ES), VS ⊆ V , 0 ∈ VS ,
ES ⊆ E, connecting all nodes of VS , which does not violate the budget and hop constraint,
i.e.
∑

e∈ES
ce ≤ B, and the path between any node v ∈ VS and the root node 0 does not contain

more than H edges. The objective is to maximize the total revenue, i.e.

max
∑
t∈VS

rt.

The node set of a STPRBH instance can be separated into two disjoint sets of terminal nodes
and Steiner nodes according to the revenue of the nodes.

Definition 1.2 (Terminal nodes of an STPRBH instance).
Given an instance I = (G = (V,E), 0, c : E → Q+, r : V → Q+

0 , H,B) of the STPRBH,
the set of terminal nodes T of this instance is defined as the union of the set of all nodes with
positive revenue and the root node 0, i.e. T = {v ∈ V | rv > 0} ∪ {0}

Definition 1.3 (Steiner nodes of an STPRBH instance).
Given an instance I = (G = (V,E), 0, c : E → Q+, r : V → Q+

0 , H,B) of the STPRBH, the
set of Steiner nodes of S of this instance is defined as the set of nodes with zero revenue without
the root node, i.e. S = {v ∈ V | rv = 0 ∧ v 6= 0}

We observe that there exists an optimal solution for each instance such that only the root
node and terminals nodes are leaves, i.e. have node degree one.

Figure 1.1 with H = 2, B = 15 and the root node marked as double-circle shows an
exemplary instance of the STPRBH. The node number corresponds to the revenue generated by
this node and the number next to each edge gives the cost of the corresponding edge. Nodes
with uppercase letters are Steiner nodes, i.e. they have zero revenue.

3

Figure 1.1: Graph of an exemplary instance of the STPRBH.

Figure 1.2 shows an optimal solution S of this instance with a total revenue of 21. The nodes
VS in the solution are marked shaded and bold and edges ES in the solution are marked bold.
It is easy to see that the node with revenue four cannot be part of a feasible solution, since it
does not fulfill the hop limit (i.e. every path from the root node to this node has at least length
three). Moreover, the node with revenue nine cannot be connected in the optimal solution,
since connecting this node would consume all of the available budget and therefore no other
node could be connected. Hence, connecting node nine would yield a total revenue of fifteen,
while the solution shown in Figure 1.2 yields a total revenue of 21. Since the latter connects all
terminal nodes, except nodes four and nine, it is optimal.

Figure 1.2: Solution of the instance given in Figure 1.1 with H = 2, B = 15.

The STPRBH is an extension of the well-known Steiner tree problem (STP) on a graph,
which is NP-hard [31]. The STPRBH is also NP-hard, under the condition that B is smaller

4 CHAPTER 1. INTRODUCTION

than the sum of the edge-costs [69].
This thesis introduces branch-and-price methods based on path-formulations for the

STPRBH and studies possibilities to improve the efficiency of them.

1.1 Outline of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 introduces the theoretical back-
ground of the methods used in this thesis, i.e. combinatorial optimization and integer linear
programming (ILP). Moreover, different strategies to solve ILPs like branch-and-bound, branch-
and-cut and branch-and-price are discussed in this chapter. Chapter 3 gives an overview over
previous and related work.

In Chapter 4, an undirected and a directed ILP formulation with exponentially many vari-
ables and a way to solve these formulations by means of branch-and-price are presented. Also
the pricing subproblem is described in this chapter.

Chapter 5 discusses various attempts to improve the efficiency of the suggested branch-and-
price algorithms like stabilization techniques, different pricing strategies and heuristic meth-
ods to generate initial solutions. Preprocessing techniques are also discussed in this chapter.
In Chapter 6, the computational results obtained by the various approaches (and combinations
thereof) are presented.

Chapter 7 concludes this thesis by a summary and an outlook to potential further work.

CHAPTER 2
Preliminaries

2.1 Combinatorial Optimization

A combinatorial optimization problem (COP), also called discrete optimization problem, con-
sists of finding the optimum value of a function on a set of finite or countable infinite variables.
This function is called objective (or cost) function and the set of variables is normally constrained
by other functions. All subsets of this set of variables, which fulfill all constraints are feasible
solutions and the set of feasible solution of an COP forms the feasible region for this COP. The
following is a formal definition of an optimization (minimization) problem, taken from [68] and
a formal definition of a combinatorial optimization problem.

Definition 2.1 (Optimization problem [68]).
An instance of an optimization problem is a pair (F, c), where F is any set, the domain of
feasible points; c is the cost function, a mapping

c : F → R.

The problem is to find an f ∈ F for which

c(f) ≤ c(y) for all y ∈ F .

Such a point f is called an optimal solution to the given instance. An optimization problem is a
set I of instances of an optimization problem.

Definition 2.2 (Combinatorial optimization problem [68]).
A combinatorial optimization problem is an optimization problem, where F is finite.

A wide range of problems falls in the category of combinatorial optimization, because the
only requirement for a problem to be a COP is a finite representation in a computer. Graphs
can be represented in a finite way by either an adjacency list or an adjacency matrix, therefore
problems like the traveling salesman problem, the minimum spanning tree problem, network

5

6 CHAPTER 2. PRELIMINARIES

flow problems [2] and variants of these problems are all COPs. Other type of problems which
are COPs are for example scheduling [13] or knapsack problems [48].

There are many ways to solve COPs. The first idea which may come to ones mind is enumer-
ating the whole search space, i.e. listing all feasible solutions and comparing the value of their
objective functions. This clearly works due to the finiteness of the solution space, but is very
slow in general for even moderate sized instances of COPs [68]. Therefore a rich variety of other
(better) methods for solving COPs emerged, which can be mainly parted into (meta-)heuristic
methods and exact methods. Both methods can in principle be applied to all kind of COPs.

Heuristic methods try to intelligently construct a solution of good quality in a fast way. An
example for heuristics are greedy algorithms, which use local information to build a solution.
In general there is no guarantee about the quality of the solutions found by heuristic methods.
Metaheuristic methods try to improve one or more given (feasible) solution(s) by various strate-
gies of iteratively changing the elements of the solution. Again, there is no guarantee that a
metaheuristic finds the optimal solution or even a solution bounded in a fixed ratio to the opti-
mal solution for all instances of a COP. Examples for metaheuristics are variable neighborhood
search [64], ant colony optimization [25] or genetic algorithms [35]. See also [9, 33] for a
broader overview on the topic of metaheuristics.

The other group of methods to solve COPs are exact methods like integer linear program-
ming. The main idea behind this kind of methods is to provide an “intelligent” form of enu-
meration, which results in better runtime than the brute-force method of enumerating the whole
search space. Since this thesis mainly deals with methods based on integer linear programming,
a more in-depth look of it will be given in the next sections together with a discussion of linear
programming and other related topics. More on linear programming can for example be found in
[21, 22, 68], an excellent treatment of integer linear programming is given in [79], moreover [74]
gives a general introduction to convex programming, which contains both linear programming
and integer linear programming as subset.

Aside from these two big groups of methods, other variants like hybrid methods, which
combine exact and (meta-)heuristic methods, approximation algorithms, which do not neces-
sarily give the optimal solution, but a solution within a fixed ratio of the optimal solution [76],
or simply algorithms developed especially for a problem like the Ford-Fulkerson algorithm for
network flows [29] or the Hungarian method for the assignment problem [53], do exist.

2.2 Mathematical Background

This section recalls some mathematical definitions and theorems, which will be used later on.
The definitions are taken from [21, 22, 68, 74].

Definition 2.3 (Convex combination and Convex hull [22]).
Given vectors x1, . . . ,xk ∈ Rn,

x = a1x1 + . . .+ akxk (2.1)

with ai ≥ 0, 1 ≤ i ≤ k and
∑k

i=1 ai = 1, is called convex combination of these vectors. The set
of all such convex combinations is called convex hull of these vectors.

2.2. MATHEMATICAL BACKGROUND 7

For the remainder of this thesis, vectors will not be explicitly denoted in bold whenever it is
clear from the context whether we are concerned with a scalar or a vector.

Informally, a set is convex if every two elements of this set can be connected with a line
segment, which also lies in the set. A line segment connecting two vectors x1, x2 is defined as
all vectors y, which are a solution of the following equation

y = λx1 + (1− λ)x2 (2.2)

with 0 ≤ λ ≤ 1. Given a set S, this equation can be used to easily check if this set is convex.
Moreover, it can be used to show that the intersection of two convex sets is also a convex set.
Next, hyperplanes and halfspaces are defined. Note that in the definition of hyperplanes and
halfspaces, there is only one vector x in Rn, in contrast to the k vectors in the previous definitions

Definition 2.4 (Hyperplane [22]).
The set of vectors x = (x1, x2, . . . , xn) ∈ Rn fulfilling the equation

a1x1 + a2x2 + . . .+ anxn = b (2.3)

with at least one ai 6= 0, 1 ≤ i ≤ n, is called a hyperplane.

Definition 2.5 (Halfspace [22]).
The set of vectors x = (x1, x2, . . . , xn) ∈ Rn fulfilling the equation

a1x1 + a2x2 + . . .+ anxn ≤ b (2.4)

with at least one ai 6= 0, 1 ≤ i ≤ n, is called a halfspace.

Both hyperplanes and half-spaces are also convex sets and therefore also their intersections
are convex sets. Moreover, given any two disjoint convex sets, a hyperplane separating these
sets can be found. Such a hyperplane is called separating hyperplane.

Definition 2.6 (Convex Polyhedron and Convex Polytope [22]).
A convex polyhedron is the set of points common to one or more halfspaces. If a convex polyhe-
dron is bounded, it is called convex polytope.

For the rest of this thesis, the term polyhedron will be used to denote both convex polyhe-
drons and convex polytopes.

Formulating a COP more mathematically, we get

min c(x)

s.t. fi(x) ≤ bi i = 0, . . . ,m
(2.5)

where x denotes a vector in Qn, c denotes the objective function and the fi denote the
constraint functions. If the objective function and the constraint functions are all linear, this
means satisfying

fi(αx+ βy) = αfi(x) + βfi(y) (2.6)

8 CHAPTER 2. PRELIMINARIES

the COP is a linear program. A linear program is therefore a special case of a general
convex program. An important fact about convex programs is, that a local optimum is also a
global optimum. Moreover, the set of vectors corresponding to feasible solutions (i.e. solutions
which fulfills all constraint functions) is also a convex set.

2.3 Linear Programming

This section and its subsections introduce linear programming, following [21, 22, 68]. We begin
with the definition of a linear program (LP) in standard form.

Definition 2.7 (Linear Program in standard form [68]). GivenA ∈ Q(m×n), b ∈ Qm and c ∈ Qn

min cTx = z

s.t. Ax = b

x ≥ 0

(2.7)

is called Linear Program in standard form

As usually, cTx will be called objective function, x ∈ Qn solution vector and A constraint
matrix. A solution vector corresponding to an optimal solution will often be denoted with x∗.
There are many other forms of LPs possible, e.g. equality instead of inequality constraints. With
the help of slack variables, these different forms can be transformed into each other. The set of
solution vectors to an LP forms a polyhedron P .

P = {x | Ax ≤ b, x ≥ 0} (2.8)

Example 2.1 gives an example of an LP in two variables.

Example 2.1.
min 3x1 + 3x2

s.t. 2x1 + x2 ≤ 3

x1 + 2x2 ≤ 4

x1 ≥ 0

x2 ≥ 0

(2.9)

Figure 2.1 shows the polyhedron of the LP in the example. The feasible region is shaded in
gray.

Example 2.2 shows how the LP of Example 2.1 can be transformed into standard form with
the help of slack variables s1 and s2, respectively.

2.3. LINEAR PROGRAMMING 9

x2

x1

2x1 + x2 ≤ 3

x1 + 2x2 ≤ 4

−1 0 1 2 3 4

−1

1

2

3

4

Figure 2.1: The polyhedron corresponding to the LP of Example 2.1.

Example 2.2. By introducing slack variables s1, s2, we get the LP

min 3x1 + 3x2

s.t. 2x1 + x2 + s1 = 3

x1 + 2x2 + s2 = 4

x1 ≥ 0

x2 ≥ 0

s1 ≥ 0

s2 ≥ 0

(2.10)

which is equivalent to the LP of Example 2.1

At least one optimal solution of an LP must lie on the corners of the polyhedron formed by
the feasible solutions to the LP. This fact is used in the simplex method for solving LPs. The
algorithm was invented by Dantzig in 1947 (first published in 1949 [19]) and has a good runtime
performance in general, although it is not a polynomial time algorithm [21, 68]. The simplex
method is covered in more detail in the next section.

In 1979, Khachian [49] introduced the ellipsoid method. The method tries to find an el-
lipsoid, which contains a solution and iteratively replaces this ellipsoid by a smaller one. The
ellipsoid method was the first polynomial time algorithm for LP, but its practical performance is
rather poor and therefore it has mainly theoretical value [21, 22, 68].

Today, variants of the simplex method and various interior point methods, which start out
from a point in the interior of the feasible polyhedron and became competitive in 1984 [22] by
the introduction of Karmarkars interior point method [47], are used to solve LPs.

10 CHAPTER 2. PRELIMINARIES

The Simplex Method

In this section, an outline of the well-known simplex method for solving Linear Programs will
be given, following [21, 22]. As already mentioned, the simplex method uses the fact, that at
least one optimal solution of an LP corresponds to a vertex (extreme point) of the polyhedron
caused by the LP.

To describe this mathematically, we need the term basic feasible solution: Consider an LP in
matrix form, i.e. min{cTx|Ax = b, x ≥ 0}, it can be transformed into the so called canonical
form, where IxB + ĀxN = b̄ replaces Ax = b with the same solution as in the original form.
Note that I denotes the identity matrix and x is split into xB called the basic variables and xN
the non-basic variables. Given such a partition in basic and non-basic variables, a basic feasible
solution can be found by setting the non-basic variables to zero and then reading off the values
for the basic variables. Note that a basic feasible solution lies on a vertex of the polyhedron
{Ax = b, x ≥ 0}.

Another important term is reduced cost (also called relative costs): These costs are the co-
efficients c̄ of the variables in the objective function when the problem is of canonical form.
Note that these costs depend on the variables in the basis, hence the name relative costs. By
increasing the variable associated with a negative reduced cost coefficient, we can improve the
solution, since we have a minimization problem. Note that only non-basic variables are eligible
for increasing, because the cost coefficient of a basic variable is zero. As a result of increasing
the value of a non-basic variable, this variable enters the basis, since it gets a positive value.
Furthermore, a basic variable leaves the basis, because it gets a value of zero.

The simplex method now simply moves from one basic feasible solution to another basic
feasible solution. The process is repeated as long as there is a non-basic variable with negative
reduced cost.

Note that the simplex method needs a basic feasible solution to start with. This problem of
finding a starting solution can also be modeled as linear program and is called phase one of the
simplex method, the movement from one basic feasible solution to another until optimality is
called phase two.

There exists many variations of the simplex method, like the revised simplex method, which
does not store the whole tableaux, but generates columns on-the-fly (see column generation in
Section 2.4), or the dual simplex method, which works on the dual program (see next section
regarding duality).

Duality Theory

To every LP a dual program, which is also an LP, can be found. The original LP is called primal
program in this context. This primal-dual connection plays a central role in the duality theory of
linear programming.

Definition 2.8 gives a formal definition of the dual.

Definition 2.8 (Dual of a Linear Program [68]).

2.3. LINEAR PROGRAMMING 11

Given a LP in standard form (see Definition 2.7), the dual is defined as follows:

max bTπ = v

s.t. ATπ ≤ c
π ≥ 0

(2.11)

Example 2.3 shows the dual program of the LP from Example 2.1:

Example 2.3.
max 3y1 + 4y2

s.t. 2y1 + y2 ≤ 3

y1 + 2y2 ≤ 3

y1 ≤ 0

y2 ≤ 0

(2.12)

As seen in the example, a dual program can also be obtained, if the primal program is not
in standard form. Table 2.1, where Aj denotes the j-th column of the constraint matrix A,
summarizes the rules needed for conversion [21, 68].

Table 2.1: Primal-Dual conversion rules [21, 68]

PRIMAL DUAL
min cTx max bπT

aTi x = bi πi unbounded
aTi x ≥ bi πi ≥ 0

aTi x ≤ bi πi ≤ 0

xj unbounded πiAj = cj
xj ≥ 0 πiAj ≤ cj
xj ≤ 0 πiAj ≥ cj

Using this relationship between primal and dual programs, two central results in linear pro-
gramming, the weak and strong duality theorems, can be stated.

Theorem 2.1 (Weak Duality Theorem [68]). If x is a feasible solution to the primal and π is a
feasible solution to the dual, then

πT b ≤ cTx

This means, every feasible solution to the dual problem is a lower bound for the primal
(assuming that the primal problem is a minimization problem, otherwise the dual is an upper
bound).

Theorem 2.2 (Strong Duality Theorem [68]). If an LP has an optimal solution, so does its dual
and the optimal costs of both are equal

12 CHAPTER 2. PRELIMINARIES

2.4 Integer Linear Programming

From a practical point of view, it is often necessary to restrict (some) of the solution variables
of an LP to integers. Consider for example variables xij , which indicate that a machine i is built
in location j. If we get a fractional value like 0.574 for xij in the optimal solution, it is not
of much help. Moreover, there are many formulations for COPs, in which the solution values
are restricted to be either 0 or 1 to indicate if an object is part of the solution or not. Therefore
integer linear programming (ILP), also known in the literature as integer programming (IP) plays
an important role in the field of combinatorial optimization. Unless otherwise mentioned, this
section and its subsections are based on [79].

An ILP in standard form is defined as following.

Definition 2.9 (Integer Linear Program [79]).
Given A ∈ Q(n×m), b ∈ Qm and c ∈ Qn,

min cTx

s.t. Ax ≤ b
x ≥ 0

x ∈ Z

(2.13)

is called an integer linear program or ILP for short.

The LP-relaxation of an ILP, a notion which will be important later on, is defined as follow-
ing:

Definition 2.10 (LP-relaxation of an ILP [79]).
Given an ILP min{cTx|Ax ≤ b, x ≥ 0, x ∈ Z}. The LP-relaxation of this ILP is

min cTx

s.t. Ax ≤ b
x ≥ 0

(2.14)

i.e. the same program without the solution variables constrained to integers.

Unfortunately, solving ILPs is NP-hard [31]. The simplest strategy for getting an integer
solution vector from a fractional result, rounding the fractional values of the solution vector to
the nearest integer, does not necessarily give the optimal solution for an integer solution vector
and can even lead to infeasibility of the solution. For an illustration of this problem, see Figure
2.2.

2.4. INTEGER LINEAR PROGRAMMING 13

x2

x1

−1 0 1 2 3 4 5 6

−1

1

2

3

4

Figure 2.2: A LP with no feasible integer solution

Hence, more sophisticated approaches for solving ILPs are needed. Some of these ap-
proaches are presented in the next subsections. For sake of presentation, the ILPs are considered
to be minimization problems in standard form, but the approaches can easily be generalized to
all other forms of ILPs.

However, there is a special case of ILPs, where we get integer solutions without the use of
such methods: If the constraint matrix A of an ILP is total unimodular (see Definition 2.11) and
b ∈ Z, then the solution of the LP-relaxation of an ILP is automatically integral. Example for
problems with a total unimodular constraint matrix are the transportation problem [21] or the
linear assignment problem [21].

Definition 2.11 (Unimodularity and Total Unimodularity [79]).
A square, integer matrix B is called unimodular (UM) if it has determinant -1 or 1. An integer
matrix A is called totally unimodular (TUM) if every square, nonsingular submatrix of A is
unimodular.

There are two more definitions [79], which are important for solving COPs with ILP. The
first is concerned with the representation of the problem as integer linear program, which is
called formulation.

Definition 2.12 (Formulation of a COP as ILP [79]). A polyhedron P ⊆ Rn+p is a formulation
for a set X ⊆ (Zn × Rp) iff X = P ∩ (Zn × Rp)

Usually, there are many ways to formulate a problem as ILP, therefore it is a natural question
to ask, which formulation should be preferred. The following definition gives an answer to this
question.

Definition 2.13 (Better formulation [79]).
Given a set X ⊆ Rn and two formulations P1, P2 for X , P1 is a better formulation than P2, if
P1 ⊂ P2

14 CHAPTER 2. PRELIMINARIES

Cutting Plane Algorithms

Cutting plane algorithms were the first methods for solving ILPs. The method was first used
in 1954 by Fulkerson, Dantzig and Johnson [20] in order to solve an instance of a traveling
salesman problem (TSP), where 49 cities in different states in the United States had to be visited.
Their LP formulation of the TSP has exponentially many inequalities. Therefore, they started
with a “smaller” formulation without all inequalities, solved it and then checked, if some of the
TSP constraints are violated in the solution. If yes, the violated inequalities are added to the
“smaller” formulation and the whole procedure is repeated. If at some point, the solution does
not violate any TSP constraint, we get an optimal solution for the instance and are done (note
that the integrallity of the solution is achieved by their TSP constraints).

In 1958 Gomory [36] stated a cutting plane procedure in order to solve ILPs. The idea
behind this method is to solve the LP-relaxation (see Definition 2.10) of the ILP, which provides
an lower bound for the optimal solution of the ILP. Then check, if the solution vector consists
only of integers. If not, a linear constraint, which does not exclude any feasible solution to the
ILP (such a linear constraint is called a “cutting plane”, hence the name), is added to the LP-
relaxation. The whole procedure repeats, until we find an solution vector that consists of integers
only.

Adding cutting planes (for both described uses) can be considered as “row generation”: The
constraints of an LP can be written in matrix form in the following way:

a11 a12 . . . a1n
a21 a22 . . . a2n
.
am1 am2 . . . amn



x1
x2
. . .
xn

≤

b1
b2
. . .
bm

 (2.15)

A cutting plane is a linear inequality ac1x1 + ac2x2 + . . .+ acnxn ≤ bc. Therefore, adding
a cutting plane results in an LP with one more row:

a11 a12 . . . a1n
a21 a22 . . . a2n
.
am1 am2 . . . amn
ac1 ac2 . . . acn



x1
x2
. . .
xn

≤

b1
b2
. . .
bm
bc

 (2.16)

For more technical details, see for example [21, 22, 68].

