
D I P L O M A R B E I T

Perfect Pseudo Matchings on
Snarks

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Mathematik

eingereicht von

Benjamin Schwendinger, BSc

Matrikelnummer: 01225371

ausgeführt am Institut für Logic and Computation
der Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Mitwirkung: Projektass. Dipl.-Ing. Benedikt Klocker

Wien, am 09.04.2019

Benjamin Schwendinger Günther Raidl

Kurzfassung

Das Problem des Cycle Double Cover (CDC) wird nun seit über 45 Jahren von
Graphentheoretikern betrachtet. Obwohl dieses Problem für viele Familien von Graphen
bereits gelöst werden konnte, bleibt es für den allgemeinen Fall weiterhin ungelöst ([31]).
Die Aufgabenstellung ist simpel: Gegeben sei ein brückenloser Graph G. Gibt es eine Fam-
ilie von Zyklen, bestehend aus Kanten von G, sodass jede Kante von G von dieser Familie
genau doppelt überdeckt wird?
In dieser Diplomarbeit versuchen wir einen neuen, bisher nicht untersuchten Lösungsansatz
für das CDC zu entwickeln. Dabei greifen wir auf das exakte Verfahren der ganzzahligen
linearen Programmierung zurück. Wir beginnen zuerst mit dem Begriff des Pseudo Match-
ings. Dieses stellt eine Generaliserung des graphentheoretischen Matchings dar. Analog
zu gewöhnlichen Matchings definieren wir weiters den Begriff des perfect pseudo match-
ing (PPM). In weiterer Folge betrachten wir den Kontraktionsgaphen, der durch die Kon-
traktion eines Graphen mit einem zugehörigen PPM entsteht. Sollte der Kontraktionsgraph
planar bzw. zumindest ohne K5 Minor sein, so beweisen wir fußfassend auf der Vorarbeit
von Fan und Zhang ([11]), dass der ursprüngliche Graph dann ein CDC besitzen muss.
Für planare Graphen wurde dies bereits durch Fleischner bewiesen ([13]). Nachdem Jaeger
([21]) bewies, dass ein Gegenbeispiel mit minimaler Kantenanzahl für das CDC ein Snark
(ein zyklisch 4-Kanten zusammenhängender, brückenloser kubischer Graph mit chroma-
tischem Index 4) sein muss, betrachten wir in Folge Snarks bis zu einer Ordnung von 52
Knoten. Dabei können wir einerseits das CDC für Graphen bis zu einer Knotenanzahl von
26 verifizieren, anderseits werden auch die Limitationen unseres neuen Ansatzes aufgezeigt.
So finden wir Snarks mit 26 (bzw. 28) Knoten, die kein planares (bzw. K5 Minor freies)
PPM besitzen und für welche sich somit mittels unseres entwickelten Ansatzes keine Aus-
sage treffen lässt, ob sie ein CDC besitzen. Um die Effizienz unseres entwickelten Ansatzes
und des dahinter liegenden Algorithmus aufzuzeigen, werden zuletzt auch weitere zufällige
kubische Graphen bis zu einem Knotengrad von 100 betrachtet.

III

Abstract

The graph theoretic problem of the Cycle Double Cover (CDC) has been around for
over 45 years. It still remains to be an open problem, although specilizations for many
families of graphs have been proven in this time period ([31]). The question is easy to
state: Given a bridgeless graph G, does a collection of cycles of G exist, such that every
edge of G appears in exactly two of these cycles?

In this thesis we try to develop a new approach for the CDC, which has not been in-
vestigated so far. There we will make use of integer linear programming as exact solution
method. First, we start with the definition of a pseudo matching which is a generalization
of the graph theoretic matching. Analogous to matchings we further define the term of
a perfect pseudo matching (PPM). We continue with the examination of the contraction
graph, which arises through the contraction of a graph and an according PPM of this
graph. If the contraction graph is planar (or at least has no K5 minor) then we will prove,
based on the work of Fan and Zhang ([11]), that the original graph has to have a CDC.
Fleischner proved this for planar graphs ([13]). Since Jaeger proved in ([21]) that a coun-
terexample with a minimum number of edges to the CDC has to be a snark (a cyclically
4-edge connected, bridgeless, cubic graph with edge chromatic number 4), we will further
examine snarks up to an order of 52 vertices. There we can verify the CDC for graphs up
to a size of 26 vertices, but our experiments also show the limitations of our new developed
approach. So we will find snarks with 26 (resp. 28) vertices for which no planarizing (resp.
K5 minor free) PPM exists and therefore our approach cannot decide, whether there exists
a CDC for them or not. Last but not least to demonstrate the efficient running time of our
approach we will test it with cubic random graphs with up to 100 vertices.

V

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 09.04.2019

Benjamin Schwendinger

Contents

1 Introduction 1
1.1 Aim of the Thesis . 2
1.2 Contribution . 2
1.3 Structure of the Work . 2

2 Related Work 3
2.1 Graph Theory . 3

2.1.1 Planarity Testing . 3
2.1.2 K5 Minor Testing . 3
2.1.3 The Cycle Double Cover Conjecture 3
2.1.4 Compatible Cycle Decomposition . 4
2.1.5 Snarks . 4

3 Preliminaries 5
3.1 Graph Theory . 5
3.2 Planarity . 12
3.3 K5 Minor Testing . 17
3.4 Integer Linear Programming . 21

3.4.1 Linear Programming . 21
3.4.2 Basic Definitions . 22
3.4.3 Solving Methods . 23
3.4.4 Examples . 25

4 Perfect Pseudo Matchings 29
4.1 Motivation . 29
4.2 Connection to the CDC . 31

5 Algorithmic Approach 37
5.1 Enumeration . 37

5.1.1 Symmetry Free Enumeration . 37
5.2 Integer Linear Programming . 39

5.2.1 Naive IP . 39
5.2.2 Pursuit of Smart Cuts . 41
5.2.3 Separation Process . 45

6 Computational Results 47
6.1 Test Instances . 47

6.1.1 Snarks . 47
6.1.2 Non Snarks . 47

IX

Contents

6.2 Observational Results . 47
6.2.1 Planarizing Perfect Pseudo Matchings 47
6.2.2 K5 Minor Free Perfect Pseudo Matchings 48

6.3 Benchmark Results . 49
6.4 Used Packages, Libraries . 57

6.4.1 House of Graphs . 57
6.4.2 Graph6 . 57
6.4.3 NetworkX . 62

7 Conclusion 63
7.1 Summary . 63
7.2 Further Work . 64

List of Figures 67

List of Tables 69

List of Algorithms 71

Acronyms 73

Bibliography 75

X

1 Introduction

The graph theoretic problem of the Cycle Double Cover (CDC) has been around for
over 45 years. The question is easy to state: Given a bridgeless graph G, does a collection
of cycles of G exists, such that every edge of G appears in exactly two of these cycles? The
CDC has already been proven for many different classes of graphs ([31]). Moreover, it also
has been established that a minimum counterexample to the CDC has to be a snark and
therefore this class of graphs represents the bottleneck of the CDC conjecture ([21] or see
also Theorem 4.1.7).

We elaborate a new approach to the CDC by using the definition of the perfect pseudo
matching (PPM), which is a generalization of a matching. See Figure 1.1 for a represen-
tation of the problem reductions we want to use. In Theorem 4.2.3 we will show that if
the contraction graph G/M of a cubic graph G and a PPM M of G, has a compatible
cycle decomposition (CCD) that this implies the existence of a CDC for the original graph
G. Hence instead of searching for a CDC in the original graph G, we just have to find a
CCD for a much smaller minor of G. We further define the terms of planarizing perfect
pseudo matchings (PPPMs) (resp. K5-minor free perfect pseudo matchings (K5PPMs)).
Now instead of trying to find a CCD explicitly we base our approach on the work of Fan
and Zhang. With Theorem 4.2.2 they showed in ([11]) that for a K5-minor free graph G,
the transitioned graph (G,T) has a compatible cycle decomposition for every admissible
transition system T of G. Hence we can reduce our problem further to the search of a
K5PPM on the much smaller graph G/M instead of searching for a CDC on the original
graph G. Therefore, if we can prove the existence of K5PPMs for snarks up to a certain
size, we can also validate the CDC for the same class of graphs.

K5PPM

PPPM CCD CDC
Theorem 4.2.2 Theorem 4.2.3

Figure 1.1: Reduction chain of our approach

Since we want to solve the problem of finding a PPPM exactly, we want to develop algo-
rithms which use exact solution methods. Hence we will develop an enumeration approach
as well as an integer linear programming approach to compare their strengths resp. weak-
nesses.

1

1 Introduction

1.1 Aim of the Thesis

This thesis aims to develop a new approach for finding CDCs for snarks. Hereby, the focus
does not lie on improving the bounds for a minimum counterexample as in [4] or [19], but
on the approach and its practicability itself. Moreover should the new found process outrun
an enumeration approach so that its usage is preferable for bigger instances.

1.2 Contribution

This thesis contributes to the research and understanding of PPMs, which are a generaliza-
tion of matchings. Furthermore a connection between PPMs and the CDC is established.
Hereby, Theorem 4.2.3 creates the basis for our new approach for solving the CDC. We
elaborate this approach further to achieve appropriate running times for bigger instances.

1.3 Structure of the Work

We present a short overview over the individual chapters and the content of this thesis:

In Chapter 1 we give a short introduction of the CDC which is the underlying problem of
this thesis and also introduce the aims of this thesis. Moreover, we give a brief scheme of
the problem reductions we want to use.

In Chapter 2 we will discuss the work related to our problem.

In Chapter 3 we introduce the basic definitions and concepts which later will be needed.
This covers basic introductions to the topics of graph theory, in particular planarity and
K5 minor testing, as well as integer linear programming.

In Chapter 4 we give a motivation for our solving approach. Here we justify why we
concentrate on snarks for a potential solution to the CDC. Moreover we establish our rela-
tion between CCD and CDC via PPPMs resp. K5PPMs. This builds the graph theoretic
basis for the following development of a solving algorithm.

In Chapter 5 we develop different algorithmic approaches. Here an enumeration approach
as well as an integer linear programming approach is developed.

In Chapter 6 we give an overview over our test instances. Furthermore we examine the
computational results of the previously developed approaches.

In Chapter 7 we draw conclusions and outline further possible work.

2

2 Related Work

In this chapter we will discuss problems which are related to our problem of finding a
PPPM (resp. a K5PPM) for a given graph. We will mainly focus on work related to the
core elements of our approach.

2.1 Graph Theory

2.1.1 Planarity Testing

The graph theoretic problem of planarity testing is the problem of determining whether a
given graph is planar or not. This is a well studied problem in computer sciences and several
algorithms solving this problem in linear time (linear in the number of edges), have already
been found. The first linear time algorithm for solving this problem is due to Hopcroft
and Tarjan ([18]) and was published in 1974. In ([8]) a characterization of planar graphs
based on Trémaux trees is presented. This leads to a rather simple linear time algorithm
for planarity testing.

2.1.2 K5 Minor Testing

The graph theoretic problem of K5-minor testing is the problem of determining whether
a given graph contains a K5-minor or not. This can be seen as a generalization of the
planarity testing problem since due to Kuratowski’s theorem, every planar graph is also
K5-minor free but not vice versa. In ([22]) a quadratic (quadratic in the number of edges)
algorithm for testing whether a given graph is K5-minor free is presented. Moreover it is
shown how to extend this algorithm in such a way that it does not only report whether a
graph contains a K5-minor but if so, also returns a model of the found minor. In ([29]) a
linear time (linear in the number of edges plus the number of vertices) for the K5-minor
testing problem is announced.

2.1.3 The Cycle Double Cover Conjecture

The CDC conjecture is an unsolved graph theoretic problem. It asserts that in each bridge-
less graph G, a collection of cycles of G exist, such that every edge of G appears in two
of these cycles? According to ([31]) it is unclear who stated the CDC first. In ([21]) it
is shown that a minimum counterexample to the CDC has to be a snark. Since then the
bounds for a minimum counterexample have been tightened. In ([19]) it is shown that a
minimum counterexample to the CDC has to be a snark with girth at least 12.

3

2 Related Work

2.1.4 Compatible Cycle Decomposition

In ([11]) Fan and Zhang proved that for a K5-minor free graph G, the transitioned graph
(G, T) has a CCD for every admissible transition system T of G. Fleischner proved this for
planar graphs already in 1980 ([13]). In ([15]) this result is generalized for eulerian graphs
which do not contain a special type of K5-minor.

2.1.5 Snarks

A snark is a cyclically 4-edge connected, bridgeless, cubic graph with edge chromatic num-
ber 4. The study of snarks already began in the 19th century when Tait showed in ([30])
that the four colour theorem is equivalent to the statement that no snark is planar. A
planar snark is called a boojum and the existence of such would therefore refute the four
colour theorem. The term snark itself goes back to Lewis Carroll ([5]). According to ([17])
this is because at the first appearance of snarks they seemed to be “very rare and unusual
creatures”. The first found snark is the Petersen graph which is widely used in graph theory
as example and counterexample for various graph properties ([17]). Since then some infinite
families of snarks have been found. In ([20]) methods for creating the two infinite families
of Flower and Blanuša–Descartes–Szekeres snarks are presented. In ([4]) an algorithm for
the generation of all non-isomorphic snarks of a given order, is presented. There they also
generated all non-isomorphic snarks up to an order of 36. Moreover it is shown that there
does not exist a counterexample to the CDC of order n ≤ 36.

4

3 Preliminaries

Most parts of this thesis are based on graph theory, in particular planarity and minor
containment of graphs, and integer linear programming. We begin with basic introductions
to all of these topics. The advanced reader however might skip this chapter. Most of the
definitions, notations, lemmas and theorems established in this chapter can be found in
introductional books regarding these topics. We can particularly suggest the following:
for the graph theory part ([9]), for the planarity part ([28]) and for the integer linear
programming part ([7]).

3.1 Graph Theory

Most of the following notations and definitions are based on Diestel ([9]), but can also be
found in most introduction books for graph theory.

A directed graph is a pair G = (V,E) from a finite set V and a set E of ordered pairs
(a, b) with a, b ∈ V (see Figure 3.1). We call the elements of V vertices (or sometimes
nodes) and the elements of E edges.

In the case of an edge e = (a, b) with a = b we call e a loop (see Figure 3.3). If two
or more edges connect the same two vertices, we call them multiple edges (see Figure
3.2). Instead of e = (a, b) we sometimes write just e = ab, where a is the start vertex and
b is the end vertex of e. If the elements of E are not ordered, but only unordered pairs, we
call G an undirected graph.

Figure 3.1: Directed graph
Figure 3.2: Undirected

graph with
multiple edges

Figure 3.3: Undirected
graph with a
loop

The graph G = (V,E), where V is the empty set, is called the null graph. Since we don’t
want to consider this graph, we set up the precondition that V is non-empty from now on.

