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Abstract. We consider the two-echelon location-routing problem (2E-
LRP), a well-known problem in freight distribution arising when estab-
lishing a two-level transport system with limited capacities. The problem
is a generalization of the NP-hard location routing problem (LRP), in-
volving strategic (location), tactical (allocation) and operational (rout-
ing) decisions at the same time. We present a variable neighborhood
search (VNS) based on a previous successful VNS for the LRP, accord-
ingly adapted as well as extended. The proposed algorithm provides so-
lutions of high quality in short time, making use of seven different basic
neighborhood structures parameterized with different perturbation size
leading to a total of 21 specific neighborhood structures. For intensi-
fication, two consecutive local search methods are applied, optimizing
the transport costs efficiently by considering only recently changed solu-
tion parts. Experimental results clearly show that our method is at least
competitive regarding runtime and solution quality to other leading ap-
proaches, also improving upon several best known solutions.

1 Introduction

We focus on a problem in the field of freight transportation, the Two-Echelon
Location Routing Problem (2E-LRP)[1]. This problem is a generalization of the
classical Location Routing Problem (LRP), dealing with a two-level distribution
system to deliver goods from suppliers to customers as this is beneficial (and
sometimes even mandatory) for many real world applications. Basically, the
2E-LRP includes components of classical NP-hard problems like the Facility
Location Problem (FLP) and the Vehicle Routing Problem (VRP), in combina-
tion with the requirements of an additional echelon. The 2E-LRP arises when
selecting locations for two types of facilities (platforms and satellites) through
which goods may be transported to final customers. This includes placing two
types of facilities at given locations, assigning customers to satellites, satellites
to platforms, and to serve these bipartite supply chain by two fleets of vehicles.
Additionally, the vehicles as well as the facilities may impose capacity constraints
representing e.g. load limits. Possible extensions of the problem may deal with



2 Martin Schwengerer, Sandro Pirkwieser, and Günther R. Raidl

direct routes from the platform to customers, either by a first-level vehicle or by
locating vehicles of the second-level fleet at the platforms. In contrast to the FLP,
where simple out-and-back routes are used, the 2E-LRP generally allows multi-
ple stops per route. Similar to the LRP, efficiently solving the 2E-LRP usually
requires strategic (platform and satellite location), tactical (allocation) as well
as operational (routing) planning decisions at the same time. Considering these
aspects in a subsequent way might seem beneficial in terms of complexity but
unfortunately tends to result in suboptimal solutions compared to all-embracing,
nested approaches [2].

From now on, we will refer to the echelon platform/satellite part of the prob-
lem as first level and to the satellite/customer part as second level, respectively.

The 2E-LRP can be defined on a complete, undirected, weighted graph G =
(V,E), with V = VC ∪ VS ∪ VP being the set of nodes consisting of n customers
VC = {0, . . . , n−1}, m potential satellites VS = {n, . . . , n+m−1} and o poten-
tial platforms VP = {n+m, . . . , n+m+ o− 1}, and E = {{i, j} | i, j ∈ VC , i 6=
j}∪{{i, j} | i ∈ VC , j ∈ VS}∪{{i, j} | i ∈ VS , j ∈ VP } being the set of edges. For
any pair of nodes i, j ∈ V cij ≥ 0 represents the given travel cost. Each facility
i ∈ VD ∪ VP has an associated maximal capacity Wi and opening costs Oi. Fur-
thermore, two homogeneous fleets F1 and F2 of K1 (K2) vehicles, each having ca-
pacity Q1 > 0 (Q2 > 0), are available at the platforms (satellites). The fixed cost
of using a single vehicle of F1 (F2) is given by f1 > 0 (f2 > 0), and each vehicle is
limited to perform one single route. Further, each customer j ∈ VC has defined a
demand dj > 0 which has to be satisfied. Additionally, we assume that the total
capacity of the satellites as well as of the platforms can satisfy the whole demand.