Branch-and-Bound

This technique has its origins in a paper from Land and Doig [54] written in 1960. Like cutting
plane algorithms, it also works on the LP-relaxation of the ILP. However, in contrast to cutting
plane algorithms, one does not add cutting planes to the LP-relaxation in case x∗ (the solution
value of the current LP-relaxation) has some non-integer values. Instead, the LP-relaxation is
split in two mutually exclusive subproblems (which are also LPs) caused by a fractional value in
x∗ and these subproblems need to be resolved. This process, the branching part of branch-and-
bound, is repeated and the result of it is a binary tree like the example in Figure 2.3. At some

2.4. INTEGER LINEAR PROGRAMMING 15

point, in every branch, we either get an integer solution or the LP is infeasible, in both cases the
branching-process at this particular branch is stopped. After every branch-process has stopped,
the minimal solution value among all the branches is the optimal solution to this ILP.

For example, if x0i = 5.6, where x0 denotes the optimal solution vector at the first iteration
of branch-and-bound, then xi ≤ 5 is added to one subproblem and xi ≥ 6 to the other.

1

2 3

4 5 6 7

xi ≤ x0i xi ≥ x01 + 1

xj ≤ x1j xj > x1j + 1 xk ≤ x2k xk > x2k + 1

Figure 2.3: A branch tree

However, using this branching-process on its own is usually not effective, because a large
portion of the search-space will be searched this way. Here bounding comes into play to speed
things up. It relies on the facts, that the solution of the LP-relaxation provides a lower bound on
the optimal ILP solution (a lower bound obtained in any other way, e.g. with heuristics, works
too) and the current best integral solution xI , provides an upper bound. With this information,
the branching-tree can be pruned at some branches, leading to branch-and-bound,

Suppose we have obtained some solution xI during branch-and-bound. Then at all the
branches, where the solution value cTx∗ of the LP-relaxation is greater than cTxI , branching
can be stopped, because no better solution value for the ILP can be found at this branches. This
is called pruning by bound. Moreover, we can stop at some branch, if cTx∗ = cTxI , this is
pruning by optimality. Pruning by infeasibility at a branch happens, if the LP-relaxation at this
branch is infeasible.

Algorithm 1 shows a generic branch-and-bound code for a minimization problem P . In the
pseudocode, nodes denotes the set of active nodes with formulations Pi, upper holds the global
upper bound, loweri the lower bound at node i, solutioni denotes the solution at node i and
best is the solution with the currently best solution value.

16 CHAPTER 2. PRELIMINARIES

Algorithm 1 A generic branch-and-bound template

1: procedure BRANCHANDBOUND(Problem P)
2: nodes← ∅ ∪ P
3: best← NULL
4: upper ←∞
5: while nodes 6= ∅ do
6: choose a node i ∈ nodes to branch
7: nodes← nodes \ {i}
8: SOLVE(Pi)
9: if Pi is infeasible then

10: do nothing (i.e. prune by infeasibility)
11: else
12: if loweri ≥ upper then
13: do nothing (i.e. prune by bound)
14: else
15: if solutioni is a feasible solution to the original problem then
16: upper ← loweri (i.e. prune by optimality)
17: best← solutioni
18: else
19: generate subproblems Pi1 , . . . , Pik
20: nodes← nodes ∪ {Pi1 , . . . , Pik}
21: end if
22: end if
23: end if
24: end while
25: best solution value: upper
26: best solution: best
27: end procedure

It should be noted, that the use of branch-and-bound is not restricted to solve ILPs, but can
be used to solve any COP where lower (or upper bounds) can be obtained and the solution set
can be partitioned [68, 79].

Branch-and-Cut

Branch-and-cut combines cutting plane algorithms with branch-and-bound. This combination
was first proposed by Padberg and Rinaldi [66, 67] for the TSP. Before the introduction of this
technique, solving an ILP, where cutting planes caused by violated inequalities were added, was
done by restarting the whole solution process from scratch when a cut was added. The combina-
tion of both phases with the branch-and-cut method often gives in a much smaller branch-and-
bound tree, which in turn results a shorter runtime [79].

2.4. INTEGER LINEAR PROGRAMMING 17

Column Generation and Branch-and-Price

Column generation essentially implements the opposite idea of cutting plane methods: Instead
of starting with a formulation with a small number of inequalities and gradually adding inequal-
ities caused by violated constraints, column generation starts with a small number of variables
and gradually adds variables aiming to improve the objective value. Historically, column gen-
eration has its roots in Dantzig-Wolfe decomposition [23], which allows the transformation of
a “normal” linear program in an equivalent formulation with a huge number of variables. The
first application of column generation was by Gilmore and Gomory [32] for the cutting-stock
problem.

More formally, consider the following LP, called master problem (MP) in the context of
column generation (this section follows [3, 24, 61, 68]).

min
∑
j∈J

cjλj

s.t.
∑
j∈J

ajλj ≥ b (π)

λj ≥ 0 j ∈ J

(2.17)

In each iteration of the simplex method, we are looking for a non-basic variable with negative
reduced cost to enter the basis, i.e. given the dual variables π, we are trying to find a j∗ ∈ J ,
s.t. j∗ = argminj∈Jcj − πTaj . However, if |J | is huge, this explicit pricing can turn out to be
too costly. Therefore we start with a small subset J ′ ⊆ J of columns, the resulting program is
called the restricted master problem (RMP). Let A denote the set of coefficients of the j ∈ J .
The pricing operation (also called pricing subproblem or pricing oracle) consists of solving the
following subproblem:

c̄∗ = minj∈J{c(aj)− πTaj |aj ∈ A}
where c(aj) denotes a function to compute the cost cj given aj . If c̄∗ ≥ 0, i.e. there is no
variable with negative reduced costs c̄j ,∀j ∈ J , and we are finished, otherwise we add the
column corresponding to c̄∗ to the RMP. Note that it is not necessary to find the variable with the
most negative reduced costs, any variable with negative reduced costs works. Naturally, if we
have a maximization problem instead of an minimization problem, we are looking for non-basic
variables with positive reduced costs to price in and stop, if we only find c̄j , ∀j ∈ J , which are
less than or equal to zero.

Often, the pricing subproblems are (variants of) well-known combinatorial problems and
therefore can be solved by means of problem-specific combinatorial algorithms instead of (inte-
ger) linear programming.

It should be noted that column generation on its own is a technique for linear program-
ming. For the use in integer linear programming it is usually embedded in a branch-and-bound
framework and called branch-and-price. At every node of the branch-and-bound tree, column
generation is performed. It is important to do column generation after branching, because the
restriction of some variable due to branching may lead to some columns with negative reduced
costs, which were not present in the original MP. Branching-schemes, which are an important
part of branch-and-price are discussed in Section 5.2

CHAPTER 3
Previous & Related Work

The STPRBH has been introduced by Costa [15] in 2006. In [17], four exact methods based
on integer linear programming are presented: An undirected and a directed formulation us-
ing subtour-elimination constraints, a formulation with Miller-Zemlin-Tucker inequalities and a
variation thereof called Garcia-Gouveia hop formulation are given. The use of Miller-Zemlin-
Tucker constraints in context of hop constraints has been proposed by Gouveia for the minimum
spanning tree problem with hop constraints (MSTH) [37], and Voß adapted the formulation to
the Steiner tree problem with hop constraints (STPH) [77]. The constraints used in the Garcia-
Gouveia hop formulation have been introduced by Garcia in [30] and Gouveia in [40]. The exact
methods presented in [17] are capable of solving instances which up to 500 nodes and 625 edges
in reasonable time.

To solve bigger instances approximately, Costa et. al proposed a greedy algorithm, a destroy-
and-repair algorithm and a tabu search in [16]. The greedy algorithm starts out with a solution
consisting only of the root node and then gradually adds terminal nodes using hop-constrained
paths. The terminals are picked in a greedy strategy depending on the revenue of the terminal
and the costs of the chosen path to connect the terminal.

The destroy-and-repair algorithm starts with a feasible solution for the STPRBH generated
by their greedy algorithm and tries to improve the current solution by exchanging edges in the
solution with edges not in the solution. The algorithm sets the cost of one edge in the current
solution to infinity and then reruns the greedy algorithm. This is done for all edges incident to
a leaf node in the current solution, and the solution with the best objective value is kept. The
whole procedure is repeated until we do not get a better solution.

The tabu search consists of two main moves add and remove. The add move adds terminals
to the solution using hop-constrained paths (i.e. like the greedy algorithm) and the added paths
are allowed to violate the budget. The remove move does the opposite, it deletes branches of
the solution to get a budget-feasible solution. There is also a third move, destroy, which is only
used occasionally. This move deletes whole subtrees of the solution to get out of local optima.

In general, column generation and branch-and-price algorithms are seldom used for Steiner
tree and spanning tree problems: Gouveia et al. [41] have tried to solve the LP-relaxation of a

19

20 CHAPTER 3. PREVIOUS & RELATED WORK

formulation for the rooted delay-constrained minimum spanning tree problem (RDCMST) with
column generation. An instance of a RDCMST consists of a graph with edge-costs, edge-delays
and a dedicated root node. Furthermore, a delay bound is part of the instance. A feasible solution
to the RDCMST is a tree, which connects every node in the graph to the root node in such a way
that for every node the sum of the edge-delays in the path from the root node to the node does not
exceed the delay bound. The goal is to find a feasible solution with minimum edge-cost. Column
generation has turned out to be not competitive to two other approaches tested in [41]. One of
these two other methods consists of using Lagrangian relaxation in combination with a primal
heuristic. The other approach solves the constrained shortest path problem for every terminal on
layered graphs using a multicommodity flow formulation. This approach using layered graph
has been extended for the full formulation of the RDCMST by Gouveia et al. [44].

The rooted delay-constraint minimum Steiner tree problem (RDCSTP) is closely related with
the RDCMST. In contrast to the RDCMST, only the set of terminal nodes needs to be connected
in the solution tree instead of all nodes. For the RDCSTP, using stabilized branch-and-price,
Leitner et al. [57, 58] have been able to outperform other approaches to solve this problem
(i.e. layered graphs) in many cases. Since the RDCMST is the special case of the RDCSTP,
where every node is a terminal node, the stabilized branch-and-price algorithm proposed for the
RDCSTP should also be competitive for the RDCMST.

When not restricting ourselves to branch-and-price methods, we get a broader picture. In
particular, one can identify three problems, which are strongly related to the STPRBH: First
and foremost, there are the Steiner tree problem with hop constraints (STPH) and the Steiner
tree problem with revenues and budget (STPRB), which is just the STPRBH without revenues,
budget and hop constraints, respectively. Moreover there is the prize collecting Steiner tree
problem (PCSTP), also known as the Steiner tree problem with profits (STPP), where the goal
is to maximize the difference between revenues and edge costs, instead of having a budget
constraint on the edge costs. The node-weighted Steiner tree problem (NWSTP) is a slight
variant of the PCSTP, where a given set of terminal nodes must be part of any feasible solution
(often this set only consists of a single node, i.e. a root node).

The NWSTP has first been introduced by Segev [72]. Segev uses subgradient optimization
and Lagrangian relaxation to obtain lower bounds, which are used in a branch-and-bound algo-
rithm. Magnanti and Wolsey give various ILP formulations for the NWSTP in [62] and compare
the values of the LP-relaxations for these formulations. Klau et al. [50] use a combination of a
memetic algorithm and integer linear programming to solve the PCSTP. There exist branch-and-
cut algorithms to solve the PCSTP by Lucena et al. [60] and by Ljubic et al. [59]. In [14] Costa
et al. present a survey of different variants of the PCSTP and in [10], Chapvoska and Punnen
give a survey on other variants of the PCSTP.

In [77], Voß discusses a tabu search for the STPH. Gouveia uses variable redefinition in
[39] to strengthen a multicommodity flow model for the STPH and the related MSTH. For the
MSTH more work has been done: Aside from the already mentioned use of Miller-Zemlin
Tucker constraints [37], Gouveia et al. describe Lagrangian relaxation approaches in [42] and an
approach based on layered graphs in [43]. Moreover Gouveia discusses multicommodity flow
models in [38] and there is a general survey by Dahl et al. [18] for this problem.

Concerning approximation algorithms for variants of the Steiner tree problems, Bienstock et

21

al. [8] mention the PCSTP in a paper about the prize collecting traveling salesman problem and
present a factor tree approximation algorithm based on LP-rounding. Goemans and Williamson
give a factor two approximation algorithm for the PCSTP in [34]. Klein and Rawi [51] present a
2 ln |T | approximation algorithm for the NWSTP, |T | denotes the number of terminals. Johnson
al. in [46] give a factor (5 + ε) approximation algorithm for the STPRB.

Previous work for stabilization and acceleration of column generation and branch-and-price
is discussed in Chapter 5.

CHAPTER 4
ILP Formulations for the STPRBH

In this chapter we will describe several different ILP formulations for the STPRBH. These for-
mulations use variables corresponding to hop-constrained paths, i.e. each variable models a path
between the root node and some terminal consisting of at most H arcs or edges. Since there can
be exponentially many paths in a graph, these formulations may have exponentially many vari-
ables and will therefore be solved using branch-and-price. When maximizing the revenue, there
may exist optimal solutions to the presented formulations which do not specify a tree. Thus we
present an alternative objective function, which guarantees that the solutions are trees as well as
postprocessing techniques, which can transform the non-tree solutions in tree solutions with the
same objective value. Moreover, the pricing subproblem is also discussed.

4.1 Undirected Path-Formulation

We start with an undirected formulation, although it is well-known that undirected formulations
for Steiner tree problems are usually weaker than their directed counterparts [11, 12, 52, 70].
The latter are based on modeling the problem as Steiner arborescence. However, undirected
formulations need only roughly half the number of variables compared with directed ones, since
the edges have to be doubled to arcs in a directed formulation.

In the following, binary variables yv,∀v ∈ V , indicate if a node v ∈ V is connected to
the root in a solution and binary variables xe,∀e ∈ E, denote if an edge e ∈ E is part of the
solution. A path p is a subset of the edges, i.e. p ⊆ E. The set of hop-constrained paths from
the root node 0 to a terminal t ∈ T is denoted with Pt, i.e.

Pt = {p ⊆ E | p forms a path from 0 to t with |p| ≤ H)}.

Moreover, the set of all hop-constrained paths from the root node to the terminals is denoted
with P , i.e. P =

⋃
t∈T Pt. Variables λp,∀p ∈ P , denote, if path p is realized in a solution.

Using this notation, we get the following master problem:

23

24 CHAPTER 4. ILP FORMULATIONS FOR THE STPRBH

(UPF) max
∑
t∈T

rtyt (4.1)

s.t. yt −
∑
p∈Pt

λp ≤ 0 ∀t ∈ T (4.2)

∑
p∈Pt|e∈p

λp − xe ≤ 0 ∀t ∈ T, ∀e ∈ E (4.3)

xe − yv ≤ 0 ∀e = {u, v} ∈ E (4.4)∑
v∈V

yv −
∑
e∈E

xe = 1 (4.5)∑
e∈E

cexe ≤ B (4.6)

yv ∈ {0, 1} ∀v ∈ V (4.7)

xe ∈ {0, 1} ∀e ∈ E (4.8)

λp ≥ 0 ∀p ∈ P (4.9)

The objective function (4.1) maximizes the revenue of all connected terminals. The con-
vexity constraints (4.2) ensure that there is at least one path connecting the root with a terminal
in the solution and the coupling constraints (4.3) link the paths with the edges used by them.
Constraints (4.4) are linking constraints between edge and node variables, while (4.5) together
with the fact that every path contains the root node, ensures that the graph induced by a solution
contains a feasible solution. The budget constraint (4.6) ensures that the total costs due to the
selected edges do not exceed the given budget B.

Variables λp are only restricted to be nonnegative, because in an optimal solution they are
binary anyway due to the rest of the formulation. This is for the following reasons: First, any
value bigger than 1 for any λp is not possible due to (4.3). Moreover, suppose the value of some
λp is fractional. Then there must be another λp′ to the same terminal t, to fulfill (4.2), since yt is
binary. This means, there must be another path p′ to terminal t, and such a path p′ must contain
at least two different edges than p, so at least two more xe must be 1 due to (4.3). However,
both paths start in the same node (i.e. the root node) and end in the same node (i.e. terminal t),
therefore one less yv is set to 1 in (4.4) than xe are set to 1. This results in a violation of (4.5).

Formulation (UPF) and all following formulations do not specify a tree, because there can
be cycles consisting of edges, which are part of no path. These cycles form connected compo-
nents without the root node and thus can be easily dealt with in postprocessing (i.e. only keep the
connected component, which contains the root). Moreover, there can be leaves, which are non-
terminals, i.e. unnecessary, but a solution containing such leaves does not violate the definition
of the STPRBH.

The possibility of obtaining non-tree feasible solutions when using path-based formulations
for the STPRBH is in contrast to path-formulations of other Steiner tree problems like the RD-
CMSTP [57, 58]. This is easily explained by the fact, that in such problems, the objective is to
minimize the total edge costs. Thus the optimal solution does not contain redundant edges, i.e.

4.1. UNDIRECTED PATH-FORMULATION 25

is a tree (assuming all the edge-costs are positive).
Due to this observation, we can guarantee a tree solution in our non-tree formulations by

replacing the original objective function with the following one:

max
∑
t∈T

rtyt −
∑
e∈E

εxe

If a small enough value for ε > 0 is chosen, every optimal solution for the original objective
value is also an optimal solution for the modified one. Moreover, since −

∑
e∈E εxe is part of

the modified objective function, the solution will not contain any redundant edges and thus is a
tree. By replacing the edges with arcs, this technique also works for the directed formulations,
which will be presented in the next section.

Since the set of feasible paths P is exponentially large, we cannot solve (UPF) directly, but
use column generation for solving its linear relaxation. Therefore, we start with a small subset
of all path-variables

⋃
t∈T P̃t = P̃ ⊆ P . At least one path must be in P̃ in the beginning (e.g.

the empty path connecting the root node to itself), otherwise we can get an infeasible starting
solution.

Further variables are added on demand according to the solution of the pricing subproblem.
The column generation is then embedded in a branch-and-bound procedure to solve (UPF), i.e.
we use branch-and-price.

The restricted master problem (UPF)(RMP) is defined on the path-variables in P̃ and the
upper bounds on variables xij are dropped, but otherwise corresponds to the linear relaxation of
(UPF). The dual variables to the constraints are given in parentheses.

(UPF)(RMP) max
∑
t∈T

rtyt (4.10)

s.t. yt −
∑
p∈P̃t

λp ≤ 0 (µt) ∀t ∈ T (4.11)

∑
p∈P̃t|e∈p

λp − xe ≤ 0 (πte) ∀t ∈ T, ∀e ∈ E (4.12)

xe − yv ≤ 0 (αe) ∀e = {i, v} ∈ E (4.13)∑
v∈V

yv −
∑
e∈E

xe = 1 (γ) (4.14)∑
e∈E

cexe ≤ B (β) (4.15)

0 ≤ yv ≤ 1 (ζv) ∀v ∈ V (4.16)

xe ≥ 0 ∀e ∈ E (4.17)

λp ≥ 0 ∀p ∈ P̃ (4.18)

To define the pricing subproblem, let us start with the generic formula for reduced costs:
c̄j = cj − πTAj (remember that π stands for the complete vector of dual solutions and Aj for

26 CHAPTER 4. ILP FORMULATIONS FOR THE STPRBH

the j − th column in the coefficient matrix A of the MP). We need to find the reduced costs c̄p
of path-variables λp corresponding to p ∈ Pt \ P̃t. Since the coefficients of λp in the objective
function is zero, cp is zero. Moreover, the first dual variable of every path p ∈ Pt is µt and
its coefficient is minus one, see (4.2). Furthermore, the coefficient in every constraints (4.3)
corresponding to an edge e ∈ p with dual variable πte, the coefficient of λp is one. Inserting this
in the generic formula gives us the reduced costs c̄p for variables p ∈ Pt \ P̃t, for some terminal
t ∈ T as

c̄p = µt −
∑
e∈p

πte.

In the pricing subproblem, we need to identify a variable p ∈ Pt with positive reduced costs,
since we have a maximization problem. We might as well search for the variable with most
positive reduced costs. Thus, we need to compute

(t∗, p∗) = argmaxt∈T,p∈Pt
µt −

∑
e∈p

πte

Hence, the variable with maximal reduced costs for a terminal t ∈ T can be determined by
computing a cheapest feasible path from 0 to t using edge costs πte. Since all edge costs are
strictly nonnegative, this hop-constrained cheapest path problem can be solved in polynomial
time. The problem is covered in detail in Section 4.3. If at least one variable with positive
reduced costs does exist, we can add it to (UPF)(RMP) which in turn needs to be resolved.

4.2 Directed Path-Formulation

In the directed path formulation, the undirected graph gets replaced by a directed graph by
introducing two arcs for every edge, i.e. A = {(u, v), (v, u) | {u, v} ∈ E}. Additionally, a
correspondingly defined cost function cij = cji = ce, ∀e = {i, j} ∈ E is used. The binary
variables xij ,∀(i, j) ∈ A, indicate whether an arc is part of a directed solution. Moreover, the
binary variables yv, ∀v ∈ V , indicate if a node v is part of a solution.

The set of all directed hop-constrained paths from 0 to t ∈ T is denoted with Pt. Each of Pt
is represented by its arc set, i.e.

Pt = {p ⊆ A | p forms a directed path from 0 to t with |p| ≤ H)}.

Again, path-variables λp,∀p ∈ P , indicate if a hop-constrained path p is realized in the
solution.

We get the following master problem (DPFT):

4.2. DIRECTED PATH-FORMULATION 27

(DPFT) max
∑
t∈T

rtyt (4.19)

s.t. yt −
∑
p∈Pt

λp ≤ 0 ∀t ∈ T (4.20)

∑
p∈Pt|(i,j)∈p

λp − xij ≤ 0 ∀t ∈ T, ∀(i, j) ∈ A (4.21)

∑
(i,j)∈A

xij − yv ≤ 0 ∀v ∈ V (4.22)

∑
v∈V

yv −
∑

(i,v)∈A

xiv ≤ 1 (4.23)

∑
(i,j)∈A

cijxij ≤ B (4.24)

yv ∈ {0, 1} ∀v ∈ V (4.25)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.26)

λp ≥ 0 ∀p ∈ P (4.27)

The objective function (4.19) is the same as in the undirected formulation. Constraints (4.20)
are the convexity constraints and Constraints (4.21) are the coupling constraints, both with the
same meaning as in the undirected formulation. Constraints (4.22) make sure that any node has
at most one incoming arc and together with Constraint (4.23) and the rest of the formulation,
these constraints make sure that in the graph induced by a solution, the connected component
containing the root node is a tree. Again, we have the budget constraints (4.24) and variables
λp, ∀p ∈ P , have no upper bounds since they automatically become integral.