A graph is simple, if it doesn’t contain loops or multiple edges. For the rest of this

5

3 Preliminaries

thesis, we will only consider undirected simple graphs. Therefore whenever we talk about
a graph, we always imply these conditions, unless other stated.

Two vertices a, b ∈ V of a graph G = (V,E) are adjacent, if (a, b) is an edge of E.
If a and b are adjacent we also call them neighbors and we denote the set of neighbors
for a certain vertex v in a certain graph G by NG(v).
Moreover, for an edge e = (a, b) of a graph we say that e is incident to a respectively b.
If two edges e, f are incident to the same vertex, then we also say that they are adjacent.
This will not lead to confusions since we only defined adjacency for vertices so far. Fur-
thermore, if all the vertices of G are pairwise adjacent, then G is called complete. The
complete graph on n vertices is denoted by Kn (see Figure 3.4).

Figure 3.4: Complete graphs K1 to K5

Let r ≥ 2 be an integer. A graph G = (V,E) is r-partite, if V admits a partition into r
classes such that the start vertex and the end vertex of each edge are in different classes.
Vertices in the same partition class must not be adjacent.

Instead of 2-partite, we usually say bipartite. An r-partite graph in which every two
vertices from different partition classes are pairwise adjacent is also called complete (see
Figure 3.5).

6

3.1 Graph Theory

Figure 3.5: Complete bipartite graph with 6 vertices, K3,3

The number of incident edges to a certain vertex v is called the degree of v and is denoted
by d(v). Furthermore, we denote the minimum degree of G by δ(G) := min{d(v)|v ∈ V }. If
all the vertices of a graph G have the same degree k, then G is called k-regular. Moreover
a 3-regular graph is called cubic (see Figure 3.6).

Figure 3.6: Cubic graph with 6 nodes

Lemma 3.1.1 (Handshaking lemma ([9])). Let G = (V,E) be a graph. Then∑
v∈V

d(v) = 2|E|.

Proof: Since each edge is incident to two vertices, it counts as 2 in the sum of the degrees.
Hence, if we do this for all edges we see that the sum of the degree has to be 2 times the
number of edges.

From the handshaking lemma it follows directly that in a graph, the number of vertices
with odd degree is even. This can be compared to the number of people in party, who have
shaken an odd number of other people’s hand, has to be even, hence the name handshaking
lemma.

7

3 Preliminaries

Let G = (V,E) and G′ = (V ′, E′) be graphs. If V ′ ⊆ V and E′ ⊆ E, then G′ is a subgraph
of G (and G a supergraph of G′), denoted as G′ ⊆ G. We call G′ a spanning subgraph of
G, if V = V ′. If G′ contains all the edges of G that connect two vertices in V ′, then G′ is
said to be induced by V ′, which we denote by G[V ′] = G′.

Let G be a graph and let G′ = G[C] be the graph induced by C. If G′ is a complete graph,
then we call C a clique in G.

Now we can also represent the deletion of vertices and edges (see Figure 3.7). Let
G = (V,E) be a graph. For the deletion of a set of vertices W ⊆ V from G, the graph we
obtain is G′ = G[V \W], which we denote by G′ = G −W . If W only consists of a single
vertex v, we will also use G−v instead of G−W . For the deletion of an edge set F from G,
the graph we obtain is G′ = (V,E\F), which we denote by G′ = G− F . If E only consists
of a single edge e, we will also use G− e instead of G− F .

0

1

2 3

4

→
1

2 3

4

Figure 3.7: Deletion of the vertex 0

Edges can not only be deleted, but can also be contracted. Let G = (V,E) be a graph
and e = (a, b) be an edge of G. Hereby, a new vertex v is inserted into G and new edges
are inserted such that v is adjacent to all neighbors of a and b. Afterwards the vertices a
and b are deleted from the graph. We denote the contraction of the edge e in G by G/e
(see Figure 3.8). A claw is basically one vertex v with 3 edges to 3 different vertices. We

a b → v

Figure 3.8: Edge contraction of the edge (a, b)

define the claw contraction of v as the consecutive edge contraction of all edges which are

8

3.1 Graph Theory

incident to v. We also call v the center of the claw and denote the graph obtained by the
contraction of v in G by G/v. We can generalize this even a step further. Let G = (V,E) be
a graph and let G′ = (V ′, E′) be a subgraph of G. Then we call the successively contraction
of all e of E′ in G a graph contraction. We denote this by G/G′.

Let G be a graph. The operation of deleting an edge (a, b) and instead inserting a new
vertex v together with the edges (a, v) and (v, b) is called a subdivision on the edge
(a, b). Moreover the graph H which results after a series of subdivisions on various edges
of G is called a subdivision of G. We will further define graph minors.
A graph G contains a graph H as a minor if H can be obtained from G by the deletion of
vertices and edges and by the contraction of edges.

Lemma 3.1.2. Let G and H be graphs. If G is a subdivision of H, then H is a minor of
G.

Proof: Let G and H be a graphs and let G be a subdivision of H. By the definition of
a subdivision we know that we can obtain G by a series of subdivisions of edges on H.
Therefore if we go the reverse way and start with G, but now contract in each step one
of the two edges, which were created by the subdivision process, we see that H can be
obtained by a series of edge contractions on G.

Furthermore, we say that two graphs G and H are homeomorphic if one subdivision of
G is isomorphic to a subdivision of H.

A path is a non-empty graph P = (V,E) of the form

V = {x0, x1, ..., xk} E = {x0x1, x1x2, ..., xk−1xk}

where the xi are all distinct.

A graph G is called connected, if there is a path between any two vertices of G. A graph
G = (V,E) with |V | > k is said to be k−vertex connected if G − X is connected for
every set X ⊆ V with |X| < k. In a similar manner a graph G = (V,E) with |E| > k is said
to be k−edge connected, if G−X is connected for every set X ⊆ E with |X| < k. The
vertex- respectively edge-connectivity is hereby the largest k for which G is still k−vertex
respectively k−edge connected. To get back to our definition of connected graphs via paths
we can equivalently say that a graph is k−vertex connected if any two of its vertices are
joined by k disjoint paths. That these definitions are indeed equivalent can be seen from
the following theorem that was first proven by Menger ([26]).

Theorem 3.1.3 (Menger 1927 [9]).
Let G = (V,E) be a graph and A,B ⊆ V . Then the minimum number of vertices separating
A from B in G is equal to the maximum number of disjoint A−B paths in G.

A cycle is a connected 2 − regular graph (see Figure 3.9). The cycle graph on n nodes
is denoted by Cn. Moreover the cycle on 3,4,5 nodes is called a triangle, quadrilateral,

9

3 Preliminaries

pentagon.

Figure 3.9: Cycle graphs C3 to C6

A graph which does not contain any cycles is called a forest. Moreover, we call a connected
forest a tree.

A maximal connected subgraph of a graph G is a called a component of G.

Let G be a graph. We say that G is cyclically k−edge-connected, if at least k edges
have to be removed from G to disconnect it into multiple components for which at least
two contain cycles.

A cut-vertex of a graph G is a vertex whose deletion increases the number of components
of G (see Figure 3.10). We can further extend this concept for edges. A bridge (or cut-
edge) is an edge whose deletion increases the number of components of G (see Figure 3.11).
Equivalently, a bridge is an edge that is not contained in any cycle of G. To make it even
more general, we call a vertex set W ⊆ V a vertex cut, if G −W has more components
than G. In a similar manner we call an edge set F ⊆ E an edge cut, if G − F has more
components than G. A cut with a set of cardinality n is called a n-cut (see Figure 3.12).
Moreover we call a n-cut of G which divides G into m or more components a (n,m)-cut.

v

Figure 3.10: Graph with
cut-vertex v

a b

Figure 3.11: Graph with
bridge (a, b)

a

c d

b

Figure 3.12: Graph
with 2-cut
[(a, b), (c, d)]

A proper edge coloring of a graph G = (V,E) is an assignment of colors to the elements of

10

3.1 Graph Theory

E such that no two adjacent edges have the same color. If the number of needed colors for
such a coloring is minimal then it is a minimum edge coloring. The edge chromatic
number (or chromatic index) of a graph G is hereby the minimum number of colors needed
for an minimum edge coloring.

The wheel graph Wn is constructed by adding a single vertex to the cycle graph Cn−1
and connecting all vertices of Cn−1 to the newly added vertex.

If we look at the wheel graph Wn, we can see that its edge chromatic number is n− 1. The
bottleneck here is clearly the vertex in the middle of the graph (see Figure 3.13). Since
this vertex has degree n− 1, we need at least n− 1 colors for a proper edge coloring. The
edges of the outer cycle can be colored in such a way that we color each edge with the same
color as the edge from the opposite vertex to the middle and therefore n− 1 colors are also
sufficient for a proper edge coloring.

Figure 3.13: Minimum edge coloring of wheel graph W6

The girth of a graph is the length of its shortest cycle.

Now we gathered all the needed definitions to define what a snark is.

A snark is a cyclically 4-edge connected, bridgeless, cubic graph with edge chromatic
number 4. (see Figure 3.14)

Sometimes there is also the additional requirement that a snark has at least girth 5. When-
ever we are not fulfilling this requirement, we will from now on call it a weak snark.

Furthermore we have to establish what we mean by the term matching. A set of vertices
or edges is independent (or stable), if no two of its elements are adjacent. A set M of
independent edges in a graph G = (V,E) is called a matching. This is equivalent to that
a matching M is a subgraph of a graph G and each connected component of M is a K2.
We say a matching M in a graph G = (V,E) is maximal, if there is no other independent
edge in E.

11

3 Preliminaries

Figure 3.14: Petersen graph, which is the smallest snark.

Moreover we say a matching M in a graph G = (V,E) is perfect, if M contains all vertices
of G.

Consider the complete bipartite graph K1,3. This graph is also called ”claw”. (see Figure
3.15)

Figure 3.15: K1,3, also known as claw.

The following definition is probably the most important and one of the main topics of this
thesis.

Let M be a subgraph of a graph G. We say that M is a pseudo matching of G if
each connected component of M is either a K2 or a K1,3. (see Figure 3.16)

Furthermore we say a pseudo matching M = {C1, C2, ..., Cm} in a graph G = (V,E) is
perfect, if each vertex of V is in exactly one component of M .

3.2 Planarity

A planar graph is a graph which can be drawn onto the plane without any edges crossing
each other. Such a drawing of a graph is called a planar embedding. Therefore if we
can find such a drawing we know that the graph has to be planar. However, if we find a
non planar drawing that does not mean the graph is not planar as Figure 3.17 shows below.

12

3.2 Planarity

Figure 3.16: A perfect pseudo matching (PPM) for the petersen graph.

Figure 3.17: Two different embeddings of K4

The edges of a planar graph divide the plane into regions, which are called faces.

We begin now with some observations to see how planarity is preserved under several
operations.

Lemma 3.2.1. Let G be a planar graph. Then every subgraph of G is also planar.

Proof: Let H be subgraph of G. Since we know that G is planar, we also know that G
has a planar embedding P . From P we can now remove all vertices resp. all edges which
are not part of H. This results into a plane embedding of H and hence H also has to be
planar.

13

3 Preliminaries

Lemma 3.2.2. Let G be a planar graph. Then G/e is also planar for every edge e of G.

Proof: We look again at the planar embedding P of G. If we contract now the edge
e = (a, b) in P then P is still a plane embedding and hence G/e is planar.

The last two lemmas can be subsumed to the following corollary.

Corollary 3.2.3. Let G be a planar graph. Then every minor of G is also planar.

Theorem 3.2.4 (Euler’s formula).
Let G be a connected planar graph with n vertices, m edges and f faces. Then

n−m+ f = 2

Proof: We apply induction on m.

The formula is trivially true for the base cases of m = 0 or m = 1.

Assume that the formula is true for all connected plane graphs having fewer than m edges
with m ≥ 2.

Case 1: Let m ≤ n− 1. Since G is a connected planar graph, G is a tree and m = n− 1.
Therefore G has to have a vertex v with degree one. The connected plane graph G− v has
n− 1 vertices, m− 1 edges and f faces, and therefore, by the induction hypothesis it holds
that (n− 1)− (m− 1) + f = 2. Therefore, it follows that n−m+ f = 2.

Case 2: Let m ≥ n. Again since G is a connected planar graph, G cannot be a tree
and therefore has to have a cycle. Let e be an edge on this cycle. The connected plane
graph G−e has n vertices, m−1 edges and f−1 face, and again by the induction hypothesis
it holds that n− (m− 1) + (f − 1) = 2. Therefore, Euler’s formula holds.

In a similar manner as for vertices, we define the degree of a face. The number of edges on
the boundary of a face f , where bridges are being counted twice, is called degree of f and
denoted by d(f).

Lemma 3.2.5 (Handshaking lemma for faces). Let G be a planar graph with m edges.
Then ∑

f∈F
d(f) = 2m.

Proof: The proof works similar as the proof for 3.1.1. Since each edge is incident to two
faces (or are bridges), it counts as 2 in the sum of the degrees. Hence, if we do this for all
edges, we see that the sum of the degree has to be 2 times the number of edges.

Corollary 3.2.6. Let G be a connected planar graph with n ≥ 3 vertices and m edges.
Then

m ≤ 3n− 6

14

3.2 Planarity

Proof: From 3.2.5 we know that 2m =
∑

f∈F d(v) holds.
Moreover n ≥ 3 and therefore it holds that d(f) ≥ 3 for all f in F . Hence, we get the
inequality chain

2m =
∑
f∈F

d(f) ≥
∑
f∈F

3 = 3f

Thus f ≤ 2
3m. If we use this together with Euler’s formula (3.2.4), we get that

n−m+
2

3
m ≥ 2

which can finally be rewritten into the claimed

m ≤ 3n− 6.

Corollary 3.2.7. Let G be a connected planar bipartite graph with n ≥ 3 vertices and m
edges. Then

m ≤ 2n− 4

Proof: We can use similar idea as previously in Corollary (3.2.8). Since our graph now
is bipartite, we know that it doesn’t contain any triangles (in fact it doesn’t contain any
cycles of odd length). Therefore, we know that d(f) ≥ 4 for all f in F . Thus,

2m =
∑
f∈F

d(v) ≥
∑
f∈F

4 = 4f

which is equal to

f ≤ 2

4
m.

Together with Euler’s formula (3.2.4), we get that

n−m+
2

4
m ≥ 2

which can finally be rewritten into the claimed

m ≤ 2n− 4.

Corollary 3.2.8. The complete graph K5 is not planar.

Proof: Assume that K5 is planar. From Corollary 3.2.6 we know that a planar graph with
n ≥ 3 vertices and m edges must satisfy m ≤ 3n − 6 and with K5 we would therefore get
10 ≤ 9. Hence K5 cannot be planar.

