FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Visibility-Based Obstacle Placing

Automated Obstacle Placing based on Circularity

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieurin
im Rahmen des Studiums
Computational Intelligence
eingereicht von

Carina Schwab
Matrikelnummer 0726458

an der
Fakultat fur Informatik der Technischen Universitat Wien

Betreuung: Univ.-Prof. Dipl.-Ing. Dr.techn. Giinther Raidl
Mitwirkung: Univ.Ass. Mag.arch. Richard Schaffranek

Wien, 09.01.2016

(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Visibility-Based Obstacle Placing

Automated Obstacle Placing based on Circularity

MASTER'S THESIS
submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieurin
in
Computational Intelligence
by

Carina Schwab
Registration Number 0726458

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.-Prof. Dipl.-Ing. Dr.techn. Giinther Raidl
Assistance: Univ.Ass. Mag.arch. Richard Schaffranek

Vienna, 09.01.2016

(Signature of Author) (Signature of Advisor)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Erklarung zur Verfassung der
Arbeit

Carina Schwab
Horitzergasse 2/13, 1140 Wien

Hiermit erklére ich, dass ich diese Arbeit selbsténdig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der Arbeit
- einschliefllich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle
als Entlehnung kenntlich gemacht habe.

(Wien, 09.01.2016) (Unterschrift Verfasserin)

Danksagung

Ich bedanke mich vielmals bei meinem Betreuer Prof. Giinter Raidl fiir die Ermoglichung
dieser interessanten Diplomarbeit, die hervorragende Betreuung, richtungsweisenden Vorschlége
sowie seine Geduld. Mein Dank gilt auch Richard Schaffranek fiir die Bereitstellung des
Diplomarbeitsthemas, seine Begeisterung fiir dieses Thema und seine anwendungsorientierten
Ideen.

Vielen Dank an Etienne Cordonnier fiir die Unterstiitzung, die interessanten Diskussionen
iiber die englische Sprache und insbesondere fiir die zur Verfiigungsstellung seiner Rechnerre-
sourcen fiir meine Berechnungen.

Mein herzlicher Dank gilt auch meiner Familie, die in meinem Ausbildungsweg immer
hinter mir standen und mich in jeder Lebenslage unterstiitzt haben.

iii

Acknowledgements

I would like to express my gratitude to my supervisor Prof. Giinter Raidl for the opportunity
to work on this master thesis, the great mentoring, his helpful advises and his patience.
I would also like to thank Richard Schaffranek for providing the topic for this thesis, his
involvement in this topic and his application-oriented ideas.

I am also very grateful to Etienne Cordonnier for his support, for the interesting dis-
cussions about the english language and especially for providing me with his computer’s
calculation power.

My warm thanks to my family who supported me during my education and are always
there for me.

Abstract

In this thesis the problem of placing multiple obstacles in a discrete 2D environment is con-
sidered. An example real life application for this problem is the placing of exhibition objects
in museums. Previous studies by various authors showed that people’s behaviour in space is
linked to the circularity measure — also called compactness — of their field of vision. This mea-
sure describes the shape of the space that can be seen from a specific point. An evolutionary
algorithm (EA) is developed that places the given obstacles at the remaining unblocked space
according to the compactness at the remaining unoccupied space. The EA uses different tar-
get functions to either minimise or maximise the compactness measure globally or locally.
Several test series are executed in order to assess influence of the algorithm’s parameters on
its performance. The solutions of the EA show emerging patterns for different target func-
tions. From those results a faster constructive heuristic is developed that can provide several
different solutions to simple placing problems within short time. In the EA a version of the
Shadow Casting algorithm is used to calculate the field of vision for a point. The heuristic
extends this algorithm by placing obstacles while iterating through the visible areas. The
objects are placed in a way such that preset points show a high compactness value and that
the architect can be inspired by the presented diverse solutions.

vii

Kurzfassung

Diese Masterarbeit befasst sich mit dem Problem eine Mehrzahl an Objekten in einem diskre-
ten 2D Raum zu platzieren. Ein Beispiel eines realen Problems dieser Art ist das Platzieren
von Ausstellungsstiicken in einem Museum. Vergangene Studien diverser Autoren zeigten,
dass das Verhalten von Menschen in Rdumen mit der Zirkularitdt — auch Kompaktheit — von
ihrem Sichtfeld zusammen héngt. Dieses Maf} beschreibt die Form des Raumes der von einem
bestimmten Punkt aus gesehen werden kann. Im Rahmen dieser Arbeit wurde ein evolutio-
narer Algorithmus (EA) entwickelt, der definierte Objekte abhéngig von der Kompaktheit
des freibleibenden Raumes platziert. Der EA verwendet verschiedene Zielfunktionen um die
Kompaktheit global oder lokal entweder zu minimieren oder zu maximieren. Mehrere Testrei-
hen wurden ausgefithrt um den Einfluss der Parameter des Algorithmus auf seine Effizienz
zu untersuchen. Die Losungen die der EA produziert zeigen dass sich bestimmte Muster
fir unterschiedliche Zielfunktionen entwickeln. Basierend auf diesen Ergebnissen wurde ei-
ne schnellere konstruierende Heuristik entwickelt, die mehrere unterschiedliche Lésungen fiir
einfache Platzierungsprobleme in kurzer Zeit berechnen kann. Im EA wurde eine Version
des Shadow Casting Algorithmus verwendet um das Sichtfeld fiir einen Punkt zu berechnen.
Die Heuristik erweitert diesen Algorithmus um das Platzieren von Objekten wéhrend dem
Durchlaufen des Sichtfeldes. Die Objekte werden so platziert, dass voreingestellte Punkte eine
hohe Kompaktheit aufweisen und die prasentierten Losungen dem Architekt als Inspiration
dienen.

ix

Contents

1__Introduction| 1
1.1 Methodologyl 2
[2 Isovist and Compactness Background| 3
2 D (o2 T 3
2.2 Compactness| e 4
2.3 Compactness in discrete space|l. 5
2.4 Recursive Shadow Casting| e 6
2.5 Compactness calculation|o oo 9
3__Related Workl 11
3.1 Introductionl. 11
13.2 Isovist properties and human behaviour| 11
13.3 Generative approaches in architecture] 18
3.4 Conclusion| e 22
[4 Evolutionary Approach: Introduction| 25
4.1 Problem definition| Lo 25
4.2 Background to evolutionary algorithms|. 25
4.3 Evolutionary algorithm variants|. 28
4.4 Evolutionary algorithms in architecture| 32
[5 Evolutionary Approach: Detalils| 35
BI OVEIVIEW! . . . o v v ot e 35
5.2 Evolutionary algorithm for object placement|. 36
5.3 Shadow Casting algorithm| 0 0. 42
5.4 Typical solutions| 46
[6 Evolutionary Approach: Evaluation| 51
6.1 Test setting] e e e 51
6.2 Number of generations| Lo 52
6.3 Mutation and crossoverl 52
6.4 Childrenl e 53
6.5 Populationsizel 54
6.6 Crossover points| 56
6.7 Tournament group size|.o e 56
6.8 Removal of duplicates| o 57
6.9 Counting extrema points|. 57
[6.10 Influence of instance size scaling on run time| 59
[6.11 Scaling of complexity]. o 60
[6.12 Build footprint and cross floor areaf, 63
|6.13 Performance check against a local improvement| 66

xi

|7 Heuristic Approach|

|Bibliography|

xii

69
69
69
70
74

77
77
78

79

CHAPTER

Introduction

Architectural planning problems evolving around designing space are multilayer problems
with a high number of complex relationships influencing the quality of the solution. Param-
eters relevant in a planning problem are for example technical, functional, aesthetic or legal.
Because of their complexity those problems cannot be easily broken down into sub-problems
or described formally. Rittel and Webber called this property wicked [1], referring to the fact
that these problems cannot be abstracted and described in detail without already specifying
the direction in which the solution is considered. An understanding of all possible solutions
would therefore be necessary in order to specify the problem domain in detail. It is vital
for the planner to gain a better understanding of the problems’ nature by exploring possible
solutions. Since the problems are wicked it cannot formally be determined when a solution
is ,right“ or ,,good enough®. Time is often an important factor which limits the continuous
learning and development cycle of a planner [1]. In order to support this exploratory process
automatic planning tools can be used to present diverse solutions within a short period of
time to the planner. This provides the planner with basic solutions and new ideas he can
adapt into his work. Another advantage of computer aided planning is that criteria which
would be hard or long to check by people can be effectively integrated into the design process
of generative systems [2].

This thesis considers one special type of planning problems — the placing of objects in a
space oriented on the compactness values of the unoccupied places. This specific problem
occurs for example in museums or exhibitions, where it is relevant how the samples are placed.
Batty believes that how far and how much we can see is a key issue for good architecture [3].
When people move through space their experience is determined by the properties which
they can perceive through their various senses, in particular their sense of vision. What we
can recognise with our eyes is mainly determined by the surface characteristics like materials,
textures and colours and the arrangement and size of the environment elements. These
attributes are referred to as visuospatial properties. The arrangement of elements in space
in particular is termed the spatial configuration. An intuitive way to imagine what people
see when they are moving through space is thinking about the field of vision - called isovist -
of an individual’s vantage point [4]. Conroy-Dalton [5] and Wiener [6] found out that these
isovists include information that is used by individuals for decision making in the context of
way-finding [7].

There are different measures of space, which relate to the shape of isovist. In this work we
are concentrating on the measurement ,,compactness” or ,circularity* as defined by Benedikt
[8]. This measure describes how circular or complex an isovist is by relating its area with its
perimeter. It can be used to describe specific types of fields of vision and relates to how people
experience a space. Franz and Wiener 2008 conducted virtual reality experiments in which

the test persons should rate beauty, complexity and spaciousness of the configuration they
perceived. They discovered a strong correlation of those ratings to the values of compactness,
area and occlusivity [7]. Therefore the compactness measure has a lot of potential to be used
to guide the planning process in order to achieve that the effect of the resulting space on
people exploring it meets the desired one.

1.1 Methodology

There exist many urban codes and pattern books which recommend dimensions and shapes of
roads or open spaces. Designers refer to such guidelines in order to ensure certain visuospatial
properties in environments. But since every design problem is unique those principles are of
limited use in the planning process. A more useful mechanism would produce several patterns
based on the intended effect and enable an intelligent search for appropriate solutions in
different contexts. This approach is called ,inverse design“ [7].

As method for the generation of solutions evolutionary algorithms (EAs) are used in this
thesis. This type of algorithms is especially suited to deal with problems whose solutions
should contain properties that are not explicitly included in the problem descriptions. If
solutions with such qualities emerge then the design process is considered creative [2]. De-
Landa sees the potential of exploratory genetic algorithms as visualisation tools where not
all possible configurations can be explored in advance |9]. Schneider and Kénig chose EAs in
some of their studies because of their ability to adapt to changing problems and the fact that
no patterns are needed to guide the search process |7]. In one of their study they came to
the conclusion that isovist properties are well suited as objective criteria for the optimisation
of layouts [2]. In this thesis an EA is developed whose objective criteria considers different
aspects of the isovists compactness measure.

The EA is experimentally evaluated and its results analysed. Emerging patterns are
identified and used to construct a simple heuristic. This second algorithm provides different
reasonable solutions for a problem instance within short time.

CHAPTER

Isovist and Compactness
Background

2.1 Isovist

While the originator of the term ,isovist* is Tandy (1967) [10] [11] [4], Benedikt was the first
to use it in syntax research [11]. He developed Tandys idea further by introducing a set of
analytical measurements of isovist properties [8], of which one — the compactness — will be in
the focus of this work.

Let us consider a vantage point x in a simply connected region D in three-dimensional
space. An isovist can be three-dimensional or two-dimensional. For simplicity we will here
only look at the horizontal two-dimensional plane section through z. An example of such
a region is shown in the region boundary is denoted as dD. If D contains any opaque,
visible objects they block the view so that from z not all points of D are visible. All of those
objects together form an environment E: the collection of all visible, view blocking objects
and their positions in D. shows one possible environment in region D.

r— -

R — '\\
2D e \)
e)

\\‘__//

L.

N

Figure 2.1: Left: Region D with region boundary §D. Right: Environment F in region D
(figures from [§]).

The points of D which are visible from z form a single polygon without holes [4]. This
polygon, the set of all points visible from =z, is called ,isovist“ V, at point x. More formally:

Ve ={v € D : v is visible from z} (2.1)

x is also called “generating location” [4]. Figure shows examples of isovists in D for
environment F.

(a) (b)

Figure 2.2: Three different isovists of three points in D (figure from [8]).

For any point z in a solid object it holds that V, = (. It is possible that two or more
vantage points in D have the same visible set V. For two different points z and y it then
holds that V, = V and V,, = V. The isovist at x describes what an observer at vantage point
x can see. The properties of an isovist, like area (notated as A,) or perimeter (notated as
dVz), therefore relate to some aspects of how the observer experiences the space.

An isovist can contain different types of boundaries. First the field of vision of point x
can obviously be bordered by visible surfaces. Lets call these perimeter sections .S,. Secondly
when looking at the 2D plan of an isovist it can be seen that the isovist can also have borders
which are the result of a sight line from x joining the border of a visible object. These
perimeter sections are named R, and the sum of all their lengths is called the occlusivity
Q. = |R:| of the isovist. @, is small at locations where few or no glances into another
part of the configuration are possible. A completely closed, convex space for example has an
occlusivity of zero. The isovists perimeter can also contain region border sections §D,.

Figure 2.3: The perimeter parts of an isovist: S;, R, and 0D, (figure from [8]).

Benedikt gave an alternative definition of an isovist: V; is the set of line segments from
vantage point x to points v’ on the boundary surfaces S, and §D,. He calls those lines
radials, since they ,radiate“ out from x to the boundary. The length of a radial is the
euclidean distance between z and v and computed by the following formula [8]:

]1/2

12 2

oo = d(w,0') = ' — 2]l = [} = 2}) + (v'3 — a3) (22)

Where 0 < 6 < 27 represents the direction of the radial, as displayed in Figure and v'1, 0o
and x1, z9 are the coordinates of v’ and z.

2.2 Compactness

The compactness — or circularity — of an isovist is:

5V,)?
N, = (47T A) (2.3)

Figure 2.4: Illustration of a radial r of isovist V,, of length [, ¢ (figure from [8]).

The formula is based on the ratio of perimeter to area and built in such a way that it
evaluates to one for a circle. When V,, is not a disc, N, is bigger than one [8].