We now present some formulations, which do not use variables yv,∀v ∈ V \ T . We begin
with (DPF), a slight modification of (DPFT):

28 CHAPTER 4. ILP FORMULATIONS FOR THE STPRBH

(DPF) max
∑
t∈T

rtyt (4.28)

s.t. yt −
∑
p∈Pt

λp ≤ 0 ∀t ∈ T (4.29)

∑
p∈Pt|(i,j)∈p

λp − xij ≤ 0 ∀t ∈ T, ∀(i, j) ∈ A (4.30)

∑
(i,t)∈A

xit − yt ≤ 0 ∀t ∈ T (4.31)

∑
(i,j)∈A

xij ≤ 1 ∀j ∈ V \ T (4.32)

∑
(i,j)∈A

cijxij ≤ B (4.33)

yt ∈ {0, 1} ∀t ∈ T (4.34)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.35)

λp ≥ 0 ∀p ∈ P (4.36)

In contrast to (DPFT), Constraint (4.23) is dropped and Constraints (4.22) are replaced by
Constraints (4.31) and (4.32), respectively, since variables y are defined on terminal nodes only.
Formulation (DPF) does not describe a tree for the connected component containing the root
node, because there can be an incoming arc to the root node in a feasible solution. This can be
easily dealt with in postprocessing or by replacing (4.31) with

∑
(i,0)∈A xi0 = 0.

When dropping the Inequalities (4.31) and (4.32), we get a formulation where feasible solu-
tions can contain more than one path to a terminal (in addition to the possible non-tree solutions
of (DPF)). However, this does not change the objective function value and we can easily trans-
form such a non-tree solution into a tree solution, e.g. by deleting all incoming arcs of a terminal,
except the one lying on the path with the fewest arcs to this terminal. The formulation will be
denoted (DPFnt).

The LP-relaxation of (DPF) can be strengthened by adding constraints (4.37) to it.

xij + xji ≤ 1 ∀{i, j} ∈ E (4.37)

Next, we show that constraints (4.37) added to (DPF) give a stronger formulation according
to Definition 2.13. In the following proof, Figure 4.1 will be used. In this figure, node 1 is the
root node, nodes 4 and 5 are terminal nodes and nodes A and B are Steiner nodes. Let P(4.37)
denote the polyhedron associated with the LP-relaxation of (DPF) with constraints (4.37) and
P(DPF) be the polyhedron associated with the LP-relaxation of (DPF).

Proposition 4.1. Constraints (4.37) added to (DPF) give a stronger formulation.

4.2. DIRECTED PATH-FORMULATION 29

Proof. First, observe that P(4.37) ⊆ P(DPF), since the latter is the same formulation, but without
Constraints (4.37). We now show that this inclusion is strict, by giving a point, which lies in
P(DPF), but not in P(4.37).

Consider a path {(1, A), (A,B), (B, 5)} with associated path-variable λ1 to terminal 5 and
a path {(1, B), (B,A), (A, 4)} to terminal 4 with path-variable λ2. Suppose y4 = y5 = 0.1 and
also λ1 = λ2 = 0.1, so Constraints (4.29) are satisfied. The arc-variables have the following
values: x1A = x1B = xA4 = xB5 = 0.1 and xBA = xAB = 0.9. Clearly, constraints (4.30)
also hold. Moreover, constraints (4.48) and (4.49) also hold, so this point is in P

(DPF)(RMP) .
However, it is not in P(4.37), because xAB + xBA ≥ 1.

(a) Path p1 correspond-
ing to λ1

(b) Path p2 correspond-
ing to λ2

(c) Graph induced by
p1 and p2

Figure 4.1: Paths and graph for the proof P(4.37) ⊂ PDPF

Note that this does not necessarily imply that (DPF) with (4.37) gives a better LP-relaxation
value than (DPF).

Moreover, it is possible to give a directed formulation of the problem without using variables
yt,∀t ∈ T , by replacing the yt by a convex combination of all incoming edges to the terminal t.
This gives the following master problem (DPF2):

30 CHAPTER 4. ILP FORMULATIONS FOR THE STPRBH

(DPF2) max
∑

t∈T\{0}

rt
∑

(i,t)∈A

xit + r0 (4.38)

s.t.
∑

(i,t)∈A

xit −
∑
p∈Pt

λp ≤ 0 ∀t ∈ T (4.39)

∑
p∈Pt|(i,j)∈p

λp − xij ≤ 0 ∀t ∈ T, ∀(ij) ∈ A (4.40)

∑
(i,j)∈A

xij ≤ 1 ∀j ∈ V (4.41)

∑
(i,j)∈A

cijxij ≤ B (4.42)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.43)

λp ≥ 0 ∀p ∈ P (4.44)

Note that this time, Constraints (4.41) (a modification of (4.31) and (4.32)) can not be
dropped, because variables xij are part of the objective function.

Naturally, we are facing the same problem as in the undirected formulation, i.e. the set P of
feasible paths can be exponentially large, so branch-and-price needs to be used. The restricted
master problem (DPF)(RMP) for (DPF) is described in the following. Note that we can again
drop the upper bound on the xij variables like in the undirected case.

(DPF)(RMP) max
∑
t∈T

rtyt (4.45)

s.t. yt −
∑
p∈P̃t

λp ≤ 0 (µt) ∀t ∈ T (4.46)

∑
p∈P̃t|(i,j)∈p

λp − xij ≤ 0 (πtij) ∀t ∈ T, ∀(i, j) ∈ A (4.47)

∑
(i,t)∈A

xit − yt ≤ 0 (αt) ∀t ∈ T (4.48)

∑
(i,j)∈A

xij ≤ 1 (αj) ∀j ∈ V \ T (4.49)

∑
(i,j)∈A

cijxij ≤ B (β) (4.50)

0 ≤ yt ≤ 1 (ζt) ∀t ∈ T (4.51)

xij ≥ 0 ∀(i, j) ∈ A (4.52)

λp ≥ 0 ∀p ∈ P̃ (4.53)

4.3. THE PRICING SUBPROBLEM: HOP-CONSTRAINED CHEAPEST PATH 31

The RMP for (DPF2) is

(DPF2)(RMP) max
∑

t∈T\{0}

rt
∑

(i,t)∈A

xit + r0 (4.54)

s.t.
∑

(i,t)∈A

xit −
∑
p∈Pt

λp ≤ 0 (µt) ∀t ∈ T (4.55)

∑
p∈P̃t|(i,j)∈p

λp − xij ≤ 0 (πtij) ∀t ∈ T, ∀(i, j) ∈ A (4.56)

∑
(i,j)∈A

xij ≤ 1 (αj) ∀j ∈ V (4.57)

∑
(i,j)∈A

cijxij ≤ B (β) (4.58)

0 ≤ xij ≤ 1 (ηij) ∀(i, j) ∈ A (4.59)

λp ≥ 0 ∀p ∈ P̃ (4.60)

For more details, we refer to Sections 4.1 and 4.3, because apart from searching for a directed
hop-constrained cheapest path instead of an undirected one, the column generation procedure is
the same for undirected and directed formulations.

4.3 The Pricing Subproblem: Hop-Constrained Cheapest Path

For solving the pricing subproblem, we need to identify a hop-constrained cheapest path (HCCP)
for each terminal t ∈ T , given nonnegative arc-costs cij ≥ 0, ∀(i, j) ∈ A . The HCCP is a
special case of the shortest path problem with resource constraints (SPPRC), which in general
is NP-hard [41, 45]. A good overview of this topic can be found in [28, 45]. For the HCCP
with nonnegative costs, polynomial time algorithms do exist. Let f(i, h) denote the cost of
the cheapest path from node 0 to node i which uses exactly h hops, the following well-known
recurrence [41], can be used to compute f(j, h), ∀j ∈ V, 1 ≤ h ≤ H:

f(j, h) =

{
0 j = 0, 0 ≤ h ≤ H
min(i,j)∈E{cij + f(i, h− 1)} ∀j ∈ V \ {0}, 1 ≤ h ≤ H

(4.61)

We use Algorithm 2, a slightly modified version of the dynamic-programming algorithm
presented in [41], which runs in time O(H|E|). Note that this a polynomial algorithm, because
a hop limit H > |V | does not make sense. The algorithm does not solve the recurrence for all
pairs of nodes and hops, since this is not necessary in our case, because for a set of edge-costs
c, we only need to find a hop-constrained cheapest path from the root node to one particular
terminal node k. Note that we only consider hop-constrained cheapest paths starting from the
root node and thus automatically assume for the rest of the thesis that such a path starts at the
root node without specifically mentioning it.

32 CHAPTER 4. ILP FORMULATIONS FOR THE STPRBH

In Algorithm 2, the set Sh contains the nodes reachable in h hops and mCi saves the cost of
the cheapest path from the root 0 to the node i. In p(i, h), the predecessor of node i for a path
with h hops to node i is stored and in hcheapest, the hops of the cheapest path to node k is saved.
This data is necessary for reconstruction of the path, once the algorithm has finished. Note that
c in the input is a vector of arc-costs, the cost for an arc (i, j) is extracted with cij .

After the initialization in lines 2-9, we update mCi (lines 10-15), if the cost of the path with
h hops to node i is not bigger than the minimal cost of the path to node k found so far and is
cheaper than any other path to node j with less than h hops.

Next (lines 16-32), we check for every node in the set Sh, if we can use one of the outgoing
arcs of i to find a path to a node j, which is cheaper than any other path to j found so far.
Moreover, we check also if this new path has costs smaller than mCk, because if the cost is
bigger, this path has no use in finding a cheapest path to k. The same holds, if the path costs
more as the externally given upper boundmax. If we found a cheaper path, we update Sh+1 and
set f(j, h + 1) to the cost of this path. Moreover, if the end node is k, we also set mCk to the
cost of the path. This is necessary, to get the correct value mCk, if the cheapest path has exactly
H hops, because we do not get back to lines 10-15 anymore, since the loop terminates.

The presented algorithm is for an undirected graph, but can also used for a directed graph by
changing the edge setE to the arc setA in line 18. The cheapest path can easily by reconstructed
after the algorithm has finished by backtracking the p(i, h) starting from p(k, hcheapest). A good
upper bound can speed up the algorithm considerably. In our case, such an upper bound is
provided with µt, because if the cheapest path costs more than µt, it cannot result in positive
reduced costs and therefore is of no use. More details on pricing can be found in Chapter 5,
where the branch-and-price algorithm is discussed.

4.3. THE PRICING SUBPROBLEM: HOP-CONSTRAINED CHEAPEST PATH 33

Algorithm 2 Hop-constrained cheapest path

1: procedure HCCP(G = (V,E),H ,k,c,max)
2: Sh ← ∅, 1 ≤ h ≤ H
3: S0 ← {0}
4: mCi ←∞, 1 ≤ i ≤ |V |
5: mC0 ← 0
6: f(i, h)←∞, 1 ≤ i ≤ |V |, 0 ≤ h ≤ H
7: f(0, h)← 0, 0 ≤ h ≤ H
8: hcheapest ←∞
9: p(i, h)←∞, 0 ≤ i ≤ |V |, 0 ≤ h ≤ H

10: for h = 0 to H − 1 do
11: for i ∈ Sh do
12: if f(i, h) ≤ mCk ∧ f(i, h) < mCi then
13: mCi ← f(i, h)
14: end if
15: end for
16: for i ∈ Sh do
17: if f(i, h) ≤ mCk then
18: for {i, j} ∈ E do
19: cost← cij + f(i, h)
20: if cost < mCj ∧ cost < mCk ∧ cost < f(j, h+ 1)∧ cost < max then
21: Sh+1 ← Sh+1 ∪ {j}
22: f(j, h+ 1)← cost
23: p(j, h+ 1)← i
24: if j == k then
25: mCk ← cost
26: hcheapest ← h+ 1
27: end if
28: end if
29: end for
30: end if
31: end for
32: end for
33: path p = ∅
34: if mCk ≤ max then
35: i← k
36: h← hcheapest
37: while i 6= 0 do
38: pre← p(i, h)
39: p← p ∪ (pre, i)
40: i← pre
41: h← h− 1
42: end while
43: end if
44: return p
45: end procedure

CHAPTER 5
The Branch-and-Price Algorithm

In this chapter, the branch-and-price approach, which has been developed to solve instances of
the STPRBH using the formulations presented in the previous chapter, is discussed. A focus
lies on methods to accelerate the column generation/branch-and-price algorithm, since such an
approach usually suffers from some well-known computational problems [3, 24], especially
when solving the LPs is based on the simplex method [61, 75]. We will shortly discuss some of
the problems according to the classification given by Vanderbeck in [75] in the following.

The “tailing-off” effect denotes a slow-convergence of the procedure. This means, a near-
optimal solution is found very fast in most cases and then many iterations are needed to find the
optimum solution and to prove optimality.

At the start of the procedure, many irrelevant columns are frequently added, called the
“heading-in” effect. This happens, since the pricing subproblem uses the dual information
to price in columns and in the beginning we do not have much useful information (i.e. columns,
which are present in a good/optimal solution) in the RMP.

Also, the values of the dual variables may oscillate during the procedure and only get the
dual-optimal value for (the dual of) the MP in the last iterations of the procedure. This behavior
is denoted as “bang-bang” effect.

5.1 Discussion of the Dual Problem

In [61] it is pointed out that a careful analysis of the dual of the RMP can often give valuable
insight for the column generation procedure of the primal. In this spirit, we will give a general
discussion of the dual problem, before we move on to detailed presentations of the methods
used in the branch-and-price framework. It turns out that the dual of (DPFnt)(RMP) has an
interesting economical interpretation. We will denote the dual by (DUAL)(DPFnt):

35

36 CHAPTER 5. THE BRANCH-AND-PRICE ALGORITHM

(DUAL)(DPFnt) min
∑
t∈T

ζt + βB (5.1)

s.t. µt + ζt ≥ rt (yt) ∀t ∈ T (5.2)∑
(ij)∈p

πtij ≥ µt (λp) ∀t ∈ T, ∀p ∈ P̃t (5.3)

cijβ ≥
∑
t∈T

πtij (xij) ∀(i, j) ∈ A (5.4)

µt ≥ 0 ∀t ∈ T (5.5)

πtij ≥ 0 ∀t ∈ T, ∀(i, j) ∈ A (5.6)

β ≥ 0 (5.7)

ζt ≥ 0 ∀t ∈ T (5.8)

In (DUAL)(DPFnt), we just stated (5.2) and (5.3) in a more “natural” way than −µt +∑
(i,j)∈p π

t
ij ≥ 0 and −

∑
t∈T π

t
ij + cijβ ≥ 0 respectively. Two things are instantly clear: First,

the objective value is as least as big as the revenue of the root node 0, because there is no path
p from 0 to 0, therefore we have 0 ≥ µ0 in (5.3), which in turn means that ζ0 ≥ r0 and ζ0 is
part of the objective function. Second, for every hop-constrained path p to a terminal t the sum
of variables πtij corresponding to the arcs (i, j) in the path has to be bigger than or equal to µt.
This of course corresponds to the pricing rule of the column generation for the primal. So both
of these two easy observations do not provide us with any new insight for solving the primal.

Therefore, let us give some interpretation of (DUAL)(DPFnt), to get some “feeling” for
the stated problem: Suppose the terminals t are some goods you want to sell and every good
production cost rt. Depending on the price µt set for a good, you will incur a loss of ζt (see
(5.2)), so one part of the objective function is minimizing this loss, i.e. the sum of the ζt. The
arcs (i, j) ∈ A are potential buyers, where the lhs of constraints (5.4) gives the money a buyer
is willing to spend on all goods combined. Variable πtij gives the price you propose to them for
good t.

A hop-constrained path to a terminal t corresponds to a group of buyers, who potentially
buy a good t. You can only be sure to sell a good t for the price µt if every group of potential
buyers (i.e. every hop-constrained path) pays you at least µt (see (5.3)). The variable β can be
interpreted as some kind of “marketing-parameter”, with which the money buyers are willing
to spend on the goods can be increased (see (5.4)), so you can sell more goods/sell goods for a
higher price. This decreases your loss from

∑
t∈T ζt, however you have to pay the marketing

department βb and this is also part of the objective function.
Essentially the problem consists of finding a tradeoff between spending more money for

marketing or lowering the prices. This problem can be solved with branch-and-cut by starting
out without the constraints (5.3) (since there can be exponentially many) and adding cuts of the
form (5.3) by finding HCCPs with the current πtij as edge weights. If the length of such a HCCP
to a terminal t is smaller than the value µt, we have found a cut and need to resolve the problem.
This should come as no surprise, as it is just the “row generation” equivalent to the column
generation in the primal.

5.1. DISCUSSION OF THE DUAL PROBLEM 37

The dual program also gives a good intuition for the effect of the budget B: A high bud-
get will result in a high objective value, because if we decrease the associated variable β (to
minimize the term βB), the lhs of constraints (5.4) decreases. This means because of the πtij
variables, which are upper bound in (5.4) and needed in the cuts (5.3), we need to decrease µt
and in turn have to increase ζt (due to (5.2)), to guarantee feasibility. However ζij is part of the
objective function with positive coefficients.

In the same spirit, one can also analyze the effect of having many paths through some arcs
(i, j) with small costs cij : If many different paths use some arc, the associated variable πtij will
often occur in (5.3) for any terminal t. However, the πtij are upper bound in (5.4), and cij is
part of the upper bound. So if cij is small, the associated πtij can not add very much to fulfilling
(5.3), so we either have to lower µt or have to increase β, giving a bigger lhs of (5.4). Note all
these three actions increase the objective value, which is not surprising, considering that having
many paths through some arcs (i, j) with small weights cij means we likely can connect many
terminals t in the primal. Naturally, the same argumentation works for many paths through
arcs with high costs, then we do not need to increase β or decrease µt much, giving a smaller
objective value.

We now present dual programs of other formulations to illustrate the impact of different
formulations of the RMP. Consider the dual of (UPF)(RMP):

(DUAL)(UPF) min γ +
∑
v∈V

ζv + βB (5.9)

s.t. µt −
∑
e∈{i,t}

αe − γ + ζt ≥ rt (yt) ∀t ∈ T (5.10)

−
∑

e∈{i,v}

αe − γ + ζv ≥ 0 (yv) ∀v ∈ V \ T (5.11)

− µt +
∑
e∈p

πte ≥ 0 (λp) ∀t ∈ T, ∀p ∈ P̃ (5.12)

−
∑
t∈T

πte − αe + γ + ceβ ≥ 0 (xe) ∀e ∈ E (5.13)

µt ≥ 0 ∀t ∈ T (5.14)

πte ≥ 0 ∀t ∈ T, ∀{i, j} ∈ E (5.15)

αj ≥ 0 ∀j ∈ V \ T (5.16)

β ≥ 0 (5.17)

γ ≥ 0 (5.18)

ζv ≥ 0 ∀v ∈ V (5.19)

Note that the dual of (DPFT) is almost the same as (DUAL)(UPF), since (DPFT) is a directed
version of (UPF) and thus we do not present it.

38 CHAPTER 5. THE BRANCH-AND-PRICE ALGORITHM

The dual of (DPF)(RMP) is

(DUAL)(DPF) min
∑
j∈V \T

αj +
∑
t∈T

ζt + βB (5.20)

s.t. µt − αt + ζt ≥ rt (yt) ∀t ∈ T (5.21)

− µt +
∑

(i,j)∈p

πtij ≥ 0 (λp) ∀t ∈ T, ∀p ∈ P̃ (5.22)

−
∑
t∈T

πtij + αj + cijβ ≥ 0 (xij) ∀(ij) ∈ A (5.23)

µt ≥ 0 ∀t ∈ T (5.24)

πtij ≥ 0 ∀t ∈ T, ∀(i, j) ∈ A (5.25)

αj ≥ 0 ∀j ∈ V \ T (5.26)

β ≥ 0 (5.27)

ζt ≥ 0 ∀t ∈ T (5.28)

and the dual of (DPF2)(RMP) is

(DUAL)(DPF2) min
∑
j∈V

αj +
∑

(i,j)∈A

ηij + βB + r0 (5.29)

s.t. − µt +
∑

(i,j)∈p

πtij ≥ 0 (λp) ∀t ∈ T, ∀p ∈ P̃ (5.30)

−
∑
t∈T

πtij + αj + cijβ + ηij + µt ≥ rt (xij) ∀(i, j) ∈ A : j ∈ T \ {0}

(5.31)

−
∑
t∈T

πtij + αj + cijβ + ηij ≥ 0 (xij) ∀(i, j) ∈ A : j ∈ V \ T

(5.32)

−
∑
t∈T

πti0 + α0 + ci0β + ηi0 + µ0 ≥ 0 (xi0) ∀(i, 0) ∈ A (5.33)

µt ≥ 0 ∀t ∈ T (5.34)

πtij ≥ 0 ∀t ∈ T, ∀(i, j) ∈ A
(5.35)

αj ≥ 0 ∀j ∈ V (5.36)

β ≥ 0 (5.37)

ηij ≥ 0 ∀(i, j) ∈ V (5.38)

Some observations can be made about the dual programs:

Proposition 5.1. The optimal solution of (DUAL)(DPFnt) is not bigger than
∑

t∈T rt.

5.2. OVERVIEW OF THE BRANCH-AND-PRICE ALGORITHM AND BRANCHING 39

Proof. It is always possible to construct a feasible solution for (DUAL)(DPFnt) in the following
way: Set all the ζt to rt so all constraints (5.2) are fulfilled. The rest of the variables can then be
set to 0. The objective function of this solution is

∑
t∈T ζt + 0B0 =

∑
t∈T rt

The same proof strategy also works for the other formulations, in (DUAL)(DPF2), we have
to set the values of variables xij equal to rj (which is zero, if j ∈ V \ T . Naturally, the proven
fact is also a obvious consequence of duality.

Proposition 5.2. There is an optimal solution of (DUAL)(DPFnt), where β ≤
∑

t∈T rt
B .

Proof. Follows immediately from the previous proposition: Since the optimal solution of
(DUAL)(DPFnt) is bound from above by

∑
t∈T rt, we have

∑
t∈T rt ≥

∑
t∈T ζt + βB, so

clearly also
∑

t∈T rt ≥ βB. Dividing by B gives us the proposition.

This proposition also holds for the other formulations.

Proposition 5.3. There is an optimal solution of (DUAL)(DPFnt), where µt + ζt = rt,∀t ∈ T

Proof. If for some t, µt + ζt > rt and µ < rt, the solution cannot be optimal, since ζt can be
decreased in (5.2) and therefore the value of the objective function gets also decreased. Now
consider an optimal solution, where some µt > rt. Since ζt must be nonnegative, we can
decrease µt to at least rt − ζt and (5.2) is still feasible. This does not change the objective
value. Moreover, every constraint (5.3) which is feasible for some µ′t > µt is also feasible for
µt, because

∑
(ij)∈p π

t
ij ≥ µ′t > µt.