15

3 Preliminaries

Corollary 3.2.9. The complete graph K3,3 is not planar.

Proof: Assume that K3,3 is planar. From Corollary 3.2.7 we know that for a planar
bipartite graph with n ≥ 3 vertices and m edges it must hold that m ≤ 2n − 4 and with
K3,3 we would therefore get 9 ≤ 8. Hence K3,3 cannot be planar.

The last two corollaries showed us that it is not that hard to find some non planar graphs,
but we would actually be more interested in finding a criteria to test for planarity and not
only to test for non-planarity.

Corollary 3.2.10. Let G be a connected planar graph. Then G contains a vertex of degree
of at most 5.

Proof: Suppose that G = (V,E), with |E| = m, does not contain such a vertex. Therefore,
d(v) ≥ 6 for all v ∈ V . Hence, from this and 3.1.1 we know that

2m =
∑
v∈V

d(v) ≥ 6n

holds. Thus we get that m ≥ 3n which is in direct contradiction to 3.2.8 and therefore G
has to contain at least one vertex with a degree less than 6.

We already saw from the Corollaries 3.2.8 and 3.2.9 that K5 and K3,3 are not planar.
Therefore we know that every planar graph does not contain a subdivision of K5 or K3,3.
What is quite surprising is that the opposite also holds which is stated by the following
theorem.

Theorem 3.2.11 (Kuratowski’s theorem).
A graph is planar if and only if it does not contain a subdivision of K5 or K3,3.

A proof of Kuratowski’s theorem can be found in [9].

Let G be a graph and let H be a subgraph of G. If H is subdivision of K5 or K3,3,
then we call H a Kuratowski subgraph of G.

Theorem 3.2.12 (Wagner’s theorem).
A graph is planar if and only if it contains neither K5 nor K3,3 as minor.

Proof: Suppose that G is a non-planar graph. Then by Theorem 3.2.11 it contains at least
a subdivision of K5 or K3,3. This subdivision can be contracted into K5 resp. K3,3. Hence
G also contains at least one of them as minor.
Suppose G is a planar graph. Therefore by Corollary 3.2.3 we know that all its minors are
also planar. Hence G can not contain K5 nor K3,3 as minor.

Let G = (V,E) be a graph and let M = {C1, ..., Cn} be a PPM of G. We call the graph
which results after we carry out all the contractions of M on G the contraction graph

16

3.3 K5 Minor Testing

G/M .

Let M = {C1, ..., Cn} be a PPM of the graph G. We say that M is planarizing with
respect to G if the contraction graph GM (G) is planar. If the contraction graph does not
contain a minor of K5, we say that M is a K5 minor free PPM with respect to G.

3.3 K5 Minor Testing

H-Minor Containment is an important problem in many graph theoretic algorithms.
The problem can be stated as follows: Given two graphs G,H determine if H is a minor
of G. Although this problem sounds quite simple, it is actually quite hard because of the
high number of different minors a graph contains. Note that if H is not fixed, the problem
if G contains H as a minor is also NP-complete ([25]). Fast algorithms for this problem
have been developed for graphs with special properties, like for planar graphs or graphs of
bounded branchwidth ([1]).

The following lemmas and their proofs are based on [22]. There Kézdy and McGuiness
developed an O(n2) algorithm which determines if a given input graph has a K5 minor. In
this part we will take a closer look at this algorithm which still depends on a fast algorithm
for planarity testing like [2] (edge addition method), [18] (path addition method) or [8]
(Left-Right Planarity Test). It should also be noted that Reed and Li already proposed
a linear K5-minor testing algorithm ([29]). However the implementation of this would go
beyond the scope of this diploma thesis, why we settled with a quadratic algorithm.

Let G be a graph containing a H−minor with H = (V,E). Each vertex v of H is now
associated with a set of vertices of G, called the branch set of v. The branch set of v
consists hereby of all vertices of G that have been contracted to form the vertex v. For
describing a minor it is sufficient to define the branch set of each vertex v ∈ V . We call
such a presentation a model of the minor H in G.

Let G be a non-planar graph and let K be a Kuratowski subgraph of G. Then we call
all vertices of K, which have a degree of at least 3 the branch vertices of K. The other
nodes of K will be called path vertices, since they will lie on paths between our branch
vertices. In Figure 3.18 the vertices 1− 6 are branch vertices and 7− 9 are path vertices.

1

2

3

4

5

6

7 9

8

Figure 3.18: Subdivision of K3,3

17

3 Preliminaries

Let G = (V,E) be a connected graph and let X ⊆ V be a vertex cut of G which divides G
into the components G1, ..., Gn. The graphs Gi ∪ C(X) obtained from G[V (Gi) ∪X] with
i ∈ {1, ..., n} by adding a clique on X are called the augmented components induced by
X.

Theorem 3.3.1.
Let G = (V,E), with |V | = n, be a graph with more than 4 vertices. If G has at least 3n−5
edges, then G contains a K5 minor.

Proof: We prove this by induction.

Base case n = 5: The only graph on 5 vertices with at least 3n − 5 edges is the com-
plete graph K5.

Inductive step: |V (G)| = n and |E(G)| = m ≥ 3n − 5. Let v be an arbitrary vertex
of G and let H = G[N(v)] be the graph induced by N(v).

If δ(H) ≥ 3 then it is due to Dirac [10] that H has a subgraph which is homeomorphic to
K4. Hence together with v we get a subgraph which is homeomorphic to K5.

On the other hand if d(u) < 3 for a vertex u in H, then we can contract the edge (u, v)
and get the graph G′ = G/(u, v). On this reduced graph G′ we get that |V (G′)| = n − 1
and |E(G′)| = m′ ≥ m− 3. Since the inductive hypothesis holds for G′, the minor relation
is transitive and G′ is a minor of G, we get that G contains a K5 minor.

We move on with some observations about minor containment. Let G be a graph. Then G
can only contain a K5 minor if some connected component of G contains it. Therefore, for
finding a K5 minor of G we can simply look at all the connected components of G one after
one. Hence, let G be a connected graph. Furthermore, let G contain a cut-vertex x which
divides G into the components G1, ..., Gn. Then G will only contain a K5 minor if one of
its augmented components G1 ∪ {x}, ..., Gn ∪ {x} contains a K5 minor. Now we want to
generalize this idea.

Theorem 3.3.2.
Let G be a 2-connected graph and let X be a 2-cut of G. Then G contains a K5 minor if
and only if some augmented component of G induced by X contains a K5 minor.

This idea can be generalized one step further into the following theorem.

Theorem 3.3.3.
Let G be a 3-connected graph and let X be a (3,3)-cut of G. Then G contains a K5 minor
if and only if some augmented component of G induced by X contains a K5 minor.

Theorem 3.3.4.
Let G be a 3-connected graph containing a subdivision S of the K3,3 with red branch vertices
{r1, r2, r3} and blue branch vertices {b1, b2, b3}. Then at least one of the following must hold:

18

3.3 K5 Minor Testing

1. G contains a K5 minor

2. {r1, r2, r3} divides G into components such that {b1, b2, b3} are in different components

3. {b1, b2, b3} divides G into components such that {r1, r2, r3} are in different components

4. G is isomorphic to W , an 8-cycle with cross edges (see Figure 3.19)

Figure 3.19: W graph

Taking this all together leads to the K5 minor testing algorithm described in Algorithm 1.

19

3 Preliminaries

Algorithm 1: K5 minor containment

Input: A graph G with n = |V | vertices and m = |E| edges
Output: Boolean value whether G contains a K

1 Function has K5 minor(G)
2 if n ≤ 4 then
3 return False
4 end
5 if m ≥ 3n− 5 then
6 return True
7 end
8 if G contains a cut vertex x then
9 let C1, .., Cn be the components of G− {x}

10 has minor = False
11 for C in {C1, ..., Cn} do
12 Gn = G[C ∪ x]
13 has minor = has minor or has K5 minor(Gn)

14 end
15 return has minor

16 end
17 if G contains 2-cut X then
18 let C1, .., Cn be the components of G−X
19 has minor = False
20 for C in {C1, ..., Cn} do
21 Gn = G[C ∪X]
22 has minor = has minor or has K5 minor(Gn)

23 end
24 return has minor

25 end
26 if G is planar then
27 return False
28 else
29 let S be the Kuratowski subgraph of G
30 if S is a K5 subdivision then
31 return True
32 else
33 if G is isomorphic to W then
34 return False
35 end
36 let R = {r1, r2, r3} be the red branch vertices of S and B = {b1, b2, b3} be the blue branch

vertices of S
37 if b1, b2, b3 lie in pairwise different components of G−R then
38 let C1, ..., Ck be the components of G−R
39 has minor = False
40 for C in {C1, ..., Ck} do
41 Gn = G[C ∪R]
42 add a clique on R to Gn

43 has minor = has minor or has K5 minor(Gn)

44 end
45 return has minor

46 end
47 if G−B has not 3 components then
48 return True
49 end
50 if r1, r2, r3 lie in pairwise different components of G−B then
51 let C1, ..., Ck be the components of G−B
52 has minor = False
53 for C in {C1, ..., Ck} do
54 Gn = G[C ∪B]
55 add a clique on B to Gn

56 has minor = has minor or has K5 minor(Gn)

57 end
58 return has minor

59 end

60 end

61 end
62 return True

20

3.4 Integer Linear Programming

3.4 Integer Linear Programming

The following chapter is based on [7]. Here we will give a very short introduction to integer
linear programming and an even shorter introduction to linear programming. Furthermore
we give some examples of integer linear programs.

3.4.1 Linear Programming

A linear program is a problem of the form

maximize cx
subject to Ax ≤ b

x ≥ 0,
(3.4.1)

where the row vector c = (c1, ..., cn), the m × n matrix A = (aij) and the column vector

b =

 b1
...
bm

 contain the known input values. The column vector x =

x1...
xn

 contains the

values which are optimized. We call the expression, which is maximized, the objective
function. The set P := {x ∈ Rn

+ : Ax ≤ b} is the set of feasible solutions.

Simplex Method

The simplex method is one of the most used algorithms for solving LPs. We present here
just the key idea of the simplex algorithm. For a detailed description we refer the reader
to [27].

Given the LP
maximize cx
subject to Ax ≤ b

x ≥ 0,
(3.4.2)

with the set of feasible solutions P := {x ∈ Rn
+ : Ax ≤ b}.

Geometrically we see that the set of all points x ∈ Rn, which fulfill the equation

ai1x1 + ai2x2 + ...+ ainxn = bi,

defines a hyerplane. Hence the set of all points x ∈ Rn which fulfill the equation aix ≤ bi
builds a half-space. Thus each line of the equation system Ax ≤ b defines a half-space and
the intersection of these is P . Therefore is P a convex polyhedron.

The key idea of the simplex method is now to trace along the edges of P from one corner
of P to another with non-decreasing values of the objective function. If the tracing pro-
cedure to another corner is not possible anymore then a local optimum is reached. Since
our linear program is a convex optimization problem this local optimum is also a global one.

21

3 Preliminaries

Because of its good average performance in practice, the simplex method is one of the
leading algorithms for solving linear programs. Klee and Minty proved in ([24]) that the
simplex has an exponential running time as a worst case, but speculate that this bad cases
appear rarely in practice. However linear programs can also be solved in polynomial time
as Khachiyan proved with the ellipsoid method in ([23]).

3.4.2 Basic Definitions

A (pure) integer linear program is a problem of the form

maximize cx
subject to Ax ≤ b

x ≥ 0 integral,
(3.4.3)

where the row vector c = (c1, ..., cn), the m × n matrix A = (aij) and the column vector

b =

 b1
...
bm

 contain the known input values. The column vector x =

x1...
xn

 contains the

values which are optimized. We say that a n−vector x is integral, if x ∈ Zn
+. The set

S := {x ∈ Zn
+ : Ax ≤ b} of feasible solutions to 3.4.3 is called a pure integer linear set.

We will mainly focus on the following generalization.

A Mixed Integer Linear Program (MILP) is a problem of the form

maximize cx+ hy
subject to Ax+Gy ≤ b

x ≥ 0 integral
y ≥ 0

(3.4.4)

where the row vectors c = (c1, ..., cn), h = (h1, ..., hp), a m × n matrix A = (aij), a m × p

matrix G = (gij) and the column vector b =

 b1
...
bm

 contain the known input values. The

column vectors x =

x1...
xn

 and y =

y1...
yp

 contain the values which are optimized. The

set S := {(x, y) ∈ Zn
+ × Rp

+ : Ax+Gy ≤ b} of feasible solutions to 3.4.4 is called a mixed
integer linear set.

Let S ⊂ Zn × Rp be a mixed integer linear set. Then we call a set P := {(x, y) ∈
Rn×Rp : Ax+Gy ≤ b} which contains S a linear relaxation of S. Moreover, we call the
linear program max{cx+ hy : (x, y) ∈ P} the natural linear programming relaxation
of (3.4.4).

22

3.4 Integer Linear Programming

3.4.3 Solving Methods

Example

Given the IP
maximize x1 + x2
subject to −x1 + x2 ≤ 2

4x1 + x2 ≤ 12
x1, x2 ≥ 0
x1, x2 integer

(3.4.5)

By looking at the natural linear programming relaxation of (3.4.5) we can draw the feasible
region of the relaxed problem (see Figure 3.20). We can see that the relaxed problem has
the optimal solution of x1 = 2, x2 = 4 with an objective value of 6. Since this solution is
also an integer solution, it is also the optimal solution of our original problem.

x1

x2

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

•

•

•

•

•

•

•

•

•

•

•

•

−x
1
+
x 2
≤
2

4
x
1
+

x
2
≤

1
2

x
1
+
x
2
=
6

◦

Figure 3.20: Feasible region and solution to IP

The Branch-and-Bound Method

We give here an informal description of the Branch-and-Bound Method. For a formal de-
scription we refer the reader to [7].

Given the MILP
max{cx+ hy : (x, y) ∈ S}

23

3 Preliminaries

with S := {(x, y) ∈ Zn
+ × Rp

+ : Ax + Gy ≤ b}. Let j be an index of x such that x0j is
fractional. Then we can define the sets

S1 := S ∩ {(x, y) : xj ≤ bx0jc}, S2 := S ∩ {(x, y) : xj ≥ dx0je}

where b c (d e) denotes the floor (ceiling) function. Now S1 and S2 are a partition of S and
we can look on the MILPs based on this partition

MILP1 : max{cx+ hy : (x, y) ∈ S1}, MILP2 : max{cx+ hy : (x, y) ∈ S2}.

Since S1 and S2 are a partition of S we know that an optimal solution of our original
problem is the best solution of MILP1 and MILP2. Hence we reduced our original problem
to two subproblems. We call this process step branching.
Let P1, P2 be the natural relaxations of S1, S2,

P1 := P ∩ {(x, y) : xj ≤ bx0jc}, P2 := P ∩ {(x, y) : xj ≥ dx0je}

and let LP1, LP2 be their natural relaxed programs

LP1 := max{cx+ hy : (x, y) ∈ P1}, LP2 := max{cx+ hy : (x, y) ∈ P2}.