The 2E-LRP then deals with finding a setting of platforms and satellites to
be opened as well as determining efficient vehicle routes from the platform to
the satellites and from satellites to customers on G such that:

– Each route starts and ends at the same opened facility,
– each customer j is visited exactly once by a vehicle of F2, satisfying its

demand dj ,
– each satellite is visited exactly once by a vehicle of F1, satisfying its demand
dsatellite which is the sum of the demands of the assigned customers,

– the total number of vehicle routes of the first (second) level N1 (N2) is less
than or equal to K1 (K2),

– the total load of each route transported by a vehicle of the first (second)
fleet does not exceed the vehicle capacity limit Q1 (Q2),

– for each opened platform or satellite i the total load of each route assigned
to it does not exceed the facility capacity limit Wi,

– and the total costs of opening platforms and satellites, fixed costs for used
vehicles, and corresponding travel costs are minimized.

In this work we adapt and extend a a successful Variable Neighborhood
Search (VNS) for the LRP [3] in order to account for the additional echelon
in the 2E-LRP by modifying existing neighborhood structures, introducing new
ones, adapting the local search procedures, and applying some additional im-
provements.



A VNS Approach for the 2E-LRP 3

The remainder is organized as follows. Related work is presented in the next
section, the VNS is the topic of Section 3 and experimental results are given in
Section 4. Section 5 finishes the work with concluding remarks.

2 Related Work

The 2E-LRP is a special case of the Multi-Echelon Location-Routing Problem
(MELRP) having only one level of satellites between platforms and customers.
In [4] Gonzalez-Feliu defines a unified notation and a general model for the
MELRP and gives a literature review on diverse variants, including the 2E-LRP.
A literature research on the 2E-LRP itself only reveals a rather sparse number of
publications, most of them appeared in recent years although the problem itself
was already described in the 80s by Jacobsen and Madsen [1] in the context of
newspaper delivery. Boccia et al. [5] introduce three mixed integer programming
models for the 2E-LRP and present corresponding results. The same authors
further proposed a tabu search using an iterative-nested approach, splitting the
problem in two LRPs and solving them in a bottom-up manner [6]. A different
heuristic has been proposed by Nguyen et al. [7], considering a slightly modified
version of the problem using only a single platform. Their approach is based on a
Greedy Randomized Adaptive Search (GRASP) using four different construction
heuristics, a learning process and path relinking. In [8] the same authors suggest
a multi-start iterated local search with a tabu list and path relinking, which,
according to their evaluations, clearly outperforms the former approach. Among
these algorithms, one of the currently most effective method has been proposed
by Contardo et al. in [9]. It is an Adaptive Large Neighborhood Search (ALNS)
applying eight destroy and four repair operations and an embedded local search.
An interesting aspect is that none of these present-day heuristics is a population-
based approach. To the best of our knowledge, only the contribution by Jin et
al. [10] is based on evolutionary principles using a hybrid genetic algorithm with
a tabu search, which, however, tackles a two-layer LRP having infinite platform
capacities. Unfortunately the authors did not provide results on available or
common instances making a meaningful comparison difficult.

As the 2E-LRP consists of locating and routing components, it is closely
related to various other problems in freight distribution. For example, the Two-
Echelon Vehicle Routing Problem (2E-VRP), which deals with a two-level rout-
ing of vehicles, can be seen as a special case of the 2E-LRP, containing no opening
costs, always opened satellites and no facility capacities. For the 2E-VRP, Crainic
et al. [11] proposed a multi-start heuristic by separately solving the platform-to-
satellite and satellite-to-customer subproblems. A different approach by Hem-
melmayr et al. uses an ALNS [12] with destroy and repair components and
embedded local search methods. Another related problem is the Two-Echelon
Single-sourced Capacitated Facility Location Problem, considering two-level fa-
cility location and allocation similar to the 2E-LRP, for which Tragantalerngsak
et al. proposed six heuristics based on Lagrangian relaxation [13]. A further re-
lated problem is the Two-Echelon Uncapacitated Facility Location Problem, in
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which satellites and customers can be supplied by multiple sources. Gao and
Robinson [14] introduce a dual-based branch and bound algorithm for it. For
more details about two-echelon freight transport optimization we refer to [15].

Finally, we remark that the classical LRP can be considered a special case of
the 2E-LRP in which the first level is removed, e.g. by using only one platform
and zero transport costs to the satellites; two recents works are reported in [3,
16]. In fact, the current work is methodically based on the former approach [3],
also a VNS, sharing some features with it. Therefore we omit to give details here
but refer to the next section.