Batty used a slightly different equation. He defined his measure of convexity “the ratio
of the radius of an idealised circle associated with the actual area of the isovist to the radius
of an idealised perimeter from the actual perimeter in question” [3]. The formula is:

1/2
o (Ax> ‘;& (2.4)
T

™

Battys measure W falls between zero for a straight line isovist and one for a circle and Batty
states that the measure is sharpened by squaring it [3], which is:

2 - LA@ (2.5)
(6Vz)

This resembles the inverse of Benedikts compactness formula, which is the one we work
with in this thesis. This means that the less circular a shape is, the bigger is its compactness
value.

In order to describe a whole environment more than one isovist has to be considered.
Benedikt suggested that the interplay of isovists is influencing how we experience a space [4].
He generated one property for all isovists in the environment and assigned the property value
to the point which generated the isovist. He then plotted these so called “isovist fields”
as a topography of contour lines in order to show how and how quickly those properties
vary through the space [8] [4]. In general isovist fields can be plotted by representing the
configuration on a grid and assigning every point a colour that relates to its isovist property
value. High values are displayed as light points and low values as dark points [7].

2.3 Compactness in discrete space

For simplicity we use a grid of quadratic cells as underlying system for this work. Each cell
is considered to be 1x1 in size. Figures and show different isovist shapes. Shape
V. is a perfect circle with area 10 and radius r ~ 1.784. V. and Vj are shapes in discrete
space which could be approximations for that circle. But the compactness values N, and Ny
of those two shapes are more than the double of the compactness N, of the circle. A better
shape for the circle in discrete space is the square. Every square has a compactness of 1.273,
which is the lowest possible compactness value in discrete space. This example shows that the
discretisation of real environments and objects can have great influence on the compactness
of the resulting system and therefore on the results of compactness analysis.

§Va A 11.209 8Vy = 12

A, =10 Ap=9

No=1 Ny~ 1.273

Ve Va

6V, =12

Ac=5 §Va =20

N, ~ 2.292 A — 13
Nq & 2.449

Figure 2.5: Demonstration of different area A,, perimeter 6V, and compactness N, values
for shapes that approximate a circle in discrete space.

Figure shows different example shapes which all have an area of 10 and therefore can
be compared with the circle of Figure Shape V. is close to a circle and has a small
compactness of 1.56, while shape Vj is a straight line and shape V; resembles a curled line.
Both, Vy and V, have a perimeter of size [0V,| = [0V;]| = 22. Since their area is the same as
well, although they have different forms, their compactness is the same: N, = Ny ~ 3.852.
This demonstrates that, although the compactness value indicates how “round” or “circle-
like” an isovist is, there are several different shapes which could incorporate that property.
As the perimeter of a shape increases while its area stays unchanged, the compactness of this
shape increases too. While there is a fixed smallest compactness for any environments, the
maximum possible compactness depends on the size and shape of the environment. But the
maximum compactness for a specific area is found in shapes like straight or very curled lines.

There is no absolute maximum compactness value that holds for any environments. The
bigger the environment the bigger the possible maximum compactness value. If we consider a
straight line isovist then its perimeter value 6V = 2% A; + 2 since every area field is bordered
by two perimeter lines and the shape is closed by one perimeter line on each end. The limes
for such shapes can be calculated for a growing area (the bigger the environment the longer
the maximum straight line isovist) and shows that compactness values can grow infinitely:

) (24, + 2)?
A (2:6)

2.4 Recursive Shadow Casting

In order to calculate which cells are visible from a vantage point the shadow casting algorithm
divides the area into eight equal parts. Those octants are processed one by one. The algorithm
follows a specific order for every octant, going row by row, column by column. It begins at the
vantages points and moves outwards by iterating through the columns/rows, always starting

6

Ve =14

A =10 6V =22
N, ~ 1.56 Ay =10
€ Nf ~ 3.852

Y

5V, = 22
Ay =10
N, ~ 3.852

Figure 2.6: Examples of the compactness values NV, for different shapes with varying perime-
ter 0V, and area A, = 10.

at the diagonal boundary. The advantage of this algorithm compared to ray casting is that
less cells are visited more than once [12].

Figure 2.7: The octants as processed for the vantage point in the middle.
The octants are processed in the following order:

Octant 1 and 6: row by row, from the leftmost cell of the row to the rightmost cell.

Octant 2 and 5: row by row, from the rightmost cell of the row to the leftmost cell.

Octant 3 and 8: column by column, from the topmost cell of the column to the bottommost
cell.

Octant 4 and 7: column by column, from the bottommost cell of the column to the topmost
cell.

A scan always has a start slope and an end slope, which resemble the left and the right
edge of the scanned area. The edges between the different octants are always shared and
therefore visited by the scans of both octants they border. The slope is calculated by two
points (x1, y1) and (z2, y2) through which the slope passes, one of the points is the vantage
point:

slope = (1 —x2) / (y1 — ¥2)
inverse slope = (y1 —y2) / (1 — x2)

Depending of the octant, the slope or inverse slope is used. For octant 1 the start slope
is one for example, expressing that if ¢ is increased by one, x has to be increased by one too

7

in order to stay on the slope. The end slope for octant 1 is zero. So for any y value, x stays
the same.

As mentioned every octant is scanned in its order. As soon as an obstacle is found a new
scan is started in the next row/column. The start slope of the new scan is the same as for the
original scan. The end slope is calculated using the center of the vantage point and the corner
of the first blocking cell which is closest to the start slope. The corner is simply calculated by
adding/subtracting 0.5 from the coordinates of the cell. The scan in the original row/column
is continued. When the algorithm finds the first non-blocking cell after a sequence of blocking
cells, a new start slope for the scan will be calculated using the center of the vantage point
and the corner of the last blocking cell which is closest to the original end slope.

Figure 2.8: Slopes for example blocking cells in every octant.

The two scans are operating individually on the different sides of the blocking sequence.
The cells which are behind the blocking cells are not visible and using the end/start slope of
the two scans they are simply skipped. For every new sequence of blocking cells a new scan
is started and the procedure is repeated. Figure shows an example of a calculation with
two scans.

N 2

== =]

Figure 2.9: Octant one with one blocking cell. The cells scanned by the original scan are
labeled ,,1¢, the cells scanned by the second scan are labeled ,,2%

The operating mode of the algorithm induces that it is possible to see through the two
touching corners of diagonally adjacent blocking cells. Only the cells that were scanned
before the current one are considered for the line of sight. A cell which is located in the same
row (octants 1,2,5,6) / column (octants 3,4,7,8) but evaluated afterwards therefore cannot
influence the evaluation result of a cell. An example is shown in Figure The cell marked
with * is evaluated without considering the blocking cell to it’s right. The blocking cell in
the row before the * cell does not block the view to the * cell and therefore the * cell i s
considered visible.

\ A
2l 2[Il []

) 10

1 1

[t

|

Figure 2.10: The cell marked with *, that can be seen between the two corners, is evaluated
after the first and before the second blocking cell by scan 1.

2.5 Compactness calculation

To calculate the compactness value of an isovist, the area and perimeter have to be evaluated
first. For the area calculation every visible non-blocking cell is counted. A cell can be seen
as a square with length and width of one and therefore evaluates to an area of one. The
perimeter is calculated by summing up the length of the outer borders of the isovist. Figure
shows an example of a small region with two blocking cells on the right and left of the
bottom row. The area of the isovist consists of all white cells. The perimeter is marked by
the thicker black line around them.

_ Ol
Figure 2.11: An isovist in concrete space with area=10 and perimeter=14

When working with a discrete space consisting of cells, forming a perfect circle is not
possible. The lowest possible compactness value in this setting can be reached in any square.
The size of the square Vi does not matter, N; ~ 1.273 for all squares. Since the compactness
describes the shape of an isovist by relating its perimeter to its area, the scale of the shape
does not change the compactness value.

CHAPTER

Related Work

3.1 Introduction

When looking at related work there are two different aspects to consider. On one hand work
about the isovist properties and their connection to human behaviour is important for the
relevance of this work and on the other hand generative approaches in architecture provide
information about already used algorithms.

In the first part of this chapter experiments and analysis that set isovist properties in a
relation to human behaviour are described. The concentration is on general isovist meanings
for human observers and on properties that can be set in a relation to compactness. It starts
with the introduction to Benedikt’s [8] model that links information and observer exposure to
isovist properties. He surmises that with their movement behaviour people try to control the
isovist properties of their visual field and through that they influence how much information
they have to process at a time and to how many possible other persons they are exposed. This
is related to the use of space as public or private spaces. Turner et al [4] analyse the usage of
actually spaces and found correlations with a visibility graph measure that has a relation to
compactness. Other measures of isovists are investigated in relation to the stopping behaviour
of people who are performing wayfinding tasks by Conroy and Dalton [5]. Several papers also
identify which distinct types of isovists exist.

In the second part different generative systems for layouts are described. Schneider and
Konig [2] [7] tried different approaches which includes algorithms that generate layouts with
regards to isovist properties as well as algorithms that use isovist properties only after the
general layout was created in order to finish and refine it. The commonly created pictures of
an algorithm that places buildings in environments which they included in their paper can
be compared to common patterns that were created with our approach.

3.2 Isovist properties and human behaviour

At first it is described how Benedikt [8] connected isovist properties with the information
available at the viewpoint and the possible exposure of the observer to other persons. Here
isovists are also related to private and public space. Afterwards Batty’s analysis of isovist
fields in different environments is summarised [3]. He found that there are two main types
of isovists and he also points out that the placement of objects in the field of vision is more
relevant than their concrete shape, which is an important statement since placing objects
is the goal of this work. The section continues with a description of Conroy’s and Dalton’s
experiments on the stopping behaviour of people who are solving wayfinding tasks and its
correlation with isovist properties [5]. Turner et al [4] created visibility graphs according

11

to isovist properties and calculated the cluster coefficient values for two buildings. Their
analysis show a correlation between the measure and the use of spaces as private or public
places. Since the typical shapes of isovists for high and low cluster coefficients match with
the shapes for high and low compactness values their results are also relevant for the meaning
of compactness values.

Benedikt’s information model

With regards to behaviour in space and perception of space Benedikt [8] points out that
for analytical questions one could assume that in the unblocked space of a region equally
information-giving events (or objects) are uniformly distributed. In this case the area A,
of the isovist at vision point z is proportional to the amount of available information at x.
Similarly in an alternative scenario the information could be uniformly distributed on real
surfaces rather than in unblocked space, in which the real surface perimeter would be the
relevant measure. With an example of a region in which a long narrow space joins a large open
space Benedikt demonstrates that the path which persons walking from the narrow space in
the open space are following, determines how sudden they will experience an increase in
available information. Figure [3.I] displays Benedikt’s example which shows three different
paths for walking around the corner and the speed of increase in visible area for each path. A
person taking path II; o would experience a sudden information rush while taking path II3 4
or II; 4 would result an a more gradual information increase. Pedestrians who are rounding
a street corner might choose a path similar to II; 4 because of a desire to control the speed
of informational increase in their vision field.

' |
@ . ()
Figure 3.1: Example of a narrow space joining an open space and the information / area that
can be seen over time when following different paths to the joining point (figure from [§]).

These considerations about available information are connected to the classification of
space into private and public areas. Expanding the concept of equally distributed information,
isovist measures not only describe the amount of information available at a vantage point,
but also the potential amount of people to whom the observer at that point is exposed to. In
several situations people typically wish to have access to a maximum amount of information
while being minimally exposed themselves. In order to analyse the exposure extent it is
necessary to consider not only the shape of the isovist, but also the position of the view
point in the isovist. For this purpose Benedikt refers to the skewness of the distribution of
radial length, which tends to be positive for view points which are close to real surfaces or
situated in corners. Therefore high area and skewness indicate locations that offer a good
view but low angular exposure. As examples or real-life scenarios in which the analysis of
isovist values could be relevant Benedikt mentions the selection of a restaurant table against

12

a wall or prevention of crime incidences, since they seem to happen in places with low area
and occlusivity [3].

The compactness does not relate to the position of the vision point inside the isovist or its
distance to surrounding walls. Also, the perimeter that is used to calculate the compactness
does not only consist of the real surface perimeter but also the occlusivity border. However,
as mentioned by Turner et al, moving from a road junction means that the visibility of many
previously seen areas will be lost [4]. So the compactness measure relates to how much
the field of vision and therefore also the visible area will change if the observer moves from
the vision point and therefore can also relate to how much information is lost or gained by
that movement. Conroy and Dalton observed that people pause after entering a larger
open space as well as at road junctions. This could mean that people tend to pause after a
significant change of compactness of their field of view, which might be connected to people
rounding street corners. They might try to control the speed of informational change in order
to avoid a sudden overload with new information which would result in the desire to stop in
order to process it. Figure shows the compactness map for a similar environment like in
Benedikt’s example, points 1, 2, 3 and 4 as well as a marked path from 1 to 4. Figure
shows the development of compactness on path 1-4, 1-2 and 3-4. Please note that path 1-4 is
not exactly the path [[; 4 in Benedikt’s example but a similar one. The graph looks different
than for the area since the compactness not only grows but varies through the paths. It still
shows that the change of compactness is very abrupt on path 1-2 and more gradual on path
1-4.

3~ 4

Compactness

| I i i
5 10 15 20 25
Field

a) Compactness Map of an example that b) Compactness development graphs for the
relates to Benedikt’s area information flow straight paths from 1-2 and 3-4 as well as the
example. The path 1-4 is marked by light path 1-4 that is marked in a).

borders around the cells used for the cal-
culation of the compactness development
graph in b).

Figure 3.2: Comparison of the area / perimeter ratio map and the compactness map.

Batty’s exploration of isvovist fields

In his work about the exploration of isovist fields Batty [3] uses two measures of shape. One
is the compactness I'; which is defined as the ratio of the average to the maximum radial
length of the vantage point . I'; is one if the isovist is a circle and ¢ situated at its centre
and tends to zero if the isovist is a straight line and 7 located on one of its ends. The other
measure W is also one for a circle and zero for a straight line isovist and if squared it is the
complement of Benedikts and our compactness measure. Batty refers to ¥ as shape index,
convexity index or cluster index.