We can make now the following conclusions

• If one of the linear programs LPi is infeasible then the corresponding MILPi is also
infeasible since it holds that Si ⊆ Pi. Hence MILPi does not have to explored any
further. We say that this problem is pruned by infeasibility.

• Let (xi, yi) be an optimal solution of LPi and let zi be its objective value. Then we
have to consider 3 cases

1. xi is an integral vector:
Then (xi, yi) is also an optimal solution of MILPi and a feasible solution for our
original problem. Moreover since we know that Si ⊆ S it holds that zi is a lower
bound on the objective value of our original problem. We say that this problem
is pruned by integrality.

2. xi is not an integral vector and zi is smaller or equal to the best already known
lower bound on the objective value of our original problem:
Since Si ⊆ S it holds that Si cannot contain a better solution. We say that this
problem is pruned by bound.

3. xi is not an integral vector and zi is greater than the best already known lower
bound on the objective value of our original problem:
Hence Si might still contain an optimal solution to our original problem. Now
let xij′ be a fractional component of xi. Then we can repeat the branching by

defining the sets Si1 := Si ∩ {(x, y) : xj ≤ bxij′c} and Si2 := Si ∩ {(x, y) : xj ≥
dxij′e} and repeat the steps from above.

24

3.4 Integer Linear Programming

The Cutting Planes Method ([7])

Given the MILP
max{cx+ hy : (x, y) ∈ S}

with S := {(x, y) ∈ Zn
+ ×Rp

+ : Ax+Gy ≤ b} and let P0 be the natural linear relaxation of
S. Now let z0 be the optimal value and (x0, y0) an optimal solution of our relaxed problem.
We have to consider two cases:

1. If (x0, y0) is in S, then it also an optimal solution for our original integer linear
program and we are done.

2. If (x0, y0) is not in S, then we try to find an inequality αx+ βy ≤ γ that is satisfied
by every point in S such that αx0 + βy0 > γ.

We call such an inequality αx + βy ≤ γ that is satisfied by every point in S and
violated by (x0, y0) a cutting plane separating (x0, y0) from S.

Now let αx+ βy ≤ γ be a cutting plane. Then we define

P1 := P0 ∩ {(x, y) : αx+ βy ≤ γ}

We see that now the linear programming relaxation based on P1 is stronger than the
natural linear programming relaxation, in the sense that the optimal solution of

max{cx+ hy : (x, y) ∈ P1}

is an upper bound for the optimal solution of our original integer linear program,
while the optimal solution of the natural linear programming relaxation does not
belong to P1 by definition of P1.

The recursive application of this procedure is called the Cutting Planes Method. The
step where a separating cutting plane needs to be found, is called the separation process.

Combining the Branch-and-Bound Method with the Cutting Planes Method leads to the
Branch-and-Cut Method. Here tight upper bounds for the pruning of the enumeration
tree are calculated by applying the Cutting Planes Method.

For our purposes we will use a variation of the Branch-and-Cut Method. Here we also
allow that the relaxed LP program does not contain all constraints of our MILP, but these
constraints are still added if needed. We call this kind of constraints lazy constraints,
since we gonna add them in a lazy manner. Whenever a lazy constraint is violated in the
separation process, we add it to our set of active constraints. Hence, our lazy constraints
can also cut off invalid integer solutions which were still valid in the relaxed program.

3.4.4 Examples

We will provide some examples of MILPs which will later help us to tackle our initial
problem. First we will look at Maximal Matching Problem.

25

3 Preliminaries

Maximal Matching

Instance: A graph G = (V,E).
Problem: Find a maximum matching M of G which is maximal regarding cardinality.

Here e ∼ u denotes that e is incident on u. Hence we want to find a maximal set of
independent edges of a given graph. This problem can be formulated as an integer linear
program with binary variables xe for e ∈ E. Here xe = 1 if and only if e is part of our
matching M . Furthermore, we know that each vertex G can be covered by at most one
edge of M , which can be modeled by the degree constraint

∑
e∼v xe ≤ 1, v ∈ V . Now we

can formulate our whole problem by

maximize
∑
e∈E

xe

subject to
∑
e∼v

xe ≤ 1, v ∈ V

xe ∈ {0, 1}E .

Figure 3.21 displays here all the possible maximal matchings for the Petersen graph.

Figure 3.21: All 6 maximal matchings of the Peterson graph.

Now we will look at the Maximal Independent set problem. An independent set of
a graph is a set of vertices of the graph, where no two vertices in the set are adjacent.

26

3.4 Integer Linear Programming

Maximal Independent Set

Instance: A graph G = (V,E).
Problem: Find an independent set I of G which is maximal regarding cardinality. .

This problem can be formulated as an integer linear program with binary variables yv for
v ∈ V . Here yv = 1 if and only if v is part of our independent set I. Furthermore we know
that only either a vertex itself or its neighbor can be part of our set, which can be modeled
by the adjacency constraint yu + yv ≤ 1, {u, v} ∈ E. Now we can formulate our whole
problem by

maximize
∑
v∈v

yv

subject to yu + yv ≤ 1, {u, v} ∈ E
y ∈ {0, 1}V .

Figure 3.22 displays one of the maximal independent sets for the Petersen graph.

Figure 3.22: A Maximal Independent Set of the Peterson graph.

Maximal Pseudo Matching

Instance: A graph G = (V,E).
Problem: Find a maximum pseudo matching M of G which is maximal regarding the
number of vertices it matches.

We can see now that for finding maximal pseudo matchings, we have to maximize the
number of covered vertices, where a vertex can either be covered by being part of a K2

or by being part of a K1,3, hence maximizing
∑

e∈E 2xe +
∑

v∈V 4yv. Combining now the
constraints of our two previous results, we can establish an IP for finding maximal pseudo
matchings:

27

3 Preliminaries

maximize
∑
e∈E

2xe +
∑
v∈V

4yv

subject to
(
yu +

∑
e∼u

xe

)
≤ 1, u ∈ V

ya + yb ≤ 1, {a, b} ∈ E
x ∈ {0, 1}E

y ∈ {0, 1}V .

28

4 Perfect Pseudo Matchings

To recall Definition 3.1, a pseudo matching of a graph is a subgraph whose connected com-
ponents are either a K2 or a K1,3. A pseudo matching is therefore a generalization of a
matching (since every matching is a pseudo matching but not vice versa), because not only
independent edges are allowed to be part of our matching set, but also claws can be in it.
We call a pseudo matching M of a graph G perfect, if each vertex of G is in exactly one com-
ponent of M . Clearly we can encode a pseudo matching M of a graph G = (V,E) not only
as a subgraph of G, but also as a set of claws C and a set of edges EM . For (C,EM) being
a pseudo matching it has to hold that C = {C1, C2, ..., Cn}, with Ci = {vi1, vi2, vi3, vi4} and
EM = {EM1, EM2, ..., EMm} with EMj = {vj1, vj2} where Ci, EMj ⊆ V ∀i, j. Moreover
it has to hold that the edges (vi1, vi2), (vi1, vi3), (vi1, vi4), (vj1, vj1) are in E ∀i, j and are
not adjacent.

4.1 Motivation

The following conjecture is one of the most well-known and studied problems in graph
theory. Although its statement is fairly simple, it still remains an open problem as of
today.

Conjecture 4.1.1 (Cycle Double Cover (CDC) conjecture). Every bridgeless graph
has a collection of cycles such that every edge of the graph is contained in exactly two of
the cycles. (see Figure 4.1)

The CDC has been proven for many different classes of graphs (see ([31]) for a list). The
reason why snarks are of such importance for the CDC is due to [21]. The following lemmas
up to the next corollary are from ([21]).

Lemma 4.1.2. Let G be a minimum counterexample to the CDC regarding the number
of edges of G. Then G is 3-edge connected.

Proof: Suppose that G is a minimum counterexample to the CDC. Furthermore we con-
clude that G has to be connected because otherwise a component of G would already be
a minimum counterexample. If G has an edge cut of size 2, then the graph H, which is
obtained by contracting one of these edges, is a bridgeless graph which has fewer edges
than G. Hence H has a CDC, but such a CDC can be extended to a CDC of G. Therefore,
it holds that G cannot have an edge cut of size 2, which proves that G has to be 3-edge
connected.

This directly implies the following.

29

4 Perfect Pseudo Matchings

Figure 4.1: CDC of the Petersen graph

Corollary 4.1.3. Let G be a minimum counterexample to the CDC regarding the number
of edges of G. Then G has no vertices of degree smaller than 3.

We further want to conclude that a minimum counterexample has to be cubic.

Lemma 4.1.4. Let G be a minimum counterexample to the CDC regarding the number
of edges of G. Then G has no vertices of degree greater than 3.

Proof: Let G have the same properties as in our previous proof. If G has a vertex v with
degree at least 4, then it is due to Fleischner ([12]) that one can find two vertices a and b
which are adjacent to v and the graph H := G\{(a, v)∪ (b, v)}∪ (a, b) is a bridgeless graph
with fewer edges than G. Hence H has a CDC, but such a CDC can be extended to a CDC
of G. Therefore holds that G has to be cubic.

Lemma 4.1.5. Let G be a minimum counterexample to the CDC regarding the number
of edges of G. Then G has to be cyclically-4-edge-connected.

Proof: Now assume that G has an edge cut of size 3 such that the vertices of G can be
biparted into two sets of size greater than 1. We can identify this two sets by a single
vertex and therefore obtain two cubic bridgeless graphs G′ and G′′ such that G′ and G′′ are
smaller than G. Therefore, G′ and G′′ have to have CDCs and we can piece by piece extend
such covers to a CDC of G. This is a contradiction to G being a counterexample.

Lemma 4.1.6. Let G be a counterexample to the CDC. Then G cannot be 3-edge-colorable.

Proof: Suppose G has an edge coloring with the colors red, blue and green. We can look

30

4.2 Connection to the CDC

at the subgraphs induced by the red and blue edges, by the red and green edges respectively
by the blue and green edges. These subgraphs form disjoint cycles since G is a cubic graph
and together they form a CDC, hence G cannot be a counterexample.

Summing up the previous lemmas implies the following theorem.

Theorem 4.1.7.
A minimum counterexample regarding the number of edges to the cycle double cover must
be a cyclically 4-edge connected, bridgeless, cubic graph with chromatic index 4. Hence a
snark.

This started the search for snarks without a CDC. Since then, the requirements for a
minimum counterexample have been tightened as the following theorem shows.

Theorem 4.1.8 ([19]).
A minimum counterexample to the CDC must be a snark with girth at least 12.

We will prove now the CDC for two simple types of graphs.

Lemma 4.1.9 ([31]). Let G be a 2-connected planar graph. Then G has a cycle double
cover.

Proof: Since the graph is planar and 2-connected, every face is bounded by a cycle. There-
fore if we take the collection of these cycles as our cover, we get a CDC.

Lemma 4.1.10. Let G be a 2-regular graph. Then G has a cycle double cover.

Proof: A 2-regular graph is already a collection of cycles. Hence G is the cycle cover of
itself and taking every cycle of G twice gives a double cycle cover of G.

4.2 Connection to the CDC

In this chapter we establish our connection between PPMs and the CDC. For the following
theorems we have to make some further definitions first ([15]).

Let G be an Eulerian graph. Let v be a vertex of G with degree at least 4. A transition
set of v (denoted by T (v)) is a non-empty subset of a partition into 2-subsets of E(v). A
member of T (v) is called a transition at v.

A cycle C is compatible, if |E(C) ∩ T | ≤ 1 for every T ∈ T . A cycle decomposi-
tion of G is a set of edge-disjoint cycles of G whose union is G. We say that (G, T) has a
compatible cycle decomposition (CCD), if G has a cycle decomposition F such that every
member C ∈ F is a compatible cycle.

Let (G, T) be a transitioned eulerian graph of order at least 2. We call a cut-vertex v
of G a bad cut-vertex, if {uv, vw} is an edge cut and {uv, vw} ∈ T for some neighbors

31

4 Perfect Pseudo Matchings

u and w of v. Moreover, we say that T is admissible of G, if (G, T) has no bad cut-vertex.

Let G be a cubic graph, M a PPM of G and let GM be the contraction graph G/M . Then
we can define a transition set on G/M in the following way. Two edges in G/M form a
transition if and only if their corresponding edges in the original graph G are adjacent. See
Figure 4.2 for a visualization of this idea.

→ →

Figure 4.2: Example contraction to form a transition

The following theorem is due to Fleischner and Frank ([14]).

Theorem 4.2.1 ([14]).
Let G be a planar graph. Then for every admissible transition system T of G, (G,T) has
a compatible cycle decomposition.

This result was later generalized by G. Fan and C.-Q. Zhang ([11]).

Theorem 4.2.2 ([11]).
Let G be a K5 minor free graph. Then for every admissible transition system T of G,
(G,T) has a compatible cycle decomposition.

The following theorem establishes the essential bridge for our chosen approach between a
CCD and a CDC via PPMs.

Theorem 4.2.3.
Let G be a cubic graph and let M be a perfect pseudo matching (PPM) of G. If G/M has
a CCD, then G has a CDC.

Proof: We take now a closer look at the contraction graph GM = G/M .

For a vertex v of GM we have to consider two different cases:

Case 1: vertex v was a K2 in the original graph.
Now we can cover the edge (u, v) with two cycles by connecting the original cycles of u
with the original cycles of v. Therefore, our new extended cycle cover covers every edge
of G/M once and the edge (u, v) twice. This idea is visualized in Figure 4.3, where the
dashed line represents not drawn vertices of a cycle and this extension also works for the
symmetric case (see Figure 4.4) where the vertices 3 and 4 are exchanged.

32

4.2 Connection to the CDC

v

12

3 4

→
u

v

12

3 4

Figure 4.3: Cycle cover extension case 1

v

12

4 3

→
u

v

12

4 3

Figure 4.4: Cycle cover extension case 1 for the symmetric case

v

1

2

3 4

5

6

→ v

u

x

w

1

2

3 4

5

6

Figure 4.5: Cycle cover extension case 2

Case 2: vertex v was a K1,3 in the original graph.

33

4 Perfect Pseudo Matchings

We can use a similar approach as in the first case. We can cover the edges (u, v), (v, w),
(v, x) by connecting the original cycles of u with original cycles x and the original cycles of
w. Therefore, our new extended cycle cover covers every edge of G/M once and the edges
(u, v), (v, w) and (v, x) twice. This again works for symmetric cases and is visualized in
Figure 4.5.

Furthermore, we know that G −M is a 2-regular graph since M is a PPM, what means
that G −M is a collection of cycles. Hence, if we take an extended cycle cover as in our
case distinction together with G−M , we end up with a CDC of the original graph G.