3 Variable Neighborhood Search for the 2E-LRP

Variable Neighborhood Search [17] is a well-known metaheuristic exploiting a
set of (not necessary disjunct) neighborhood structures. Essentially, it applies
random steps in neighborhoods of growing size as diversification mechanism,
called shaking, each followed by an application of an embedded local search for
intensification.

As many other problems in the field of freight distribution, the 2E-LRP is par-
ticularly challenging due to some strict constraints resulting in a rugged search
space and limiting the amount of possible (legal) solutions for many neighbor-
hoods. Hence to smooth the search space, our VNS relaxes the vehicle load as
well as the facility load restrictions by allowing infeasible solutions in combi-
nation with penalties for excesses of these constraints. As the same (constant)
weightings might be inefficient for the whole search process, we use an adaptive
penalty function which gradually adjusts both values. Depending on whether
the search is in a feasible or infeasible region regarding a constraint, it decreases
or increases the corresponding penalty, respectively. We observed that useful
weights and initial values often depend on the problem instance. After some ex-
periments, we decided to use the average traveling costs cavg of the second fleet
as initial value with cavg/5 (cavg · 5) as lower (upper) bound for the penalty.

Initially, our VNS creates a set of candidate solutions by the following con-
struction heuristic, finally picking the best one for further improvement.

1. Sum up the customer demands to get a lower bound for the accumulated
facility capacities of each echelon WLB =

∑
j∈VC

dj .

2. Select satellites to be opened at random one by one until their combined
capacity is greater than or equal to WLB.

3. Select platforms to be opened at random one by one until their combined
capacity is greater than or equal to WLB (as the satellite demand never
exceeds the customer demand).

4. Assign each customer to be visited by a vehicle of its nearest opened satellite,
thereby considering the penalties for satellite load violations.

5. Apply the well-known Clarke and Wright savings algorithm [18] until no
more routes can be feasibly merged due to the vehicle load restriction.
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6. If we end up with more than K2 second-level routes, least customer routes
are selected and customers contained therein are re-added in a greedy way,
allowing (penalized) excess of vehicle load.

7. Assign each opened satellite with at least one route to be visited by a first-
level vehicle of its nearest opened platform, considering penalties for platform
load violations.

8. Apply step 5 in an analogous way on the first-level routes.
9. Similar to the second-level fleet, in case of ending up with more than K1

first-level routes, least satellite routes are selected and satellites contained
therein are re-added in a greedy way.

The reader may notice that our initialization method is rather simple in con-
trast to others like those suggested in [8, 7]. However, a better initial solution
does not necessarily lead to a better final result, in fact it might even be coun-
terproductive for the subsequent heuristic search. For example also [9], one of
the so far leading approaches, uses a comparable initialization procedure, and
similar observations hold for problems like the LRP [3].

For shaking we define seven different types of neighborhood structures via
possible moves on a current solution. These are used with several perturba-
tion sizes, denoted by δ, providing a total of 21 shaking neighborhoods (i.e.
kmax = 21). Note however, that not all of them are always useful. Some of
our benchmark instances deal with a single, fixed platform, which renders some
neighborhoods rather useless. Our implementation detects such cases automat-
ically and skips the corresponding neighborhoods. In the following these seven
basic neighborhood structures are described.

Exchange-segments: Exchange two random segments of variable length
between two routes at the same facility (platform or satellite). This includes
also a customer (or satellite) relocation, as one of the segments might be empty.
The facility is selected at random with a probability directly (i.e. in a one to
one fashion) according to the number of supplied customers or satellites. Since
satellites usually serve more customers than platforms serve satellites, the former
are selected more often, leading to the desired focus on second-level routes.

Exchange-segments-two-facilities: Exchange two random segments of
variable length where both segments are located at two distinct facilities in the
same echelon. The selection criterion for the first facility, and hence the type of
echelon, is as for exchange-segments, whereas the second facility of the same type
is then determined using equal probabilities. In case of only one opened plat-
form, always two satellites are selected (if possible) and if only a single satellite
is opened, exchange-segments is applied. This neighborhood structure facilitates
the (re-)assignment of customers (satellites) to the opened satellites (platforms).