13

Batty computed the isovist measures for different shapes and layouts and analysed their
distribution and correlations. It might seem confusing that the convexity index ¥ is called
cluster index, like the cluster index ~; which he also mentions earlier in his paper. But as Batty
writes that he concentrates on I'; and ¥ it seems save to assume that with “cluster index”
he is referring to ¥ in his following analysis. He states that isovist fields can be separated
into categories that are based on key elements of urban and architectural morphology. He
suggests two types: long narrow elements like streets and smaller compact ones like rooms.
He also observed that the convexity index of long streets is low (which corresponds to a
high compactness value for our measure) while squares have a greater convexity index (which
corresponds to a low compactness value for our measure). These types match our observation
of emerging configurations for maximum or minimum compactness placements.

His examples consist of two simple geometrical environments and three worlds that are
based on real world layouts. His analysis shows a high correlation between area, perimeter
and either average or maximum radial length. In most of his worlds area, perimeter are
bimoda]E] or trimoda]E] and average radial length was found to be bimodal in two worlds as
well. These indicate that there are two or three different types of isovists. However, in two of
his real world examples no bimodalities were found. Batty points out that this fact implies
simpler patterns, but also a greater complexity in that the patterning of spatial objects in the
visual field takes on more significance than their shape in real world environments. He took
notice that ,,the actual physical morphology of such complex urban building and streetscapes
cannot best be measured by the geometry itself but is more likely to be represented by the
visual ‘objects’ or spaces which emerge as a result of this geometry“. This is an important
statement since the goal of this thesis is to development an algorithm for placing such objects
in an environment.

Batty simulated a walk through a street-environment in which the isovist properties were
recorded for every pixel. He notices that the clustering index ,picks up all the local detail
associated with the pixelation of the street map“. As we also demonstrated in the background
chapter the compactness of shapes is greatly influenced by the shape that was chosen as the
representative shape in concrete space.

Conroy’s and Dalton’s analysis of stopping behaviour

Conroy and Dalton [5] investigated the behaviours and actions of people that navigate through
space. They used isovist measures to analyse the points at which people stop. Several
measures they used can be linked to the compactness measure used in this work. They
designed a series of virtual worlds through which people moved while trying to perform a
wayfinding task. In the first part they compared the movements of people in virtual worlds
to movements in the real world during which they demonstrated powerful analogies between
the two. They then performed analysis on the gaze behaviour that was gathered while people
moved through seven virtual worlds. Their investigation included the calculation of peoples
pause points and the examination of isovist data of pause points. In their worlds they filled
the free space with a grid of points, whose spacing was set to approximately four meters.
Every point then was considered as a possible view point for which the isovists were created
and their attributes stored. View points on which people stayed for more than a threshold
time (0.5 seconds to 5 seconds, depending on the world) was identified as a pause point. They
compared the isovist data of the pause points of one world to the mean values of the isovists
of all possible view points in that world in order to identify the isovist measures that are
relevant for peoples stopping choices.

One measure is the ratio of area / perimeter, which is the highest for a circle and drops
as the circle gets deformed and it’s perimeter increases. Therefore the area / perimeter ratio

!Bimodal means the histogram shows two modes which are recognisable as two distinct peaks.
2Trimodal means the histogram shows three modes which are recognisable as three distinct peaks.

14

can be directly linked to the compactness measure. The more spiky an isovist the higher
it’s compactness value and the lower it’s area / perimeter ratio. In the first world, the tate
gallery, people paused at locations with a area / perimeter ratio that is relatively low in the
world and high perimeter value, which characterize junctions with longer lines of view. In the
second world, world B, there is also a high correlation of pause points and area / perimeter
ratio, but in this world people stop in areas where the ratio is higher than on average, which
is the case for more rounded and open space. However, like in the tate gallery, the pause
points again show a higher than average perimeter value and longer than average maximum
perimeter length.

Another measure that indicates how spiky an isovist is the deviation of all radial lengths of
an isovist. If the isovist is spiky, which also means it has a higher compactness, the deviation
is higher. Conroy and Dalton put an overview about relations of measures into their paper,
which shows an r-squared value of 0.702 for deviation and area / perimeter ratio, which
indicates their correlation. In several worlds the deviation of radial length was significantly
higher at pause points, as well as the maximum radial length of the isovists on the stopping
points [5]. These two measures are also highly correlated according to Conroy and Daltons
findings (r-squared value of 0.821).

As pointed out by Turner et al in [4] Benedikt and Burham (1985) showed that the
variance of isovist radials and the perimeter also influence the perception of the size of a
space.

Other properties which characterised pause points are a large isovist area and the distance
to occluding surfaces. Conroy and Dalton concluded that people pause in strategically loca-
tions which offer maximum visual information like long lines of sight and large isovist area.
Since pausing was observed at road junctions as well as after people entered a larger open
space, we may deduce that either areas with a larger than the world’s average compactness
as well as areas with smaller than the world’s average compactness or a significant change of
the compactness influence the stopping behaviour of people who perform way-finding tasks.

In order to demonstrate the connection between area / perimeter ratio and compactness
visually, two example worlds were picked from Conroy and Daltons paper. Figure [3.3a] shows
the heat map of the isovist area / perimeter ratio of the tate gallery in which the lowest values
are marked by blue colours and highest values by red colours, the white areas are blocking
obstacles. In comparison the compactness heat map is displayed to the right in Figure [3.3b]
Its colour key was chosen according to the colours displayed by Conroy and Daltons picture,
but the scaling of values and hues is different. The lighter colours of right picture in the
middle axis resemble the high compactness because of the spiky isovists in that area. On the
left side the colours are darker because the spiky isovists have a high perimeter and low area
value which results in a low area / perimeter ratio. Some interesting details show the strong
relationship of the two measures. Note for example the red corners of high area / perimeter
ratios in two rooms on the left side of the gallery. Those corners are notably darker than the
surroundings in the compactness map.

Figure and show Conroy and Daltons area / perimeter ratio map of their world
B and in comparison the compactness heat map. Both maps show the same patterns. The
inner part of the corners show a lower compactness and respective higher area / perimeter
ratio. On the contrary, the occurring pattern that seems to run along the shortest pathway
between the openings has a lower area / perimeter ratio and a higher compactness. Although
the two measures are strongly connected, they are not proportional. That means that the
point with the lowest compactness value is not necessarily the point with the highest area /
perimeter ratio or vice versa.

15

a) Conroy and Daltons heat map of b) Heat map of the isovist compactness
the isovist area / perimeter ratio of of the tate gallery.
the tate gallery [5].

»

|-+ 88804 .ll‘.-ﬂl.-.éi:.l.-iil 8- S840 ‘.l.:::l:;-
g8 & B

.

:
+ 3 >
:
. s
.l

1
n
5
P4t
-

:

i
B

L ds bttt et bt b b s ts :xm

ié joesiesss siae

= ,u ::uu-u:

¢) Conroy and Daltons heat map of d) Heat map of the isovist compactness
the isovist area / perimeter ratio of of world B.

world B [5].

Figure 3.3: Comparison of the area / perimeter ratio map and the compactness map.

Turner et al on properties of isovist visibility graphs

Turner et al [4] point out that isovists have only been used in a limited number of studies for
architectural analysis. They see one reason for this matter in the fact that isovists measure
only local properties of space. Another issue would be that Benedikt did not state any useful
instructions on how to interpret the results of his isovist measures. In order to counteract
these barriers, they introduce broader methodology, which is sensible to the relationship
of visual characteristics between locations and can be interpreted with regards to social
relevance.

By using visibility graphs derived from isovists, local and global spatial measures can be
obtained. A visibility graph is a graph that is based on the information which locations are
mutually visible. For the construction of such a graph an appropriate set of isovists has to
be selected. Since practicality has to be considered, some compromises have to be made. Try
to select a set of view points which describe the space almost completely. One possibility,
as the authors state: “the most obvious approach”, is to choose view points throughout the
environment at a regularly spaced interval. They chose a “human-scale” grid with spaces
that measure about one metre.

Two relationships between view points were used for the generation of the isovist graph:

16

e First-order relationship: this relationship exists between all view points which are mu-
tually visible. A and B have a first-order relationship if point A is included in the isovist
of point B and vice versa.

e Second-order relationship: A and B have a second-order relationship if there exists a
point C that is visible from point A and from point B.

The graph of the first-order relationships is the visibility graph of the environment, while
the second-order relationships form an isovist intersection graph. Since the second can be
generated from the first, the authors chose to concentrate on the visibility graph.

For the analysis of the graph they used the following three graph structural measures:

e Neighbourhood size: a local property which measures the amount of vertices directly
connected to a vertex. So all vertices in the isovist which are visible from a vertex make
up it’s neighbourhood.

e Clustering coefficient: a local property which is calculated by dividing the actual number
of edges between the vertices of the neighbourhood by the number of possible edges.

e Mean shortest path length: a global property which is the average of the lengths of
shortest paths from a vertex to every other vertex in the graph, where the shortest
path length for two vertices is the the least number of edges that have to be traversed
to move from one vertex to the other.

Since we are working with the visibility graph, an edge between two vertices of a neigh-
bourhood means that they are mutually visible. A high number of edges between the vertices
of a neighbourhood therefore means that many points of the neighbourhood are mutually
visible. This is the case for isovists whose shape is almost a convex polygon, which is circle-
like. The clustering coefficient is tending to one in this case and tending to zero if the shape
is not convex at all. Turner et al note that if the clustering coefficient is tending to zero the
generating location of the isovist is some kind of junction. Moving from a location like that
will result in a loss of visibility of parts of the currently visible area. It can be concluded that
the clustering coefficient also indicates how much of the currently visible area an observer at
that point will loose or keep if he moves away from it. The paper suggests that therefore the
clustering coefficient is ,related to the decisionmaking process in way-finding and navigation
and certainly marks out key decision points within complex configurations“ [4]. Since they
mention that convex shapes have a high cluster coefficient and shapes that are not convex
have a low cluster coefficient and resemble junctions, we may conclude that this measure is
somehow connected to the compactness measure. High compactness values should be present
were the cluster coefficient is low and the convex shapes with high cluster coefficient probably
have a low compactness value. However, unlike the compactness, the cluster coefficient of
the points within an isovist is also influenced by the space that lies outside of the isovist.
The authors point out that this behaviour resembles that people traversing a space can still
perceive the space fully if they move, even if there is a pillar in the middle of the room. Figure
which contains one big obstacle, and Figure [3.4c, which contains one small obstacle,
show the influence of the object size on the cluster coefficient. High values are displayed
whiter than low values. In the arrow is showing that points from one side are visible
from the other side. If the space in the shadow of the obstacle would be occupied by an object
the view lines from one side to the other would be blocked, which would noticeably influence
the cluster coefficient. Figure and indicate that the compactness heat map shows
similar patterns like the cluster coefficient for the points P1 and P2.

In order to analyse the clustering coefficient values Turner et al calculated a grid of 1.0m
on eye level for two buildings and produced one visibility graph per house (by linking two

17

E“_

1’

a) Cluster coefficient b) Compactness heat map for
for point P1 in env1ronment 1.
environment 1 [4].

*

¢) Cluster coefficient d) Compactness heat map for
for point P2 in environment 2.
environment 2 .

Figure 3.4: Cluster coefficient for the isovist of a point in an environment with a big and a
small object in comparison to the compactness map of both of the environments.

levels of one house via the stairwells). They discovered that private spaces like bedrooms
or study rooms are highly clustered and that social spaces, like living rooms, offer more
spiky fields of view which hint at the range of private spaces without intruding them. Their
clustering coefficient is therefore tending to 0 . Private spaces, which are rectangular and
circular rooms, are characterised by a low compactness value and since social spaces offer
spiky fields of view, they are indicated by a high compactness value. This finding matches
Benedikts theory that isovist properties describe the potential amount of people to whom the
observer is exposed.

3.3 Generative approaches in architecture

This section describes systems that automatically generate layouts. Schneider and Konig
used several different generative approaches. One is to generate room layouts with a dense
packing algorithm which follows functional criteria and afterwards adds doors to the generated
rooms with regards to isovist properties . They also developed an algorithm that uses
isovist properties as target functions from the start and creates floor plans by activating
and deactivating predefined grid lines . And their work includes an algorithm that places
buildings in an environment to generate urban layouts automatically . They used different
fitness functions that consider isovist properties, which also included the compactness. Their
work therefore is very similar to ours. But they placed buildings, which are quite big objects
compared to our smaller but more plentiful objects.

18

Schneider and Konig setting doors by isovist properties

Schneider and Konig [2] investigated some existing systems for layout generations that use
different underlying mechanisms. None of the systems they analysed were currently used by
practising architects and with their system they tried to solve some problems that prevent
architects from using those systems. They saw one problem in the fact that after the ar-
chitect formulated his target function most programs searched until they find an acceptable
solution or the search process is cancelled. In that case the architect cannot influence the
search process. They therefore wanted to design a system that is better integrated into the
design process. They argue that designing is an iterative process and therefore a design
system shall be able to react to changing problem definitions. Also, the presented solutions
should be distributed evenly on the pareto front, which contains the solutions with the best
compromises, in order to show all relevant solutions to the user. The user shall then decide
on his own which one he wants to work with. For the architect it is of utter importance to
see the impacts of different parameters immediately. This provides an instant feedback on
effects of specific criteria. The systems needs to react fast.

Figure 3.5: A floor plan generated by the dense packing algorithm (figure from [2]).

One method to generate floor plans with regards to isovist properties that Scheider and
Konig explored refines a configuration that was developed with dense packing following func-
tional criteria. The input of the dense packing algorithm is a buildings outline, the sizes of
the rooms which shall be placed (in m?) and minimum and maximum room dimensions. The
sizes of the rooms have to add up to the buildings size. Overlaps or spaces between the rooms
should be avoided. The dense packing algorithm minimises the sum of all overlapping areas
and of the occupied space outside the buildings outline. The rooms are positioned and their
length and height is adjusted. The output of the dense packing algorithm consists of the
positions and dimensions of rooms in the building, an example is shown in Figure [3.5] In the
refining step the isovist criteria came into effect. The average value of the area of the isovist
fields (Mean Isovist Area) was maximised by positioning doors on the rectangles. Figure
shows the heat maps of some solutions using the isovist area values on the map cells.

A graphical user interface enables the user to rate the solutions and configure the layout
problem. Different visualisation methods were used to display the floor plan as well as it’s
properties and the configuration attributes. Since an iterative system was used changes of
the problem definition can have an immediate effect. One possibility is to change the floor
plan directly. The system also offers the possibility of indirect manipulation by adjusting the
generative rules or evaluation criteria. Although this approach offers an effective generation of
layouts for form and function of rooms, the possibilities for the isovist properties to influence
the form of the layouts are restricted.