Theorem 4.2.3 lays the foundation for an approach to prove the CDC. Hence, our interest
lies in the following two conjectures.

Conjecture 4.2.4 (Weak PPM snark conjecture). Every snark has a K5-minor free per-
fect pseudo matching (K5PPM).

Conjecture 4.2.5 (Strong PPM snark conjecture). Every snark has a planarizing perfect
pseudo matching (PPPM). (see Figure 4.6)

One can directly see that Conjecture 4.2.5 would imply Conjecture 4.2.4 since every PPPM
is also a K5PPM due to Wagner’s theorem (3.2.12).

0

1

2 3

4

5

6

7 8

9

0158

9467 23

Figure 4.6: A PPPM M of the Petersen graph P and the contraction graph P/M

Flower Snarks

The family of flower snarks is an infinite family of snarks (see Figure 4.7). Flower snarks
have been invented by Isaacs in 1975 ([20]). They exist for all odd n ≥ 3 and can be
constructed the following way:

• Build n copies of the star graph on 4 vertices. Hereby the center of the i-th star is
denoted by Ai and the outer vertices are denoted by Bi, Ci resp. Di.

• Add the edges of the cycle B1...Bn.

34

4.2 Connection to the CDC

• Add the edges of the cycle C1...CnD1...Dn.

The resulting graph is therefore a cyclically 4-edge connected, bridgeless, cubic graph with
edge chromatic number 4 and 4n vertices and 6n edges. Hence a snark.

Figure 4.7: Flower snark J5

Corollary 4.2.6. Every flower snark has a perfect planarizing pseudo matching.

Proof: By the way flower snarks are constructed we can clearly see that if we choose
B1...Bn as our claws then the contraction graph will be a circle and circles are trivially
planar (see Figure 4.8).

35

4 Perfect Pseudo Matchings

Figure 4.8: PPPM for flower snark J5

36

5 Algorithmic Approach

We begin with the formulation of the PPPM and the K5PPM as problems.

Planarizing Perfect Pseudo Matching Problem

Instance: A cubic graph G.
Problem: Does G have a perfect pseudo matching (PPM) M such that G/M is planar?

K5 Minor Free Perfect Pseudo Matching Problem

Instance: A cubic graph G.
Problem: Does G have a perfect pseudo matching (PPM) M such that G/M is K5

minor free?

5.1 Enumeration

5.1.1 Symmetry Free Enumeration

A method which is feasible for smaller instances of snarks is the enumeration method. Here
we simply generate all possible PPMs for a corresponding snark and afterwards check which
of the corresponding contracted graphs are planar.

All possible pseudo matchings of a graph can be recursively generated in the way as de-
scribed in Algorithm 2. To avoid symmetric solutions which represent the same pseudo
matching, we can use the property that our pseudo matching has to be perfect. This
means that for each vertex of the input graph exactly one of the following must hold:

• The vertex is the center of a claw.

• One of the neighbors of the vertex is the center of a claw.

• The vertex together with one of its neighbors is part of an edge of the matching.

37

5 Algorithmic Approach

Algorithm 2: Enumerate Perfect Pseudo Matchings

Input: A graph G = (V,E), a list of all so far found PPMs, the current pseudo
matching, list of visited nodes and the current node v

Output: A list of all PPMs of the input graph
1 Function generatePPM(G, allPPM, currentPM, visited, v)
2 while v is not next of last node of V and v is labeled as visited do
3 set v to next v
4 end
5 if v is next of last node of V then
6 add currentPM to allPPM
7 Return

8 end
9 label v as visited

10 if all neighbors of v are labeled as not visited then
11 label all neighbors of v as visited
12 add the claw with center v to currentPM
13 generatePPM(G, allPPM, currentPM, visited, next v)
14 remove the claw with center v from currentPM
15 label all neighbors of v as not visited

16 end
17 for i in neighbors of v do
18 if i is not labeled as visited then
19 label i as visited
20 if all neighbors of i except v are labeled as not visited then
21 label all neighbors of i as visited
22 add the claw with center i to currentPM
23 generatePPM(G, allPPM, currentPM, visited, next v)
24 remove the claw with center i from currentPM
25 label all neighbors of i except v as not visited

26 end
27 add the edge (v,i) to currentPM
28 generatePPM(G, allPPM, currentPM, visited, next v)
29 remove the edge (v,i) from currentPM
30 label i as not visited

31 end

32 end
33 label v as not visited

For a recursive version of this algorithm we end up with the following recurrence relation
for an upper bound of the number of recursion steps

T (n) ≤ 4T (n− 4) + 3T (n− 2) ∀n ≥ 4

where n is the number of vertices in G.

38

5.2 Integer Linear Programming

Theorem 5.1.1.
If f(n) ≤ 4f(n − 4) + 3f(n − 2) for n ≥ 4 and f(n) ≥ 0, then f(n) ≤ c · 2n with
c := max(f(0), 12f(1), 14f(2), 18f(3)).

Proof: Base Case:

f(0) ≤ c

f(1) ≤ c · 21

f(2) ≤ c · 22

f(3) ≤ c · 23

This is true for our chosen c.

Recursive Case:

f(n) ≤ 4f(n− 4) + 3f(n− 2)

≤ 4 · c · 2n−4 + 3 · c · 22n−2

= c · (1 + 3)2n−2

= c · 2n

Hence we see that our enumeration approach is bounded by exponential running time. This
is also due to the fact that the number of PPMs is increasing exponentially as we will see
in Chapter 6. Moreover, we notice that for a graph the more claws we have in our PPM
the fewer number of vertices will our contraction graph have. This is favorable since every
edge contraction might raise the chance of the graph to be planar.

5.2 Integer Linear Programming

5.2.1 Naive IP

Next to the enumeration approach we also developed an integer linear programming ap-
proach. From 3.4.4 we already know a possible formulation for a maximal pseudo matching.
However, since we not only want a maximal but also a perfect pseudo matching (PPM) we
can turn the objective function into a constraint:∑

e∈E
2xe +

∑
v∈V

4yv = |V |.

Now we know that every vertex of our input graph will get covered and therefore we will
actually receive not only a maximal pseudo matching but even a PPM as result.

39

5 Algorithmic Approach

Putting this to together leads us to the following IP:

maximize 0

subject to
∑
e∈E

2xe +
∑
v∈V

4yv = |V |(
yu +

∑
e∼u

xe

)
≤ 1, u ∈ V

ya + yb ≤ 1, {a, b} ∈ E
x ∈ {0, 1}E

y ∈ {0, 1}V

However, this problem can be further rewritten and specified if we think about the fact
that either the vertex itself, one of its neighbors or an edge which is incident to this vertex
has to be part of our pseudo matching. This can be expressed by the perfect pseudo
matching constraint

(∑
v∈N(u) yv

)
+ yu +

∑
e∼u xe = 1 which is a combination of our

previous constraints. Furthermore to reach a PPM the perfect pseudo matching constraint
has to hold for all vertices of our graph. Hence we can combine this together to the following
IP.

maximize 0

subject to
(∑
v∈N(u)

yv
)

+ yu +
∑
e∼u

xe = 1, u ∈ V

x ∈ {0, 1}E

y ∈ {0, 1}V

Therefore our IP provides us with solution sets Y and X such that Y contains all the
centers of our claws and X contains all the edges of our current matching. Unfortunately
this is only a solution for PPM and therefore only a pseudo solution. All the following
constraints are part of our model, but since we follow a Branch-and-Cut approach we only
add them, in a lazy manner, if they are violated.∑
v∈V ′

yv+
∑
e∈E′

xe ≤ |V ′|+|E′|−1 ∀ V ′ ⊆ V,E′ ⊆ E s.t. (V ′, E′) is not a PPPM (or K5PPM)

Hence in the separation process, after receiving a pseudo solution we simply test if the
contraction graph of the current solution is planar respective K5 minor free. If it is, we
return the current solution. Otherwise we add our lazy constraint. It should also be noted
that our separation process is only executed on integer solutions in contrary to standard
Branch-and-Cut approaches. This is due to the fact that we need an integer solution to
create the contraction graph and check its planarity status.

In practice, our integer linear programming approach so far, is just sugar-coating of an
enumeration approach until a PPPM is found. The advantage over an enumeration ap-

40

5.2 Integer Linear Programming

proach here lies in the fact that we do not have to write a generator for PPMs. However
the big disadvantage is clearly the running time since an IP has to be solved in every step
and the generation of all PPMs of a given graph is rather fast for small graphs.

5.2.2 Pursuit of Smart Cuts

Right now our IP is already able to produce valid solutions, but is actually just imitating
our enumeration approach. Therefore we want to further improve our lazy constraints.
Hence, instead of only cutting off the current pseudo solution we want to cut off all pseudo
solutions, where the contraction graph also contains the same Kuratowski subgraph as the
contraction graph of the current solution.

Let GM be the contraction graph of our current pseudo solution and let K be a Kura-
towski subgraph of GM .

With c(u) we denote the vertex of GM to which u is mapped by the contraction of G/M
for a vertex u of G. Moreover we denote the branch set of v with c−1(v) for a vertex v of GM .

For a vertex v of K we will further define the branch component set of v denoted
by bc(v). For a branch vertex x, its branch component set is the set of the vertex itself
(bc(x) := {x}). Since we know that a path vertex lies on a path between two branch ver-
tices, the branch component set of a path vertex are these two branch vertices.

In Figure 5.1 the vertices 1 − 5 are branch vertices and 6 − 10 are path vertices. In
Table 5.1 we can see the branch component set of each vertex.

1

2

3 4

5

9 10

6

7 8

Figure 5.1: Branch component set example

Now we can define our relation ≈. We say that u ≈ v iff bc(c(u)) 6⊆ bc(c(v)) and
bc(c(v)) 6⊆ bc(c(u)). We will say that u and v have completely different branch com-
ponent sets if u ≈ v.

Regarding our example of branch component sets we see in Figure 5.1 or Table 5.1 that

41

5 Algorithmic Approach

Vertex Branch Vertex Path Vertex Branch component set

1 × {1}
2 × {2}
3 × {3}
4 × {4}
5 × {5}
6 × {2,5}
7 × {3,4}
8 × {3,4}
9 × {1,2}

10 × {1,5}

Table 5.1: Branch component set example

the vertex 1 is in relation to ≈ with 2,3,4,5,6,7 and 8 but not to 9 or 10.

Together with the relation ≈ we can now formulate our constraints for smart cuts in the
following way:

∑
(u,v)∈E(G)

c(u),c(v)∈V (K)
u≈v in GM (G)

(x(u,v) + yu + yv) +
∑

w∈V (G)
u∈NG(w)
v∈NG(w)

u6=v
c(u),c(v)∈V (K)
u≈v in GM (G)

yw ≥ 1

∀ K,M s.t. M is a PPM of G and K is a Kuratowski subgraph in GM (G).

(5.2.1)

Hence these constraints forbid a subdivision of K5 respectively K3,3 in the contraction
graph by enforcing that at least two vertices with completely different branch component
sets of this subdivision will be contracted together.

Theorem 5.2.1.
The lazy constraints described by Equation 5.2.1 eliminate all non-planarizing PPMs.

Proof: Suppose that the above cuts do not eliminate all non-planarizing PPM. Therefore,
a PPM M0 exists which fulfills the constraint in Equation 5.2.1 and which is not planarizing.
Hence the contraction graph GM0 is not planar and must therefore contain a Kuratowski
subgraph K0. Since (X,Y) fulfill the constraint in Equation 5.2.1 for M = M0 and K = K0

we have to consider two cases:

1. (x(u,v)+yu+yv) ≥ 1 for (u, v) ∈ E(G), c(u), c(v) ∈ V (K) and u ≈ v in GM (G). Hence
one of x(u,v) = 1, yu = 1 or yv = 1 must hold. Therefore the edge (u, v) becomes

42

5.2 Integer Linear Programming

contracted in M . This implies that cM0(u) = cM0(v), which is a contradiction to
u ≈ v in GM , since they have the same branch component set. �

2. yw ≥ 1 for w ∈ V (G), u ∈ NG(w), v ∈ NG(w), u 6= v, c(u), c(v) ∈ V (K) and
u ≈ v in GM (G). Therefore the vertex w is contracted in M . This implies that
cM0(u) = cM0(v), which is a contradiction to u ≈ v in GM , since they have the same
branch component set. �

Theorem 5.2.2.
The lazy constraints described by Equation 5.2.1 do not eliminate planarizing PPMs.

Proof: Suppose there exists a planarizing PPM M1 whose variable encoding (X,Y) does
not fulfill at least one constraint in Equation 5.2.1. Let M2 and K be the matching and the
Kuratowski subgraph corresponding to the constraint not satisfied by (X,Y). See Figure
5.2 for a representation of the different graphs occurring in this proof. Now we define

UI := {u ∈ V (G) : cM2(u) ∈ V (K), bcM2(cM2(u)) = I} = c−1M2
(bc−1M2

(I)), I ⊆ V (K)

WI := {w ∈ V (GM1) : c−1M1
(w) ∩ UI 6= ∅}, I ⊆ V (K)

Note that the sets UI are pairwise disjoint, if I 6⊆ J and J 6⊆ I, by definition.

We claim now that WI ∩WJ = ∅ if I 6⊆ J and J 6⊆ I.

Suppose there is a w ∈ V (GM1) s.t. w ∈ WI and w ∈ WJ . By definition this is equiv-
alent to c−1M1

(w) ∩ UI 6= ∅ and c−1M1
(w) ∩ UJ 6= ∅. Remember that UI and UJ are disjoint

for our I and J . This would imply that for two different vertices uI ∈ UI and uJ ∈ UJ ,
cM1(uI) = cM1(uJ) = w, hence uI and uJ are contracted together into w. This would
further imply that either x(uI ,uJ) + yuI + yuJ > 0 or yuk

> 0 for uI , uJ ∈ V (G) and
(uI , uJ) ∈ E(G) or uI , uJ , uk ∈ V (G), uI ∈ NG(uk) and uJ ∈ NG(uk) holds, since I 6⊆ J
and J 6⊆ I. Since uI ∈ UI and uJ ∈ UJ together with I 6⊆ J and J 6⊆ I, one can see
that bcM2(cM2(uI)) = I and bcM2(cM2(uJ)) = J , which implies that uI ≈M2 uJ . Hence
(X,Y) would satisfy the corresponding constraint (of Equation 5.2.1) of M2 which is a
contradiction to our precondition. Thus such a w can not exist.