Change-two-satellites: Opens a currently closed satellite and closes an
opened satellite, ensuring that the actual lower bound regarding the satellite ca-
pacity WLB is still satisfied. After opening the selected new satellite a relocation
procedure is applied which tries to relocate routes in a cost saving manner by
removing the old satellite of a route, connecting the first and last customer and
placing the new satellite at minimum cost between two consecutive customers. In
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case no route is relocated, a more investigative method is used, trying to reduce
costs by relocating single customers. Afterwards the routes of the satellite to be
closed are relocated to an opened satellite one by one in the least expensive way,
taking potential penalties into account. After such a neighborhood move the
number of opened/closed satellites stays the same. In case all available satellites
are already opened, the following change-satellite is applied instead.

Change-satellite: This neighborhood deals with opening/closing a single
satellite. A satellite is selected at random for changing its status (opened to
closed or vice versa), thereby taking care of maintaining the required lower bound
regarding the satellite capacity WLB. As for change-two-satellites, it is tried to
relocate customers to a newly opened satellite and shift routes from a closed
satellite. This neighborhood move allows to alter the number of opened/closed
satellites.

Change-two-platforms: Similar to change-two-satellites, in this move a
closed platform is opened and subsequently a different opened platform is closed,
ensuring that the actual lower bound regarding the platform capacity WLB is
still satisfied. Again, after opening a platform it is tried to minimize total costs
by rerouting complete routes to it. In a subsequent step, the routes of the closed
platform are relocated to open platforms one by one in a greedy way, allowing
but penalizing excesses of platform capacities. After such a move, the number
of opened/closed platforms stays the same. In case all available platforms are
already opened, the following change-platform is applied instead.

Change-platform: The platform-specific counterpart of change-satellite se-
lects a platform at random and changes its status from opened to closed or vice
versa. In case of opening, existing first-level routes are relocated to the newly
opened platform in a cost-saving manner while in case of closing, the assigned
routes are relocated to other opened platforms. Also here it is ensured that
the sum of platform capacities is equal to or greater than WLB by restricting
the search space to valid moves, which also may result in infeasible neighboring
solutions.

In this work we consider a fixed shaking neighborhood order, detailed in
Table 1. A greater focus is laid on exchanging segments and selecting optimal
satellites, as these two parts play a major role for obtaining good solutions, while
rather drastic changes involving whole platforms occur less often.

For intensification, each newly derived solution is subject to the well-known
3-opt intra-route exchange method, considering only recently changed routes.
As a second method, we propose a 2-opt∗ [19] inter-route exchange local search,
which tests for each pair of routes if exchanging their end segments would lead to
a better solution. Both methods are applied in a best improvement manner until
a local optimum is encountered. Since 2-opt∗ is considerably more demanding
than 3-opt it is primarily applied on new incumbent solutions, but additionally
with a probability of 0.2 on newly derived solutions lying within 3% to the
current incumbent.

Although this basic VNS already performs relatively well, it seems that be-
sides always accepting better solutions as usual, also considering solutions having
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Table 1. Order and parametrization of the shaking neighborhoods as used by the VNS.

k Nk

1–5 Exchange-segments of maximal length δ = k
6 Exchange-segments of maximal lengths bounded by correspond-

ing route size
7–11 Exchange-segments-two-facilities of maximal length δ = k − 6

12 Exchange-segments-two-facilities of maximal lengths bounded
by corresponding route size

13–15 Change-two-satellites is applied up to δ = k − 12 times
16–18 Change-satellite is applied up to δ = k − 15 times
19–20 Change-two-platforms is applied up to δ = k − 18 times

21 Change-platform is applied once

worse costs sometimes can boost efficiency. This is done in a systematic way us-
ing the Metropolis criterion as was previously done in [20, 3], originating from
simulated annealing [21]. Similar to the penalty weights we use an instance spe-
cific value for the initial temperature T0 = cavg/10 and apply a linear cooling
scheme, decreasing the value after every 100 iterations by T0 · 100/i, with i it-
erations in total as a limit. In addition, we further enhance this method with a
reheating procedure which resets the temperature to its initial value in case no
improvements occurred over a longer period, taking i/8 iterations for it.