19

mv=156

Figure 3.6: Heat maps of isovist area values of solutions generated by placing the doors on
results of the dense packing algorithm (figure from)

Schneider’s and Ko6nig’s grid acitivation system

Another method which Schneider and Kénig used to generate floor plans used a model of a
uniform grid in which horizontal and vertical lines can be activated. The evaluation consid-
ered only one fixed isovist point which has to be set before the optimisation process. The
fitness function minimises the sum of the deviation of area, perimeter and occlusivity of the
isovist at that fixed point from the set of target values tA (target area), tV (target perimeter),
tQ (target occlusivity). The three deviation values in the fitness function are also normalised
and can be weighted by individual weights wA, wV and w@:

fl(z) = norm(|Ax — tA|) * wA + norm(|Vz — tV|) * wV + norm(|Qx — tQ|) * w@ (3.1)

Using mutation and recombination individual lines are activated and deactivated until a
solution is found that satisfies the fitness criteria sufficiently. Examples of solutions created
for different target value combinations are shown in Figure 3.7] The floor plans that evolved
show the big influence that the isovist attributes have on the layout. The authors extended
the system and added the overlapping area of isovists as another fitness criteria in order to
analyse if topological relations evolve between the different areas of the floor plan. They
defined three view points for which the program should develop suitable isovists. They set
the overlapping area for isovist I1 and I3 as well as 12 and I3 to 300, while the isovists for
I1 and I2 should not overlap at all. However, the results showed that this criteria is not
enough to describe the relations between rooms. The developed rooms where not closed,
therefore rooms which where defined with non-overlapping isovists, where still accessible to
each other [2].

Schneider and Konig on the generative potential of isovist fields

In their in 2012 presented paper Schneider and Koénig used an inverse design process to
automatically generate urban layouts. In their evolutionary algorithm individuals represented
urban layouts that consist of a fixed number of rectangular buildings placed on a plot of land.
The algorithm places and scales those rectangles while ensuring that they do not overlap and
stay within the given boundary. To this end solutions which do not meet these constraints
after the random placing, are corrected by special movements. Unreasonable solutions shall
be avoided by setting minimum and maximum widths and surface areas for the buildings and
a minimum and maximum coverage of the plot. Because of the computationally intensive and
time-consuming calculation of isovist fields they made use of the graphical processing unit

20

4 = 200 (A ~ 180) t4 = 500 (A ~ 490) t4 = 1000 (A ~ 976)
P =50 (P ~53) wP =0 wP =0
w@=0 10=0(Q~0) 10=0(Q~0)

| N
_/ll ” N

I 1]

4 = 200 (A ~ 224) t4 =500 (A ~ 512) t4 = 1000 (A ~1055)
P =80 (P ~79) tP =300 (P ~ 316) wP =0
wQ =0 w0 =0 t0 = 300 (Q ~ 302)

Figure 3.7: Solutions created by activating (/ deactivating) grid lines. Notice that some
configurations set a target value of 0 for one of the sizes, minimising it, while others set its
weight to 0, which leads to the target function ignoring that size (figure from [2]).

(GPU) for those calculations. The evaluation of an individual in the used test scenario with
the GPU usage takes approximately 0.15s. The objective function minimises or maximises the
average, minimum, maximum and standard deviation of the properties area or compactness.
They generated configurations for the test instance for all 16 objective functions. They proved
that it is possible to reproduce generated patterns based on specific visuospatial properties.

Figure [3.8 shows examples of the configurations their program created when the objective
criteria was the compactness. Since they use the compactness measure between 0 and 1 like
Batty [3] the results need to read with the conversion to our compactness measure in mind.
In the following analysis references to their compactness measure will noted as ¥ and our
compactness measure will be called N.

The minimisation of the average ¥ corresponds to the maximisation of the average N.
The result for this case shows a configuration in which the buildings seem equally distributed
throughout the environment and many points offer long views. On the other hand the
maximisation of the average ¥ (and minimisation of the average N) results in one open
space which is almost quadratic.

The minimisation of the minimum ¥ and therefore maximisation of the maximum N
produces configurations with at least one point that offers a very non-compact field of view.
The isovist with the minimum W is marked in red in their image. The maximisation of the
minimum W corresponds to the minimisation of the maximum N and generates layouts with
one or more open spaces. These results are similar to the ones from maximising the average
v,

The minimisation of the maximum W, which means the maximisation of the minimum
N, results in the buildings being placed a short distance from the outer wall and creates
configurations which do not offer compact fields of view. The maximisation of the maximum
¥ on the other hand leads to configurations with at least one enclosed square space. As can
be seen in this square space is quite big. So far all of their generated examples match

21

x = Average x = Min Compactness x = Max Compactness x = StdDev Compactness
Compactness

f(x) > min

Avg.Compactness = ca. 0.2 Min Compactness = ca. 0.01 Max Compactness = ca. 0.37 StdDev Compactn. = ca. 0.04

f(x) 2 max

Avg.Compactness = ca. 0.73 Min Compactness = ca. 0.57 Max Compactness = ca. 0.79 StdDev Compactn. = ca. 0.22

Figure 3.8: Examples of generated urban layouts for every compactness target function that
Schneider and Konig analysed (figure from [7]).

with the general patterns that emerged in our experiments. However, the formed squares
when minimising the minimum N are often of size 1x1 and therefore a lot smaller than the
square in the ¥ example. This is probably due to their buildings being a lot bigger than the
objects we place.

The minimisation of the deviation of ¥, which also minimises the deviation of NV, generates
layouts which either have a low compactness at all view points or a high compactness at all
view points. The maximisation of the deviation of ¥ and therefore also the maximisation of
the deviation of N results in configurations with points with high compactness values as well
as points with low compactness values. Again the size of the area with the high W is different
to the size of the squares that were produced for N when smaller objects were used.

3.4 Conclusion

The introduced experiments show that isovist properties indeed have an influence on peoples
behaviour. There are several different isovist properties and ways to represent and evaluate
them and many were found to be strongly connected. They can indicate how much or in
which form information is available at their view point and relate to the exposure of the
observer to other people (see Benedikt’s information model). This leads to the fact that
they influence at which places people stop or which paths they take through an environment.
Interestingly not only the absolute value of compactness seems to matter but also a significant
change in compactness compared to previously traversed places can issue people to stop (see
Conroy’s and Dalton’s analysis of stopping behaviour). Isovist properties can characterize
private or public space and indicate the usage form of a space. There seem to be two types of
isovists. Places with high compactness are narrow streets or view points with spiky isovists
and indicate public space (see Turner et al on properties of isovist visibility graphs). Places
with low compactness are more compact and rounded places which do not offer many long
view lines and they indicate private space. Batty specifically points out that the patterning of
spatial objects in the visual field is more important than the shape of the objects (see Batty’s
exploration of isvovist fields). He also noted that the measure of clustering index, which
relates to compactness, is influenced by the discretisation of shapes, which we demonstrated
in Section 2.3

22

The generative approaches that were introduced show that isovist properties can be used
to automatically generate layouts depending on isovist properties. But it seems to be difficult
to provide the algorithm with enough constraints to generate reasonable solutions that are
practically useful without restricting it too much to allow a wide range of possible layouts
(see Schneider and Konig setting doors by isovist properties and Schneider’s and Konig’s grid
acitivation system). One of the most related works is probably the work of Schneider and
Konig who developed an algorithm that automatically generates urban layouts by placing
buildings in specified environments (see Schneider and Kéonig on the generative potential of
isovist fields). This is similar to our goal of placing objects in environments, although our
objects are significantly smaller and more objects are placed. They also provided pictures of
solutions for every compactness target function which can be compared to our results. When
comparing the areas with smallest compactness in their results with the area with smallest
compactness in our results it is noticeable that their areas are bigger. This is probably
because of the difference in object size and suggests that an awareness of this size issue is
important to keep in mind in order to guide the generation to the desired results.

23

CHAPTER

Evolutionary Approach:
Introduction

4.1 Problem definition

The specific problem which is considered in this thesis is the placing of objects in space.
This relates to real life problems like the placing of exhibition objects in museums. One
of the main goals is to develop an algorithm which places predefined obstacles in the input
environment. The resulting placement shall provide vision points that offer particularly high
or low compactness values. The algorithm needs to solve an optimisation problem whose
target function considers the compactness and therefore the area and perimeter of the isovists
in the environment. The solution space for this problem contains every possible combination
of obstacle placings in this environment. The complete exploration of the solution space is
not feasible because of its size and the corresponding computational complexity. Therefore a
heuristic approach is necessary. As DeLanda already pointed out, EAs are useful where not all
possible configurations can be explored in advance [9]. As mentioned in Kremlas [2] EAs are
also suitable for the explorations of problems whose solution should contain properties which
are not explicitly stated as input criteria. It is more important that planners are provided with
different creative solutions than to find an optimal solution in a strongly mathematical sense.
Evolutionary algorithms use populations consisting of multiple current candidate solutions
and incorporate a random component in variation operators for deriving new solutions. They
can find several different good solutions and are therefore well suited for the task.

The next section offers a general introduction to evolutionary algorithms and their most
common properties. Afterwards the specific approach for the introduced problem is described.

4.2 Background to evolutionary algorithms

Evolutionary Algorithms use the concept of Charles Darwin’s theory of biological evolution
to find solutions to optimisation problems [13]. To simulate the development of different
generations such an algorithm runs through several iterations. The current generation of an
iteration is formed by a pool of individuals, called population. Every individual is represented
by its genes, usually a string or vector of fixed length in which every gene has a specific lo-
cation. This representation is called genotype and can be translated into a corresponding
solution to the problem, called phenotype |14]. The translation is called mapping [2]. For
each phenotype the quality of the represented solution is evaluated and assigned a fitness
value. Individuals with higher fitness values denote better solutions. To simulate the Dar-
winian ,survival-of-the-fittest* this value is used in a selection process in which individuals

25

of the current generation are chosen as parents for the next generation. Simple copying,
crossover and mutation are applied to create new individuals [13]. Crossover creates genes
for a child individual by combining some genes of one parent with some genes of another
parent. Mutation refers to the random change of genes, like a bit flip or permutation [15].

Algorithm 4.1: Structure of a general evolutionary algorithm [15] [16]

init population;
repeat
recombine;
mutate;
evaluate;
select new population;
until stopping criteria met;
return best individual as the problem solution;

The code shown in Algorithm presents the general template of any evolutionary algo-
rithm. But for the concrete implementation there are a lot of possibilities to choose from. The
representation of genotypes and phenotypes is only one decision which has to be taken [15].
In order to provide an overview of techniques, some possibilities are introduced here.

Population

The population holds the solutions of the current generation. While in a natural system the
size p of the population can vary, in most evolutionary algorithms the population size is fixed
and the same in all generations. The number A of children generated in each iteration may
deviate from p. The individuals that shall be part of the next generations population can be
either chosen from A - then the notation (u, A) is used, where A > u - or from g U X - then
the notation (px+ \) is used. In (u, A) algorithms it is possible that the best individual of one
generation is worse than the best individual from the last generation. In (u + A) algorithms
the selection pressure is higher [13]. The initial population is typically generated as random
individuals [17].

Selection

An evolutionary algorithm provides two opportunities where a selection mechanism can be
applied. First parents for recombination need to be chosen, this is called parent selection.
After the recombination individuals for the next generations population are selected, this is
called survival selection [17]. Different mechanisms can be applied for both. An important
property of a mechanism is the selection pressure which expresses the probability of the fittest
individual being chosen relative to an individual of average fitness. If this selection pressure
is too high, the algorithm will converge towards a solution very fast and might get trapped
with a suboptimal solution in a local optimum. On the opposite if selection pressure is too
low, it might take very long to converge. Applying a selection mechanism for both selection
steps increases the selection pressure and might lead to too much greediness. Therefore most
evolutionary algorithms choose a fitness related selection mechanism for only one of the two
opportunities [13] [15].

Some popular selection mechanisms are [15] [14]:

e Truncation selection: This is one of the simplest selection mechanisms. The individ-
uals are ordered by their fitness values, the fittest ones are selected and the rest gets

26

truncated. Since only the best individuals get chosen, the selection pressure is very
high.

e Tournament selection (K). K individuals are chosen at random and only the best one
is selected. This is repeated until p individuals got chosen. The selection pressure can
vary with the group size K.

e Proportional selection: The selection probability of each individual is its relative fitness.

e Rank selection: The individuals are ordered by their fitness values and their index in
the ordering is used to calculate their selection probability.

Each approach has strength and weaknesses. One problem with the proportional selection
is that if the population contains a small number of individuals that are much fitter than
the rest of the population they get chosen often and reproduce quickly and prevent the
algorithm from further exploring the search space. This situation often occurs during the
first generations. The opposite problem emerges in the last generations: most individuals
are similar and have a similar fitness value. Therefore their probability of getting chosen is
very similar too. In order to counter those two effects scaling methods were developed. One
of these methods is sigmascaling. It normalizes the fitness values relative to the standard
deviation of all fitness values in the population. The scaled values are:

flx)—f :
1oy —) 1+ 552 ifo#0
fa:) { 1 if o =0

where f(x;) is the fitness value of individual i, f is the average compactness and o is the
standard deviation [18] |19].

Reproduction

When a new generation is created, new individuals have to be derived from existing ones.
One possibility is asexual reproduction, which means that an existing individual is cloned and
a mutation operator is applied to slightly change the individuals genes. Another possibility is
sexual production, which involves more than one individual as parent. As in natural systems,
usually two parents are used [15|. The offspring creation by recombination can be classified
into two groups: dominant or intermediate recombination.

In dominant recombination the offspring directly inherits traits of a parent individual
while disregarding the other parents corresponding trait [16]. Standard algorithms perform
a one-point-crossover, which involve only one crossover point. One child is created by con-
catenating the genes from the beginning of one parent until the crossover point and the genes
after the crossover point from the other parent. The genes of the second child consist of the
genes which were not used for the first child [14]. Let parent 1 be represented by j genes
g1, --,g; and parent 2 likewise by j genes hy,..h;. If the crossover point is chosen to be between
the genes d and d + 1 where 1 < d < j then the genes of child 1 will be g1, .., g4, hat1, -, hj
and child 2 will be described by the genes h1, .., hq, ga+1, -, g;- Figure shows a visualised
example.