For each branch vertex bi of K we know that bcM2(bi) = {bi} by the definition of the branch
component set and it holds that bcM2(bi) 6⊆ bcM2(bj) and bcM2(bj) 6⊆ bcM2(bi) for bi 6= bj .
Hence c−1M2

(bi) ⊆ U{bi} for each branch vertex bi of K and the sets W{b1},W{b2}, ...,W{bn}
are pairwise disjoint.
Moreover we know that there exist paths out of path vertices between the branch vertices
(or they are directly connected) in K, because K is a Kuratowski subgraph. This implies
that there exists a path

ubi , u1, u2, ..., um, ubj

for ubi ∈ c
−1
M2

(bi) and ubj ∈ c
−1
M2

(bj) in G with bcM2(cM2(uk)) = {bi, bj}, hence uk ∈ U{bi,bj}.

43

5 Algorithmic Approach

From this we can conclude that there exists a trail

cM1(ubi), cM1(u1), cM1(u2), ..., cM1(um), cM1(ubj) (5.2.2)

in GM1 with cM1(ubi) ∈W{bi} and cM1(ubj) ∈W{bj}.
Now we know that uk ∈ U{bi,bj} and cM1(uk) ∈ W{bi,bj} by definition. This implies that
for bo ∈ {b1, ..., bn} \ {bi, bj} the set W{bo} is disjoint to W{bi,bj}. Hence cM1(uk) /∈ W{bo}.
Furthermore, we see that cM1(uk) can not be an element of W{bx,by} for {bx, by} 6= {bi, bj}.
Now for each branch vertex bi which has a path out of path vertices to another branch
vertex bj (or is directly connected to it) in V (K), we have identified a trail from W{bi}
to W{bj} in GM1 , which only includes vertices from W{bi}, W{bj} or W{bi,bj} and does not
include vertices from other W{bx}. Therefore, there exists a path P{bi,bj} between W{bi}
and W{bj} which consists only of vertices in W{bi,bj} which are not in any other WI for I
6= {bi, bj}.

By definition of the branch component set bcM2(bi) = {bi}, hence bc−1M2
({bi}) = {bi}.

This implies that U{bi} = c−1M2
(bi) which is either a claw or a K2 and therefore connected.

Hence, the U{bi} are connected. Thus, the W{bi} are connected and we already know that
the W{b} are pairwise disjoint for b being a branch vertex of V (K).

Now for each branch vertex bi of V (K) we can contract W{bi} to the single vertex bi
and moreover we can contract the paths P{bi,bj} to edges. Hence we found a minor of GM1 ,
which is a subdivision of K5 or K3,3. This minor can be contracted to a K5 or a K3,3,
which is a contradiction to that M1 was planarizing in the first place.

G

GM1 GM2

K

u

w v

M1 M2

K

Figure 5.2: Connection between PPMs, original graph and Kuratowski subgraph.

44

5.2 Integer Linear Programming

It should be noted that the constraint of Equation 5.2.1 can also be formulated for finding
K5PPMs instead of PPPMs. For this we just have to replace the Kuratowski subgraph
K in Equation 5.2.1 by a K5-minor model K5M . Accordingly the branch vertices, the
branch set and the branch component set work also for a K5-minor model instead of a
Kuratowski subgraph. Furthermore the proofs for our Theorem 5.2.1 and Theorem 5.2.2
can be modified to work with K5 minors with little work. Hence we can state our constraint
of Equation 5.2.1 also for the search of K5PPMs:

∑
(u,v)∈E(G)

c(u),c(v)∈V (K5M)
u≈v in GM (G)

(x(u,v) + yu + yv) +
∑

w∈V (G)
u∈NG(w)
v∈NG(w)

u6=v
c(u),c(v)∈V (K5M)
u≈v in GM (G)

yw ≥ 1

∀ K,M s.t. M is a PPM of G and K5M is a K5-minor model of GM (G).

(5.2.3)

Theorem 5.2.3.
The lazy constraints described by Equation 5.2.3 eliminate all non K5-minor free PPMs.

Theorem 5.2.4.
The lazy constraints described by Equation 5.2.3 do not eliminate K5-minor free PPMs.

Although a quadratic algorithm for finding a K5-minor model is described in [22], the imple-
mentation of such is out of scope for thesis, why we restricted ourself to an implementation
of smart cuts for finding PPPMs.

5.2.3 Separation Process

Suppose we got an input graph G and a PPM M . For the separation process we first take a
look at the contraction graph GM . If GM is planar then is our PPM planarizing and we are
done. If GM is not planar, then the planarity search will output a Kuratowski subgraph.
Moreover, we start an empty sum of additions S. For each each edge (u, v) of our original
graph G we now take a look at the branch sets of u and v. If it holds that u ≈ v, then we
add x(u,v), yu and yv to S. Furthermore for all paths (u,w, v) in our original graph with
u 6= v, u 6= w and v 6= w we also check if u ≈ v. If this holds, then we add yw to S. Now
we can add S ≥ 1 as a new constraint.

Regarding the runtime, we see that the separation process runs in linear time regarding
the number of vertices of the input graph. For a separation step, we begin with a planarity
test, which runs in linear time. Furthermore, we have to iterate through the edges and
paths of length 2, which is also in O(n) where n is the number of vertices in G.

45

6 Computational Results

In this chapter we will evaluate and compare the computation times of our different algo-
rithmic approaches.
All tests were run on a single thread of an Intel Xeon E5540 with 2.53 GHz and 3 GB RAM
available. The code was written in Python3. The general purpose solver Gurobi Optimizer
version 8.0.0 ([16]) was used.

6.1 Test Instances

6.1.1 Snarks

As test instances for our algorithms we used snarks from the website House of Graphs ([3]).
Moreover we also allowed weak snarks with girth at least 4 to be part of our testing set.
For the snarks of order 30 up to order 36 we only used the first 100 instances as test sample
for the benchmarking purposes. For the snarks of order 38 and 40 we used only snarks
with girth at least 6. The snarks of higher order than 40 were found through the database
search of the House of Graphs site.

6.1.2 Non Snarks

For benchmarking our algorithms with bigger graphs we created some additional test in-
stances. These do not have to be snarks but still fulfill the requirement to be cubic graphs.
For the creation we used the NetworkX generator for d-regular graphs. Hence we created
cubic random graphs for even n from 4 to 100. These instances will be called random cubic
graphs for the rest of the thesis.

6.2 Observational Results

6.2.1 Planarizing Perfect Pseudo Matchings

As previously pointed out, we will take a look at the PPPMs first, because being a PPPM
also implies finding a K5PPM.

Observation 6.2.1. Every weak snark of order 24 or less has at least one PPPM.

Theorem 6.2.2.
The smallest weak snark without a PPPM has 26 vertices. Moreover there only exist 2
different weak snarks with 26 or less vertices without a PPPM.

47

https://hog.grinvin.org/Snarks

6 Computational Results

Nodes # snarks # w/o
PPPM

w/o
K5PPM

% w/o
PPPM

% w/o
K5PPM

10 1 0 0 0.00 0.00
18 2 0 0 0.00 0.00
20 6 0 0 0.00 0.00
22 20 0 0 0.00 0.00
24 38 0 0 0.00 0.00
26 280 2 0 0.01 0.00
28 2 900 30 14 0.01 0.00

Table 6.1: Snarks without PPPM or K5PPM

Proof: We found PPPMs for all snarks with order 26 or less except for the snarks of order
26 and the indices (according to the line number, starting with 0, of the House of graphs
file for snarks of girth at least 4 and order 26) 82 and 124. A graph6 representation of these
can be found in the appendix. For these two snarks our approach checked all the according
perfect pseudo matchings, but none of their contraction graphs is planar.

This disproves our strong conjecture (Conjecture 4.2.5). Now we will take a look if at least
the weaker form (Conjecture 4.2.4) holds.

6.2.2 K5 Minor Free Perfect Pseudo Matchings

Observation 6.2.3. Every weak snark of order 26 or less has at least one K5PPM.

Theorem 6.2.4.
The smallest weak snark without a K5PPM has 28 vertices. Moreover there only exist 15
different weak snarks with 28 or less vertices without a K5PPM.

Proof: We found K5PPMs for all snarks with order 28 or less except for the snarks of
order 28 and the indices (according to the line number, starting with 0, of the House of
graphs file for snarks of girth at least 4 and order 28) 1616, 2640, 3465, 3563, 3565, 4445,
4998, 5911, 6751, 6886, 8253, 8889, 8895, 11300 and 12499. A graph6 representation of
these can be found in the appendix as well. For these snarks, our approach looked at all
the according PPMs, but none of their contraction graphs is K5 minor free.

This disproves also our weak conjecture (Conjecture 4.2.4). The results of Theorem 6.2.2
and Theorem 6.2.4 can also be found in Table 6.1 respectively Table 6.2. There, the first
column represents the tested class. The second column of the table contains the number of
graphs in this class. The columns 3 to 6 contain the number of graphs in the tested class
with a PPPM resp. K5PPM resp. their percentages. Regarding the instances of our cubic
random graphs, we see in Table 6.3 that at least 32 vertices are needed for the appearances
of graphs with K5PPMs which are not PPPMs.
The following observation gives a first impression why we aimed for creating an IP with
better lazy constraints.

48

6.3 Benchmark Results

Snark class # tested
weak

snarks

w/o
PPPM

w/o
K5PPM

% w/o
PPPM

% w/o
K5PPM

10 1 0 0 0.00 0.00
18 2 0 0 0.00 0.00
20 6 0 0 0.00 0.00
22 31 0 0 0.00 0.00
24 155 0 0 0.00 0.00
26 1 297 2 0 0.15 0.00
28 12 517 45 15 0.36 0.12
30 100 2 2 2.00 2.00
32 100 0 0 0.00 0.00
34 100 5 5 5.00 5.00
36 100 2 2 2.00 2.00
38 39 25 25 64.10 64.10
40 25 11 25 44.00 44.00
44 31 3 9.68
50 2 2 100.00

Table 6.2: Weak Snarks without PPPM resp. K5PPM

Observation 6.2.5. The number of PPMs for cubic graphs of a certain order is expo-
nentially growing with higher orders. (see Table 6.4, Table 6.5 and Figure 6.1)

The first column represents the tested class of graphs and the second column contains the
number of graphs in this class. The third column contains the average number of PPMs
for graphs of this class.
Hence, we see that our enumeration approach has to execute a high number of planarity
tests and that this number is increasing exponentially. This also has a major negative
impact on the running time of our enumeration approach. Moreover, we also see that the
average number is of PPMs is increasing exponentially not only for snarks but for cubic
graphs in general. The difference on the right of Figure 6.1 can be explained due to the
small sample size of 1 for snarks with degree 10.

6.3 Benchmark Results

Table 6.6, Table 6.7 and Table 6.8 give an overview over the average running time in
seconds as well as over the average number of planarity tests which have to be executed
to find a PPPM regarding the chosen approach and the chosen set of instances. The first
column represents the tested class. The second column contains the average running time in
seconds for graphs of this class. The third column contains the average number of planarity
tests which had to be executed during our tests. Together the second and the third column
represent the data for our enumeration approach. Column 4 and 5 represent the results for

49

6 Computational Results

Nodes # tested
graphs

w/o
PPPM

w/o
K5PPM

% w/o
PPPM

% w/o
K5PPM

04 100 0 0 0.00 0.00
06 100 0 0 0.00 0.00
08 100 0 0 0.00 0.00
10 100 0 0 0.00 0.00
12 100 0 0 0.00 0.00
14 100 0 0 0.00 0.00
16 100 0 0 0.00 0.00
18 100 0 0 0.00 0.00
20 100 0 0 0.00 0.00
22 100 0 0 0.00 0.00
24 100 0 0 0.00 0.00
26 100 0 0 0.00 0.00
28 100 3 3 3.00 3.00
30 100 12 12 12.00 12.00
32 100 22 19 22.00 19.00
34 100 47 44 47.00 44.00
36 100 52 50 52.00 50.00
38 100 53 52 53.00 52.00
40 100 75 75.00
42 100 87 87.00
44 100 91 91.00
46 100 95 95.00
48 100 97 97.00
50 100 98 98.00
52 100 100 100.00
54 100 100 100.00
56 100 99 99.00
58 100 100 100.00
60 100 100 100.00
62 100 100 100.00
64 100 100 100.00
66 100 100 100.00
68 100 100 100.00
70 100 100 100.00
72 100 100 100.00
74 100 100 100.00
76 100 100 100.00
78 100 100 100.00
80 100 100 100.00
82 100 100 100.00
84 100 100 100.00
86 100 100 100.00
88 100 100 100.00
90 100 100 100.00
92 100 100 100.00
94 100 100 100.00
96 100 100 100.00
98 100 100 100.00

100 100 100 100.00

Table 6.3: Random cubic graphs without PPPM resp. K5PPM

50

6.3 Benchmark Results

Vertices # tested snarks ø PPMs

10 1 13
18 2 221
20 6 353
22 20 590
24 38 990
26 280 1 661
28 2 900 2 782
30 100 4 673
32 100 7 827
34 100 13 179
36 100 21 858
38 38 35 772
40 24 59 112
44 31 176 287
50 2 829 836
56 1 3 822 358

Table 6.4: Average number of PPMs for snarks

0 10 20 30 40 50

101

102

103

104

105

106

vertices

�
P

P
M

s

snarks
cubic random graphs

Figure 6.1: Growth of average number of PPMs

our naive IP approach and column 6 and 7 the results for our smart cuts approach.
If the input graph does not have a PPPM, then this number represents the number of
planarity tests which have to be executed until to the point where it can be concluded that
no PPPM exists. Here we also see that our enumeration approach sometimes (especially
for snarks) has to execute more planarity tests than our naive IP approach. This is due to
the order in which the set of all PPMs of the input graph is traversed in the search process

51

6 Computational Results

Vertices # tested graphs ø PPMs

04 100 7
06 100 9
08 100 18
10 100 27
12 100 46
14 100 79
16 100 133
18 100 223
20 100 369
22 100 613
24 100 1 065
26 100 1 733
28 100 2 906
30 100 4 791
32 100 8 045
34 100 13 421
36 100 22 201
38 100 37 302
40 100 63 000
42 100 105 123
44 100 175 630
46 100 294 055
48 100 489 094
50 100 817 967

Table 6.5: Average number of PPMs for cubic random graphs

52

6.3 Benchmark Results

of finding a PPPM. For graphs without a PPPM the number of planarity tests for our
enumeration and for our naive IP approach coincide of course. Moreover we can see that
the number of planarity tests is the lowest for our smart cuts. (see also Figure 6.2 and
Figure 6.3)

Regarding the running times of our algorithms we see that the enumeration approach
is favorable for smaller graphs. Moreover we can also see in Table 6.6 and Figure 6.4 that
our smart cut approach begins to outrun our enumeration for snarks of an order n ≥ 38.
This can be explained due to the tremendous raise on the average number of planarity
tests which have to be executed. Table 6.2 also explains this sudden raise. For order 38
nearly 2

3 of the examined snarks do not have a PPPM (resp. K5PPM). This means that
our enumeration approach has to look at all according PPMs to conclude that no PPPM
exists. Now we remind the reader of Observation 6.2.5 which states the average number
of PPMs is increasing exponentially. Regarding the cubic random graphs, our smart cut
approach also starts to outperform our enumeration approach for graphs with 38 vertices
or more (see Table 6.7 and Figure 6.5). Table 6.3 explains this due to the fact that from
this graph size onwards less than half of all of our tested graphs contain a PPPM. For
cubic random graphs of order 40 or higher, this number goes down to 1

4 and is decreasing
rapidly.