4 Experimental Results

Our algorithm has been implemented in C++, compiled with GCC 4.6 and
performed on a single core of an Intel Xenon E5540 with 2.53 GHz. For the
evaluation we took three benchmark data sets already used in previous work,
comprising 147 instances in total. Two sets were proposed by Nguyen [8] and are
provided by Prodhon [22]: the first set Prodhon is an extension of 30 instances
originally created for the LRP by adding a single platform at coordinates (0, 0).
The instances are named n-m-#clusters[b][BIS], containing 20 to 200 customers
n, either 5 or 10 satellites m, up to three customer clusters, and having different
vehicle capacities (‘b’ denotes high) as well as separated clusters (denoted by
‘BIS’). The second set Nguyen, with a naming schema n-m-{N,NM}), consists
of 24 instances having also only one platform, between 25 and 200 customers and
5 or 10 satellites; ‘N’ denotes a normal distribution while ‘NM’ a multi-normal
distribution. Finally, the third set Sterle was generated according to [6] and
provided by Sterle [23]. It consists of three (sub-)sets of instances, called I1, I2
and I3, containing different distributions of the satellites. These instances have
multiple platforms with restricted capacities and contain 8 to 200 customers, 3
to 20 satellites and 2 to 5 platforms; they are denoted as I[1|2|3] -o-m-n.

Our VNS is run for i = 5 · 106 iterations for sets Prodhon and Nguyen, and
for i = 7.5 · 106 iterations for set Sterle; the difference is due to obtaining com-
parable runtimes to previous methods to perform a fairer comparison. Initially
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we create 10 candidate solutions and pick the best one as start solution of the
VNS. Penalty weights are adapted by multiplying or dividing them by 1.000005
depending on whether or not the solution at hand is feasible with respect to the
corresponding constraint, respectively. This factor might seem quite small, but
we opted for a smooth adaptation, which was also confirmed to work well by
preliminary test results.

The results for the different instance sets are shown in Tables 2–4. To obtain
meaningful results we performed the VNS 20 times per instance. Column BKS
states so far best known solution values from [9, 8], For our VNS we list minimal
costs (best of 20 runs), and following average values over 20 runs: costs, cor-
responding coefficients of variation (i.e. standard deviations divided by average
values) in percent (CV [%]), average CPU-times in seconds (t [s]) and average
times for obtaining the best solutions in the corresponding runs (tmin [s]). Due
to limited space we, on the one hand, give in these tables also the costs of the
overall best solutions we obtained, i.e. also including further, differently param-
eterized test runs, and, on the other hand, state for Sterle’s instances in Table 4
only those having ≥ 50 customers or where a new BKS could be obtained; full
details are provided via an online supplementary 3. Results printed bold improve
upon the BKS. Furthermore, best, minimum and average costs are also expressed
as percentage gaps w.r.t. BKS.

The results indicate that the VNS performs very well in general, reaching on
small instances almost every time the optimal or best known solution (for a list
of proven optimal solutions, we refer to [9]). In detail, our approach was able
to reach the BKS in all 71 instances with less than 50 customers at least once
and could even improve two of them. On the 76 larger instances with n ≥ 50
customers, the VNS was able to find 35 of the previous BKS and even 30 new,
improved solutions. Concerning the average results of our 20 runs per instance,
the solution quality is only 0.45% worse than the previously known BKS with an
average coefficient of variation of 0.40%. Since larger instances are harder to solve
and contain more local optima in general, it is not surprising that solution values
vary in these cases to a larger extent. However, it can be observed that the run-
time of the VNS increases only moderately with increasing instance size, making
the approach attractive for solving larger instances in relatively short time.

Table 5 displays a comparison of the VNS with other state-of-the-art ap-
proaches from literature: GRASP+PR [7], MS-ILS+PR [8], and ALNS [9]. As
common reference, we now use the currently best known solutions, i.e. including
those found by our method. Comparisons among runtimes must be done with
care, especially Nguyen et al. used a notably slower machine (Intel Pentium 4
with 3.4 GHz), whereas those utilized by Contardo et al. is slightly faster than
ours (Intel Xeon E5472 with 3.0 GHz). Note that for GRASP+PR and MS-
ILS+PR, the authors present only the best solutions, and results on Sterle’s set
are limited to instances having at least 50 customers (marked by an asterisk in
the table). It is clearly shown that the VNS outperforms both, GRASP+PR and
MS-ILS+PR, although the comparisons concerning only best solutions should

3 see at http://www.ads.tuwien.ac.at/w/Research/2E-LRP
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Table 2. Results of the VNS on Prodhon’s instances.