If more than one crossover point is used, the genes are simply distributed alternatingly.
Figure shows an example of a two-point-crossover. Another possible approach is uniform
crossover [14], in which for each gene it is randomly decided from which parent it shall be
copied.

Intermediate recombination takes into account the values of all parents in order to deter-
mine a child’s characteristic. In the simplest case the mean value is calculated [16].

27

Crossover Point

Parent 1 Child 1
o oo oo I o o DN
Parent 2 - Child 2

nm[m]r] o] KR

Figure 4.1: Example children generation by one-point-crossover.

Crossover Points

Parent [1 Child 1
99 9, hy e
Parent 2 — Child 2

DODDERNED - - O

Figure 4.2: Example children generation by two-point-crossover.

Since asexual reproduction produces individuals more similar to their parents it is more
a local search operator. By contrast, sexual reproduction tends to produce individuals which
vary more from their parents and therefore it is a global search operator [15].

4.3 Evolutionary algorithm variants

Different types of EAs were developed. The categorisation of an EA in a specific variant
group got harder as the EA variants were expanded and the characteristics of some variants
started to overlap. In this section the main variants that were developed are introduced in
order to provide an overview about EA techniques, their development and diversity.

Genetic algorithm

Genetic algorithms (GAs) were mainly developed by Holland and his students from the 1960s
to the 1980s. Further improvements were made by De Jong and Goldberg . In the
very early GAs the emphasis was on recombination rather than mutation. Today it is mostly
on the combined interactions of recombination, mutation and selection.

The parent selection process is emphasised in GAs. It is seen as a process with two
stages. At first the parent individuals are chosen and form an intermediate generation.
Recombination and mutation are then applied to this intermediate generation in order to
create the children which form the new generation. The selection usually takes into account
the fitness of individuals. Commonly used selection mechanisms are for example tournament
selection or fitness proportionate selection with scaling . The new generation may replace
the population of the old generation completely or just some individuals are replaced by new
ones [13].

The used data structures often require a mapping from genotype to phenotype. In early
GA applications the individuals were represented by bit strings since they represent the
problem with the largest number of smallest possible components. We will discuss some
characteristics of bit representations here, although today any suiting data structure may be
used.

28

The most common mutation form for bit strings is the flip of one bit. When real values
should be represented by bit strings, one has to decide which precision shall be used. The
number of bits per parameter can have a big impact on the performance of the algorithm [15].
When deciding for a data structure for the individuals some desirable characteristics should
be kept in mind. One important property that representations should possess is that similar
phenotypes should be represented by similar genotypes [20]. Numbers encoded by standard
binary representation lead to the problem that numbers which are close to each other in the
real domain may have bit encodings with a large Hamming distance. Consider for example
the four bit standard binary representation of 7, which is 0111 and of 8, which is 1000.
Although the phenotypes 7 and 8 are very similar their genotypes have a Hamming distance
of 4, which is the maximum in this four bit representation. In order to solve this problem
Gray codes were introduced as an alternative to standard bit representation. There exist
different Gray codes but all fulfil the requirement that adjacent numbers differ in only one
bit in their bit represenation [20].

Evolution strategies

Evolution strategies (ES) were invented by Rechenberg and Schwefel for shape optimisation
in the early 1960s. ES are usually used for continuous parameter optimisation, such that a
function R™ — R needs to be minimised. Each object variable is represented by a floating-
point variable, which means that the genotype space is identical to the phenotype space
R™ [17]. Today the original ES version by Rechenberg and Schwefel is called (1 + 1)-ES [15].
It uses only one individual as population and only one child is produced. Algorithm
outlines this specialised algorithm. The vector Z(*) of size n represents the current solution
at generation t. The fitness values are calculated by fitness function f and the fitness of the
solution) is compared to the fitness of its mutated version 7). If () reaches a higher
fitness than Z(® it is used as the individual for the next generations population. Otherwise
7Z(") will be utilised again in the next generation.

Algorithm 4.2: (1 + 1)-ES after example from [17]
input : fitness function f
output: best individual that was found
t <+ 0;
create random starting individual z*) e R™;
repeat
7 — mutate(z");
if f(z) < f(7®) then
‘ F+1) j(t);
else
‘ Ft+l) g(t)
t+—t+1;
until stopping criteria met;

)

The population in this ES consists of only one individual so no recombination is used,
mutation is the only variation operator. In order to mutate Z' a random number is added
to each of its n components. Those numbers are drawn from a normal distribution with
mean zero and standard deviation . Therefore small changes are more likely than big ones.
o is also called mutation step size since it determines to which extend the values of ' are
modified. Rechenberg came up with the 1/5 success rule. It states that the ratio of successful
mutations to all mutations should be 1/5. If it is smaller than 1/5 then the search is not
concentrated enough and o has to be decreased. If it is greater than 1/5 then the search is

29

too concentrated and o needs to be increased. Adjustments are usually executed periodically,
for example after m iterations [17].

ES were further improved and extended. Rudolph lists the following characteristics that
specify an EA as an instance of an ES today [15]:

1. Parent selection is unbiased: parent individuals are drawn randomly with a uniform
distribution.

2. Survival selection is deterministic: only the best individuals survive.

3. Mutation is parameterised and therefore the operator changes its properties during the
optimisation process.

4. Individuals consist of solution characteristics as well as strategy parameters.

As mentioned in [16] for the (1 + 1)-ES only one set of strategy parameters is needed,
therefore it may be added to the algorithm itself rather than the individual. Point 3. and 4.
refer to the ability to adapt the parameters for mutation during runtime, this characteristic
is called self-adaptation.

A generic ES is denoted as (11/p, k, A)-ES where p describes the population size and A the
number of children that are generated each generation. p is the number of individuals that are
used as parents for the creation of one offspring by recombination. The additional notation x
refers to the maximum live time, or age, of each individual. It replaces the ,plus® (survivors
are chosen from g U M) or ,comma® (survivors are chosen from A only) notation where ,,plus“
corresponds to k = 0o and ,,comma‘“ to kK = 1. The age attribute was established 1995 and
is part of an individual.

The generic framework for a (11/p, k, A)-ES is demonstrated in Algorithm The pop-
ulation at generation ¢ > 0 is denoted by P®. An individual p € P®) contains the object
variables T which represent a potential solution and a finite set of strategy parameters W.
The variate step represents the recombination as well as mutation steps. Although early the-
oretical publications put more emphases on mutation, like the (1 + 1)-ES, recombination is
an important part of an ES as well [15]. For ES global recombination is common, where new
parents are drawn for each gene. Different recombination strategies may be chosen for the ob-
ject variable and the strategy parameter part. For the object variables discrete recombination
is recommended while for the strategy parameters intermediary is recommended [17].

Evolutionary programming

When evolutionary programming (EP) was originally developed it’s goal was to create an
artificial intelligence through the learning process of simulated evolution. In the classic form
of EP finite state machines (FSM) were evolved which could be used as predictors [17].
FSM possess a finite number of internal states, process input symbols from a finite set and
produce output symbols from a finite set. The set of state transitions and the input and
output symbols specify the behaviour of the FSM [15]. Example tasks that were used for
experiments are the prediction of the next input or the prediction if the next input number
will be a prime number or not. The prediction accuracy of a FSM was used as its fitness value.
Fach FSM in the population was mutated once in order to create offspring. Recombination
was not used. The best half of the union of the old population and the children was used as
population for the next generation [17].

Another example of application of EP is the development of globally optimal strategies
in two-player, zero-sum games in 1969. Later this application was extended to nonzero-
sum games like pursuit evasion for aerial combat in which the application outperformed
human subjects. EP were extended and improved and a variety of mechanisms is used today.
Since the 1990s real value representations became more common and adaptive parameters for

30

Algorithm 4.3: (u/p, k, A\)-ES based on [15]
input
output: best individual that was found
initialize population P(©) with p individuals;
foreach p € P do
‘ p.V.age < 1;
t < 0;
repeat
QW {};
for i <1 to A do
select p parents p1,...,p, € P® uniformly at random;
q < variate(pi, ...,pp);
q.V.age < 0;
QW — QW U {g};
pttD) « selection of 1 best individuals from QWU {p e P . p.V.age < ﬁ};
foreach p € P+ do
‘ p.V.age < p.W.age + 1;
t+—t+1;
until stopping criteria met;

mutation were used. Today the representation and mutation possibilities are chosen in a way
that fits the problem that needs to be solved best [17]. Tournament or proportional selection
were used in later experiments. In the canonical EP each parent generated X offspring through
mutation operators. In continuous EP new individuals are added to the population without
iterative generations. Another expansion is the implementation of random extinction events

[15).

Genetic programming

GAs use a fixed length string representation for individuals. For many applications this
representation is too constraining and unnatural. This is also the case for the evolution
of computer programs. Genetic programming (GP) solves this problem with individuals,
which represent programs, of hierarchical structure and variable size. The most common and
also oldest representation is the tree-based representation, which will be discussed further in
this section [15]. But other representations were introduced as well. Examples of employed
structures are linear genomes, graph-based genomes or grammar based representations.

A GP basically works like any GA, but the special representation form requires suiting
recombination and mutation mechanics. The possible structures a GP can generate are
defined by the trees that are constructable from a set of function symbols F = {f1, fa, ..., fn},
which are used at tree nodes, and terminal symbols T = {¢1, t2, ..., t,, }, which are used at the
leaves. Each function operates on a fixed number of arguments, referred to as its arity. Each
terminal symbol can be either a variable or a constant. An example of a tree is displayed in
Figure

It is good practice to make sure that the applied combination of F and T fulfils two
specific properties. One is called closure and requires that every function symbol in F can
take as any of its arguments any data type and value that may result from the evaluation
of any terminal symbol or function. In many applications fulfilling the closure property is
not straightforward. But in order to calculate the fitness value of a program it needs to
be executed without abortion. In strongly typed GP each primitive contains information
about its type and the types it can call. Functions are forced to cast their arguments into

31

a 2

Figure 4.3: Example of a program tree that can be constructed with F = {4, -} and T =

{a,2}.

appropriate types which enforces closure. The second property is sufficiency, which requires
that the function and terminal symbols are able to formulate a solution to the problem.

When the initial population is generated, difference practices can be used to create a
program tree. Trees are usually constructed starting at the root. In the most common
methods a depth parameter d defines the maximum depth any tree within the GP can reach.
In the grow method a tree is built applying the following steps:

1. The root symbol f is drawn with uniform probability from F.

2. Let n be the arity of f. If f is at level I < d — 1, n nodes are selected with uniform
probability from FUT. If f is at level d — 1 the nodes are drawn from T only. These n
symbols are the children of f.

3. For each function symbol f; within the n children the grow method is invoked recursively
starting at 2. with f; in the place of f.

With this method trees of different shapes and sizes are created. The full method chooses
only symbols from F in depth smaller than d and only symbols from T in depth d. This
approach results in full trees that reach the maximum depth in each branch. In order to
reach greater diversity in the initially generated trees, the ramped half-and-half method was
formulated. For each depths m from 1 to d a fraction of é of the population is created with
depth m. Half of each depth group is created by the grow method and the other half with
the full method.

Crossover is usually handled by swapping subtrees. Standard GP crossover independently
selects a random node in each parent. Usually internal nodes are chosen with a probability
of 0.9 while any point is chosen with a probability 0.1. The chosen subtree in parent one is
deleted and the chosen subtree of parent 2 inserted at the deletion node. Some implementa-
tions create only one tree while others create a second child by replacing the chosen subtree
of parent 2 with the subtree of parent 1. When the leaf of a tree is replaced by a node that
was the root of another tree, offspring can be bigger and deeper than their parents. This
phenomenon can cause a progressive growth of individual sizes in the population and is called
bloating. In order to counter it a size limit may be set for offspring. If a child exceeds this
limit it is either discarded and the crossover procedure started again or it is assigned a very
low fitness value. Different variants of crossover exist. Common ones include the assignment
of selection probabilities to tree nodes based on depth or the selection of crossover nodes at
the same position in both parents.

4.4 Evolutionary algorithms in architecture

One of the first who experimented with evolutionary algorithms for architectural applications
was Frazer [21] [22]. Since then EAs were used to search for solutions for different architectural
problems.

32

When no better fitness measure can be found than the one in the human mind, the
user is often directly involved in the evaluation process during runtime. Interactive genetic
algorithms (IGA) integrate human judgement into the fitness values of individuals and let the
user influence the algorithmic exploration process. In architecture often subjective aesthetic
criteria or functional criteria which are hard or impossible to describe formally are important.
Therefore there exist many applications of IGA for architecture.

In order to create biologically inspired architectural forms Hemberg et al used Linden-
mayer systems, which model the growth of plants, in combination with an EA . This
specific EA variant is called ,,Grammatical Evolution“ and contains elements from GP as
well as GA. The developed system, named Genr8, creates three dimensional digital forms
or surfaces by growing and evolving them. The user can control the process via the fitness
function. In order to evaluate an individual and assign a fitness value, the individual is
grown by applying its production rules. The EA uses a variable-length binary string which
determines which grammatical production rules in Backus-Naur form are used to grow the
individual . In Genr8 the growth process is influenced by an environment, which has the
effect that changing the environment can also change the fitness value of individuals .

Quiroz et al used an IGA to explore floor plan designs. They employed a special GA
variant called NSGA-II: non-dominated sorted multi-objective genetic algorithm. The multi-
objective optimisation combines the objective and subjective criteria for the fitness function.
The algorithm creates fronts in which no individual is worse than any other. Two individuals
are chosen for tournament selection. In case both individuals are part of the same front the
one which is situated in the less crowded region is chosen, which is the more diverse one.
The algorithm should be used in a collaborative work by several designers. Each designer
can see a subset of each other’s solutions. The best individuals per user are saved over
generations and are part of the solution subset view. The rest of the displayed individuals
are chosen randomly from the collaborative population. Figure [£.4] shows a screenshot of
the collaborative design tool. The user can decide when and which individuals should be
injected into his own population. The worst ten percent of his population are then replaced
by copies of the individuals that should be injected. Via fitness biasing it is ensured that
those individuals survive long enough to influence the search process .

Addto Genome | Best #dd ta Genome Best

Addto Ganome | Best addto Ganoma| Bast

Aaddto Genome | Best addto Genome| Best

Figure 4.4: Screenshot of the collaborative design tool which enables the designer to inject
solutions from peers into his population (from)

These examples demonstrate that EAs are highly adaptable and extendible. Different
variants were developed and mechanisms exchanged and combined so that the categorisation

33

of an evolutionary algorithm in a specific variant group is not clear in every case.