For the search of K5PPMs, we can only compare our enumeration approach to our naive
IP approach, since the implementation of an algorithm, for finding K5-minor models and
not only reporting that such exist was out of scope for this thesis. However the results from
Table 6.9 and Table 6.10 show similar results as for the approaches for finding PPPMs.
Here the columns 3 and 5 contain the average number of K5-minor tests. We see that our
enumeration outperforms our naive IP approach and that their running times are increasing
exponentially due to the exponential growth of the PPMs. This can also be seen in Figure
6.6 and Figure 6.7.

By comparing our enumeration approaches for PPPMs resp. K5PPMs, hence compar-
ing the average number of planarity tests with the average number of K5-minor tests, we
see that up to 40% fewer tests have to be executed if we only search for a K5PPM instead
of a PPPM, because all graphs which are planar are K5-minor free but not vice versa. On
the opposite it has to be mentioned that it is a lot faster to check for planarity than to
check if the graph contains a K5-minor. This is due to the fact that our algorithm for
testing if the graph is planar is in O(n) and our algorithm for testing whether the graph
has a K5-minor is in O(n2). Naturally the average number of planarity tests coincides with
the average number of K5-minor tests for graphs without a K5PPM. The complete data
regarding the average number of planarity tests resp. K5-minor tests can be found in Table
6.11. The first column represents the tested class of graphs. The second column contains
the average number of planarity tests which had to be executed during our tests. The third
column contains the average number of K5-minor tests. Column 4 to 6 show our results
for the classes of cubic random graphs.

Regarding the percentage of graphs without a K5PPM (resp. PPPM), we see that this

53

6 Computational Results

number is increasing relative to the number of vertices. Whereas our small (regarding the
number of vertices) instances all have a K5PPM (resp. PPPM), it becomes rather unlikely
to find a cubic random graph which has a K5PPM (resp. PPPM). Furthermore we see
in Table 6.2 and Table 6.3, that from 50 vertices onwards for snarks and from 58 vertices
onwards for our cubic random graphs, none of our test instances got a PPPM. Unfortu-
nately these instances were already too big to search for a K5PPM with our enumeration
approach. However from the flower snarks in Chapter 5 and together with Corollary 4.2.6
we know that snarks with an arbitrary high number of vertex size for 4n and n ∈ N+ can
be found, which also have a PPPM.

54

6.3
B
en

ch
m
ark

R
esu

lts
Vertices Enumeration Naive IP Smart Cuts

ø time(s) ø planarity tests ø time(s) ø planarity tests ø time(s) ø planarity tests

10 0.001 1.000 0.078 1.000 0.077 1.000
18 0.002 1.000 0.007 1.000 0.007 1.000
20 0.016 12.000 0.829 18.167 0.359 8.333
22 0.045 20.065 1.267 23.968 0.539 9.226
24 0.086 48.632 1.604 31.826 0.832 14.987
26 0.171 93.726 3.796 62.035 1.626 25.038
28 0.378 186.242 10.477 130.655 3.381 40.288
30 1.591 463.190 38.330 326.420 8.762 68.120
32 2.645 802.860 72.208 554.710 11.107 85.580
34 5.873 1 799.190 239.592 1 807.680 31.108 184.480
36 7.248 2 260.310 502.242 3 367.250 34.466 201.590
38 92.326 25 692.590 4 048.677 23 775.308 68.613 362.513
40 131.942 35 573.840 5 567.872 31 734.680 89.744 393.360
44 117.348 27 453.774 58.283 248.000
50 4 385.518 829 836.000 419.996 1 567.000

Table 6.6: Comparison of running times of different approaches for snarks regarding PPPMs

55

6
C
o
m
p
u
ta
tion

a
l
R
esu

lts

Vertices Enumeration Naive IP Smart Cuts

ø time(s) ø planarity tests ø time(s) ø planarity tests ø time(s) ø planarity tests

04 0.000 1.000 0.012 1.000 0.013 1.000
06 0.001 1.000 0.001 1.000 0.001 1.000
08 0.001 1.000 0.002 1.000 0.002 1.000
10 0.001 1.000 0.002 1.000 0.003 1.000
12 0.001 1.030 0.003 1.000 0.003 1.000
14 0.001 1.010 0.013 1.290 0.012 1.220
16 0.002 1.110 0.042 1.610 0.043 1.610
18 0.002 1.440 0.051 2.470 0.044 2.150
20 0.003 1.980 0.138 4.780 0.078 2.790
22 0.011 7.830 0.371 10.090 0.223 5.900
24 0.045 29.690 1.987 45.320 0.709 15.500
26 0.197 107.180 8.681 134.880 2.881 46.130
28 0.645 251.000 40.500 349.660 7.908 72.870
30 4.992 1 077.410 168.288 1 104.510 22.750 133.530
32 9.660 2 498.900 336.571 2 667.080 24.713 181.180
34 32.672 7 466.640 1 074.057 7 435.920 51.813 316.020
36 59.164 13 386.200 1 949.662 13 360.050 69.484 393.360
38 128.557 23 441.100 4 130.026 23 062.340 80.400 416.590
40 296.355 49 331.150 10 479.874 51 261.510 115.237 533.550
42 579.059 95 850.420 128.030 624.420
44 1 025.798 162 608.490 146.976 655.720
46 1 973.035 281 526.450 163.019 690.090
48 3 355.749 474 967.630 184.552 735.700
50 6 430.941 806 446.330 190.799 759.910
52 11 146.379 1 349 592.340 206.081 833.470
54 38 176.898 2 308 113.806 209.651 840.680
56 318.664 846.880
58 394.040 888.060
60 437.614 889.610
62 468.450 911.800
64 525.223 926.220
66 575.926 959.250
68 635.845 979.710
70 682.564 995.630

Table 6.7: Comparison of running times of different approaches for cubic random graphs regarding PPPMs

5
6

6.4 Used Packages, Libraries

Vertices Smart Cuts

ø time(s) ø planarity tests

72 800.673 1 016.490
74 769.025 987.960
76 877.274 1 062.870
78 886.559 1 043.400
80 1 056.926 1 051.390
82 1 104.285 1 093.410
84 1 326.849 1 084.430
86 1 276.483 1 085.490
88 1 323.017 1 063.470
90 1 637.787 1 114.230
92 1 859.897 1 118.900
94 1 824.786 1 106.700
96 2 141.258 1 120.400
98 2 312.978 1 103.490

100 2 404.138 1 099.130

Table 6.8: Comparison of running times of different approaches for bigger cubic random
graphs regarding PPPMs

6.4 Used Packages, Libraries

6.4.1 House of Graphs

House of graphs [3] is an online searchable database for graphs. Since the creation of all
snarks up to a certain order is computationally expensive, we used the snarks from this site
as input for our testing. Moreover whenever we will refer to a snark with a certain girth
and a certain index it is meant to be according to the ordering of this database.

6.4.2 Graph6

The graph6 data format was created by Brendan McKay. It is used for storing undirected
simple graphs in a compact manner that uses only printable ASCII characters. We will
now provide an example to understand this format better.

Suppose we got the graph of Figure 6.8. This graph can also be represented by the fol-
lowing upper triangle adjacency matrix (6.12). We can also represent this matrix by the
bit-vector b 0010001000010010001111101001100100 if we traverse the matrix (column wise)

57

6 Computational Results

10 15 20 25 30 35 40

100

101

102

103

104

105

vertices

�
p
la

n
ar

it
y

te
st

s

Enumeration
Naive IP

Smart Cuts

Figure 6.2: Avg. number of planarity
tests for snarks

0 20 40 60 80 100

100

101

102

103

104

105

106

107

vertices

�
p
la

n
ar

it
y

te
st

s

Enumeration
Naive IP

Smart Cuts

Figure 6.3: Avg. number of planarity
tests for cubic random

graphs

10 20 30 40 50

10−3

10−1

101

103

vertices

A
v
g.

ti
m

e(
s)

Enumeration
Naive IP

Smart Cuts

Figure 6.4: Running times for snarks

0 20 40 60 80 100
10−4

10−2

100

102

104

vertices

A
v
g.

ti
m

e(
s)

Enumeration
Naive IP

Smart Cuts

Figure 6.5: Running times for cubic ran-
dom graphs

58

6.4 Used Packages, Libraries

Vertices Enumeration Naive IP

ø time(s) ø K5 minor tests ø time(s) ø K5 minor tests

10 0.000 1.000 0.002 1.000
18 0.007 1.000 0.032 1.000
20 0.298 12.000 1.267 18.167
22 0.422 11.742 1.543 18.516
24 1.665 31.787 2.869 26.232
26 4.754 65.277 7.741 53.019
28 14.253 144.965 26.069 115.776
30 54.553 404.460 98.476 308.950
32 107.496 717.150 213.171 456.790
34 366.931 1 691.140 991.961 1 722.030
36 538.068 2 240.210
38 26 211.580 25 692.590
40 38 070.941 35 573.840

Table 6.9: Comparison of running times of different approaches for snarks regarding
K5PPMs

Vertices Enumeration Naive IP

ø time(s) ø K5 minor tests ø time(s) ø K5 minor tests

04 0.000 1.000 0.002 1.000
06 0.000 1.000 0.001 1.000
08 0.000 1.000 0.001 1.000
10 0.000 1.000 0.002 1.000
12 0.000 1.030 0.003 1.000
14 0.001 1.010 0.016 1.190
16 0.005 1.100 0.051 1.480
18 0.018 1.330 0.071 2.260
20 0.053 1.700 0.181 3.840
22 0.191 5.700 0.587 8.460
24 1.256 23.500 3.431 38.020
26 5.038 71.182 16.711 105.960
28 23.983 238.260 85.170 315.150
30 131.051 1 009.390 362.162 1 080.730
32 348.754 2 163.610 1 239.077 2 506.630
34 1 405.364 7 236.780 4 569.152 7 053.300
36 3 027.770 12 990.470 10 014.808 12 969.570
38 6 455.092 22 830.070

Table 6.10: Comparison of running times of different approaches for cubic random graphs
regarding K5PPMs

59

6 Computational Results

Snarks Cubic random graphs

nodes ø plan. tests ø K5 minor tests # nodes ø plan. tests ø K5 minor tests

10 1.000 1.000 4 1.000 1.000
18 1.000 1.000 6 1.000 1.000
20 12.000 12.000 8 1.000 1.000
22 20.065 11.742 10 1.000 1.000
24 48.632 31.787 12 1.030 1.030
26 93.726 65.277 14 1.010 1.010
28 186.242 144.965 16 1.110 1.100
30 463.190 404.460 18 1.440 1.330
32 802.860 717.150 20 1.980 1.700
34 1 799.190 1 691.140 22 7.830 5.700
36 2 260.310 2 240.210 24 29.690 23.500
38 25 692.590 25 692.590 26 107.180 71.182
40 35 573.840 35 573.840 28 251.000 238.260
44 27 453.774 30 1 077.410 1 009.390
50 829 836.000 32 2 498.900 2 163.610

34 7 466.640 7 236.780
36 13 386.200 12 990.470
38 23 441.100 22 830.070
40 49 331.150
42 95 850.420
44 162 608.490
46 281 526.450
48 474 967.630
50 806 446.330
52 1 349 592.340
54 2 308 113.806

Table 6.11: Comparison of avg. number of planarity tests with avg. of K5-minor tests

60

6.4 Used Packages, Libraries

10 15 20 25 30 35 40
10−4

10−2

100

102

104

vertices

A
v
g
.

ti
m

e(
s)

Enumeration
Naive IP

Figure 6.6: K5 running times for
snarks

10 20 30 40

10−4

10−2

100

102

104

vertices

A
v
g
.

ti
m

e(
s)

Enumeration
Naive IP

Figure 6.7: K5 running times for cu-
bic random graphs

0

1

2

3

4

5

6

7

Figure 6.8: Graph6 example graph

1 0 0 0 0 1 1
0 0 0 0 1 1

1 1 1 0 0
0 1 1 0

1 0 1
0 0

0


Table 6.12: Graph6 example adjacency matrix

in the following order (0,1), (0,2), (1,2), (0,3), (1,3), ..., (n-1,n). Now we add a padding on
the right side to get binary numbers of bit-length 6. These binary numbers are converted
to decimal numbers and an offset of 63 is added to them. This leaves us with the decimal
numbers 96 71 125 101 79. Furthermore, we prepend the number of vertices of our graph

61

6 Computational Results

(also with an offset of 63) which gives us the numbers 71 96 71 125 101 79. Finally encoding
this by the ASCII code gives us the string ”G‘G}eO” which is the graph6 encoding of our
original graph.

6.4.3 NetworkX

For representing our graphs we used NetworkX. NetworkX is a Python package for the
representation and manipulations of graphs and networks. Moreover, it offers a lot of
convenient functions for testing various graphs properties like in our case the connectivity
of a graph resp. a version of the Left-Right Planarity Test ([8]) for testing if a graph is
planar.

62

7 Conclusion

7.1 Summary

At the beginning of this thesis we started with the formulation of the CDC. To recall the
problem: Given a bridgeless graph G, does a collection of cycles of G exist, such that every
edge of G appears in exactly two of these cycles? We started off with retracing the result by
Jaeger ([21]) that a minimum counterexample to the CDC has to be a snark. Hence we can
reduce the CDC Conjecture to the class of snarks. Furthermore we elaborated the term of
pseudo matchings which are a generalization of matchings. We proceeded by building the
essential bridge between a CCD and a CDC via PPMs. To recall one of our main theorems:

Theorem 4.2.3
Let G be a cubic graph and let M be a perfect pseudo matching (PPM) of G. If G/M has
a CCD, then G has a CDC.

Thus instead of searching for a CDC of a cubic graph, we can instead just search for a
CCD. The thought behind step was that number of vertices in the contraction graph is at
most half the number of vertices in original graph. Hence it might be faster to search for
a CCD in the reduced graph than for a CDC of the original graph. Moreover we did not
try to search for a CCD explicitly but built our approach on the work of Fan and Zhang.
In [11] they stated the following theorem:

Theorem 4.2.2:
Let G be a K5 minor free graph. Then for every admissible transition system T of G,
(G,T) has a compatible cycle decomposition.