Instance BKS
best of 20 runs average over 20 runs overall best
costs %-gap costs CV [%] %-gap t [s] tmin [s] costs %-gap

20-5-1 89075 89075 0.00 89075.00 0.00 0.00 63.46 1.54 89075 0.00
20-5-1b 61863 61863 0.00 61863.00 0.00 0.00 82.84 0.27 61863 0.00
20-5-2 84478 84478 0.00 84489.50 0.06 0.01 62.22 11.33 84478 0.00
20-5-2b 60838 60838 0.00 61033.80 0.68 0.32 125.43 0.00 60838 0.00
50-5-1 130843 130843 0.00 130859.30 0.04 0.01 80.10 15.85 130843 0.00
50-5-1b 101530 101530 0.00 101548.80 0.06 0.02 127.87 34.87 101530 0.00
50-5-2 131825 131825 0.00 131825.00 0.00 0.00 96.71 11.28 131825 0.00
50-5-2b 110332 110332 0.00 110332.00 0.00 0.00 198.21 11.95 110332 0.00
50-5-2BIS 122599 122599 0.00 122599.00 0.00 0.00 111.58 90.66 122599 0.00
50-5-2bBIS 105696 105696 0.00 105935.50 0.14 0.23 197.73 155.29 105696 0.00
50-5-3 128379 128379 0.00 128436.00 0.10 0.04 79.75 9.03 128379 0.00
50-5-3b 104006 104006 0.00 104006.00 0.00 0.00 131.25 6.34 104006 0.00
100-5-1 319137 318225 -0.29 318667.10 0.10 -0.15 225.73 153.13 318134 -0.31
100-5-1b 257349 256991 -0.14 257436.35 0.11 0.03 301.11 219.65 256878 -0.18
100-5-2 231305 231305 0.00 231340.00 0.02 0.02 203.70 131.04 231305 0.00
100-5-2b 194729 194763 0.02 194812.70 0.02 0.04 240.39 202.27 194729 0.00
100-5-3 244194 244470 0.11 245334.90 0.12 0.47 174.10 123.70 244071 -0.05
100-5-3b 194110 195381 0.65 195586.20 0.11 0.76 180.41 111.35 195381 0.65
100-10-1 358068 352694 -1.50 357381.40 1.02 -0.19 233.37 166.94 351243 -1.91
100-10-1b 297167 298186 0.34 300239.15 0.43 1.03 299.03 194.47 297907 0.25
100-10-2 305402 304507 -0.29 304931.20 0.11 -0.15 247.66 193.78 304438 -0.32
100-10-2b 264389 264092 -0.11 264592.00 0.12 0.08 307.05 207.54 263873 -0.20
100-10-3 313249 311447 -0.58 312701.25 0.21 -0.17 226.64 141.31 310312 -0.94
100-10-3b 264096 260516 -1.36 261577.90 0.22 -0.95 302.85 217.89 260328 -1.43
200-10-1 552816 548730 -0.74 552488.90 0.45 -0.06 1009.49 748.05 548703 -0.74
200-10-1b 448236 445791 -0.55 448095.45 0.43 -0.03 634.59 575.87 445301 -0.65
200-10-2 498199 497451 -0.15 513673.40 3.34 3.11 1158.23 832.45 497451 -0.15
200-10-2b 423048 422668 -0.09 432487.00 2.12 2.23 730.12 695.92 422668 -0.09
200-10-3 533732 527162 -1.23 529578.00 0.30 -0.78 970.42 903.46 527162 -1.23
200-10-3b 404284 402117 -0.54 404431.25 0.30 0.04 591.90 556.91 401672 -0.65

Average -0.21 0.35 0.20 313.13 224.14 -0.26

be done with care. Compared to ALNS our VNS seems to be at least competitive
with only marginal differences between the best and average values. Especially
on Prodhon’s instances the VNS provides better results on average while on the
other instance sets ALNS achieves slightly better results. Also the last line of Ta-
ble 5, stating how often the (new) BKS could be obtained by the corresponding
method, emphasizes the good performance of the VNS.