Note that this proposition also follows from the fact that in (DPF)(RMP), the y variables can
be left without lower bound.

Proposition 5.4. There is an optimal solution of (DUAL)(DPF2), where ηi,j = 0,∀(i, j) ∈ A

Proof. Observer that both αj and ηij ,∀j ∈ V,∀(i, j) ∈ A are part of the objective function and
the same constraints with the same coefficients. Thus, whenever ηij 6= 0 for some ∀(i, j) ∈ A,
αj can be increased with the value of ηij and ηi,j can be set to zero.

This essentially means that we need no upper bound on the x variables in the primal problem
and can be seen as justification, why we dropped these upper bounds in some of the other RMPs.

5.2 Overview of the Branch-and-Price Algorithm and Branching

An overview, how the different techniques presented in the next sections are used in a branch-
and-price framework to solve the STPRBH is given Algorithm 3, the function SOLVE used in
this algorithm is given in Algorithm 4. Preprocessing of an STPRBH Instance will be discussed
in the next section, heuristics to generate an initial solution in Section 5.4, stabilization tech-
niques in Section 5.5 and pricing strategies in Section 5.6. Note that some of the stabilization
techniques need to be implemented in different positions compared to where STABILIZATION
is located in Algorithm 3.

40 CHAPTER 5. THE BRANCH-AND-PRICE ALGORITHM

Algorithm 3 Branch-and-price-framework

1: procedure BRANCH-AND-PRICE(Iorig = (Gorig = (Vorig, Eorig), 0, c : Eorig → Q+, r :
Vorig → Q+, B,H))

2: I ← preprocess(Iorig)
3: F ← formulation of I as directed/undirected integer program
4: F̄ ← RMP of F
5: F̄ ← add columns p found by INITIALHEURISTIC(I)
6: x∗ ←BRANCH-AND-BOUND using the function SOLVE(F̄) to solve the LPs at the

branch-and-bound nodes
7: return x∗
8: end procedure

Algorithm 4 Column generation with acceleration methods

1: function SOLVE(F̄)
2: (x̄∗, π̄∗)← optimal primal and dual solution vector obtained by solving the LP F̄
3: π̄∗ ← STABILIZATION(π̄∗)
4: F̄ ← add columns found by PRICING(F̄ , π̄∗)
5: end function

Since the formulations of the STPRBH are integer linear programs, we have to use branch-
and-price to solve them. This means column generation to solve the RMP is embedded in a
branch-and-bound framework and thus branching decisions have to be made once a RMP (which
is a linear program) is solved to optimality. There are many possibilities for branching-schemes
in branch-and-price [3, 61, 75].

In our case, we used all the variables, which have to be integral in the MP as branching
candidates, i.e. both the arc-variables (edge-variables) x and the terminal-variables y. Branching
on an arc-variable xij has the effect of creating two subproblems of the current problem, where
in one subproblem the arc (i, j) must be included in a solution and in the other subproblem
the arc (i, j) must not be included. When branching on a terminal variable yt, we create one
subproblem, where the terminal t must be in any solution and another one, where terminal t
must not be in any solution.

5.3 Preprocessing of an STPRBH Instance

Given an instance Iorig = (Gorig = (Vorig, Eorig), 0, c : Eorig → Q+, r : Vorig → Q+, B,H)
of the STPRBH, some preprocessing can be done. The aim of preprocessing is simply to remove
parts of the instance, which cannot be in an optimal solution anyway, thus reducing the number
of variables in our ILP formulations, which is likely to result in a faster runtime of the branch-
and-price algorithm. Naturally the methods used for preprocessing need to be fast in comparison
with the branch-and-price algorithm, otherwise there would be no gain in using preprocessing.

There exist many preprocessing techniques (also called reduction tests) for the Steiner tree
problem on graphs [27, 52], the PCSTP [73] and variants thereof [14]. However most of these

5.4. HEURISTICS TO FIND AN INITIAL SOLUTION 41

techniques can not be applied to the STPRBH because they do not work due to the budget or
hop constraints.

We present three propositions, which can be used for preprocessing of an STPRBH instance.
The first proposition is an adaption of the degree one test [14, 52, 73], while the next two just
state the simple facts, that a node, which is not reachable due to the budget or hop limit cannot
be part of any solution.

Proposition 5.5. Given an instance I of the STPRBH, all Steiner nodes (and their incident edge)
with degree one can be removed.

Proposition 5.6. Given an instance I of the STPRBH, all vertices v ∈ V (and incident edges
{i, v} ∈ E), where the cheapest path from the root node 0 to v has costs greater than B, can be
removed.

Proposition 5.7. Given an instance I of the STPRBH, all vertices v ∈ V (and incident edges
{i, v} ∈ E) can be removed, where the path from the root node 0 to v with the fewest number of
edges has more than H edges, can be removed.

These vertices can be identified by a breadth-first-search starting from the root node.
The result of this preprocessing is a reduced instance I = (G = (V,E), 0, c : E → Q+

0 , r :
V → Q+

0 B,H), V ⊆ Vorig, E ⊆ Eorig with the same optimal solution as I .

5.4 Heuristics to Find an Initial Solution

At the beginning of the branch-and-price process, an initial feasible solution must be provided
[3, 61]. Such a feasible solution can be generated using phase one of the simplex method.
However, since artificial variables are used in phase one, we are likely to incur the “heading-in”
effect. This happens, because the solution with artificial variables may not resemble the structure
of an optimal solution and thus generates poor dual information [61]. Hence it is beneficial to
start the process with “good” columns added to the initial RMP [3, 75]. Since we use branch-
and-price, all the LPs in the branch-and-bound tree also need feasible solutions to start. Such
a starting point is given by using the already generated columns, after deleting columns which
have become infeasible due to branching [75].

We now describe simple heuristics to generate meaningful initial columns. All the following
algorithms take the graph G, terminals T , hop limit H , budget limit B, the arc-cost vector c and
the revenue vector r as input.

A Basic Heuristic

Algorithm 5 is the most basic approach we pursued, it just adds a hop-constrained cheapest path
for every terminal to the LP-relaxation, following the intuition that a cheapest path is normally
not a bad choice. Note that it is possible that the set of all added paths does not form a feasible
solution, however there is at least one subset, which is a feasible solution (in the worst case, this
subset consists of a single path).

42 CHAPTER 5. THE BRANCH-AND-PRICE ALGORITHM

Algorithm 5 A basic heuristic

procedure CHEAPEST(G = (V,A), T,H,B, c, r)
for t ∈ T do

path p← HCCP(G = (V,A), t,H,B, c)
if p 6= ∅ then

add λp corresponding to p to the RMP
end if

end for
end procedure

A Greedy Algorithm

The next approach, GREEDY (Algorithm 6) is a more sophisticated method. The terminals
are sorted according to revenue and we try adding a hop-constrained cheapest path for every
terminal, taking into account the budget and the cost of already added paths. Moreover, once
a path has been added, all the arcs in it get cost zero for the calculation of the following hop-
constrained cheapest paths, since further paths may use such an arc without increasing the used
budget.

Algorithm 6 A greedy algorithm

1: procedure GREEDY(G = (V,A), T,H,B, c, r)
2: T ′ ← T ordered non-increasing according to revenue rt
3: B′ ← B
4: c′ ← c
5: for x = 1, . . . , |T | do
6: t← x-th entry of T ′

7: path p← HCCP(G = (V,A), t,H,B′, c′)
8: if p 6= ∅ then
9: B′ ← B′ −

∑
(i,j)∈p c

′
ij

10: c′ij ← 0,∀(i, j) ∈ p
11: add λp corresponding to p to the RMP
12: end if
13: end for
14: end procedure

Algorithm 6 stores the terminals sorted nondecreasing according to revenue in T ′ and sets
t to the first entry of T ′ (i.e. t is the terminal with the highest revenue). The variable B′ gets
initialized with the budget and the vector c′ gets initialized with the arc-costs. Then the algorithm
calls HCCP for terminal t using c′ as edge-costs and B′ as upper-bound for the cost of the path.
If such a path p exists (i.e. p 6= ∅), we decrease the variable B′ (i.e. the remaining budget) by
the current cost according to c′ of the sum of the arcs in p, update the cost vector c′ by setting
the cost of the arcs in p to zero and add the column corresponding to p to the RMP. We repeat
this process for every terminal.

5.4. HEURISTICS TO FIND AN INITIAL SOLUTION 43

A Heuristic Using Different Hop Constraints

Heuristic HOPSHORTEST (Algorithm 7) solves the hop-constrained cheapest path problem
for every terminal t multiple times using different hop limits h = 1, . . . ,H . Every time we
encounter a hop-constrained shortest path for a hop limit h, we add it to the RMP if its cost is
cheaper than the cost of the previously found paths (i.e. every time we find a new hop-constrained
cheapest path). This technique may have the effect to generate different paths with not many arcs
in common to a terminal and therefore generates a broader pool of initial paths.

Algorithm 7 Heuristic using different hop constraints

1: procedure HOPSHORTEST(G = (V,A), T,H,B, c, r)
2: for t ∈ T do
3: mC ←∞
4: for h = 1, . . . ,H do
5: path p← HCCP(G = (V,A), t,H,B, c)
6: if

∑
(i,j)∈p cij < mC then

7: add λp corresponding to p to the RMP
8: mC ←

∑
(i,j)∈p cij

9: end if
10: end for
11: end for
12: end procedure

A Heuristic Based on the Knapsack-like Structure of STPRBH

Finally, Algorithm 8, KNAPSACK, tries to exploit the knapsack-like structure of the STPRBH:
We need to pack paths to different terminals in a knapsack of size B. The profit of a path is the
revenue of the associated terminal and the weight of each path corresponds to its cost. In contrast
to the classical knapsack problem, the weight of the paths is not fixed, but a monotonically non-
increasing function which depends on the paths already in the knapsack, since arcs in an already
added path can be used for free in other paths.

Algorithm 8 iteratively packs terminals in the knapsack according to the ratio rt/wt, where
wt is the cost of the hop constraint cheapest path to terminal t at the current iteration. If there
is no path fitting in the knapsack, the algorithm stops. It uses the variable B′ for the currently
available budget, the set T ′ of terminals not added, vectors p and w to save the cheapest paths to
the terminals and their cost for the current iteration. Moreover, vector c′ is used for the current
arc-cost.

In every iteration, the hop-constrained cheapest path to every terminal t not in the knapsack
and its corresponding weight is calculated. All terminals, which fit in the knapsack are stored in
the list T ∗ and the terminal in T ∗ with the highest ratio rt/wt is chosen (denoted with t∗). The
path pt∗ corresponding to t∗ is added to the RMP and the cost of every arc in this path is set to
zero (since these arcs are now part of the solution and therefore we incur no further costs, if one

44 CHAPTER 5. THE BRANCH-AND-PRICE ALGORITHM

Algorithm 8 Heuristic based on the knapsack-like structure of the STPRBH

1: procedure KNAPSACK(G = (V,A), T,H,B, c, r)
2: B′ ← B
3: T ′ ← T
4: wt ← 0, ∀t ∈ T
5: pt ← ∅,∀t ∈ T
6: c′ ← c
7: repeat
8: for t ∈ T ′ do
9: path pt ← HCCP(G = (V,A), t,H,B′, c′)

10: wt ←
∑

(i,j)∈pt cij
11: end for
12: T ∗ ← t ∈ T ′ : B′ − wt ≥ 0
13: if T ∗ 6= ∅ then
14: t∗ ← argmaxt∈T ∗{rt/wt}
15: add λp∗t corresponding to pt∗ to the RMP
16: c′ij ← 0,∀(i, j) ∈ pt∗
17: B′ ← B′ − wt∗
18: T ′ ← T ′ \ {t∗}
19: end if
20: until T ∗ = ∅
21: end procedure

of them gets used in another path). The available budget gets decreased according to the cost of
pt∗ and then the next iteration starts. The algorithm stops, if T ∗ is empty.

5.5 Stabilization Techniques

Stabilization techniques for column generation are one method to reduce the effect of the prob-
lems described in the beginning of this chapter. These techniques can be separated into general
methods and problem-specific methods. The general methods can be further divided into two
groups: One group of methods, which do modify the original RMP like the BOXSTEP method
[63] and piecewise linear stabilization [5, 7, 26] and one group, where the methods do not change
the original RMP like weighted Dantzig-Wolfe decomposition [78], interior-point stabilization
[71] or the method of Neame [65]. An example for problem-specific methods are dual-optimal
inequalities [6, 61]. The method of alternative dual-optimal solutions [55, 56] lies somewhere
between the two groups of problem-specific and general methods. In the following, we will
describe the adaption of some of this methods for the STPRBH.

5.5. STABILIZATION TECHNIQUES 45

Alternative Dual-Optimal Solutions

At first, let us consider alternative dual-optimal solutions. The method was introduced in [55, 56]
for a survivable network design problem and is further used in [57, 58] for the rooted delay-
constrained minimum Steiner tree problem.

To illustrate this method, recall the dual program (DUAL)(DPFnt). We chose this formu-
lation to explain alternative dual-optimal solutions, because it has the smallest number of dual
variables and thus allows an easy explanation. The technique also works for the other formula-
tions in a similar way.

Let (µ∗, π∗, β∗, ζ∗) denote the current dual optimal solution computed by an LP solver for
the RMP. Moreover, let A′ = {(i, j) ∈ A|@p ∈ P̃ : (i, j) ∈ p} be the set of arcs which are not
part of any path p corresponding to path-variables λp included in the current RMP. Constraints
(5.3) restrict the values of the dual variables of arcs in paths p ∈ P̃ , so only Constraints (5.4) are
relevant for arcs in A′. This means for arcs (i, j) ∈ A′, any value πtij

∗ ≥ 0 is optimal as long as
cijβ

∗ ≥
∑

t∈T π
t
ij
∗ holds. Moreover, for any terminal t and arc (i, j) ∈ A \A′ the values of the

associated dual variables πtij can also be increased until constraint (5.4) is tight.
These two facts can be exploited as follows [57, 58]: Let δij = cijβ

∗+
∑

t∈T π
t
ij
∗
, ∀(i, j) ∈

A, denote the slack of Constraints (5.4). Then any values πtij
′ ≥ πtij

∗
, ∀t ∈ T, ∀(i, j) ∈ A,

are dual optimal as long as
∑

t∈T π
t
ij
′ ≤

∑
t∈T π

t
ij
∗

+ δij . However, state-of-the-art LP solvers
usually give minimal dual optimal values, i.e. πtij

∗
= 0, ∀t ∈ T, ∀(i, j) ∈ A′.

This has some undesirable effects for column generation of the STPRBH: Remember the
pricing subproblem, where we have to solve a hop-constrained cheapest path problem with
weights πtij

∗ for the arcs. Thus, if many of these weights are zero, solving the subproblem
can yield many paths p, p′, where the number of arcs, which are in both paths (i.e. |p ∩ p′|) is
high, so both p and p′ are nearly the same paths. In particular, it is possible that we get paths
having the same reduced costs, but containing a vastly different number of arcs. Figure 5.1
illustrates this fact, where dotted lines indicate arcs with weight zero.

Figure 5.1: Two different paths with the same reduced cost

There is an intuitive explanation from both the primal point of view why such a result of

46 CHAPTER 5. THE BRANCH-AND-PRICE ALGORITHM

solving the pricing subproblem may have negative effects: In the primal problem, it is unrealistic
that a path p′ containing (many) more arcs is better than a path with fewer arcs p, when |p ∩ p′|
contains many arcs (relative to the number of arcs in the path containing fewer arcs), simply
because any arc has an associated nonnegative cost cij and hence a path with more edges has
higher cost most of the time.

Therefore, it can be beneficial to use alternative dual-optimal solutions. The alternative
dual-optimal solutions are obtained by distributing the slack δij to the relevant dual variables
πtij
∗
,∀t ∈ T . Two different strategies to do so are proposed in [57, 58]: The first simply dis-

tributes δij equally among all relevant dual variables, i.e. dual-solutions π̄tij = πtij
∗
+
δij
|T | ,∀(ij) ∈

A are used. The other strategy starts out with different dual-optimal solutions for each terminal
t and lets these solutions converge towards π̄tij ,∀t ∈ T, ∀(ij) ∈ A using a parameter Q ≥ 2.
This parameter denotes the major iterations and is iterated with q = 1, . . . , Q. The dual values
for the terminal t′ ∈ T currently considered, are denoted as π̂tij ,∀(i, j) ∈ A,∀t ∈ T and are set
as follows:

π̂tij =

{
πtij
∗

+
δij
|T | + Q−q

Q−1(δij − δij
|T |) if t = t′

πtij
∗ otherwise

(5.39)

Equation 5.39 divides the interval
[δij
|T | , δij

]
into Q − 1 equally sized intervals according to

the actual major iteration q. A major iteration happens, if we do not find a path with positive
reduced costs using the current dual variables π̂tij . For each terminal t ∈ T , the resulting vector
π̂ is a dual-optimal solution and when Q = q, we get π̂t

′
ij = π̄t

′
ij for the currently considered

terminal t′. Hence, we can stop the column generation at the current node, iff q = Q and no path
with positive reduced costs has been found by the pricing subproblem.

In addition to these two strategies, we propose two new variations: One consists of dis-
tributing the slack only over all dual variables with value zero. When variables πtij

∗ have the
value zero, it is likely that the corresponding arc (i, j) will not be in the solution (especially in
later iterations), because otherwise it would be a good chance that πtij is in one or several cuts
and hence there is a high probability that it has a positive dual value. The other variant simply
randomly distributes the slack.

Note, that the distribution of the slack δij of (5.4) in general is a very powerful tool (with the
natural limitation, that not every Constraint (5.4) has slack in a given dual-optimal solution): We
can guide the behavior of the pricing subproblem. For example, if we want to have an arc (i, j) ∈
A in the solution, we can distribute the slack of Constraints (5.4) for all arcs (i′, j′) 6= (i, j),
giving all the other arcs a higher value and thus increasing the chance that (i, j) is in the found
hop-constrained cheapest path of the pricing subproblem. This could be used in combination
with the fact we established in the previous section, that arcs with small costs are more likely
to occur in a solution. If we really want to “punish” some arc, we can even use the idea of
the second strategy above, i.e. using a terminal-specific dual-optimal solution for every terminal
t ∈ T , then we can distribute the whole slack only over this (i, j) ∈ A and leave all the other
arcs untouched. Moreover, by adding all the slack to one terminal t ∈ T (as is done for every
terminal in the second strategy of alternative-dual optimal solutions method), we can make it
very hard to find new paths to this terminal t, since the path has to be smaller than µt.

5.5. STABILIZATION TECHNIQUES 47

Piecewise Linear Stabilization

Piecewise linear stabilization techniques try to minimize the oscillation of the values of the dual
variables during column generation, i.e. the bang-bang effect. This is achieved by adding a
piecewise linear penalty function in the dual program. The function penalizes the derivation of
the values of the dual variables from a current stability center (also called trust region).

Du Merle et al. [26] proposed to use a 3-piecewise linear stabilization function, while Amor
et al. [5] recommend a 5-piecewise linear stabilization function. Moreover, Amor et al. [7] com-
pared different linear and nonlinear stabilization functions and concluded, that a 5-piecewise
linear stabilization function has the most practical value. Thus we used 5-piecewise linear stabi-
lization.

To illustrate the effect of the stabilization function (following [5]), consider the primal prob-
lem Pr = min{dTx|Fx = e, x ≥ 0} and its corresponding dual Du = max{eTκ|F Tκ ≤ d}.
Moreover, let κ̂l denote the dual center at the current major iteration l ∈ N+

0 and [δl1, δ
l
2]

(δl1 < κ̂l < δl2) be the hyperbox around this dual center, where the values of the dual vari-
ables of the next iteration l + 1 can lie, without being penalized. Furthermore, let ε1, ε2 be
the penalties if a dual value in iteration l + 1 is outside [δl1, δ

l
2] but inside the hyperbox [γl1, γ

l
2]

(γl1 ≤ δl1 < δl2 ≤ γl2) and ζ l1, ζ
l
2 be the penalties, if a dual value also lies outside [γl1, γ

l
2].

We get the following stabilized primal program Pr′:

min dTx− γlT1 s1 − δlT1 t1 + γlT2 s2 + δlT2 t2

s.t. Fx− z1 − y1 + y2 + z2 = e

s1 ≤ ζ l1
s2 ≤ ζ l2
r1 ≤ εl1
r2 ≤ εl2
x, s1, s2, r1, r2 ≥ 0

(5.40)

and corresponding stabilized dual program Du′:

max eTκ− ζ lT1 v1 − εlT1 u1 − ζ lT2 v2 − εlT2 u2
s.t. F Tκ ≤ d

δl1 − u1 ≤ κ ≤ δl2 + u2

γl1 − v1 ≤ κ ≤ γl2 + v2

u1, u2, v1, v2 ≥ 0

(5.41)

Now every feasible solution to Du
′l is also a feasible solution to Dul, however the corre-

sponding primal solution is infeasible if −s1 − r1 + s2 + r2 6= 0. Thus we need to obtain a
solution, where s1 = r1 = s2 = r2 = 0. This can be achieved in the following way:

Start with an initial stability center κ0 and initial settings ε01, ε
0
2, ζ

0
1 , ζ2 and γ01 , γ

0
2 , δ

0
1 , δ

0
2 for

the penalties and trust regions, respectively. Then solve Pr
′0 with column generation. This is

a major iteration of the algorithm, i.e. l = 0 at the start. If the solution to Pr
′l does not fulfill

48 CHAPTER 5. THE BRANCH-AND-PRICE ALGORITHM

s1 = r1 = s2 = r2 = 0, update the stability center to the current dual solution, i.e. κ̂l+1 = κl.
The penalties and trust regions can also be updated. Then increment l and repeat the process. It
can be shown that this process converges to an optimal solution of the original problem Pr, if
the trust region [δl1, δ

l
2] never shrinks to a single point [5].

Method of Neame

In [71] a stabilization technique proposed by Neame [65] is mentioned. It consists of taking
a convex combination of the actual dual optimal solution and the dual prices of the previous
iteration for solving the subproblem. In our case, this amounts to π̄tij = απtij + (1 − α)π̃tij
and µ̄t = αµt + (1 − α)µ̃t, where π̃tij , µ̃t describe the dual prices of the previous iteration and
0 ≤ α ≤ 1. Using such a convex combination of the values, it is possible to get solutions with
positive reduced costs for the modified values, but with negative reduced costs in respect to the
original values. In such a case, the generated columns are rejected, a new convex combination
more in favor of the actual dual optimal solutions is computed (i.e. α is increased) and the
pricing problem is solved again. This is repeated until we either get a solution with positive
reduced costs both for the modified and the original values, or α = 1, i.e. we used the original
values and did not get positive reduced costs, which is just the “normal” stopping criterion for
column generation.