Coates and Hazarika used GP to generate spatial compositions with solid forms or sur-
faces. They used basic forms as terminal symbols and operations on forms as function sym-
bols. Although they used artificial selection by people they also experimented with natural
selection with a fitness function that takes into account the number of elements the form
consists of and its surface area [26]. Although the use of IGA can be found in many EAs
for architectural application, our EA will not depend on human judgement for fitness assign-
ments. The EA developed for this thesis will use the compactness value of the isovists in the
developed placing configurations as basis for their fitness values. The algorithm will work
with 2D environments. But like in Coates and Hazarikas fitness function, the surface area,
in our case the visible surface perimeter and the visible unblocked floor area, will also be
integrated in our fitness values since they are used to calculate the compactness.

Schneider and Koénig used several different generative approaches which are based on ES
to generate room layouts or floor plans. One approach combined an ES that optimises room
sizes in layouts with a GA that optimises their neighbourhood relationships [2]. Some of their
efforts and results are explained in more detail in Chapter 3] One of their approach is similar
to ours since they also use isovist properties in the fitness function in order to place objects in
an environment [7]. They placed less but bigger objects than we intend to, but they proved
that it is possible to reproduce generated patterns based on specific visuospatial properties.
An individual in their EA consists of buildings, represented as rectangles, which are placed on
the plot of land, represented as a rectangle as well. The algorithm could position and scale the
buildings. The buildings were not allowed to overlap or to stretch out of the given boundary.
These constraints were checked after the placing of a building and if one was violated special
movements were applied in order to adjust the coordinates. The objects we place cannot be
scaled, only placed. But we will also check the no-overlap and the boundary criteria for the
objects and adjust their positions if necessary. They used a 2D, discrete environment, which
we will employ as well.

Elezkurtaj used evolutionary and genetic algorithms to create architectural layouts and
enable the user to interact at any time in order to direct the process. He divided the problem
into a form finding and a placing problem which operate in a coevolution process. The
rooms should be formed and placed in a 2D coordinate system. Since the rooms edges should
all be orthogonal to their neighbouring edges, they can only be positioned horizontal or
vertical. The orientation of the edges of the polygons in such an environment are alternating.
Therefore when running through such a polygon, if one knows the orientation of the first
edge, the orientation of the following edges can be derived. Elezkurtaj used this fact to code
a room with the sequence of the alternating horizontal and vertical lengths of its edges [27].
We will use this compact encoding method for the representation of the form of the objects
that should be placed.

34

CHAPTER

Evolutionary Approach: Details

5.1 Overview

Our evolutionary algorithm will take a description of an environment and of objects as input.
For simplicity it will work on a discrete 2D grid. The objects will be described in shape
and amount and the algorithm shall place all of them at empty places in the environment.
If an overlap option is set then the objects may overlap with each other but not with the
environmental blocking spaces. In the beginning as many random individuals are generated as
are needed for the configured population size. Afterwards the population is sorted by fitness
values. Since the fitness function is dependent on the compactness values of the individual,
this step includes the calculation of isovists for each vision point. Different fitness functions
can be chosen. We want to be able to minimise or maximise each of the following:

e the compactness of the point with the maximum compactness value in the environment
e the compactness of the point with the minimum compactness value in the environment
e the average compactness of all vision points in the environment

e the deviation of compactness values of all vision points in the environment

The calculation of the compactness for a vision point includes the calculation of the isovist
at that point. For this task a version of the shadow casting algorithm is used. Afterwards the
isovist’s area and perimeter can be calculated and used for the compactness computation.

The selection mechanism is used to select individuals as parents for the children generation
from the sorted population. One random value determines if crossover will be applied to the
parents. If the random value is above a threshold the two children are created as copies of
their parents. Afterwards it is decided individually for each child if its genes will experience a
random mutation. If the adults shall die then the set of children is sorted. If (14 \) selection
is used then the adults and children are all sorted by their fitness. The worst individuals are
simply discarded until the population size is reached again and the resulting set will become
the population of the next generation.

The creation of random individuals as well as the crossover and mutation processes require
that object placings are added to an individual. An objects is always connected with its shape
description. This description together with an origin coordinate can describe which points in
the environment will be occupied by this object. Whenever an object needs to be placed it is
checked if the object and point form a legal placing. Several criteria need to be satisfied. At
first it is necessary to calculate which points the object with that origin point would occupy.
Then for each of those points it needs to be checked if it is within the environment boundaries

35

and if it is free of environment obstacles. If overlaps are not allowed it also has to be free of
other obstacles. If the checking routine found a rule violation the algorithm tries to move the
obstacle a bit. If a valid point was found then the placing is added to the individual. The
crossover adds obstacles of both parents to one child. If overlaps are not allowed this can
lead to illegal placings. Any placing that is not possible and could not be moved, is discarded
and a random placing added instead.

The algorithm stops after a prespecified number of generations and returns the best
individual of the last generation.

5.2 Evolutionary algorithm for object placement

The algorithm builds on the usual structure of an evolutionary algorithm as outlined in
Algorithm Let the population at generation t > 0 be denoted as P®). At first the initial
population P©is generated. In this step p individuals are created by placing the required b
number of objects randomly for every individual. The population is then sorted from best
to worst fitness by a quicksort algorithm. This step involves the calculation of a field of
vision for every non-occupied point in every individual and its compactness value in order to
evaluate the fitness relevant properties.

The generation of children is one of the key components of any evolutionary algorithm.
In each generation A children are created. If elitism is activated the first step is to copy the
configured number € of best individuals from P® as the first children into the generations
children set C®). Afterwards as long as |C®)| +2 < X two different parents are chosen from
P® by the selection mechanism. A random variable randl is drawn from [0, 1) and compared
to the crossover rate ryoper. If randl < rioper crossover is applied to the parents in order
to generate two children, otherwise the parents are simply copied. An additional random
variable per child likewise determines whether the child’s genes will experience mutation by
comparing rand2 and rand3 to the mutation rate r,,,:. Depending on the value of A and e,
|C (t)| + 1 = A might hold true at one point. This last missing child is created as a copy of a
random individual from P®).

The selection protocol is applied to P® U C®) to pick those groups which are valid
candidates for the next generation. In this step the individuals from P® are discarded if the
configuration determines that they shall die at the end of their generation. The remaining
candidates are then sorted and if the number of candidates is larger than the population size,
the worst candidates are simply discarded. The surviving p individuals form P**1 . The
algorithm continues with the creation of children for generation ¢+ 1 until the desired number
of generations, denoted by 7, is reached. The pseudocode is listed in Algorithm

Representation

The environment in which the obstacles shall be placed is given in a two dimensional matrix
FE which represents the w, columns and h, rows of the environment. Each cell is marked as
either “empty” (value 0) or “blocked” (value 1). Blocked cells do not allow obstacle placement,
they are occupied by environment obstacles that block the view. Empty cells do not block
the view. But it might be forbidden to place obstacles in specific empty cells, these cells are
called “irreclaimable”. Let E, , € [0, 1] refer to the environment value of the cell in column z
and row y, x = 1,...,w. and y = 1, ..., he. In the following the term point (z,y) will also be
used to refer to the cell in column x and row y. Set I contains the points that were marked
irreclaimable.

The objects that have to be placed might have different shapes which need to be specified.
As pointed out by Elezkurtaj [27], in an orthogonal grid movements in only two directions
are possible: the vertical direction and the horizontal direction. Following the border of
a polygon the directions are alternating, which makes it possible to describe the shape by

36

Algorithm 5.1: Used evolutionary algorithm
input : 7, p, A, Tzover, Tmut
output: best found individual
t=0;
generate P(©);
sort PO by fitness;
while t <7 do
copy € best individuals to C®;
while [C()| +2 < \ do
choose two different parents from P®);
if randl < ryoper then
‘ Crossover;
if rand2 < rpe then
‘ mutateChild1;
if rand3 < rp: then
‘ mutateChild2;
if |C®| < X then
‘ add copy of random individual from P® to C'(t);

select candidates for P+ from P®) U C®) using selection protocol;
sort Pt+1).
if [P¢+Y| > 4 then

‘ reduce to u by cutting off the worst individuals;

return best individual from P

an array of integer numbers which represent alternating horizontal and vertical movements.
Elezkurtaj’s movement array describes the perimeter of the polygon that represent a room.
Since we do not use rooms but mostly smaller and slimmer object shapes, our movement array
will describe the shape directly. If the starting direction is fixed, the following directions can
be derived.

Our descriptions will always start with a vertical movement. Positive y values move down,
positive x values move to the right. For example the shape description {—1, 3} means that the
object is constructed by starting at origin point (x,y), then moving one cell up to (z,y — 1)
and then three cells to the right, occupying (z + 1,y — 1), (z + 2,y — 1) and (z + 3,y — 1).
resulting in the object shape displayed in Figure [5.1

F

Figure 5.1: Example object shape for the movement sequence {—1, 3}.

For one placement problem objects with different shapes may be defined. Each of those k
object categories cat;, i = 1,..., k, is given by a movement array as shape description and the
amount o; how many objects of that category shall be placed. A placing problem is defined
by an environment FE, irreclaimable points set I and the object definitions cat;, i = 1, ...,k
with their shape descriptions and o;. An individual ind within the EA represents a solution
to such a placing problem. It contains a 2-dimensional array p;,q which holds its obstacle
placements. It contains an array p;,q [i] of o; points for each category cat; which define the
points at which the objects of category ¢ are placed. p;,q can be processed to calculate which
cells of the environment will be occupied by the placed obstacles. Afterwards the isovists
of the cells that were left empty and their compactness values can be calculated in order to

37

assess the fitness of ind.

Placing an obstacle at a random position

Obstacles need to be placed at random positions during different stages of the algorithm.
In the beginning the initial population is created by placing all obstacles randomly. The
placement of obstacles needs to follow some restrictions which the procedure in Algorithm
ensures. At first a random point within the environment is chosen. Afterwards in the
isValidPlacing method it is calculated which points will be occupied by an obstacle of the
desired category if it is placed at that point. For each of those occupied points (z,y) it is
checked if they are:

e an irreclaimable or blocked environment cell, that is if (z,y) € I or B, =1
e located outside of the environment, if t <1 or z > we or y < 1 or x > he
e overlapping with another object’s cell if the no-overlap option is set

If any of the occupied points fulfils any of these properties, then the placing is considered to be
invalid and solveOuverlap is called. This repair mechanism shown in Algorithm will try to
move the object slightly in order to make it valid. It will try to move the object within 6 steps
to each side. If the root point would leave the environment border the mover continues on
the opposite border, thus treating the environment like a closed circle. The starting direction
is chosen at random and each direction is evaluated completely until the next one is tried. If
no valid point was found within 6 steps into each direction, null is returned.

If the overlap could not be solved by solveQverlap, another random point is chosen and
the evaluation is started again. If within z random points no valid point was found by addRnd
the algorithm aborts with an error. Otherwise the obstacle is placed at the first valid point
that was found.

If it was configured that no overlap of obstacles is allowed then a set is maintained for
each individual which contains the points that are occupied by the current object placings.
If a new point shall be added every point of the obstacle to be placed can be checked against
the occupied points set. If an object is deleted, the points that were occupied by this object
are removed from the set.

Algorithm 5.2: addRndObj

input : individual ind, category cat, number of objects to add a, step size €, max.
tries z

output: updated individual

count < 0;

for i < 0 to a do

if count > z then
| error: no allowed point found

p < random cell in environment;
if not isValidPlacing(ind, cat,p) then
‘ p + solveOQuerlap(ind, cat, p, 0);
if p not null then
addPlacing(ind, cat, p);
count < 0;
else
count + +;
i——;

38

Algorithm 5.3: solveOverlap

input : individual ind, category cat, point to add p, steps 6
output: valid placement point, null if none was found
mover < new PlacingMover(p, 0);
while not all directions visited do

p < mover.getNextPoint();

if isValidPlacing(ind, cat,p) then

return p;

return null;

In the worst case the solveOuverlap routine would evaluate 6 points in each of the four
directions. Its time complexity is therefore O(6). If all of the a objects that should be added
with addRndObj cause an overlap, solveQOuverlap is called at maximum 2z times for each object.
addRndObj therefore has a time complexity of O(a - z - 6).

Mutation

When mutation is applied to an individual, a random object from a random category is
chosen and moved to a new random location. For very large object amounts the mutation of
just one object’s position has little chance of influencing the compactness of a minimum or
maximum point and also hardly changes the average or deviation of the whole population.
Therefore the mutation steps to be executed are calculated as the rth fraction of the overall
amount of cells that need to be placed. The overall amount of cells is calculated as the sum
of the number of cells each obstacle category occupies multiplied by how often it shall be
placed. At least one mutation step is executed. More formally, 7 = | sumcy - 7] obstacles are
moved if |sumeey - 7| > 0, where sume is:

k
SUMeel] = Z 0; - cell_count(cat;) (5.1)
i=1

and cell _count(cat;) symbolises the amount of cells the shape for category cat; occupies.
Otherwise, if | sumeey - 7| = 0 then 7 = 1 obstacle is moved.

This does not influence the mutation probability. But in case the mutation is executed,
more than one object’s position is changed.

For every mutation movement a random obstacle of a random object category is chosen
and deleted from the individuals placement list. Afterwards a new obstacle of the same
category is inserted at a random position. The mutation is demonstrated in Algorithm
For each mutation step addRndObj is called for adding one object. The time complexity of
mutation is therefore O(7 - z - 6).

Algorithm 5.4: Mutation on one individual

input : individual ind

output: mutated ind

for m + 0 to 7 do
cat < random category;
obj < random obstacle in p;,q [cat];
removeObject(ind, obj);
addRndObj(ind, cat, 1);

39

Crossover

Crossover is applied to two individuals, called parent; and parent, in the following, by using
Ngover CrOssover points. For every crossover point a random object category and subsequently
a random object in that category is chosen. The algorithm sequentially processes object for
object in the parents placement lists and creates two children, child; and childs. Every
processed object of parent; is copied to child; and every processed object of parents is
copied to childs.