5 Conclusions

In this work, we extended and adapted a previous variable neighborhood search
(VNS) initially proposed for the location-routing problem to tackle the two-
echelon location-routing problem (2E-LRP) with capacitated vehicles and facil-
ities. Two new types of neighborhood structures were introduced dealing with
the additional echelon by opening and closing platforms including vehicle route
relocations. Existing neighborhood structures were modified by also considering
first-level routes from platforms to satellites. For smoothing the search space,
violations of capacity constraints are allowed but penalized in the objective
function; corresponding penalty weights are automatically adapted. The VNS
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Table 3. Results of the VNS on Nguyen’s instances.

Instance BKS
best of 20 runs average over 20 runs overall best
costs %-gap costs CV [%] %-gap t [s] tmin [s] costs %-gap

25-5N 80370 80370 0.00 80370.00 0.00 0.00 75.60 2.61 80370 0.00
25-5Nb 64562 64562 0.00 64562.00 0.00 0.00 90.51 0.10 64562 0.00
25-5MN 78947 78947 0.00 78947.00 0.00 0.00 61.15 0.96 78947 0.00
25-5MNb 64438 64438 0.00 64438.00 0.00 0.00 88.52 0.04 64438 0.00
50-5N 137815 137815 0.00 137815.00 0.00 0.00 116.30 35.07 137815 0.00
50-5Nb 110094 110094 0.00 110204.40 0.21 0.10 131.91 51.24 110094 0.00
50-5MN 123484 123484 0.00 123484.00 0.00 0.00 124.94 40.64 123484 0.00
50-5MNb 105401 105401 0.00 105687.00 0.38 0.27 201.51 47.57 105401 0.00
50-10N 115725 115725 0.00 115725.00 0.00 0.00 143.31 23.65 115725 0.00
50-10Nb 87315 87315 0.00 87345.40 0.10 0.03 175.86 66.35 87315 0.00
50-10MN 135519 135519 0.00 135519.00 0.00 0.00 144.06 10.33 135519 0.00
50-10MNb 110613 110613 0.00 110613.00 0.00 0.00 217.73 13.24 110613 0.00
100-5N 193228 193228 0.00 200685.05 3.18 3.86 168.12 101.32 193228 0.00
100-5Nb 158927 164156 3.29 164508.10 0.17 3.51 257.59 144.08 159429 0.32
100-5MN 204682 204682 0.00 206567.40 1.09 0.92 183.99 158.99 204682 0.00
100-5MNb 165744 165744 0.00 166357.35 0.25 0.37 314.87 246.88 165744 0.00
100-10N 212847 212729 -0.06 214585.60 0.62 0.82 222.99 167.17 209952 -1.36
100-10Nb 155489 155489 0.00 155790.60 0.17 0.19 352.13 251.36 155489 0.00
100-10MN 201275 201275 0.00 203798.05 0.88 1.25 229.30 162.90 201275 0.00
100-10MNb 170625 170625 0.00 170791.25 0.16 0.10 347.26 282.88 170625 0.00
200-10N 347395 346181 -0.35 349584.15 0.74 0.63 640.67 525.01 345267 -0.61
200-10Nb 256171 256759 0.23 264228.90 1.66 3.15 906.96 790.98 256759 0.23
200-10MN 326454 325747 -0.22 332207.50 1.04 1.76 453.32 440.96 323801 -0.81
200-10MNb 289742 289239 -0.17 292036.65 0.89 0.79 944.14 842.69 287802 -0.67

Average 0.11 0.48 0.74 274.70 183.63 -0.12

sometimes also accepts worse solutions in a simulated annealing fashion, apply-
ing reheating if no improvement occurs over some time. Thorough experimental
results on available benchmark sets reveal the very promising performance of our
method, achieving results that are at least competitive to leading approaches for
this problem, both in terms of solution quality and required runtime. Moreover,
we were able to improve upon 32 of 147 (21.8%) of the best known solutions.

It might be promising to augment the presented method with further local
search heuristics or even suitably combine it with exact, possibly mixed integer
programming based approaches in order to achieve further improvements.
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