The weighted Dantzig-Wolfe decomposition introduced by Wentges in [78] is very similar
to the method of Neame. Instead of using a convex combination of the current and previous
dual prices, a convex combination of the current dual solution and the dual prices of the solution
providing the best Lagrangian dual bound found so far, is taken.

5.6 Pricing Strategies

To guarantee that the optimal solution to the MP is found, we only need to find a column with
positive reduced costs or prove that none exists when solving the pricing subproblem [3, 61].
This means that we do not need to find the column with the most positive reduced costs. For
example, a dual strategy consisting of a fast approximation algorithm and a slow exact algorithm
for the subproblem could be used. To guarantee optimality, the exact algorithm needs only to be
called, if the approximation algorithm does not find a column with positive reduced costs [3].
This strategy is not helpful in our case, since the hop-constrained cheapest path subproblem can
be solved efficiently to optimality.

The above fact has also other implications, which turn out to be more useful: We are not
restricted to add only one column with positive reduced costs during an iteration of column
generation [3, 24, 61, 75] . This means, more than one path with positive reduced costs can be
added for a terminal or paths for every terminal instead of stopping the pricing subproblem when
the first path with positive reduced costs is found. Such pricing strategies will be the topic of the
next subsections. It should be noted, that there is a trade-off, when adding more columns during
an iteration of column generation: On the one hand, the RMP gets larger and thus needs more
time for solving, on the other hand the overall number of iterations may decrease [3].

5.6. PRICING STRATEGIES 49

Finding More Paths with Positive Reduced Costs

A cornerstone of the following pricing strategies will be the ability, that given a hop-constrained
cheapest path to a terminal, we can find more paths with positive reduced costs efficiently. This
can be done with the following algorithm, a slight modification of an algorithm presented in
[41].

Algorithm 9 Algorithm to add more than one column for a terminal

1: procedure MORECOLUMNS(G = (V,A),S, f , p, t, µt, maxh)
2: for h = 1, . . . ,H do
3: if t ∈ Sh then
4: for (j, t) ∈ A do
5: if (f(j, h− 1) + cjt ≤ µt) then
6: if ((h 6= maxh) ∨ ((j, t) 6= p(v,maxh)) then
7: path p′ ← path found by backtracking from f(j, h− 1)
8: path p← p′ ∪ (j, t)
9: add λp corresponding to p to the RMP

10: end if
11: end if
12: end for
13: end if
14: end for
15: end procedure

Aside from the graph, MORECOLUMNS takes the data-structures Sh,f ,p and variable
maxh from Algorithm 2, hop limit H , the current terminal t and the value corresponding dual
variable µt as input. The algorithm considers every h for which there is a path form the root
node to the terminal t consisting of exactly h hops (i.e. t ∈ Sh, h = 1, . . . ,H). For these values
of h and every incoming arc (j, t), it is checked, if there is a hop-constrained shortest path with
h hops using this arc. This amounts to the check, if the sum of cost of the path to j using h− 1
arcs (i.e. (f(j, h − 1)) and the cost of the arc (j, t) is not larger than µt (line). Line 6 ensures
that the path found by HCCP is not added again.

MORECOLUMNS can be used to augment HCCP, i.e. if HCCP found a path with posi-
tive reduced costs for a given terminal, MORECOLUMS is called and tries to find more paths
with positive reduced costs. The following pricing strategies can be used with or without
MORECOLUMNS as augmentation to HCCP.

Typical Pricing Strategies

Algorithm 10 is the basic pricing strategy. It simply adds a single column with positive reduced
costs, if one exists. Since we need to resolve the RMP again after adding this single column, this
strategy is likely to be not too efficient.

Algorithm 11 tries to find one or more paths with positive reduced costs for every terminal
t. The only difference to Algorithm 10 is, that there is no break after line 5.

50 CHAPTER 5. THE BRANCH-AND-PRICE ALGORITHM

Algorithm 10 Basic pricing strategy

1: procedure BASICPRICING(T ,H)
2: for t ∈ T do
3: path p← HCCP(G = (V,A), t,H,B, c)
4: if p 6= ∅ then
5: add λp corresponding to p to the RMP
6: break
7: end if
8: end for
9: end procedure

Algorithm 11 Another simple pricing strategy

1: procedure NORMALPRICING(T , H)
2: for t ∈ T do
3: path p← HCCP(G = (V,A), t,H,B, c)
4: if p 6= ∅ then
5: add λp corresponding to p to the RMP
6: end if
7: end for
8: end procedure

A Pricing Strategy Based on a Tabu List

The next pricing strategy arises from the following idea: After some initial iterations of the
pricing procedure, often only a few terminals still have paths with positive reduced costs, but
when using NORMALPRICING, we call HCCP (and MORECOLUMNS) for every terminal
in each iteration. Trying to avoid such unnecessary calls of HCCP should therefore result in
a speed-up. Algorithm 12 gives a tabu search like procedure to achieve this. The strategy
is therefore called TABUPRICING. It works by keeping an active-list TA ⊆ T including all
terminal, for which a path with positive reduced costs has been found in at least one of the
previous k iterations of the pricing procedure. In each iteration, terminals T \ TA are only
considered if no path with positive reduced costs for terminals on the active list has been found.

The pricing strategy uses the global variable tabuList, which is an integer vector, as tabu list.
Moreover, it consists of two different procedures, INITTABUPRICING initializes the tabuList
to zero at the start of the branch-and-price procedure and TABUPRICING is the pricing pro-
cedure. In addition to the set of terminals T and hop limit H , TABUPRICING also gets the
parameter k as input. This parameter indicates, how many pricing iterations ago a path with
positive reduced costs to a terminal t has had to be found, so that terminal t is considered in the
current iteration. These terminals form the set TA. In the algorithm, HCCP gets called for every
terminal t ∈ TA. If find a path with positive reduced costs for a terminal t, aside from adding the
path to the RMP, we also set tabuListt to zero. If we do not find a path, we increase tabuListt.
Thus a terminal gets removed from TA if no path with positive reduced costs to it has been found

5.6. PRICING STRATEGIES 51

Algorithm 12 Pricing strategy based on a tabu list

1: procedure INITTABUPRICING(T)
2: tabuListt ← 0, ∀t ∈ T
3: end procedure
4: procedure TABUPRICING(T ,H ,k)
5: found← false
6: notConsidered← ∅
7: for t ∈ T do
8: if tabuListt < k then
9: path p← HCCP(G = (V,A), t,H,B, c)

10: if p 6= ∅ then
11: found← true
12: tabuListt ← 0
13: add λp corresponding to p to the RMP
14: else
15: tabuListt ← tabuListt + 1
16: end if
17: else
18: notConsidered← notConsidered ∪ {i}
19: end if
20: end for
21: if ¬found then
22: for t ∈ notConsidered do
23: path p← HCCP(G = (V,A), t,H,B, c)
24: if p 6= ∅ then
25: tabuListt ← 0
26: add λp corresponding to p to the RMP
27: end if
28: end for
29: end if
30: end procedure

in the last k pricing iterations.
Only if we do not find a path with positive reduced costs for any terminal in TA, we call

HCCP for the terminals T \ TA (which are saved in the set notConsidered). Naturally, if
HCCP finds a path with positive reduced costs for a terminal t ∈ T \ TA, we add it to the RMP,
moreover, we set tabuListt to zero, i.e. terminal t gets added to TA again.

A Pricing Strategy Based on the Hop Constraints

Another pricing strategy was implemented with the runtime of HCCP in mind: Since the runtime
of HCCP is O(H|E|), it depends on the hop limit. We therefore start the pricing procedure with
a small hop limit for every terminal and just use the original hop limit (and increase the hop

52 CHAPTER 5. THE BRANCH-AND-PRICE ALGORITHM

limit for the next pricing iteration), if we do not find a path with the smaller hop limit. Aside
from having a shorter runtime of HCCP, we can possibly avoid the generation of unnecessary
columns, since it is not realistic that every terminal has a path with a high hop limit in the best
solution (at least if the hop limit H is not too strict). The algorithm used for this pricing strategy
is given in Algorithm 13 and is denoted by HOPPRICING.

Algorithm 13 Pricing strategy based on the hop constraints

1: procedure INITHOPPRICING(T)
2: hvalst ← 1,∀t ∈ T
3: end procedure
4: procedure HOPPRICING(T,H)
5: for t ∈ T do
6: path p← HCCP(G = (V,A), t, hvalst, B, c)
7: if p = ∅ ∧ hvalst <= H then
8: hvalst ← hvalst + 1
9: path p← HCCP(G = (V,A), t,H,B, c)

10: if p 6= ∅ then
11: add λp corresponding to p to the RMP
12: end if
13: else
14: add λp corresponding to p to the RMP
15: end if
16: end for
17: end procedure

The procedure INITHOPPRICING is used to initialize the global variable hvals, which is
a vector containing the currently used hop limit for every terminal T , to one at the start of the
branch-and-price procedure. HOPPRICING carries out the pricing as described above, i.e. if
HCCP does not find a path with positive reduced costs for a terminal T and its corresponding
current hop limit hvalst, hvalst gets increased and HCCP is called again for this terminal T
using the original hop limit H of the instance. This is done to guarantee an optimal solution.

A Little Trick to Accelerate All Pricing Strategies

The previous branching decisions of the branch-and-bound tree can be used to accelerate all
presented pricing strategies. Since we branch on terminal-variables yt and arc-variables xij , at
any node of the branch-and-bound tree, some terminal-variables yt may be restricted to value
zero. The corresponding terminals t cannot be in the tree caused by the feasible solution at
the current node and thus there can be no path with positive reduced costs to these terminals.
Therefore we do not need to solve the pricing subproblem for these terminal.

CHAPTER 6
Computational Results

Different combinations of the previously described formulations, stabilization methods, pricing
strategies and heuristics to generate initial solutions have been implemented using ZIB SCIP
2.0.0 [1] with IBM CPLEX 12.2 as LP solver. The computations have been performed on a
single core of an Intel Xeon E5540 processor with 2.53 GHz and 3GB RAM. A time-limit of
10000 CPU-seconds has been used for all experiments.

We used the test instances proposed by Costa et al. in [17], which are based on graphs B
(denoted as MSteinb) and C (denoted as Steinc) from the OR-Library [4]. Since these instances
originally have no revenues associated with the terminal nodes, Costa et al. adapted them for the
STPRBH by assigning revenues generated by a discrete uniform distribution to the terminals.
For the MSteinb graphs, the range of the distribution was [1, 100] and for the Steinc graphs, they
used the ranges [1, 10] and [1, 100] to generate two different problems out of every Steinc graph.
Therefore, the MSteinb graphs will be referred to as B1 to B18 for the rest of the thesis and the
Steinc graphs as C1-10 to C5-10 and C1-100 to C5-100, respectively. Sometimes, we will also
use CX when referring to both of the Steinc graphs, i.e. CX-10 and CX-100 (for X between one
and five)

We use the hop limits and budget proposed in [17], i.e.H = 3, 6, 9, 12 andB = s, s/5, s/10
for the MSteinb instances and H = 5, 15, 25 and B = s, s/10, s/30 for the Steinc instances.
Here s denotes the sum of all edge-costs, i.e.

∑
e∈E ce. Moreover, the terminal with the smallest

index is chosen as root node [17]. In the following tables the budget will be marked with b,
which stands for the divisor, i.e. B = s/1 is denoted with b = 1, B = s/10 with b = 10 and so
on. In the text, we will use GRAPH/H=X/b=Y to fully specify an instance (H or b are dropped,
when it is clear from context).

Since SCIP allows the configuration of some parameters, e.g. the algorithm used for solving
LPs, we did some initial experiments to find the best configuration. The dual-simplex algorithm
clearly outperforms other possible choices like primal-simplex or barrier. Using steepest edge
pricing as LP pricing strategy as mentioned in [61] nearly halves the runtime for some instances
compared with the default setting. The other recommendation from [61], devex pricing, does
not work so well. Hence, all results in the following have been obtained using the dual-simplex

53

54 CHAPTER 6. COMPUTATIONAL RESULTS

algorithm and steepest edge pricing.
We use MORECOLUMNS (see Section 5.6) to add more than one column with positive

reduced costs for a terminal during a pricing iteration (if such columns exist) in all our experi-
ments, since initial test showed it clearly outperformed adding single columns for each terminal
in preliminary tests.

6.1 Preprocessing

Tables 6.1 and 6.2 give the resulting reduced graphs when using the preprocessing steps de-
scribed in Section 5.3 on the instances based on the MSteinb and Steinc graphs. The runtime of
preprocessing was below one second for all instances.

Interestingly, a hop limit larger than 3 for MSteinb and 5 for Steinc does not significantly
change the resulting reduced instance. Moreover, different budget also do hardly influence the
outcome. The latter is, however, no surprise, because the budget does only have effects, if the
cheapest path to some node is more expensive than the budget. Note that the pairs of graphs
CX-10 and CX-100 give the same preprocessing results, since they only differ in revenue. All
further computational experiments have been performed on these preprocessed instances.

6.1. PREPROCESSING 55

Table 6.1: Result of the preprocessing on the instances based on the MSteinb graphs. The
number of nodes, edges and terminals of the original graph is given in columns |Vorig|, |Eorig|
and |Torig|, respectively.

Instance H = 3 H = 6 H = 9 H = 12

Graph |Vorig | |Eorig | |Torig | b |V | |E| |T | |V | |E| |T | |V | |E| |T | |V | |E| |T |

B1 50 63 9 1 15 16 2 37 50 8 38 51 9 38 51 9
5 15 16 2 37 50 8 38 51 9 38 51 9

10 15 16 2 37 50 8 38 51 9 38 51 9
B2 50 63 13 1 11 11 3 39 50 12 41 54 13 41 54 13

5 11 11 3 39 50 12 41 54 13 41 54 13
10 11 11 3 35 43 11 35 43 11 35 43 11

B3 50 63 25 1 5 4 5 35 42 21 44 57 25 44 57 25
5 5 4 5 35 42 21 44 57 25 44 57 25

10 5 4 5 35 42 21 41 53 22 41 53 22
B4 50 100 9 1 35 55 5 46 96 9 46 96 9 46 96 9

5 35 55 5 46 96 9 46 96 9 46 96 9
10 35 55 5 46 96 9 46 96 9 46 96 9

B5 50 100 13 1 42 63 12 45 95 13 45 95 13 45 95 13
5 42 63 12 45 95 13 45 95 13 45 95 13

10 42 63 12 45 95 13 45 95 13 45 95 13
B6 50 100 25 1 40 65 18 49 99 25 49 99 25 49 99 25

5 40 65 18 49 99 25 49 99 25 49 99 25
10 40 65 18 49 99 25 49 99 25 49 99 25

B7 75 94 13 1 7 6 2 45 52 11 57 76 13 57 76 13
5 7 6 2 45 52 11 57 76 13 57 76 13

10 7 6 2 45 52 11 57 76 13 57 76 13
B8 75 94 19 1 7 6 2 39 43 13 54 73 19 54 73 19

5 7 6 2 39 43 13 54 73 19 54 73 19
10 7 6 2 39 43 13 54 73 19 54 73 19

B9 75 94 38 1 25 24 13 63 82 37 65 84 38 65 84 38
5 25 24 13 63 82 37 65 84 38 65 84 38

10 25 24 13 63 82 37 65 84 38 65 84 38
B10 75 150 13 1 47 66 7 72 147 13 72 147 13 72 147 13

5 47 66 7 72 147 13 72 147 13 72 147 13
10 47 66 7 72 147 13 72 147 13 72 147 13

B11 75 150 19 1 40 45 8 72 147 19 72 147 19 72 147 19
5 40 45 8 72 147 19 72 147 19 72 147 19

10 40 45 8 72 147 19 72 147 19 72 147 19
B12 75 150 38 1 46 57 25 75 150 38 75 150 38 75 150 38

5 46 57 25 75 150 38 75 150 38 75 150 38
10 46 57 25 75 150 38 75 150 38 75 150 38

B13 100 125 17 1 19 18 3 73 97 17 74 99 17 74 99 17
5 19 18 3 73 97 17 74 99 17 74 99 17

10 19 18 3 73 97 17 74 99 17 74 99 17
B14 100 125 25 1 10 9 4 70 84 23 79 104 25 79 104 25

5 10 9 4 70 84 23 79 104 25 79 104 25
10 10 9 4 70 84 23 79 104 25 79 104 25

B15 100 125 50 1 31 32 19 83 105 50 83 108 50 83 108 50
5 31 32 19 83 105 50 83 108 50 83 108 50

10 31 32 19 83 105 50 83 108 50 83 108 50
B16 100 200 17 1 54 70 10 95 195 17 95 195 17 95 195 17

5 54 70 10 95 195 17 95 195 17 95 195 17
10 54 70 10 95 195 17 95 195 17 95 195 17

B17 100 200 25 1 16 15 6 95 194 25 95 195 25 95 195 25
5 16 15 6 95 194 25 95 195 25 95 195 25

10 16 15 6 95 194 25 95 195 25 95 195 25
B18 100 200 50 1 58 72 26 96 196 50 96 196 50 96 196 50

5 58 72 26 96 196 50 96 196 50 96 196 50
10 58 72 26 96 196 50 96 196 50 96 196 50

56 CHAPTER 6. COMPUTATIONAL RESULTS

Table 6.2: Result of the preprocessing on the instances based on the Steinc graphs. The number
of nodes, edges and terminals of the original graph is given in columns |Vorig|, |Eorig| and
|Torig|, respectively.

Instance H = 5 H = 15 H = 25

Graph |Vorig | |Eorig | |Torig | b |V | |E| |T | |V | |E| |T | |V | |E| |T |

C1 500 625 5 1 79 82 2 357 482 5 357 482 5
10 79 82 2 357 482 5 357 482 5
30 79 82 2 357 482 5 357 482 5

C2 500 625 10 1 94 99 5 353 478 10 353 478 10
10 94 99 5 353 478 10 353 478 10
30 94 99 5 353 478 10 353 478 10

C3 500 625 83 1 152 163 30 366 491 83 366 491 83
10 152 163 30 366 491 83 366 491 83
30 152 163 30 366 491 83 366 491 83

C4 500 625 125 1 75 76 22 391 516 125 391 516 125
10 75 76 22 391 516 125 391 516 125
30 75 76 22 391 516 125 391 516 125

C5 500 625 250 1 87 94 49 421 546 250 421 546 250
10 87 94 49 421 546 250 421 546 250
30 87 94 49 421 546 250 421 546 250

6.2 Comparison of the Branch-and-Price Approaches

Table 6.3 gives the comparison of the branch-and-price approaches based on the different for-
mulations discussed in Chapter 4 on the Steinc graphs with H=15 and b = 1, 5, 10. We chose
NORMALPRICING as pricing strategy, i.e. we try to add columns with positive reduced costs
for every terminal during a pricing iteration. Moreover, we used no stabilization or heuristic.

Formulation (DPF) has the fastest runtime for 20 of the 30 instances, followed by (DPFnt)
with 16 out of 30 and (DPF) with (4.37) with 15 out of 30 (remember that constraints (4.37)
ensure that at most one arc of each oppositely directed pair of arcs is used). The instances based
on graphs C1 and C2 are solved almost instantly by all our approaches, even the one based on
(UPF). This is consistent with the results of Costa et al. [17], where these instances also turned
out to be easy to solve.

Moreover, all instances with b = 1 are solved within few seconds regardless of the used
formulation. Taking into account the structure of the STPRBH, when b = 1, this is no surprise:
Since with b = 1, the budget is equal to the sum of all the edges in the instance, it does not
matter and the problem reduces to the STPRH, which is polynomially solvable [69]. Any tree,
which connects all terminals reachable with respect to the hop limit of the instance, is an optimal
solution. Thus, we only need to check for every terminal, if there is a hop-constrained path to
it, take the terminals, where such a paths exists and the corresponding paths, and ensure that the
graph formed by them is a tree. Our branch-and-price approach behaves similar to this strategy.
The pricing subproblem provides different hop-constrained paths for every terminal and the ILP
ensures that the paths picked in the solution form a tree (when b 6= 1, the ILP also ensures,
that the paths do not exceed the budget). Therefore, when b = 1 all proposed branch-and-price
approaches should yield good performance even for quite large graphs and hop limits. This is
in contrast to the branch-and-cut algorithms presented in [17], which do not scale so well when

6.2. COMPARISON OF THE BRANCH-AND-PRICE APPROACHES 57

b = 1.
The most difficult instances for our approaches are the ones based on graphs C3 and C5

with b = 10. Using the undirected formulation (UPF), all four of these instances (i.e. C3-
10/b=10, C3-100/b=10, C5-10/b=10 and C5-100/b=10) could not be solved within the time
limit. Formulations (DPF) with (4.37) and (DPF2) are not able to solve C3-100/b=10 within
the time limit and the runtime using (DPFT) is also relatively high for C3-100/b=10 compared
to other instances.

Aside from the performance on these difficult instances, there is no formulation, which dom-
inates the rest. Even on the same underlying graphs, different budgets can result in vastly dif-
ferent performance of the formulations. For example, (DPFT) is nearly three times as fast as
(DPFnt) for C4-10/b=10, while for C4-10/b=30 the picture is reversed. Concerning average
runtime, (DPFnt) is the best, followed by (DPF). The undirected formulation (UPF) has the
worst performance by far with an average runtime more than five times as high as (DPFnt).
Formulation (DPF2) also performed relatively poor in comparison to the other directed for-
mulations. This may be explained from the fact, that there are no terminal-variables to branch
on.

For all further experiments, formulation (DPFnt) is used. Moreover, instances based on
graphs C1, C2 and b = 1 are dropped from our testsetting, since they are too easy to solve.
Instead, we include instances with hop limit H=25.