Algorithm 5.5: Crossover of two individuals

input : Individuals parent; and parents, ngoper, category amount k
output: Individuals childy, childs
Create new individuals: childy, childs;
beginObjectCat + 1;
for h < 1 to ngoper do
endObjectCat < random between beginObjectCat and k;
endObject < random between 1 and o¢ngopjectCats
for curCat + beginObjectCat to endObjectCat do
fill <= addGetF'ill(childy, curCat, pparent, [curCat));
fillChildy[curCat] = fill,
fill <= addGetF'ill(childy, curCat, pparent, [curCat));
fillChilda[curCat] = fill,
filly + 0;
fillo + 0;
for i< 1 to OendObjectCat do
curPl < pparent, [endObjectCat] [il;
cur P2 < DPparent, [endObjectCat] [i];
filly += addGetF'ill(childy,endObjectCat, cur P1);
fills += addGetFill(childy, endObjectCat, cur P2);
if i = endObject then
swap contents of child; and childs;
swap contents of fill; and fillo;
swap contents of fillChildy and fillChildo;
fillChildy[endObjectCat] = filly;
fillChilda[endObjectCat] = filla;
beginObjectCat = catendopjectCat+1;
for curCat < beginObjectCat to k do
fill <= addGetFill(childy, curCat, pparent, [curCat]);
fillChildy[curCat] = fill;
fill <= addGetFill(childy, curCat, pparent, [curCat]);
fillChilda[curCat] = fill;
for cat < 1 to k do
addRndObj(childy, cat, fillChildy[cat]);
addRndObj(childs, cat, fillChilds[cat));
return childy, childs;

When the chosen object for the current crossover point is reached, child; and childs
exchange places, so that the next objects will be copied from parents to child; and from
parent; to childy. Algorithm demonstrates the process. After the chosen object for the
last crossover point was processed the children are exchanged once more and the remaining
objects copied. When obstacles are added to an individual they might cause an overlap with

40

other obstacles. If overlapping of objects is not allowed (if the no-overlap option is set), these
cases need to be repaired. The addGetFill method shown in Algorithm adds the obstacles
of the given category to the given individual if they cause no overlap or the overlap could
be solved by the solveOverlap method. It counts how many objects could not be added and
returns that number. In the crossover algorithm those numbers are saved per category for
each child in fillChild; and fillChilds. After all obstacles that could be added were added
to the children, for each child;,j € {1,2} and for each category cat fillChild; [cat] random
objects of category cat are added to child;. Adding the random objects at the end of the
process rather than when an overlap could not be resolved, prevents causing more overlaps
with randomly placed objects during the copy process.

Both parents as well as both children have the same amount of placed objects per object
category. The number of crossover points is naturally limited by the number of overall objects
that shall be placed.

Algorithm 5.6: addGetFill
input : Individual ind, object category cat, list list of coordinates to add, step size
output: number of how many objects could not be added
count < 0;
for point p in list do
if isValidPlacing(ind, cat,p) then
‘ addPlacing(ind, cat, p);
else
p < solveQuerlap(ind, cat, p, 0);
if p not null then
‘ addPlacing(ind, cat, p);
else

‘ count + +;
return count;

In the worst case the addGetFill algorithm calls solveOverlap for every point in the given
list. Therefore its time complexity is O(|list| -). In the crossover procedure two parents
are used to create two children. If the no-overlap option is set then the objects of each
parent are known not to be overlapping. At most half of the placings per child can cause
an overlap. Therefore for both children together solveOuverlap could be called at maximum
Zle o0; times. Additionally at the end at most Zle o; random objects might be added by
addRndObj. Therefore the time complexity of crossover is O(XF_; o; -).

Calculation of perimeter, area and compactness

The Shadow Casting algorithm (which is described in general in the ,Background* chapter
and in detail in the next section) calculates a lit map L for a point p in an environment F'.
L contains the information which environment cells are visible from p. If cell (z,y) is visible
from p then L, , = 1, otherwise L., = 0. All cells z,y such that L,, = 1 form the isovist
of p. L is passed to an algorithm that calculates the perimeter and area for the isovist. It
iterates through every column of every row, evaluating each cell (z,y):

o I,y =0and L;, =1, the cell is empty and visible: add one to area

x>0and Fp_1y=0and Ly_1, =1and (Fyy=1or L,, =0): add one to perimeter

y>0and F,y_1 =0and L, 1 =1and (F,, =1or L;, =0): add one to perimeter

x>0and (Fp_1y=1o0r Ly_1,=0)and F,, =0and L., = 1: add one to perimeter

41

e y>0and (F,y_1=1o0r Lyy_1 =0)and F,y =0and L,, = 1: add one to perimeter

With the perimeter and area values of the isovist at p the compactness value at p can
be calculated using Benedikt’s formula (see Equation . In the EA each individual ind
represents a solution environment F*? such that F;zd = 1 if either E,, = 1 or if (z,y) is
occupied by an object placement from ind. To evaluate an individual ¢nd the Shadow Casting
algorithm is called for each point (x,y) in environment F™? for which F;Z/d = 0 holds.

Fitness - target functions

In order to evaluate the solutions and calculate a fitness value for every individual, it is
necessary to define a target function. Which characteristic of the solution shall be maximised
or minimised? The evolutionary algorithm searches for the individual with the highest fitness
value. Therefore if a value shall be minimised, its reciprocal value is used as fitness value. In
the following the used measures are listed and shortly described.

Average compactness of the compactness values of all empty fields.

Deviation is the standard deviation of the compactness values of all empty fields.
Maximum compactness is the highest compactness value of all empty fields.
Minimum compactness is the lowest compactness value of all empty fields.

Every measure can be minimised or maximised, resulting in a total of eight different
possible target functions:

max avg, min avg, max dev, min dev, max max, min max, max min, min min

5.3 Shadow Casting algorithm

This section contains details on the implementation of the Shadow Casting algorithm. For a
general explanation on how the Shadow Casting algorithm works see Chapter

The Shadow Casting algorithm (based on [28]) processes the environment of width w, and
height h. by octants. The castLight algorithm is started twice for every of the four diagonals
that originate from the vantage point and processes the octants that join this diagonal. Each
octant is processed from the diagonal to the axis. This requires one of the two casts for
each diagonal to be processed row by row and the other one to be processed column by
column. These are the outer directions. Each row would be processed column by column
and respectively each column would be processed row by row. These are the inner directions.
The castLight method of the Shadow Casting algorithm is recursively started if a blocking
cell was found. It takes the following arguments:

e The current distance of the outer row or column to the vantage point.

e The start slope is one of the boundary slopes for the evaluation of that call. The
starting slopes for the eight octant calls are the diagonals which evaluate to a slope of
1.

e The end slope is the other boundary slope. The end slopes for the eight octant calls
are the axes which evaluate to a slope of 0.

e The direction is the current quadrant which is processed. Each direction contains an
x and an y delta value which determines into which direction the evaluation progresses.

42

e The flag xInner signifies which half of the quadrant is evaluated. If it is ¢rue then the
part which is processed by using the columns as outer direction. If it is false then row
by row is the outer approach.

The starting calls for the octants are listed in Algorithm Algorithm [5.8] then lists the
castLight algorithm.

Algorithm 5.7: shadowCastingFoV

input : vision point startx, starty
output: lightMap
lightMap|starty] [startz] < true
Directions.add(DOWN_RIGHT (z : —1,y: —1));
Directions.add(DOWN_LEFT(z: 1,y : —1));
Directions.add(UP_RIGHT(z : =1,y : 1));
Directions.add(UP_LEFT(x : 1,y : 1));
for d in Directions do

castLight(1,1,0,d);

castLight(1,1,0,d);
return lightMap;

At first the castLight method checks if the start slope is smaller than the end slope. If
this is the case then there is no valid area in between and the method returns immediately.
Starting with the distance that was passed as parameter it evaluates every outer entity by
iterating though every of its inner elements. The starting inner element is the one with the
same distance like the current outer distance (the element on the diagonal at this distance)
and the inner distance is reduced at each iteration. After the end slope was reached the
outer distance is increased by one and the next elements are evaluated. The current cells
coordinates are calculated by using the vision point coordinates and the inner and outer
distance. In case the outer coordinate is situated outside of the environment border all viable
cells in this octant were evaluated and castLight returns. If the inner coordinate lies outside
of the environment it means that the distance to the border is smaller in the inner direction
than in the outer direction. The inner distance is then adjusted to the first element that
lies within the environment for the current outer distance. This procedure is represented in
Algorithm

Once the current cell coordinates are calculated the slopes for the leftmost and rightmost
visible corners of that cell are calculated. The slope closer to the diagonal (and therefore the
start slope) is called right slope, the other one is the left slope. If the right slope is at least as
steep as the starting slope, the cell is considered outside of the visible area and the evaluation
continues with the next visible cell. This requires adjusting the inner distance accordingly
in order to jump over all out of slope cells in between. If the left slope is smaller or equal
to the end slope, then all visible cells in this outer distance unit were completed and the
algorithm continues with one distance further. But if the cell is within the slope boundaries
it is recognised as visible and its content and context is evaluated according to the state of
this cell and the cell that was evaluated right before this cell.

e This cell free, last cell free:
If it is a free cell and last evaluated cell was free as well then the evaluation can continue
with the next cell.

e This cell occupied, last cell free:
If the last cell was free but this one contains an obstacle then castLight is called re-
cursively for the cells between the start slope and the left slope of the current cell for

43

all further distances. The right slope is saved as the current known end of obstacles in
case no other obstacle will follow.

This cell occupied, last cell occupied:
The right slope is saved as the new current known end of obstacles.

This cell free, last cell occupied:

If the last evaluated cell contained an obstacle and this one does not then the end of
the obstacles was found and the new starting slope for the following evaluation is set
to the last saved right slope. This skips the iteration through cells behind the obstacle

series which are not visible.

Algorithm 5.8: Shadow Casting FOV castLight

input : distance, start slope, end slope, direction d, xInner
output: light map
newStart < 0;
if startSlope < endSlope then

‘ return;
for distance to maz(we, h.) do
if last cell was blocking then

‘ return;
outer < —distance;
for inner <— —distance to 0 while end < (deltaInner — 0.5)/(deltaOuter + 0.5)
do
currentX <« startx + d.deltaX - (xInner?deltalnner : deltaOuter);
currentY < starty + d.deltaY - (xInner?deltaOuter : deltalnner);
newlInner < checkBoundaries(curY, cur X, inner,d, xInner);
if newlInner =1 then // reached end in outer direction

‘ return;
if newlInner # inner then

inner < newlnner;
continue;

leftSlope + (inner — 0.5)/(outer 4+ 0.5);
rightSlope < (inner + 0.5)/(outer — 0.5);
if startSlope <= rightSlope then
if startSlope # rightSlope then

‘ inner < (startSlope - (outer — 0.5) — 0.5) — 1;
continue;
lightMap[curY] [cur X] < true;
if last cell was blocking then
if this cell is blocking then

‘ newStart < rightSlope;
else
startSlope <+ newStart;
if startSlope < endSlope then

‘ return;
else
if this cell is blocking then

castLight(distance + 1, startSlope, le ftSlope, d, zInner);
newStart < rightSlope;

44

Algorithm 5.9: checkBoundaries
input : currentY, currentX, deltalnner, Direction d, xInner, map height h., map
width w,
output: new deltalnner or 1 if out of slope
if currentY < 0 then
if zInner then
‘ return 1;
return ((0 - vision point y / d.deltaY) -1;
if currentY > h. -1 then
if not xInner then
‘ return ((he -1 - vision point y) / d.deltaY) -1;
return 1;
if currentX < 0 then
if not xInner then
‘ return 1;
return ((0 - vision point x) / d.deltaX) -1;
if currentX > w, -1 then
if xInner then
‘ return ((w, - 1 - vision point x) / d.deltaX) -1;
return 1;

The checkBoundaries method has a constant time complexity. The worst case for the
castLight algorithm is an environment in which every cell is visible from the vision point. In
this case the algorithm needs to evaluate each cell. Its time complexity therefore is O(we - he).

45

5.4 Typical solutions

In this section the effect of the different target functions shall be distinguished. A test series
was executed and the results of the optimisation processes are presented in this section in
order to provide a representive solution for every target function.

The layout of the environment in which the objects shall be placed and the amount and
shape of the objects need to be configured as input of the algorithm. The used environments
will be displayed as ascii image and can also be downloaded from https://wuw.ac.tuwien.
ac.at/research/problem-instances. They contain the following symbols:

| wall - blocking cell
free cell

irreclaimable but non-blocking cell

Each object category that was defined to be placed in the environment will be listed
with a number, indicating how often that object shall be placed, followed by a colon and the
objects shape.

130: # 40: ## 19: ## 1: ###H###H

Figure 5.2: The bienale pavilion instance and the objects to be placed in it.

As environment for the runs in this section the Bienale Pavilion instance shown in Figure
was used. It resembles a room which is divided into two parts by symmetrically placed
columns. It contains a path in the middle between the left and right half. Objects of different
shapes shall be placed, the objects and their quantity is displayed under the instance.

Several different options can be configured for the EA, including popular parameters like:
target function(see Section for details), population size, children number, generations,
selection mechanism, elitism, number of crossover points, mutation rate, crossover rate and
the choices for removal of duplicates and if adults shall die at the end of their generation.
Preliminary tests were executed that provided insight in parameter qualities. An overview
about parameter impacts on solution qualities can be found in Chapter [l For the target
function investigation in this section a test series using a population of 460 was performed for
600 generations. For every available target function one solution was chosen to represent it
in this comparison. The results show patterns for the placed obstacles and the differences in

46

https://www.ac.tuwien.ac.at/research/problem-instances
https://www.ac.tuwien.ac.at/research/problem-instances

compactness distribution. The images were divided into one group of maximisation and one
group of minimisation. Since the compactness values that occur in the maximisation results
are a lot higher than the highest value occurring in the minimisation results, the two groups
use a different colour code scaling which is displayed below the group.

a) Average compactness -> maximise b) Deviation of compactness -> maximise
N =553 N = 36.53

Nrmaz = 100.96 Npaz = 114,51

Nmin = 5.16 Npin = 1.27

oN =17.27 oN =28

¢) Minimum compactness -> maximise d) Maximum compactness -> maximise
N =36.45 N =25.94

Nimae = 70.19 Nmar = 202.51

Npin = 14.03 Npin = 3.77

oN =10.25 oN =11.22

B A

1 50 100 150 200
Compactness colour
key

Figure 5.3: Examples of placings reached by maximising the different compactness measures
where N is the average compactness, Nyq, the maximum compactness, N,,;, the minimum
compactness and oN the deviation of the compactness values for the shown example.