Hence instead of searching for a CDC in the original graph G we just had a to find a
PPM M of G and check whether G/M was K5-minor free. Since implementing an algo-
rithm which finds a K5 minor and also returns a model of it, was out of scope for this
thesis, we used the stronger check whether G/M was planar. To exactly solve this problem
we designed three different algorithms. The first one is an enumeration approach. The
second one is a Branch-and-Cut approach which merely imitates the enumeration and can
be seen as intermediate step. The third one is also a Branch-and-Cut approach but here
we improved the used cuts. The extended cuts are stronger which lead to the result that
we had to execute a lot less planarity tests.

To test our algorithms we implemented our approaches in Python using Gurobi and Net-
workX. We used two different classes of graphs as instances. As first class we used snarks,
since these are the bottleneck of the CDC as mentioned earlier. As a second class we used

63

7 Conclusion

cubic random graphs, because Theorem 4.2.3 still applies to this class. Another motivation
for the second class was to test whether our integer linear programming approach achieves
reasonable running times for instances with more vertices. Afterwards we compared the
three programs by their running times and their number of executed planarity tests. Here
we saw that for instances with fewer than 34 vertices, an enumeration approach is favor-
able. This is due the fact that the creation of all PPMs for a small given graph is fast.
Additionally we saw that our integer linear programming approach with smart cuts is out-
running an enumeration by far for bigger instances, since the number of PPMs is increasing
exponentially with an increasing number of vertices. This performance advantage is hence
due to the lower number of planarity tests that have to be executed.

Our designed and implemented approach was able to verify the CDC for graphs up to
a size of 26 nodes. Hereby also two conjectures about PPPMs and K5PPMs were stated.
The conjectures are:

• Every snark has a planarizing perfect pseudo matching (PPPM).

• Every snark has a K5-minor free perfect pseudo matching (K5PPM).

It’s clear that the first conjecture implies the second one. Both conjectures were refuted by
finding snarks (see Appendix) without a PPPM resp. without a K5PPM. This also shows
that our new developed approach can, in the current state, not be used to prove the CDC
for graphs with more vertices than 26.

7.2 Further Work

Since the extraction of Kuratowski subgraphs is a major part of our Integer Linear Program
(IP) its running time might be improved by implementing an algorithm for finding multiple
Kuratowski subgraphs at once like in [6]. Moreover, our approach for smart cuts can be
extended for finding K5PPMs and not only for PPPMs by implementing an algorithm
which finds a K5-minor model for a given graph or reports that the graph is K5-minor free.

64

Appendix

Graph6 Format

Snarks of order 26 without PPPM:

Y?gW@eOGGC?A???@__??T_?@??_?A???L??A??AIC?????J?B????a?_

Y?_W@c??G?GB?AO_g??CP_???OC@??G@C_????BH??GAC?@A??G??a?_

Snarks of order 28 without K5PPM:

[??G?EOG??GB_AO_g_?CPA??@?@???@?Cg???C?OA?C???F_?A?C?@?a_?????W@

[?GQ@eO?GC?AP??BO@@?GB????o?E???[G?????G??@G??@_??????D_A?A????T

[?‘Q@?O??C?B_A?C@??A@@?G?BI?A@?GC@???G?K@??A??C?C?C???Bd????C?_@

[?HI?eOOGC?AD??B_@???_????g?@?O?U??A??DH?????A@??C??@?Ac???OA??H

[?hI?E??GCCA@??Bo@?A?OC???w??_‘??_?A?O?G?C????HC??A???_a??A????J

[?HO@cO?KCCB????OC?W?_??A?I????aD?@???@G?E????R??a???C?‘?O???@?B

[?GY@E???C?B_?O@g_??Ta??P?@?????[?_??C?__?@?C?????C???B_A??_??@D

[?gW?cO?G?CAP??@OC@A?OC??H??@_??K?G??_?I???_P??_??G???B_?W????Q@

[?GQ?eO?GC?B_?O??@??a_???@G?CG?@CGA???AX?G???E@P???G???‘_???A??B

[?GQ@EOOGC?AP??BO@@?GB????o?E???[G?????K??????BC??@???G_G?A????R

[??W@C??G?GB_AO_g_?CP_??P?K??@O?C????G?G??C?A?DG??G?G?Aa??A?O?O@

[?H?@c??KC?BA?O?oC?O?D???OAC?@?GCO????PK????_A@?G?G??B?_?O@??@_@

[?GW?AOO?C?BA?O_CG??‘?A?P?C?CA??E??G?O?H?G??CA@@??O??o?_O?A???W@

[?hW@aOGGC?A_???_???G?_??AG?OG?@OB?????y?A??@A?O?G????B_?g???@_@

[?GA@eOOGC?AP??BO@@?GB????o?E???[???C??G??@?_?@A??A???Co??C????J

65

List of Figures

1.1 Reduction chain of our approach . 1

3.1 Directed graph . 5
3.2 Undirected graph with multiple edges . 5
3.3 Undirected graph with a loop . 5
3.4 Complete graphs K1 to K5 . 6
3.5 Complete bipartite graph K3,3 . 7
3.6 Cubic graph with 6 nodes . 7
3.7 Vertex Deletion . 8
3.8 Edge contraction . 8
3.9 Cycle graphs . 10
3.10 Cut-vertex . 10
3.11 Bridge . 10
3.12 Edge cut . 10
3.13 Minimum edge coloring . 11
3.14 Petersen graph . 12
3.15 Claw graph K1,3 . 12
3.16 Perfect pseudo matching . 13
3.17 Two different embeddings of K4 . 13
3.18 Subdivision of K3,3 . 17
3.19 W graph . 19
3.20 Feasible region and solution to IP . 23
3.21 Maximal matchings Peterson graph . 26
3.22 Maximal Independent Set of the Peterson graph 27

4.1 CDC of the Petersen graph . 30
4.2 Example contraction to form a transition 32
4.3 Cycle cover extension case 1 . 33
4.4 Cycle cover extension case 1 for the symmetric case 33
4.5 Cycle cover extension case 2 . 33
4.6 PPPM example . 34
4.7 Flower snark J5 . 35
4.8 PPPM for flower snark J5 . 36

5.1 Branch component set example . 41
5.2 Proof diagram . 44

6.1 Growth of average number of PPMs . 51
6.2 Avg. number of planarity tests for snarks 58

67

List of Figures

6.3 Avg. number of planarity tests for cubic random graphs 58
6.4 Running times for snarks . 58
6.5 Running times for cubic random graphs . 58
6.6 K5 running times for snarks . 61
6.7 K5 running times for cubic random graphs 61
6.8 Graph6 example . 61

68

List of Tables

5.1 Branch component set example . 42

6.1 Snark table . 48
6.2 Weak Snarks without PPPM resp. K5PPM 49
6.3 Random cubic graphs without PPPM resp. K5PPM 50
6.4 Average number of PPMs for snarks . 51
6.5 Average number of PPMs for cubic random graphs 52
6.6 Comparison of running times of different approaches for snarks regarding

PPPMs . 55
6.7 Comparison of running times of different approaches for cubic random graphs

regarding PPPMs . 56
6.8 Comparison of running times of different approaches for bigger cubic random

graphs regarding PPPMs . 57
6.9 Comparison of running times of different approaches for snarks regarding

K5PPMs . 59
6.10 Comparison of running times of different approaches for cubic random graphs

regarding K5PPMs . 59
6.11 Comparison of avg. number of planarity tests with avg. of K5-minor tests . 60
6.12 Graph6 example adjacency matrix . 61

69

List of Algorithms

1 K5 minor containment . 20

2 Enumerate Perfect Pseudo Matchings . 38

71

ACRONYMS

CCD compatible cycle decomposition

CDC Cycle Double Cover

PPM perfect pseudo matching

PPPM planarizing perfect pseudo matching

K5PPM K5-minor free perfect pseudo matching

LP Linear Program

IP Integer Linear Program

MILP Mixed Integer Linear Program

73

Bibliography

[1] Adler, I., Dorn, F., Fomin, F. V., Sau, I., and Thilikos, D. M. Faster pa-
rameterized algorithms for minor containment. In Algorithm Theory - SWAT 2010
(Berlin, Heidelberg, 2010), H. Kaplan, Ed., Springer Berlin Heidelberg, pp. 322–333.

[2] Boyer, J. M., and Myrvold, W. J. On the cutting edge: simplified O(n) planarity
by edge addition. J. Graph Algorithms Appl. 8, 3 (2004), 241–273.

[3] Brinkmann, G., Coolsaet, K., Goedgebeur, J., and Mélot, H. House of
graphs: A database of interesting graphs. Discrete Applied Mathematics 161, 1 (2013),
311 – 314.

[4] Brinkmann, G., Goedgebeur, J., Hägglund, J., and Markström, K. Gen-
eration and properties of snarks. Journal of Combinatorial Theory, Series B 103, 4
(2013), 468 – 488.

[5] Carroll, L. The hunting of the snark. Henry Altemus Company, 1909.

[6] Chimani, M., Mutzel, P., and Schmidt, J. M. Efficient extraction of multiple
kuratowski subdivisions. In Graph Drawing (Berlin, Heidelberg, 2008), S.-H. Hong,
T. Nishizeki, and W. Quan, Eds., Springer Berlin Heidelberg, pp. 159–170.

[7] Conforti, M., Cornuéjols, G. V., and Zambelli, G. V. Integer programming.
Graduate texts in mathematics ; 271. Springer, Cham Heidelberg New York Dordrecht
London.

[8] de Fraysseix, H., de Mendez, P. O., and Rosenstiehl, P. Trémaux trees and
planarity. Internat. J. Found. Comput. Sci. 17, 5 (2006), 1017–1029.

[9] Diestel, R. Graph theory, fifth edition. ed. Graduate texts in mathematics. Springer,
Berlin, 2017.

[10] Dirac, G. A. In abstrakten graphen vorhandene vollständige 4-graphen und ihre
unterteilungen. Mathematische Nachrichten 22, 1-2 (1960), 61–85.

[11] Fan, G., and Zhang, C.-Q. Circuit decompositions of Eulerian graphs. J. Combin.
Theory Ser. B 78, 1 (2000), 1–23.

[12] Fleischner, H. Eine gemeinsame Basis für die Theorie der Eulerschen Graphen und
den Satz von Petersen. Monatshefte für Mathematik 81, 4 (Dec 1976), 267–278.

[13] Fleischner, H. Eulersche Linien und Kreisüberdeckungen, die vorgegebene
Durchgänge in den Kanten vermeiden. Journal of Combinatorial Theory, Series B
29, 2 (1980), 145 – 167.

75

Bibliography

[14] Fleischner, H., and Frank, A. On circuit decomposition of planar eulerian graphs.
Journal of Combinatorial Theory, Series B 50, 2 (1990), 245 – 253.

[15] Fleischner, H., Gh., B. B., Zhang, C.-Q., and Zhang, Z. Compatible cycle
decomposition of bad k5-minor-free graphs. Electronic Notes in Discrete Mathematics
61 (2017), 445 – 449. The European Conference on Combinatorics, Graph Theory and
Applications (EUROCOMB’17).

[16] Gurobi Optimization, L. Gurobi optimizer reference manual, 2018.

[17] Holton, D. A., and Sheehan, J. The Petersen Graph. Australian Mathematical
Society Lecture Series. Cambridge University Press, 1993.

[18] Hopcroft, J., and Tarjan, R. Efficient planarity testing. J. Assoc. Comput. Mach.
21 (1974), 549–568.

[19] Huck, A. Reducible configurations for the cycle double cover conjecture. Discrete
Applied Mathematics 99, 1 (2000), 71 – 90.

[20] Isaacs, R. Infinite families of nontrivial trivalent graphs which are not tait colorable.
The American Mathematical Monthly 82, 3 (1975), 221–239.

[21] Jaeger, F. A survey of the cycle double cover conjecture. In Annals of Discrete
Mathematics (27): Cycles in Graphs, B. Alspach and C. Godsil, Eds., vol. 115 of
North-Holland Mathematics Studies. North-Holland, 1985, pp. 1 – 12.

[22] Kézdy, A., and McGuinness, P. Sequential and parallel algorithms to find a
K5 minor. In Proceedings of the Third Annual ACM-SIAM Symposium on Discrete
Algorithms (Orlando, FL, 1992) (1992), ACM, New York, pp. 345–356.

[23] Khachiyan, L. G. A polynomial algorithm in linear programming. Yingyong Shuxue
yu Jisuan Shuxue, 2 (1980), 1–3. Translated from the Russian by Ke Gang Hao.

[24] Klee, V., and Minty, G. J. How good is the simplex algorithm? 159–175.

[25] Matoušek, J., and Thomas, R. On the complexity of finding iso- and other mor-
phisms for partial k-trees. Discrete Mathematics 108, 1 (1992), 343 – 364.

[26] Menger, K. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae 10, 1 (1927),
96–115.

[27] Nemhauser, G., and Wolsey, L. Integer and combinatorial optimization. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons,
Inc., New York, 1999. Reprint of the 1988 original, A Wiley-Interscience Publication.

[28] Nishizeki, T. T., and Chiba, N. N. Planar graphs : theory and algorithms. North-
Holland mathematics studies ;. North-Holland ; Sole distributors for the U.S.A. and
Canada, Elsevier Science Pub. Co., Amsterdam ; New York : New York, N.Y., 1988.

76

Bibliography

[29] Reed, B., and Li, Z. Optimization and recognition for k5-minor free graphs in
linear time. In LATIN 2008: Theoretical Informatics (Berlin, Heidelberg, 2008), E. S.
Laber, C. Bornstein, L. T. Nogueira, and L. Faria, Eds., Springer Berlin Heidelberg,
pp. 206–215.

[30] Tait, P. G. Remarks on the colouring of maps. In Proc. Roy. Soc. Edinburgh (1880),
vol. 10, pp. 501–503.

[31] Zhang, C.-Q. Circuit Double Cover of Graphs. London Mathematical Society Lecture
Note Series. Cambridge University Press, 2012.

77

	Introduction
	Aim of the Thesis
	Contribution
	Structure of the Work

	Related Work
	Graph Theory
	Planarity Testing
	K5 Minor Testing
	The Cycle Double Cover Conjecture
	Compatible Cycle Decomposition
	Snarks

	Preliminaries
	Graph Theory
	Planarity
	K5 Minor Testing
	Integer Linear Programming
	Linear Programming
	Basic Definitions
	Solving Methods
	Examples

	Perfect Pseudo Matchings
	Motivation
	Connection to the CDC

	Algorithmic Approach
	Enumeration
	Symmetry Free Enumeration

	Integer Linear Programming
	Naive IP
	Pursuit of Smart Cuts
	Separation Process

	Computational Results
	Test Instances
	Snarks
	Non Snarks

	Observational Results
	Planarizing Perfect Pseudo Matchings
	K5 Minor Free Perfect Pseudo Matchings

	Benchmark Results
	Used Packages, Libraries
	House of Graphs
	Graph6
	NetworkX

	Conclusion
	Summary
	Further Work

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