58 CHAPTER 6. COMPUTATIONAL RESULTS

Table 6.3: CPU-time in seconds for branch-and-price based on the different formulations given
in Chapter 4 using NORMALPRICING and no stabilization and no heuristic for instances based
on Steinc graphs and H = 15

Instance Setting

Graph b (UPF) (DPFnt) (DPF) (4.37) (DPFT) (DPF2)

C1-10 1 0 0 0 0 0 0
10 0 0 0 0 0 0
30 0 0 0 0 0 0

C2-10 1 0 0 0 0 0 0
10 0 0 0 0 0 0
30 65 7 15 13 11 32

C3-10 1 1 0 0 0 1 1
10 10000 226 495 719 416 201
30 83 50 213 107 74 190

C4-10 1 3 1 0 0 10 3
10 999 222 338 443 66 109
30 286 256 377 581 535 637

C5-10 1 14 11 1 1 24 8
10 10000 247 176 192 193 120
30 821 175 125 190 165 396

C1-100 1 0 0 0 0 0 0
10 0 0 0 0 0 0
30 0 0 0 0 0 0

C2-100 1 0 0 0 0 0 0
10 0 0 0 0 0 0
30 95 13 13 14 162 71

C3-100 1 1 2 0 0 1 1
10 10000 1721 1986 10000 5584 10000
30 14 18 11 15 17 12

C4-100 1 3 1 0 1 2 3
10 3705 2080 1555 1627 1167 2938
30 416 437 753 709 546 813

C5-100 1 13 6 1 1 31 7
10 10000 678 396 622 512 425
30 1191 1603 3397 1609 2423 756

#-best 11 16 20 15 12 13
average 1590 258 328 561 398 557

6.3 Influence of the Heuristics

Table 6.4 detail our computational results on experiments using different heuristics on the Steinc
graphs C3, C4, C5 with H=15 and b = 5, 10. The results in Table 6.4 were obtained using
formulation (DPFnt), no stabilization and NORMALPRICING.

We have tested the following heuristics described in Section 5.4: SHORTEST, which
just adds a hop-constrained cheapest path for every terminal, GREEDY, which adds a hop-
constrained paths for every terminal taking into account already added paths, HOPSHORTEST,
which is SHORTEST with gradually increasing hop limit and KNAPSACK, which is inspired by
a simple heuristic for the knapsack problem. Moreover, variations of SHORTEST and GREEDY,
where more than one path for every terminal is added with the help of MORECOLUMNS, have
also been tested.

6.3. INFLUENCE OF THE HEURISTICS 59

We conclude that SHORTEST, which yields the fastest runtime in four out of twelve in-
stances seems to perform best for these instances. Furthermore, using no heuristic as well was
using SHORTEST with MORECOLUMNS performs quite well. HOPSHORTEST has the sec-
ond best average runtime, but has the fastest runtime only for one instance. The other heuristics
have poor performance, with KNAPSACK being the worst by far.

On an individual instance level, some interesting things can be observed: While SHORTEST
is the best for C5-100 both when b = 5 and b = 10, it gives pretty bad results on the same graph,
when the revenues only range from one to ten (i.e. C5-10). Interestingly, for C5-10 SHORTEST
with MORECOLUMNS is best both for b = 5 and b = 10, needing 1/3 of the time of only
SHORTEST for C5-10/b=20.

For C4-10/b=10, SHORTEST and HOPSHORTEST are three to six times faster than the rest
and for C5-100/b=30, SHORTEST, SHORTEST with MORECOLUMNS and HOPSHORTEST
are two times as fast as the other tested heuristics and no heuristic.

Table 6.4: CPU-times in seconds with different heuristics using formulation (DPFnt) for in-
stances based on Steinc graphs andH = 15. NO denotes no heuristic, SH heuristic SHORTEST,
GR heuristic GREEDY, SHM heuristic SHORTEST with MORECOLUMNS, GRM heuris-
tic GREEDY with MORECOLUMS, HS heuristic HOPSHORTEST and KS heuristic KNAP-
SACK.

Instance Setting

Graph b NO SH GR SHM GRM HS KS

C3-10 10 226 266 282 264 324 252 367
30 50 52 69 137 36 75 60

C4-10 10 222 76 203 380 451 85 277
30 256 253 357 253 405 259 469

C5-10 10 247 291 243 184 187 247 190
30 175 391 172 133 518 513 186

C3-100 10 1721 2129 2789 2474 2504 2537 1982
30 18 15 14 15 15 13 20

C4-100 10 2080 2026 1858 1954 1482 1694 2751
30 437 559 437 680 598 558 598

C5-100 10 678 497 580 637 560 530 543
30 1603 766 1587 867 1379 867 1795

#-best 3 4 1 3 2 1 0
average 642 610 715 664 704 635 769

Table 6.5 presents the results obtained when using a looser hop limit of H=25. Now we get a
different picture, where using no heuristic gives best average runtime and together with KNAP-
SACK has the fastest runtime most often. The two best heuristics when H=15, SHORTEST
and HOPSHORTEST, now have the highest average runtime. Two instances (C3-10/b=10 and
C5-100/b=30) are not solvable within the time limit no matter what heuristic is used.

This striking dependence of the performance on H is also visible on the individual in-
stance level. For C5-10/H=15/b=10 SHORTEST with MORECOLUMS is best, closely fol-
lowed by GREEDY with MORECOLUMS and KNAPSACK, while the other heuristics re-
sults in considerably worse runtime. For H=25 (i.e. instance C5-10/H=25/b=10), GREEDY
with MORECOLUMNS gives an acceptable performance (third best), while SHORTEST with

60 CHAPTER 6. COMPUTATIONAL RESULTS

MORECOLUMNS and KNAPSACK result in the worst runtimes by far.

Table 6.5: CPU-times in seconds using different heuristics and formulation (DPFnt), NOR-
MALPRICING and no stabilization for instances based on Steinc graphs and H = 25. NO
denotes no heuristic, SH heuristic SHORTEST, GR heuristic GREEDY, SHM heuristic SHORT-
EST with MORECOLUMNS, GRM heuristic GREEDY with MORECOLUMS, HS heuristic
HOPSHORTEST and KS heuristic KNAPSACK.

Instance Setting

Graph b NO SH GR SHM GRM HS KS

C3-10 10 2126 2605 2799 2680 2451 2782 752
30 297 862 555 175 317 953 699

C4-10 10 267 177 172 141 213 200 122
30 704 470 492 530 534 431 414

C5-10 10 2862 3974 2814 4209 3019 4060 4172
30 1342 1967 1634 1639 1777 1968 1733

C3-100 10 10000 10000 10000 10000 10000 10000 10000
30 28 52 39 60 47 50 41

C4-100 10 148 188 187 140 122 184 154
30 632 632 734 675 661 650 714

C5-100 10 3775 3890 3992 3761 4595 3982 5122
30 10000 10000 10000 10000 10000 10000 10000

#-best 5 3 3 4 3 2 5
average 2681 2901 2784 2834 2811 2938 2826

For all further experiments, heuristic SHORTEST is used, since the combination of good
performance for instances with H = 15 and rather bad performance for instances with H = 15
provides an interesting basis.

6.4 Comparison of the Stabilization Techniques

In this section, we give a comparison of the performance of the different variants of stabilization
methods described in Section 5.5.

We tested three different strategies based on alternative-dual optimal solutions. In the first
strategy, the slack of Constraints (5.4) is distributed equally over all dual variables occurring in
the respective constraints. The second strategy uses parameter Q to construct an unique solution
for every terminal. Q has been set to ten in our experiments. The third strategy distributes the
slack of Constraints (5.4) only over the dual variables with value zero.

Moreover, the method of Neame, which tries to smoothen the progress of the dual variables
by taking a convex combination of the dual variables of the current and previous pricing iteration,
was tested. At each iteration, parameter α for the weight of the current dual solution was set
to 0.5 and increased in steps of 0.1 until a path with positive reduced costs is found or α = 1,
which means the current dual solution for pricing is used. A combination of the method of
Neame with the first strategy of alternative dual-optimal solutions has also been tested. In this
combination, the slack of Constraints (5.4) is distributed equally over the current dual values and
then a convex combination with the dual values from the previous iteration is taken.

6.4. COMPARISON OF THE STABILIZATION TECHNIQUES 61

Furthermore, piecewise linear stabilization was tested. We used stabilization only in the
column generation of the root node in the branch-and-price tree. Both the µt and πtij variables
were stabilized, the initial stability center was set to the respective dual values of the first LP
iteration. In the following, let µlt and πtij

l denote the dual solutions at major iteration l.
The inner hyperbox at major iteration l was set to variables was [µl−1t − 0.3rt, µ

l−1
t + 0.3rt]

for the µt, the outer hyberbox was set to [µl−1t −0.9rt, µ
l−1
t +0.9rt] . For the πtij the hyperboxes

were [πtij
l−1− 0.3cij , π

t
ij
l−1

+ 0.3cij] and [πtij
l−1− cij , πtij

l−1
+ cij], respectively. The penalty

parameters for all variables were set to ε1 = ε2 = 0.3 and ζ1 = ζ2 = 1.0. Both the penalties and
the size of the hyperboxes were not changed during the run of the algorithm. We also did some
testruns with other settings for both the hyperboxes and the penalties, but the runtimes did not
change significantly.

Table 6.6 summarizes the results for the different stabilization techniques for formulation
(DPFnt) on the Steinc graphs C3, C4, C5 with H=15 and b = 5, 10 using NORMALPRICING
and heuristic SHORTEST.

Both strategies based on the method of Neame as well as piecewise linear stabilization have
a disastrous effect on the runtime. The average runtime using the method of Neame is more than
four times higher as no stabilization and the combination with alternative dual-optimal solutions
gives a roughly three times as high average runtime as using no stabilization. This is consistent
with the results in [71], where the method of Neame also performed poorly. Piecewise linear
stabilization yields even worse results, most of the instances have not been solved within the
time limit. A closer look at the run of the algorithms revealed, that many updates of the stability
center were necessary and thus many LPs needed to be solved. The same behavior has also been
observed for the rooted delay constrained Steiner tree problem in [57, 58].

On the other hand, all three strategies based on alternative dual-optimal solutions give a
significantly lower average runtime than using no stabilization. The first and third strategy result
in a slightly lower average runtime than the second, moreover they results in the shortest runtime
for instances most often (six times for the first strategy and four times for the third strategy
against one time for no stabilization or the third strategy).

Taking a closer look at individual instances, we can again observe that the revenues asso-
ciated with the terminals play a role in the performance of the stabilization. For the instances
based on graph C5, with the revenues between one and ten (i.e. C5-10), the first strategy is
clearly the best and even five times faster than the third, when b = 30. But for C5-100 (i.e.
revenues between one and hundred), the third strategy is the best

62 CHAPTER 6. COMPUTATIONAL RESULTS

Table 6.6: CPU-times in seconds with different stabilization techniques using formulation
(DPFnt), NORMALPRICING and heuristic SHORTEST for instances based on Steinc graphs
and H = 15. AD 1 denotes the first strategy based on alternative-dual optimal solutions (slack
over all dual variables), AD2 the second (with parameter Q), and AD3 the third (slack only over
dual variables with value zero). N1 denotes the method of Neame, N2 the combination of the
method of Neame and the first strategy based on alternative-dual optimal solutions, PL piecewise
linear stabilization.

Instance Setting

Graph b NO AD1 AD2 AD3 N1 N2 PL

C3-10 10 266 163 211 149 1337 841 694
30 52 109 57 55 1024 295 255

C4-10 10 76 296 228 259 350 261 1789
30 253 243 438 272 1851 2095 1418

C5-10 10 291 154 207 166 1103 943 10000
30 391 84 198 371 882 967 10000

C3-100 10 2129 1640 1734 1353 8960 4334 10000
30 15 13 24 15 146 61 945

C4-100 10 2026 1719 1483 1576 7059 7000 10000
30 559 447 520 691 2921 2764 10000

C5-100 10 497 435 402 340 2905 2024 10000
30 766 638 677 605 4534 3108 10000

#-best 1 6 1 4 0 0 0
average 610 495 514 487 2756 2057 6258

In Table 6.7, the results obtained for H=25 are presented. The picture is similar to H=15,
however the combination of the method of Neame and alternative dual-optimal solutions now
performs better and is much faster than no stabilization for the instance C1-10/b=100.

However, although the overall performance trend is nearly the same as for H=15, the perfor-
mance for instances based on the same graph and budget is different in some cases. For example,
for C5-10/H=15/b=10, the performance of the performance second alternative dual-optimal so-
lutions strategy is slightly worse than the other two alternative dual-optimal solutions strategies,
but for C5-10/H=25/b=10 using the second strategy takes five times longer than using the other
two.

6.5. COMPARISON OF PRICING STRATEGIES 63

Table 6.7: CPU-times in seconds with different stabilization techniques using formulation
(DPFnt), NORMALPRICING and heuristic SHORTEST for instances based on Steinc graphs
and H = 25. AD 1 denotes the first strategy based on alternative-dual optimal solutions (slack
over all dual variables), AD2 the second (with parameter Q), and AD3 the third (slack only over
dual variables with value zero). N1 denotes the method of Neame, N2 the combination of the
method of Neame and the first strategy based on alternative-dual optimal solutions, PL piecewise
linear stabilization.

Instance Setting

Graph b NO AD1 AD2 AD3 N1 N2 PL

C3-10 10 2605 260 458 306 8113 1860 4778
30 862 247 81 192 1102 339 577

C4-10 10 177 53 153 53 1070 520 2588
30 470 289 341 255 2960 2280 10000

C5-10 10 3974 832 4475 833 10000 4397 10000
30 1967 1069 717 577 9550 3633 10000

C3-100 10 10000 10000 10000 10000 10000 10000 10000
30 52 21 39 18 477 97 1448

C4-100 10 188 42 78 48 1300 439 10000
30 632 378 411 444 4258 2312 10000

C5-100 10 3890 967 857 922 10000 4052 10000
30 10000 10000 10000 10000 10000 10000 10000

#-best 2 7 4 6 2 2 2
average 2901 2013 2300 1970 5735 3327 7449

6.5 Comparison of Pricing Strategies

In the following, we will present the results of our experiments with different pricing strate-
gies introduced in Section 5.6. Note that all pricing strategies are used together with
MORECOLUMNS, so it is possible that more than one column with positive reduced costs
is added for every terminal during a pricing iteration.

TYPICALPRICING denotes a pricing strategy, where pricing is stopped after the first termi-
nal having a path to it with positive reduced costs has been found. NORMALPRICING solves
the pricing subproblem for every terminal, thus multiple columns for every terminal can be
added during a pricing iteration. TABUPRICING denotes a pricing strategy, where we keep a
list of terminals for which paths with positive reduced costs have been found in one of the pre-
vious k iterations. The pricing subproblem gets solved for terminals on this list, and only if no
column with positive reduced costs is found, the pricing subproblem is also solved for the other
terminals. Parameter k has been set to three in our experiments. Pricing strategy HOPPRICING
solves the pricing subproblem for smaller hop limits than the original hop limit and increases
the hop limit and resolves the pricing subproblem in case no column with positive reduced cost
has been found. This is done for every terminal until either we find a path with positive reduced
costs or we reach the original hop limit, in this case we can stop solving, if no path with posi-
tive reduced costs has been found. Furthermore, NORMALPRICING and TABUPRICING have
been tested in an extended version, where no pricing is performed on terminals, which have to
be zero due to previous branching decisions.

64 CHAPTER 6. COMPUTATIONAL RESULTS

Table 6.8 details the computational results when these pricing strategies are used in combi-
nation with formulation (DPFnt), heuristic SHORTEST and no stabilization on instances based
on the Steinc graphs C3, C4, C5 with b = 10, 30 and H=15

TYPICALPRICING has an average runtime, which is two to four times worse than the other
strategies. This is no surprise, since columns are only added for one terminal during a pricing
iteration and thus many more LPs need to be solved. TABUPRICING and its extended version
are clearly the dominating strategies, they have the smallest average runtimes and aside from
them, no other strategy gives a fastest runtime for an instance.

It is surprising, that for some instances, the extended strategies have longer runtime than
the respective standard strategies, since the extended strategies do exactly the same as their
standard counterparts, aside from not solving pricing subproblems, which do not return paths
with positive reduced costs anyway. A closer examination showed, that obtaining the upper
bounds on the y variables took longer than solving unnecessary pricing subproblems. Thus,
a more careful implementation (i.e. storing the branching decisions explicitly) of the extended
strategies will likely result in better runtime (i.e. at least as good as their standard counterparts).

Table 6.8: CPU-times in seconds with different pricing techniques using formulation (DPFnt),
heuristic SHORTEST and no stabilization for instances based on Steinc graphs and H = 15.
TY denotes TYPICALPRICING, N denotes NORMALPRICING, TA denotes TABUPRICING,
HP denotes HOPPRICING and NE and TAE, respectively the extended versions of NORMAL-
PRICING and TABUPRICING, respectively.

Instance Setting

Graph b TY N TA HP NE TAE

C3-10 10 772 266 249 350 286 226
30 677 52 45 189 52 43

C4-10 10 809 76 68 1326 81 68
30 1043 253 185 356 318 196

C5-10 10 2117 291 197 254 252 181
30 1803 391 161 191 460 175

C3-100 10 4223 2129 1789 1995 2657 1853
30 268 15 12 22 13 11

C4-100 10 3846 2026 1265 1677 1688 1400
30 1596 559 431 539 553 508

C5-100 10 2462 497 399 580 523 334
30 3198 766 669 930 841 592

#-best 0 0 6 0 0 7
average 1901 610 455 700 643 465

Turning our attention to H=25 instead of H=15 (see Table 6.9), we encounter nearly the same
trends, only the extended version of TABUPRICING performs a little bit worse now and thus
TABUPRICING is the best for eleven out of twelve instances.

6.6. IN-DEPTH COMPARISON OF THREE SETTINGS 65

Table 6.9: CPU-times in seconds with different pricing techniques using formulation (DPFnt),
heuristic SHORTEST and no stabilization for instances based on Steinc graphs and H = 25.
TY denotes TYPICALPRICING, N denotes NORMALPRICING, TA denotes TABUPRICING,
HP denotes HOPPRICING and NE and TAE, respectively the extended versions of NORMAL-
PRICING and TABUPRICING, respectively.

Instance Setting

Graph b TY N TA HP NE TE

C3-10 10 5765 2605 2003 2041 2810 1999
30 1680 862 254 899 1012 477

C4-10 10 2573 177 149 160 174 160
30 2350 470 249 488 481 334

C5-10 10 9074 3974 3765 4013 4195 4623
30 10000 1967 651 1744 2043 818

C3-100 10 10000 10000 10000 10000 10000 10000
30 814 52 33 75 47 40

C4-100 10 2234 188 120 193 168 152
30 3436 632 325 708 652 448

C5-100 10 10000 3890 1664 3940 3701 2479
30 10000 10000 10000 10000 10000 10000

#-best 2 2 11 2 2 3
average 5660 2901 2434 2855 2940 2627

6.6 In-depth Comparison of Three Settings

To end this chapter on results, we give an in-depth comparison of three different settings in
combination with formulation (DPFnt). The tests were run on the same instances as in [17].
Thus they can give a rough comparison of our branch-and-price approach to the branch-and-cut
approaches presented in [17]. One must, however, be aware of the different environments (i.e.
computers, CPLEX versions, . . .) used to obtain the results. Aside from the runtime, we will also
give the number of pricing iterations and the number of paths added (i.e. columns generated) to
the RMP. Moreover, the runtime of three branch-and-cut approaches Costa has tested in [17] will
be stated in the tables. Two of Costa’s approaches are based on Garcia-Gouveia hop constraints
(denoted by S1 and S3) and the other one is based on a directed Dantzig-Fulkerson-Johnson
formulation (denoted by S5).

For our branch-and-price approach, we used the following settings: BP1 denotes a standard
branch-and-price setting, i.e. NORMALPRICING and no heuristic and no stabilization. Set-
ting BP2 consists of TABUPRICING, the third alternative dual-optimal solution strategy and
no heuristic. BP3 uses heuristic SHORTEST, TABUPRICING and the first strategy based on
alternative dual-optimal solutions.

The results will be grouped in tables according to the hop limits, i.e. H=3,6,9,12 for the
instances based on MSteinb graphs and H=5,15,25 for the instances based on Steinc graphs. We
begin the discussion with the hop limits which turned out to be easily solvable, meaning that
the average runtime for solving the instances having this hop limit has been under five seconds.
These hop limits are H=3,6,9,12 (i.e. all instances based on Msteinb graphs) and H=5. The
results for these instances are presented in Tables 6.10, 6.11, 6.12, 6.13 and 6.14, respectively.

66 CHAPTER 6. COMPUTATIONAL RESULTS

We conclude that our branch-and-price approach is competitive when the hop limit is small.
Regarding the budget for the instances with these hop limits, b = 10 seems to be more

difficult to solve than b = 5 (and of course b = 1). A notable exception is the underlying graph
B-6, where b = 5 results in a longer runtime than b = 10 for all three settings.

B-18/H=12/b=10 is the most difficult of the instances with these hop limits, with all three
settings taking roughly three times as much to solve it than the second most difficult (which is
B-12/H=12/b=10). For these two instances, settings BP2 and BP3 are approximately two times
as fast as BP1 and for B-10/H=12/b=10 settings BP2 and BP3 deliver results instantly, while
BP1 takes 20 seconds.

When b = 1 all settings need only very few pricing iterations, setting BP3 only needs one.
This is not unexpected, since setting BP3 uses heuristic SHORTEST to add columns at the start
and the other two settings start with an empty column set. Due to SHORTEST, the branch-and-
price approach BP3 starts out for every terminal with a column representing the hop-constrained
cheapest path to the terminal. As hinted above (see Section 6.2), this is already the optimal
solution, since formulation (DPFnt) does not care whether the solution is a tree or not. For
b = 5 and b = 10, more pricing iterations are needed in general, however there are instances,
where the numbers for b = 1 and b = 10 are nearly the same. Most of the time, BP3 needs
the fewest number of pricing iterations, this is also apparent in the average number of pricing
iterations.

When H=3 and H=5 the number of paths added to the RMP is nearly the same for all three
approaches, but for higher H, BP2 and BP3 add fewer paths on average than BP1. This difference
gets more pronounced as H grows, hinting that for larger hop limits, we may see a performance
difference between BP1 and BP2, BP3.

6.6. IN-DEPTH COMPARISON OF THREE SETTINGS 67

Table 6.10: Detailed computational results for three settings using formulation (DPFnt) for
instances based on Msteinb graphs andH = 3. BP1 denotes a standard branch-and-price setting
consisting of NORMALPRICING, no heuristic and no stabilization. BP2 uses TABUPRICING,
no heuristic and the third strategy based on alternative dual-optimal solutions. BP3 consists of
TABUPRICING, heuristic SHORTEST and the first strategy based on alternative dual-optimal
solutions. Columns S1, S3 and S5 state the CPU-times reported by Costa et al. [17] for their
branch-and-cut approaches.

Instance CPU-time [s] Iterations Paths Costa

Graph b BP1 BP2 BP3 BP1 BP2 BP3 BP1 BP2 BP3 S1 S3 S5

B1 1 0 0 0 2 2 1 1 1 2 0 0 1
5 0 0 0 2 2 1 1 1 2 0 0 2

10 0 0 0 2 2 1 1 1 2 0 0 0
B2 1 0 0 0 2 2 1 2 2 3 0 0 5

5 0 0 0 2 2 1 2 2 3 0 0 2
10 0 0 0 2 2 1 2 2 3 0 0 0

B3 1 0 0 0 2 2 1 4 4 5 0 0 0
5 0 0 0 2 2 1 4 4 5 0 0 0

10 0 0 0 2 2 1 4 4 5 0 0 0
B4 1 0 0 0 2 2 1 4 4 5 0 0 [inf]

5 0 0 0 2 2 1 4 4 5 0 0 [inf]
10 0 0 0 3 3 1 7 7 5 0 0 [inf]

B5 1 0 0 0 2 2 1 12 12 12 0 0 [inf]
5 0 0 0 2 2 1 12 12 12 0 0 [inf]

10 0 0 0 4 4 3 18 17 17 0 0 4416
B6 1 0 0 0 2 2 1 17 17 18 0 0 [inf]

5 0 0 0 5 5 4 33 33 34 0 0 [inf]
10 0 0 0 19 18 17 36 36 35 0 0 4432

B7 1 0 0 0 2 2 1 1 1 2 0 0 2
5 0 0 0 2 2 1 1 1 2 0 0 0

10 0 0 0 2 2 1 1 1 2 0 0 0
B8 1 0 0 0 2 2 1 1 1 2 0 0 3

5 0 0 0 2 2 1 1 1 2 0 0 2
10 0 0 0 2 2 1 1 1 2 0 0 0

B9 1 0 0 0 2 2 1 12 12 13 0 0 4228
5 0 0 0 2 2 1 12 12 13 0 0 1087

10 0 0 0 14 14 13 12 12 13 0 0 19
B10 1 0 0 0 2 2 1 6 6 7 0 0 [inf]

5 0 0 0 2 2 1 6 6 7 0 2 [inf]
10 0 0 0 2 2 1 6 6 7 0 1 [inf]

B11 1 0 0 0 2 2 1 7 7 8 0 0 [inf]
5 0 0 0 2 2 1 7 7 8 0 0 [inf]

10 0 0 0 7 7 6 8 8 9 0 3 [inf]
B12 1 0 0 0 2 2 1 24 24 25 0 0 [inf]

5 0 0 0 2 2 1 24 24 25 0 0 [inf]
10 0 0 0 42 49 29 35 35 36 0 0 [inf]

B13 1 0 0 0 2 2 1 2 2 3 0 0 [inf]
5 0 0 0 2 2 1 2 2 3 0 0 [inf]

10 0 0 0 2 2 1 2 2 3 0 0 162
B14 1 0 0 0 2 2 1 3 3 4 0 0 54

5 0 0 0 2 2 1 3 3 4 0 0 95
10 0 0 0 2 2 1 3 3 4 0 0 15

B15 1 0 0 0 2 2 1 18 18 19 0 0 [inf]
5 0 0 0 2 2 1 18 18 19 0 0 [inf]

10 0 0 0 5 5 4 19 19 20 0 0 28
B16 1 0 0 0 2 2 1 9 9 10 0 0 [inf]

5 0 0 0 2 2 1 9 9 10 0 0 [inf]
10 0 0 0 2 2 1 9 9 10 0 7 [inf]

B17 1 0 0 0 2 2 1 5 5 6 0 0 [inf]
5 0 0 0 2 2 1 5 5 6 0 0 [inf]

10 0 0 0 2 2 1 5 5 6 0 0 [inf]
B18 1 0 0 0 2 2 1 25 25 26 0 0 [inf]

5 0 0 0 2 2 1 25 25 26 0 0 [inf]
10 0 0 0 33 33 31 37 37 37 0 3 [inf]

#-best 54 54 54 0 0 54 51 52 6
average 0.00 0.00 0.00 4 4 2 9 9 10

68 CHAPTER 6. COMPUTATIONAL RESULTS

Table 6.11: Detailed computational results for three settings using formulation (DPFnt) for
instances based on Msteinb graphs andH = 6. BP1 denotes a standard branch-and-price setting
consisting of NORMALPRICING, no heuristic and no stabilization. BP2 uses TABUPRICING,
no heuristic and the third strategy based on alternative dual-optimal solutions. BP3 consists of
TABUPRICING, heuristic SHORTEST and the first strategy based on alternative dual-optimal
solutions. Columns S1, S3 and S5 state the CPU-times reported by Costa et al. [17] for their
branch-and-cut approaches.

Instance CPU-time [s] Iterations Paths Costa

Graph b BP1 BP2 BP3 BP1 BP2 BP3 BP1 BP2 BP3 S1 S3 S5

B1 1 0 0 0 2 2 1 7 7 8 0 0 8
5 0 0 0 3 3 1 16 15 8 0 0 0

10 0 0 0 9 10 9 26 25 27 0 0 0
B2 1 0 0 0 2 2 1 11 11 12 0 0 53

5 0 0 0 10 10 10 22 22 24 0 0 1
10 0 0 0 25 29 25 23 25 24 0 0 0

B3 1 0 0 0 2 2 1 20 20 21 0 0 18
5 0 0 0 22 22 89 25 25 27 0 0 1

10 0 0 0 47 47 22 26 26 27 0 0 0
B4 1 0 0 0 2 2 1 12 12 9 0 0 0

5 0 0 0 2 2 1 12 12 9 0 0 6
10 0 0 0 50 34 36 219 155 160 0 1 11

B5 1 0 0 0 2 2 1 15 15 13 0 0 0
5 0 0 0 2 2 1 15 15 13 0 1 0

10 0 0 0 68 50 35 217 176 154 0 0 0
B6 1 0 0 0 9 9 1 37 37 25 0 0 0

5 1 1 0 60 84 36 434 426 376 0 0 740
10 2 1 1 121 103 97 452 439 430 0 1 14

B7 1 0 0 0 2 2 1 10 10 11 0 0 [inf]
5 0 0 0 2 2 2 10 10 13 0 0 1

10 0 0 0 28 28 27 12 12 13 0 0 0
B8 1 0 0 0 2 2 1 12 12 13 0 0 6612

5 0 0 0 12 12 11 15 15 16 0 1 2307
10 0 0 0 27 26 21 15 15 16 0 2 4

B9 1 0 0 0 2 2 1 40 40 37 0 0 [inf]
5 1 1 2 94 81 165 139 132 142 0 0 17

10 1 1 2 96 101 93 140 140 141 0 0 0
B10 1 0 0 0 2 2 1 18 18 13 0 0 [inf]

5 0 0 0 2 2 1 18 18 13 0 1 9
10 6 2 1 392 149 121 552 348 308 1 2 34

B11 1 0 0 0 2 2 1 26 26 19 0 0 [inf]
5 0 0 0 3 3 1 61 76 19 0 9 [inf]

10 0 0 0 24 26 21 265 242 245 0 7 80
B12 1 0 0 0 2 2 1 53 53 38 0 0 [inf]

5 1 5 1 46 220 65 445 578 459 0 3 [inf]
10 1 1 2 59 73 65 429 428 410 0 0 14

B13 1 0 0 0 2 2 1 16 16 17 0 0 1415
5 0 0 0 57 52 55 39 39 41 0 1 696

10 0 0 0 27 28 26 41 41 42 0 1 1
B14 1 0 0 0 2 2 1 22 22 23 0 1 [inf]

5 0 0 0 60 60 59 28 28 29 0 2 30
10 0 0 0 33 33 32 28 28 29 0 0 0

B15 1 0 0 0 2 2 1 50 50 50 0 0 [inf]
5 2 2 2 88 85 80 142 138 136 0 1 4

10 5 4 4 144 159 142 145 146 147 0 1 0
B16 1 0 0 0 2 2 1 21 21 17 0 11 [inf]

5 0 0 0 2 2 1 21 21 17 0 13 [inf]
10 0 0 0 56 60 56 312 316 281 0 8 [inf]

B17 1 0 0 0 2 2 1 28 28 25 2 6 [inf]
5 0 0 0 3 3 1 49 54 25 0 18 [inf]

10 0 0 0 17 14 12 144 136 128 0 9 [inf]
B18 1 0 0 0 7 7 1 75 75 50 0 0 [inf]

5 2 1 2 27 38 26 526 543 520 0 1 [inf]
10 1 0 0 24 16 14 560 482 461 0 2 [inf]

#-best 48 51 50 8 6 48 23 24 28
average 0.43 0.35 0.31 33 31 27 112 107 98

6.6. IN-DEPTH COMPARISON OF THREE SETTINGS 69

Table 6.12: Detailed computational results for three settings using formulation (DPFnt) for
instances based on Msteinb graphs andH = 9. BP1 denotes a standard branch-and-price setting
consisting of NORMALPRICING, no heuristic and no stabilization. BP2 uses TABUPRICING,
no heuristic and the third strategy based on alternative dual-optimal solutions. BP3 consists of
TABUPRICING, heuristic SHORTEST and the first strategy based on alternative dual-optimal
solutions. Columns S1, S3 and S5 state the CPU-times reported by Costa et al. [17] for their
branch-and-cut approaches.

Instance CPU-time [s] Iterations Paths Costa

Graph b BP1 BP2 BP3 BP1 BP2 BP3 BP1 BP2 BP3 S1 S3 S5

B1 1 0 0 0 2 2 1 8 8 9 0 0 0
5 0 0 0 30 29 22 67 54 50 0 0 0

10 0 0 0 26 22 22 69 59 60 0 0 0
B2 1 0 0 0 2 2 1 12 12 13 0 0 0

5 0 0 0 32 28 26 112 101 88 0 0 0
10 0 0 0 48 48 45 66 76 62 0 0 0

B3 1 0 0 0 2 2 1 25 25 25 0 3 0
5 0 0 0 51 47 111 90 85 103 0 0 0

10 0 0 0 12 8 5 74 74 67 0 0 0
B4 1 0 0 0 2 2 1 12 12 9 0 6 0

5 0 0 0 2 2 1 12 12 9 0 0 0
10 0 0 0 42 23 31 527 329 275 0 0 0

B5 1 0 0 0 2 2 1 15 15 13 0 0 0
5 0 0 0 2 2 1 15 15 13 1 0 0

10 0 0 0 29 28 18 267 231 202 0 0 0
B6 1 0 0 0 9 9 1 37 37 25 0 0 0

5 6 5 7 226 321 305 1507 1874 1956 2 2 10
10 4 5 4 251 226 172 1688 1402 1212 0 0 0

B7 1 0 0 0 2 2 1 13 13 13 0 0 2
5 0 0 0 10 10 10 45 43 46 0 0 0

10 0 0 0 64 66 62 59 56 54 0 0 0
B8 1 0 0 0 2 2 1 24 24 19 0 0 0112

5 0 0 0 97 90 98 128 127 138 0 5 28
10 0 0 0 25 26 29 104 107 105 0 1 0

B9 1 0 0 0 2 2 1 41 41 38 0 3 3138
5 1 0 0 48 46 44 274 260 283 0 0 0

10 8 4 6 281 270 259 466 485 525 0 0 0
B10 1 0 0 0 2 2 1 18 18 13 2 0 1

5 0 0 0 2 2 1 18 18 13 1 1 1
10 1 0 0 121 66 69 834 618 547 0 2 0

B11 1 0 0 0 2 2 1 26 26 19 3 15 [inf]
5 0 0 0 3 3 1 61 86 19 6 2 0

10 2 2 1 70 115 66 1536 1444 1184 1 3 0
B12 1 0 0 0 2 2 1 53 53 38 4 4 1

5 1 1 1 48 48 45 801 690 747 0 1 5
10 14 11 6 362 346 233 2235 1840 1299 1 0 1

B13 1 0 0 0 2 2 1 16 16 17 0 0 12
5 0 0 0 63 74 54 206 202 195 0 0 0

10 5 1 4 382 177 370 267 243 268 0 1 0
B14 1 0 0 0 2 2 1 25 25 25 0 10 1

5 1 1 1 90 90 82 127 122 121 0 0 2
10 1 1 1 73 81 78 119 122 124 0 0 0

B15 1 0 0 0 2 2 1 51 51 50 0 6 26
5 0 0 0 15 24 11 263 253 266 0 0 0

10 8 6 7 259 218 223 533 471 484 2 1 0
B16 1 0 0 0 2 2 1 21 21 17 3 36 167

5 0 0 0 2 2 1 21 21 17 3 2 1
10 2 1 1 89 43 55 1262 1063 1044 7 0 118

B17 1 0 0 0 14 8 1 110 98 25 4 0 [inf]
5 0 0 0 2 2 1 33 33 25 4 21 [inf]

10 3 2 2 109 100 93 976 774 763 2 23 5320
B18 1 0 0 0 6 6 1 76 76 50 7 29 75

5 2 1 1 26 13 9 1005 746 832 0 0 1613
10 9 5 4 170 137 129 1442 1299 1287 0 0 35

#-best 42 50 50 4 9 44 10 16 37
average 1.26 0.85 0.85 59 53 51 331 296 275

70 CHAPTER 6. COMPUTATIONAL RESULTS

Table 6.13: Detailed computational results for three settings using formulation (DPFnt) for in-
stances based on Msteinb graphs and H = 12. BP1 denotes a standard branch-and-price setting
consisting of NORMALPRICING, no heuristic and no stabilization. BP2 uses TABUPRICING,
no heuristic and the third strategy based on alternative dual-optimal solutions. BP3 consists of
TABUPRICING, heuristic SHORTEST and the first strategy based on alternative dual-optimal
solutions. Columns S1, S3 and S5 state the CPU-times reported by Costa et al. [17] for their
branch-and-cut approaches.

Instance CPU-time [s] Iterations Paths Costa

Graph b BP1 BP2 BP3 BP1 BP2 BP3 BP1 BP2 BP3 S1 S3 S5

B1 1 0 0 0 2 2 1 8 8 9 0 0 0
5 0 0 0 34 31 18 84 58 50 0 0 0

10 0 0 0 28 22 23 75 66 70 0 0 0
B2 1 0 0 0 2 2 1 12 12 13 0 0 0

5 0 0 0 37 40 31 141 132 127 0 0 0
10 0 0 0 56 50 27 99 93 77 0 0 0

B3 1 0 0 0 2 2 1 25 25 25 0 0 0
5 0 0 0 69 84 54 144 172 137 0 0 0

10 0 0 0 12 10 6 99 95 84 0 0 0
B4 1 0 0 0 2 2 1 12 12 9 2 0 0

5 0 0 0 2 2 1 12 12 9 6 0 0
10 0 0 0 86 9 7 779 236 165 1 0 0

B5 1 0 0 0 2 2 1 15 15 13 2 0 0
5 0 0 0 2 2 1 15 15 13 5 0 0

10 0 0 0 45 28 17 291 233 208 0 0 0
B6 1 0 0 0 9 9 1 37 37 25 2 0 0

5 11 6 5 499 278 338 3270 1997 2590 21 2 0
10 7 4 4 451 274 261 2647 2156 2048 2 0 0

B7 1 0 0 0 2 2 1 13 13 13 0 0 0
5 0 0 0 10 10 10 93 82 87 0 0 0

10 0 0 0 109 111 98 151 159 150 0 0 0
B8 1 0 0 0 2 2 1 24 24 19 0 0 1

5 0 0 0 33 33 47 274 256 266 0 2 0
10 0 0 0 55 45 38 246 214 206 0 5 0

B9 1 0 0 0 2 2 1 41 41 38 0 0 0
5 1 1 1 57 55 59 390 372 391 0 0 0

10 7 7 7 318 348 347 729 825 900 0 0 0
B10 1 0 0 0 2 2 1 18 18 13 10 0 1

5 0 0 0 2 2 1 18 18 13 21 0 1
10 20 2 1 1128 189 97 5480 1550 963 3 0 0

B11 1 0 0 0 2 2 1 26 26 19 8 0 1
5 0 0 0 3 3 1 61 86 19 16 3 0

10 6 2 2 175 92 106 2926 1663 1828 5 9 0
B12 1 0 0 0 2 2 1 53 53 38 10 0 1

5 4 1 3 142 115 101 1214 1005 1162 0 0 0
10 31 17 17 833 580 579 4194 3490 3636 1 0 0

B13 1 0 0 0 2 2 1 16 16 17 0 0 0
5 1 1 1 127 161 148 544 533 478 1 0 0

10 8 2 2 565 187 190 726 414 423 1 3 0
B14 1 0 0 0 2 2 1 25 25 25 0 0 1

5 3 3 2 153 157 139 365 327 350 0 0 0
10 2 2 3 137 140 128 355 353 337 0 0 0

B15 1 0 0 0 2 2 1 51 51 50 0 0 1
5 0 0 0 19 32 19 347 374 328 0 0 0

10 4 4 3 113 84 87 570 531 510 0 0 0
B16 1 0 0 0 2 2 1 21 21 17 10 1 9

5 0 0 0 2 2 1 21 21 17 28 4 2
10 4 6 1 126 310 46 2392 3427 1407 16 3 4

B17 1 0 0 0 14 8 1 110 98 25 10 38 9
5 0 0 0 2 2 1 33 33 25 19 6 0

10 16 9 4 332 355 171 3115 2955 1560 0 0 0
B18 1 0 0 0 6 6 1 76 76 50 16 0 4

5 2 1 1 24 13 10 990 765 845 20 3 013
10 113 48 49 2008 979 942 6742 5411 4994 14 5 5

#-best 41 48 51 5 8 45 7 17 39
average 4.44 2.15 1.96 145 90 77 744 568 497

6.6. IN-DEPTH COMPARISON OF THREE SETTINGS 71

Table 6.14: Detailed computational results for three settings using formulation (DPFnt) for
instances based on Steinc graphs and H = 5. BP1 denotes a standard branch-and-price setting
consisting of NORMALPRICING, no heuristic and no stabilization. BP2 uses TABUPRICING,
no heuristic and the third strategy based on alternative dual-optimal solutions. BP3 consists of
TABUPRICING, heuristic SHORTEST and the first strategy based on alternative dual-optimal
solutions. Columns S1, S3 and S5 state the CPU-times reported by Costa et al. [17] for their
branch-and-cut approaches.

Instance CPU-time [s] Iterations Paths Costa

Graph b BP1 BP2 BP3 BP1 BP2 BP3 BP1 BP2 BP3 S1 S3 S5

C1-10 1 0 0 0 2 2 1 1 1 2 0 34 [inf]
10 0 0 0 2 2 1 1 1 2 0 186 [inf]
30 0 0 0 2 2 1 1 1 2 0 161 [inf]

C2-10 1 0 0 0 2 2 1 4 4 5 0 10 [inf]
10 0 0 0 2 2 1 4 4 5 0 308 [inf]
30 0 0 0 2 2 1 4 4 5 0 105 [inf]

C3-10 1 0 0 0 22 22 1 29 29 30 0 4 [inf]
10 0 0 0 2 2 1 29 29 30 0 66 [inf]
30 2 2 2 102 104 103 47 47 47 0 48 [inf]

C4-10 1 0 0 0 2 2 1 21 21 22 0 2 [inf]
10 0 0 0 2 2 1 21 21 22 0 12 [inf]
30 0 0 1 53 53 246 22 22 23 0 102 [inf]

C5-10 1 0 0 0 2 2 1 48 48 49 0 1 [inf]
10 0 0 0 2 2 1 48 48 49 0 14 [inf]
30 0 0 0 6 6 5 58 58 59 0 138 [inf]

C1-100 1 0 0 0 2 2 1 1 1 2 0 34 [inf]
10 0 0 0 2 2 1 1 1 2 0 536 [inf]
30 0 0 0 2 2 1 1 1 2 0 416 [inf]

C2-100 1 0 0 0 2 2 1 4 4 5 0 10 [inf]
10 0 0 0 2 2 1 4 4 5 0 202 [inf]
30 0 0 0 2 2 1 4 4 5 0 124 [inf]

C3-100 1 0 0 0 21 21 1 29 29 30 0 5 [inf]
10 0 0 0 2 2 1 29 29 30 0 33 [inf]
30 2 1 1 62 65 60 45 49 47 0 65 [inf]

C4-100 1 0 0 0 2 2 1 21 21 22 0 3 [inf]
10 0 0 0 2 2 1 21 21 22 0 30 [inf]
30 0 0 1 86 86 149 22 22 23 0 109 [inf]

C5-100 1 0 0 0 2 2 1 48 48 49 0 1 [inf]
10 0 0 0 2 2 1 48 48 49 0 24 [inf]
30 0 0 0 5 5 4 58 58 59 0 71 [inf]

#-best 29 30 28 3 2 27 30 29 1
average 0.13 0.10 0.17 13 13 19 22 22 23

We now turn our attention to the instances, which proved to be more difficult (when b 6= 1).
These are the instances based on Steinc graphs with H=15 and H=25. The results can be seen in
Tables 6.15 and 6.16. To be more precise, only graphs C3, C4 and C5 presented real challenges
to our approaches, while instances based on C1 and C2 are solved relatively fast, in particular,
when b 6= 30. Since both C1 and C2 have a small number of terminals in contrast to the three
other graphs, this leads to the conclusion, that our branch-and-price approach is competitive,
when the number of terminals is small. Observing that for instances with smaller hop limit,
the most difficult instances have a high number of terminals further strengthens this conclusion.
However, there are also two instances C3-100/b=30/H=15 and C3-100/b=30/H=25, which do

72 CHAPTER 6. COMPUTATIONAL RESULTS

not fit into this scheme and still are solved really fast by all three approaches.
For instances with H=15, BP2 and BP3 give half the average runtime than BP1, showing that

acceleration strategies pay off, when the hop limit gets larger. While for most of these instances
BP2 and BP3 perform equally good, there are notable exceptions like C4-10/b=30, C5-10/b=30
and C5-100/b=30, where the runtime of BP3 is approximately half the runtime of BP2. Thus,
for the instances with H=15 and b = 30 BP3 seems to be a little bit better than BP2.

When H=25, all three average runtimes are about five times as high as for H=15. Now BP3
has a clear better average runtime than BP2, for instance C5-10/b=10, using BP2 takes six times
as long as using BP3. BP2 is even worse than BP3 for this particular instance. Interestingly,
instance C5-100/b=30/H=25 is solvable within time limit using BP2 or BP3. This has not been
possible using only heuristics, stabilization techniques or pricing strategies on their own or even
a combination of SHORTEST with stabilization techniques or pricing strategies (see the previous
sections in this chapter). On the other hand, instance C3-100/b=10/H=25 is not solved within
time limit by all three of our approaches. However, also the two approaches by Costa et al.
based on Garcia-Gouveia hop constraints also do not manage to solve this instance. Although
the instances with H=25 are harder to solve in general, instances based on graph C4-100 are
a notable exception, especially for b = 10: For instance C4-100/b=10/H=15 all three settings
needed about 15 times as long as for C4-100/b=10/H=25.

Concerning the number of iterations and added paths, the picture already apparent for
smaller hop limits also holds for larger hop limits. Setting BP1 has both the highest average
number of iterations and added paths, especially for the instances with H=25. In contrast to the
instances with smaller hop limit, this higher average now has a clear impact on the runtime. This
effect is not unexpected, since the number of pricing iterations is proportional to the number of
LPs solved and the number of added paths is proportional to the size of the LPs.

It is interesting to notice, that the number of added paths grows faster as the number of
iterations when comparing the numbers for H=15 and H=25. The number of iterations not even
doubles for BP2 and BP3, but the number of added paths for instances with H=25 is almost
three times as high for for instances with H=15. This means, more paths per iteration are added
for H=25, which is not too surprising, since a higher hop limit also gives a higher number of
possible paths.

Thus, we conclude that when the underlying graphs and hop limits get larger, acceleration
techniques reduce the runtimes of our branch-and-price approach. Still, this acceleration is not
enough to make branch-and-price competitive with the branch-and-cut approaches presented by
Costa et al. for instances with large hop limit or a large number of terminals.

The observed different performance depending on the number of terminals and the hop limit
of our approaches based on formulation (DPFnt) can be explained theoretically as follows:
Essentially the approaches search hop-constrained paths to a subset of all terminals, in such a
way, that the sum of edge-costs in this paths is lower or equal to the budget and the revenue
of the terminals connected with this paths is maximized. Thus, when the number of terminals
is low, the number of different subsets of terminals is also low and the approaches are likely
to perform better. Likewise, when the hop limit gets larger, the set of possible paths also gets
bigger and thus our approaches have to try out more paths.

6.6. IN-DEPTH COMPARISON OF THREE SETTINGS 73

Table 6.15: Detailed computational results for three settings using formulation (DPFnt) for
instances based on Steinc graphs and H = 15. BP1 denotes a standard branch-and-price setting
consisting of NORMALPRICING, no heuristic and no stabilization. BP2 uses TABUPRICING,
no heuristic and the third strategy based on alternative dual-optimal solutions. BP3 consists of
TABUPRICING, heuristic SHORTEST and the first strategy based on alternative dual-optimal
solutions. Columns S1, S3 and S5 state the CPU-times reported by Costa et al. [17] for their
branch-and-cut approaches.

Instance CPU-time [s] Iterations Paths Costa

Graph b BP1 BP2 BP3 BP1 BP2 BP3 BP1 BP2 BP3 S1 S3 S5

C1-10 1 0 0 0 2 2 1 4 4 5 0 43 [inf]
10 0 0 0 2 2 1 4 4 5 0 70 [inf]
30 0 0 0 7 3 1 19 16 5 0 49 1

C2-10 1 0 0 0 2 2 1 10 10 10 2 520 [inf]
10 0 0 0 2 2 1 10 10 10 2 79 [inf]
30 7 10 8 119 122 113 924 734 634 58 2 7

C3-10 1 0 0 0 2 2 1 93 93 83 49 900 7105
10 226 142 135 490 462 400 5136 4710 4129 114 397 28
30 50 79 33 164 335 134 2781 3553 2084 1 35 0

C4-10 1 1 1 0 2 2 1 136 136 125 19 368 [inf]
10 222 144 199 423 325 432 4022 3308 3710 15 163 2740
30 256 209 145 535 587 403 4820 5117 3962 13 37 348

C5-10 1 11 11 1 2 2 1 289 289 250 45 871 [inf]
10 247 126 129 152 154 122 3539 3455 3082 5 251 1234
30 175 224 95 139 308 103 3685 4616 2918 8 82 93

C1-100 1 0 0 0 2 2 1 4 4 5 0 43 [inf]
10 0 0 0 2 2 1 4 4 5 0 347 [inf]
30 0 0 0 11 3 1 54 16 5 0 29 1

C2-100 1 0 0 0 2 2 1 10 10 10 2 521 [inf]
10 0 0 0 2 2 1 10 10 10 2 450 229
30 13 9 8 156 124 123 1050 727 672 224 11 3

C3-100 1 2 2 0 12 12 1 93 93 83 50 96 [inf]
10 1721 1227 1200 3234 2119 2147 14829 11758 12060 190 663 85
30 18 8 9 60 41 50 1885 1600 1687 1 35 0

C4-100 1 1 1 0 2 2 1 136 136 125 19 306 [inf]
10 2080 820 874 2354 1707 1662 12284 9287 8415 77 509 [inf]
30 437 256 325 864 660 782 6116 5404 5745 9 9 23

C5-100 1 6 6 1 2 2 1 289 289 250 7 129 1465
10 678 282 238 705 384 276 4760 4175 3938 8 82 93
30 1603 708 429 1298 747 555 8679 6729 5344 22 50 9

#-best 12 16 24 0 4 26 8 12 22
average 258.47 142.17 127.63 358 270 243 2522 2209 1978

74 CHAPTER 6. COMPUTATIONAL RESULTS

Table 6.16: Detailed computational results for three settings using formulation (DPFnt) for
instances based on Steinc graphs and H = 25. BP1 denotes a standard branch-and-price setting
consisting of NORMALPRICING, no heuristic and no stabilization. BP2 uses TABUPRICING,
no heuristic and the third strategy based on alternative dual-optimal solutions. BP3 consists of
TABUPRICING, heuristic SHORTEST and the first strategy based on alternative dual-optimal
solutions. Columns S1, S3 and S5 state the CPU-times reported by Costa et al. [17] for their
branch-and-cut approaches.

Instance CPU-time [s] Iterations Paths Costa

Graph b BP1 BP2 BP3 BP1 BP2 BP3 BP1 BP2 BP3 S1 S3 S5

C1-10 1 0 0 0 2 2 1 4 4 5 8 14 222
10 0 0 0 2 2 1 4 4 5 8 878 43
30 0 0 0 7 3 1 19 16 5 9 230 2

C2-10 1 0 0 0 2 2 1 10 10 10 5 2 7
10 0 0 0 2 2 1 10 10 10 5 57 7
30 47 7 28 503 159 377 6534 1531 2182 431 24 8

C3-10 1 0 0 0 2 2 1 93 93 83 223 257 2
10 2126 904 137 1863 947 658 25716 17830 8607 4293 3309 18
30 297 102 114 574 512 465 10920 9108 8606 153 44 0

C4-10 1 1 1 0 2 2 1 136 136 125 539 [inf] 112
10 267 50 62 440 224 200 5380 3925 4120 14 141 2
30 704 207 166 1015 423 404 11012 8316 8215 149 26 2

C5-10 1 14 9 1 2 2 1 289 289 250 1009 150 98
10 2862 3063 563 2269 2105 617 15463 25936 9395 139 550 21
30 1342 342 407 1407 429 349 13194 9445 7647 1568 18 13

C1-100 1 0 0 0 2 2 1 4 4 5 8 14 222
10 0 0 0 2 2 1 4 4 5 8 682 43
30 0 0 0 12 3 1 79 16 5 8 56 2

C2-100 1 0 0 0 2 2 1 10 10 10 5 2 7
10 0 0 0 2 2 1 10 10 10 5 183 7
30 17 8 24 204 171 266 3115 1512 1763 362 24 4

C3-100 1 2 2 0 12 12 1 93 93 83 184 120 2
10 10000 10000 10000 3832 3184 2569 36319 42205 39086 [inf] [inf] 36
30 28 17 10 99 64 47 3113 2728 2084 8 13 0

C4-100 1 1 1 0 2 2 1 136 136 125 542 [inf] 112
10 148 47 66 284 156 208 6037 3815 4163 30 70 0
30 632 211 214 1336 604 526 13228 10905 9615 115 57 8

C5-100 1 5 5 1 2 2 1 289 289 250 1308 150 98
10 3775 970 598 3676 793 614 20015 11519 10014 305 878 10
30 10000 2938 3430 10331 2957 2824 48469 32514 34563 89 29 7

#-best 12 20 22 0 3 27 9 13 20
average 1075.60 629.47 527.37 929 425 338 7323 6080 5034

CHAPTER 7
Conclusion and Outlook

In this thesis branch-and-price approaches based on several path-based ILP formulations for the
STPRBH were presented. Different methods to accelerate the approaches were tried: These
methods were heuristics to generate initial solutions, stabilization techniques for column gener-
ation and pricing strategies.

For the implemented heuristics to generate initial solutions, it turned out that using no heuris-
tic gives the best results compared to other heuristics. A heuristic, which for every terminal adds
the column corresponding to the hop-constrained cheapest path from the root to this terminal,
also performed quite well. However, the effectiveness of the heuristics heavily depends on the
instances, especially the hop limit.

Three different column generation stabilization methods based on alternative dual-optimal
solutions were tested, as well as two different stabilization methods using the method of Neame
and piecewise linear stabilization. Using any of the three stabilization methods based on alterna-
tive dual-optimal solutions resulted in a significantly lower runtime than using no stabilization.
The other techniques performed rather poor and yielded longer runtimes than using no stabi-
lization. With piecewise linear stabilization, most of the tested instances were not even solvable
within a time limit of 10000 CPU-seconds.

Regarding pricing strategies, the best strategy consisted of keeping an active list of terminals
and solving the pricing subproblem for terminals on this active list. Only if during a pricing
iteration no column with positive reduced costs were found for any terminal on this active list,
the pricing subproblem was also solved for the other terminals. For each tested instance, this
strategy outperformed the adaption of typical pricing strategy used in branch-and-price, which
solves the pricing subproblem for each terminal during every branch-and-price iteration.

Combinations of the above acceleration methods were also tested. For instances based on
large graphs and large hop limits, branch-and-price using a combination of acceleration methods
was roughly two times as fast as a standard branch-and-price approach.

For instances with small hop limits or a small number of terminals, the proposed branch-
and-price approaches are competitive most of the time with the state of the art exact-methods
[17] for solving the STPRBH. When the budget is big enough, that it is not restricting (i.e. when

75

76 CHAPTER 7. CONCLUSION AND OUTLOOK

the problem reduces to the STPRH), our best combination even outperforms these state of the
art techniques from [17].

It should be easy to modify the introduced branch-and-price formulation for use in problems
related to the STPRBH like the STPH or the PCSTP with added hop limit, a problem which
to the author’s knowledge, has not been described in the literature yet. Moreover, one can also
replace the hop limit with delay constraints.

We also want to further investigate the dual programs to see if we can extract more helpful
information for solving the primal and to see if we can find meaningful interpretations for some
other dual program than (DUAL)(DPF).

Another goal for future work is the implementation of some other stabilization methods like
weighted Dantzig-Wolfe decomposition [78] or interior-point stabilization [71] for this prob-
lem. The combination of alternative dual-optimal solutions with other stabilization methods
also presents an interesting challenge.

Bibliography

[1] T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Programming
Computation, 1(1):1–41, 2009.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, 1993.

[3] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.
Branch-and-price: Column generation for solving huge integer programs. Operations Re-
search, 46(3):316–329, 1998.

[4] J. Beasley. OR-library: Distributing test problems by electronic mail. The Journal of the
Operational Research Society, 41(11):1069–1072, 1990.

[5] H. Ben-Amor and J. Desrosiers. A proximal-trust region alogirthm for column generation
stabilization. Computers & Operations Research, 33:910–927, 2006.

[6] H. Ben-Amor, J. Desrosiers, and J. M. Valerio de Carvalho. Dual-optimal inequalites for
stabilized column generation. Operations Research, 54(3):454–463, 2006.

[7] H. Ben-Armor, J. Desrosiers, and A. Frangioni. On the choice of explicit stabilizing terms
in column generation. Discrete Applied Mathematic, 157(3):454–463, 2009.

[8] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson. A note on the prize
collecting traveling salesman problem. Mathematical Programming, 59(1):413–420, 1993.

[9] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and con-
ceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003.

[10] O. Chapovska and A. P. Punnen. Variations of the prize-collecting Steiner tree problem.
Networks, 47(4):199–205, 2006.

[11] S. Chopra and M. R. Rao. The Steiner tree problem I: Formulations, compositions and
extension of facets. Mathematical Programming, (64):209–229, 1994.

[12] S. Chopra and M. R. Rao. The Steiner tree problem II: Properties and classes of facets.
Mathematical Programming, (64):231–246, 1994.

[13] E. Coffman and J. Bruno. Computer and job-shop scheduling theory. Wiley, 1976.

77

78 BIBLIOGRAPHY

[14] A. Costa, J.-F. Cordeau, and G. F. Laporte. Steiner tree problems with profits. INFOR,
44:99–115, 2006.

[15] A. M. Costa. Models and algorithms for two network design problems. PhD thesis, Ecole
des Hautes Etudes Commerciales - Montreal, 2006.

[16] A. M. Costa, J.-F. Cordeau, and G. Laporte. Fast heuristics for the Steiner tree problem
with revenues, budget and hop constraints. European Journal of Operational Research,
190:68–78, 2008.

[17] A. M. Costa, J.-F. Cordeau, and G. Laporte. Models and branch-and-cut-algorithms for the
Steiner tree problem with revenues, budget and hop constraints. Networks, 53(2):141–159,
2009.

[18] G. Dahl, L. Gouveia, and C. Requejo. On formulations and methods for the hop-
constrained minimum spanning tree problem. Handbook of Optimization in Telecommuni-
cations, II:493–515, 2006.

[19] G. Dantzig. Programming of interdependent activities, II, mathematical model. Economet-
rics, 17(3,4):200–211, 1949.

[20] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman
problem. Journal of the Operations Research Society of America, 2(4):393–410, 1954.

[21] G. Dantzig and M. N. Thapa. Linear Programming - 1 : Introduction. Springer, 2003.

[22] G. Dantzig and M. N. Thapa. Linear Programming - 2 : Theory and Extensions. Springer,
2003.

[23] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations
Research, 8(1):101–111, 1960.

[24] J. Desrosiers and M. E. Luebbecke. A primer in column generation. In G. Desaulniers,
J. Desrosiers, and M. Solomon, editors, Column Generation, pages 1–32. Springer, 2005.

[25] M. Dorigo, G. D. Di Caro, and L. Gambardella. Ant colony optimization: A new meta-
heuristic. In P. J. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, and A. Zalzala,
editors, Proceedings of the Congress on Evolutionary Computation, volume 2, pages 1470–
1477, Mayflower Hotel, Washington D.C., USA, 1999. IEEE Press.

[26] O. Du Merle, D. Villeneuve, , D. J., and P. Hansen. A proximal trust region for column
generation stabilization. Discrete Mathematics, 194:229–237, 1999.

[27] C. W. Duin and A. Volgenant. Reduction tests for the Steiner problem in graphs. Networks,
19(5):549–567, 1989.

[28] I. Dumitrescu and N. Boland. Improved preprocessing, labeling and scaling algorithms for
the weight constrained shortest path problem. Networks, (42):135–153, 2004.

BIBLIOGRAPHY 79

[29] L. R. Ford and F. D. R. Flows in Networks. Princeton University Press, 1962.

[30] M. Garcia. Arvores com restricoes de diametro. Master’s thesis, University of Lisbon,
1994.

[31] M. R. Garey and D. S. Johnson. Computers and Intractability : A Guide to the Theory
of NP-Completeness. Series of Books in the Mathematical Sciences. W.H. Freeman &
Company, 1979.

[32] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock
problem. Operations Research, 9(6):849–859, 1961.

[33] F. W. Glover and G. A. Kochenberger. Handbook of Metaheuristics, volume 114 of Inter-
national Series in Operations Research & Management Science. Springer, 2003.

[34] M. X. Goemans and D. P. Williamson. A general approximation technique for constrained
forest problems. SIAM Journal on Computing, (24):296–317, 1995.

[35] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Professional, 1989.

[36] R. E. Gomory. Outline of an alogrithm for integer solutions to linear programs. Bulletin of
the American Mathematical Society, 64(5):275–278, 1958.

[37] L. Gouveia. Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning
tree problem with hop constraints. Computers & Operations Research, 22(9):959–970,
1995.

[38] L. Gouveia. Multicommdity flow models for spanning trees with hop constraints. European
Journal of Operational Research, 95(1):178–190, 1996.

[39] L. Gouveia. Using variable redefinition for computing lower bounds for minimum span-
ning and Steiner trees with hop constraints. INFORMS Journal on Computing, 10(2):180–
188, 1998.

[40] L. Gouveia. Using hop-indexed models for constrained spanning and Steiner tree models.
In B. Sanso and P. Soriano, editors, Telecommunications network planning, pages 21–32.
Kluwer, 1999.

[41] L. Gouveia, A. Paias, and D. Sharma. Modeling and solving the rooted distance-
constrained minimum spanning tree problem. Computers and Operations Research,
35:600–613, 2008.

[42] L. Gouveia and C. Requejo. A new Lagrangean relaxation approach for the hop-
constrained minimum spanning tree problem. European Journal of Operational Research,
132(3):539–552, 2001.

80 BIBLIOGRAPHY

[43] L. Gouveia, L. Simonetti, and E. Uchoa. Modelling the hop-constrained minimum span-
ning tree problem over a layered graph. In International Network Optimization Conference
(INOC) 2007, pages 1–6, Spa, Belgium.

[44] L. Gouveia, L. Simonetti, and E. Uchoa. Modeling hop-constrained and diameter-
constrained minimum spanning tree problems as Steiner tree problems over layered graphs.
Mathematical Programming, pages 1–26, 2010.

[45] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In G. De-
saulniers, J. Desrosiers, and M. Solomon, editors, Column Generation, pages 33–67.
Springer, 2005.

[46] D. Johnson, M. Minkoff, and S. Phillips. The prize collecting Steiner tree problem: Theory
and practice. In SODA 0́0 Proceedings of the eleventh annual ACM-SIAM symposium on
Discrete algorithms , pages 760–769, 2000.

[47] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
4:373–395, 1984.

[48] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[49] L. G. Khachian. A polynomial algorithm for linear programming. Dokolady Academica
Nauk USSR, 244:1093–1096, 1979.

[50] G. W. Klau, I. Ljubic, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, G. Raidl, and
R. Weiskircher. Combining a memetic algorithm with integer programming to solve
the prize-collecting Steiner tree problem. Springer Lecture Notes in Computer Science,
(3102):1304–1315, 2004.

[51] P. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted
Steiner trees. Journal of Algorithms, (19):104–115, 1995.

[52] T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks,
32:207–232, 1998.

[53] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1,2):83–97, 1955.

[54] A. H. Land and A. G. Doig. An automatic method for solving discrete programming
problems. Econometrica, 28:497–520, 1960.

[55] M. Leitner and G. R. Raidl. Strong lower bounds for a survivable network design problem.
Electronic Notes in Discrete Mathematics, 36:295–306, 2010.

[56] M. Leitner, G. R. Raidl, and U. Pferschy. Accelerating column generation for a surviv-
able network design problem. In Proceedings of the International Network Optimization
Conference 2009, Pisa, Italy, 2009.

BIBLIOGRAPHY 81

[57] M. Leitner, M. Ruthmair, and G. R. Raidl. Stabilized branch-and-price for the rooted
delay-constrained Steiner tree problem. In J. Pahl, T. Reiners, and S. Voß, editors, Network
Optimization: 5th International Conference, INOC 2011, volume 6701 of LNCS, pages
124–138, Hamburg, Germany, 2011. Springer.

[58] M. Leitner, M. Ruthmair, and G. R. Raidl. Stabilized column generation for the rooted
delay-constrained Steiner tree problem. In Proceedings of the VII ALIO/EURO – Workshop
on Applied Combinatorial Optimization, pages 250–253, Porto, Portugal, 2011.

[59] I. Ljubic, R. Weiskircher, U. Pferschey, P. Mutzel, G. W. Klau, and M. Fischetti. An
algorithmic framework for the exact solution of the prize-collecting Steiner tree problem.
Mathematical Programming, 105(2-3):427–449, 2006.

[60] A. Lucena and M. G. C. Resende. Strong lower bounds for the prize collecting Steiner
problem in graphs. Discrete Applied Mathematics, 141:227–294, 2004.

[61] M. E. Luebbecke and J. Desrosiers. Selected topics in column generation. Operations
Research, 53(6):1007–1023, 2005.

[62] T. L. Magnanti and W. L. Optimal trees. Handbooks in Operations Research and Mange-
ment Science, 7:530–615, 1995.

[63] R. E. Marsten, W. W. Hogan, and J. Blankenship. The BOXSTEP method for large-scale
optimization. Operations Research, 23(3):389–405, 1975.

[64] N. Mladenovic and P. Hansen. Variable neighborhood search. Computers & Operations
Research, 24:1097–1100, 1997.

[65] P. J. Neame. Nonsmooth dual methods in integer programming. PhD thesis, University of
Melbourne, 1999.

[66] M. Padberg and G. Rinaldi. Optimization of a 532-city symmetric traveling salesman
problem by branch and cut. Operations Research Letters, 6:1–7, 1987.

[67] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale
symmetric traveling salesman problems. SIAM Review, 33(1):60–100, 1991.

[68] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization : Algorithms and Com-
plexity. Dover Publications, 1998.

[69] L. L. Pinto and G. Laporte. An efficient algorithm for the Steiner tree problem with rev-
enue, bottleneck and hop objective function. European Journal of Operational Research,
207:45–49, 2010.

[70] T. Polzin and S. V. Daneshmand. A comparison of Steiner tree relaxations. Discrete
Applied Mathematics, (112):241–261, 2001.

[71] L. M. Rousseau, M. Gendreau, and D. Feillet. Interior point stabilization for column gen-
eration. Operations Research Letters, 35:660–668, 2007.

82 BIBLIOGRAPHY

[72] A. Segev. The node-weighted Steiner tree problem. Networks, 27:169–190, 1987.

[73] E. Uchoa. Reduction tests for the prize-collecting Steiner problem. Operations Research
Letters, 34(4):437–444, 2006.

[74] L. Vandenberghe and S. Boyd. Convex Optimization. Cambridge University Press, 2004.

[75] F. Vanderbeck. Implementing mixed integer column generation. In G. Desaulniers,
J. Desrosiers, and M. Solomon, editors, Column Generation, pages 331–358. Springer,
2005.

[76] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[77] S. Voß. The Steiner tree problem with hop constraints. Annals of Operations Research,
86:321–345, 1999.

[78] P. Wengtes. Weighted Dantzig-Wolfe decomposition for mixed-integer programming. In-
ternational Transactions in Operational Research, 4(2):151–162, 1997.

[79] L. A. Wolsey. Integer Programming. Wiley, 1998.