The maximisation of the average compactness yields configurations in which the objects
are scattered over the whole map (see example in Figure . This means there will be many
points with a high compactness value and an isovist with fingers, which show you glimpses
of different environment areas.

The maximisation of the standard deviation of the compactness values leads to configu-
rations which contain an area similar to the maximisation of the average compactness as well
as an area which contains almost no obstacles and resembles one big free space which you
can perceive as a whole (example in Figure |5.3b]).

The maximisation of the compactness of the point with the smallest compactness value
yields placements similar to the average compactness maximisation. However, since the focus
is on raising the compactness of every individual point of the configuration and not on raising
the average compactness, the maximum values that occur are in general smaller (example in
Figure .

The maximisation of the compactness of the point with the highest compactness value
means there will be one point in the resulting configuration whose isovist consists of as many
fingers as possible. Usually this means that there is one small area which is highlighted by
having clearly higher compactness values than the rest of the map (example in Figure .
As can be seen by comparing the heat maps for the different maximum target functions, the
maximisation of the maximum compactness leads to maximum compactness values which

47

are clearly higher than the values that occur in the results of the other maximisation target
functions.

I— r’-i-ﬁ r e = f e

4
.

S i e
I. Fl o """i—

a_) Average compactness -> minimise _) Deviation of compactness -> minimise

N =228 N = 4.58

Nmaz = 5.56 Npaz = 8.52

Nmin = 1.27 Npin = 1.82

oN =0.53 oN = 0.56

.-r T.JF

¢) Minimum compactness -> minimise d) Maximum compactness -> minimise
N =26.09 N =5.12
Niaz = 56.34 Nmaz = 8.8
Nmin = 1.27 Nrin = 1.43
oN =9 oN =13
2 4 6 8
Compactness
colour key

Figure 5.4: Examples of placings reached by minimising the different compactness measures
where N is the average compactness, Npqe the maximum compactness, Ny, the minimum
compactness and oN the deviation of the compactness values for the shown example.

The minimisation of the average compactness results in some big empty chambers and
very low compactness values. The obstacles are usually grouped around the already existing
columns in the middle of the instance (example in Figure .

The minimisation of the standard deviation of the compactness values leads to similar
placing like runs which use the average compactness as the target value. However, the
compactness values are less extreme (example in Figure .

The minimisation of the compactness of the point with the highest compactness value
also leads to configurations with bigger rooms. But compared to the average compactness or
deviation maps the rooms are more frazzled (example in Figure [5.4d).

The minimisation of the compactness of the point with the smallest compactness value
generates more or less random placements (example in Figure . This is due to the fact
that the minimum compactness value occurs in a square which means just one square isovist
on the map and the best possible target value is reached. This is most often one simple point
which is surrounded completely. Please note: the compactness values in this map are very
high compared to all other values occurring in the minimisation group and therefore above
the high end of the colour map used for the minimisation maps.

Figure shows the isovist of the point which has the maximum compactness of 202.51
of the solution shown in Figure Figure [5.5b] likewise shows the isovist of the minimum
compactness of 1.27 of the solut1on shown in Figure [5 which is also the shape with the
smallest compactness possible in this discrete settlng. In the figures the red point marks
the view point, the white area represents free seen space. The black dots are parts of the
environment and the blue ones represent visible placed obstacles.

48

s - - .
T .
, e =
: _— . - .
. ._.J - . .
- -
1
. L me s - i o
a) The isovist of the point with the biggest b) The isovist of the point with the smallest
compactness. compactness.

Figure 5.5: The isovists of the biggest and smallest compactness in this test series. The blue
blocks are blocking cells, the white area is unblocked space and the red dot represents the
vision point.

The minimisation of the maximum compactness in general leads to a bigger maximum
compactness than the minimisation of the average compactness. This can be explained by
considering that when minimising the maximum compactness the comparison of two solutions
only considers the highest compactness value. But for a good solution all compactness values
need to be low. Exactly this is done by minimising the average compactness. Therefore it
finds solutions with a small highest compactness value clearly faster than the minimisation
of that value directly.

On the contrary, the maximisation of the minimum compactness does in general lead to
higher minimal compactness values than the maximisation of the average compactness. It
seems very easy to find a solution which contains a square isovist and therefore the lowest
possible compactness value. But it seems hard to find a solution which contains only high
compactness values. The maximum minimal values found are not that big in general (clearly
below one fourth of the maximum compactness value found). Therefore the exact value of the
minimum might not matter that much for the maximisation of the average value. However it
is noteworthy that in this test series those minima were still bigger than the lowest possible
compactness value.

49

CHAPTER

Evolutionary Approach: Evaluation

6.1 Test setting

For any evolutionary algorithm an important task to carry out is the calibration of the
algorithm parameters. Only a parameter setting that suits the use case can ensure that the
discovered solutions belong to the best solutions for this problem. Since the algorithm uses
random choices in the solving process, more than one run with specific settings is necessary in
order to evaluate a setting set. For the statistics presented in this chapter every setting was
executed by at least 15 instances. Every instance results in one best solution found in this
run. For the statistics the average value of those 15 or more best solutions was calculated.
Depending on the target function and algorithm settings, the actual fitness values can differ
from the compactness values. For the creation of the plots the compactness values were used,
since they are more interesting and descriptive. Also, compactness values can be compared
between different runs, settings or target function. The ranges of the fitness values can differ
for different target functions or settings with fitness penalty and therefore they are not easily
comparable to each other.

In the following test runs the maximum compactness appearing on any field of the map is
minimised. Elitism for one element was set for every run. Duplicates were prohibited where
not stated otherwise (see subsection [Removal of duplicates) and adults died at the end of the
generation so that the survival selection only involved individuals from A. Additionally to
tournament selection sigmascaling combined with proportional selection was used.

The results are presented mostly in boxplot graphics. The box is starting at the first
quartile, which marks the boundary such that 1/4 of the points have a value equal or less
than it and ends at the third quartile, which marks the boundary such that 3/4 of the points
have a value equal or less than it. The median is marked as a horizontal line in the box, it is
the point of which 1/2 of the points have a value equal or less than it. The whiskers end at
the most distant point that lies within 1.5 times the interquartile range. Any points outside
of those ranges are marked with a cross.

The environment that was used is the room instance in Figure It is a simple rectangle
of 46x21 which is completely empty. Only one type of objects shall be placed into the room,
but their shape is a bit more complex than the shapes of the pavilion instance.

51

20: ####
#

Figure 6.1: The room instance and the objects to be placed in it.

6.2 Number of generations

The number of generations which the algorithm calculates is an important parameter to set.
The algorithm should have enough time to converge to a solution. Otherwise if the number of
generations is too low, the results might be worse than what could have been achieved. But
the number of generations should not be too high either. If the algorithm already converged
and does not find any better solutions the runtime is increase without providing benefits to
the solution.

Figure [6.2 shows a comparison of runs for the minimum maximum compactness with
different numbers of generations. The population size and number of children was 50. The
mutation rate was set to 0.6, the crossover rate to 0.8 and two crossover points were used.
For the first entry with 0 generations just the initial population was generated and evaluated,
no children were generated. It is not surprising that with only 20 iterations the best found
placing configuration is much worse than with 50 or more iterations. Of the two tested
selection mechanisms tournament selection with a group size of 5 clearly performed better
than sigmascaling in this test. It seems that with this configuration after more than 300
generations not a lot of improvements are found any more with the tournament configuration.
The sigmascaling runs still have room to improve, so the gap between the two mechanism
closes with the increasing number of generations.

6.3 Mutation and crossover

The crossover rates determines the amount of individuals which is created through the
crossover of two individuals of the previous generation. The mutation rate determines the
chance that individuals experience gene mutation. The results in Figure [6.3|show that in this
setting a mutation rate of at least 0.5 in combination with tournament selection seems to be
advantageous. These runs used a population of 200 individuals, 200 children and ran for 200
generations. Again, two crossover points were used.

It is interesting to see that with a crossover rate of 0.8 the sigmascaling runs seem to
perform worse with increasing mutation rate, while the opposite holds for the tournament
selection runs. Tournament selection clearly outperforms sigmascaling with higher muta-
tion rates. The statistics suggest that the best results are to be expected with tournament
selection, a mutation rate of 0.6 and a crossover rate between 0.2 and 0.6.

52

T I I I T |
Sigmascaling T
16 Tournament 5 T

o %%%%%

0 L L 1 L L L L L L L 1 L
0 20 50 70 ©0 100 200 300 400 500 700 900

MNumber of Generations

Maximurn Compactness of Best Solutions

Figure 6.2: Comparison of runs for the minimum maximum compactness with different num-
bers of generations.

8 T

I I I | T
Sigmascaling T
7 Tournament 5 1 o

i | %% ;

2+ -

Maximurn Compactness of Best Solutions

mut0. 1xrate0.7 -
mut0. 1xrate0.8 -
mut0. 1xrate0.9 ~
mut0.2xrate0.6 -
mut0.2xrate0.7 -
mut0.2xrate0.8 -
mut0.2xrate0.9 ~
mut0.dxrate0.8 -
mut0.5xrate0.8
mut0.6xrate0.2 ~
mut0.6xrate0.4 ~
mut0.6xrate0.6 -
mut0.6xrate0.8 -
mut0. 7xrate0.8
mut0.8xrate0.8

Figure 6.3: Comparison of solutions with different mutation and crossover rates from runs
for the minimum maximum compactness.

6.4 Children

The term ,,overproduction® refers to the configurations which define the number of children
A bigger than the population size p. In this case in every generation the number of produced
children is bigger than the population pool. Therefore the group of next generation individuals
has to be reduced after creation. In this algorithm the worst individuals are simply discarded
until only exactly the population size remains. This increases the selection pressure [15].

Figure [6.4] shows an overview of the evaluation of the impact of different sizes of \. All

53

runs used the same population size of y = 50 and ran for 100 generations. With an increasing
number of children the statistics show a trend to a decreasing maximum compactness, which
means an increasing quality of solution.

X
x

Maximurn Compactness of Best Solutions

| |
[=) o
w Q
—

Mumber of Children

50
70
150
250
300 |

Figure 6.4: Comparison of solutions with different numbers of children from runs for the
minimum maximum compactness.

6.5 Population size

Additionally to increasing the children size, the population size could be increased as well.
More individuals in the population can cover a wider range of solutions. The population size is
therefore determining the degree of parallel search. Complex, multi-peaked search landscapes
need a higher degree of parallelism in order to explore the search space thoroughly [15].

For the population size evaluation instances with a population and children size of u =
A = 50 and instances with u = A = 100 were used. Since we start with the configuration that
generates as many children as are needed to make up a new generation, an increase of the
population size requires another change if we want to keep the survival selection mechanism
(parents die, select the next generation individuals only from A). Therefore it is necessary to
increase the children size as well.

The test instances again minimised the maximum compactness. As can be seen in Figure
[6.5] runs with an increased population size and children number perform better. That even
holds for the runs with higher generation numbers, where a simple increase of the generation
number did not lead to significant improvements any more. The runs with 100 or more
generations showed better performances with an increase of the population size and number
of children by 50 than the further increase of the generation number by 100.

Figure shows the development of the maximum compactness of the best solution for
runs with a population size of 50, 100 and 200. The graphs of the runs with the smaller
population size show big jumps and stagnation episodes, while the graphs of the runs with
the bigger population size seem more continuously and reach better solutions earlier. It also
shows clearly that runs with higher population size reach better final solutions while runs
with smaller population size tend to stagnate earlier.

54

T T T T T T
16 L Population 100
Population 50 T
14 + -
12 + -

10 .

Maximum Compactness of Best Solutions
o5
T
|

0 I I 1 I I I I I I I 1 I
0 20 50 70 S0 100 200 300 400 500 700 900

Number of Generations

Figure 6.5: Comparison of solutions with different population sizes for different generation
numbers from runs for the minimum maximum compactness.

16 Population 200
Population 100

Population 50 ————

Maximum Compactness of Best Solutions

50 100 150 200

Generation

Figure 6.6: Comparison of the developments in runs for the minimum maximum compactness
with a population size of 50, 100 and 200.

55

6.6 Crossover points

The number of crossover points defines into how many sequences the genes of the parents are
divided before they are put together alternately to form the two children’s genes. Different
numbers of crossover points were selected for evaluation. Additionally uniform crossover was
tested. When uniform crossover is used, it is decided individually for every gene of a parent to
which child it shall be copied too. The second child receives the gene from the other involved
parent.

The results of the tournament instances for the minimum maximum compactness in Figure
suggest that if sigmascaling is used as selection mechanism then the number of crossover
points should be between 2 and 12 in order to achieve better results. There is a big difference
between sigmascaling and tournament selection in the performance of runs with one crossover
point or more than 15 crossover points: sigmascaling suggests they are within the worst
options while this is not the case with tournament selection. The performance of sigmascaling
in general seems to be stronger influenced by the number of crossover points.

10 T T T T
sigmascaling C—1
w tournaments C—
S
2 8 . .
wl
I
[a})
m
15 6 - _
v
% 3
2 4t i
: @
(=]
O
E %
]
£ 2r .
=
18}
=
O | | | | | | | | | 1

=
[R]
w

5 8 12 15 17 19 uniform

MNumber of Crossover Points

Figure 6.7: Comparison of solutions with different numbers of crossover points from runs for
the minimum maximum compactness.

6.7 Tournament group size

Tournament selection is a popular selection mechanism which was used in most evaluation
tests for parent selection. X random individuals are chosen and compared to each other and
the best one is chosen as a parent for the next generation. This is repeated until all parents
were chosen. X is called the tournament group size. If the group size is very small, selection
pressure is very low and the selection mechanism is closer to random selection (it is random
selection if the group size is 1). With increasing group size the selection pressure rises since
a chosen individual has to compete with more other individuals over being the chosen one of
the group.

Again the maximum compactness was minimised. The graphic in Figure also puts
sigmascaling in compare with different tournament configurations. It shows that with a
population of 200 sigmascaling reaches a similar performance like tournament selection with

56

a group size of 3. But a group size between 5 and 9 performs significantly better and 5 seems
to be the best option in this setting with a population size and children number of 200 and
200 generations.

10 .

T Pgpapceb®

O | | | | | | | | |
1 2 3 5 7 9 12 14 sigmasc.

Tournament Participants

Maximurn Compactness of Best Solutions
o)
T
|

Figure 6.8: Comparison of solutions with different tournament group sizes from runs for the
minimum maximum compactness.

6.8 Removal of duplicates

During a run the population might contain duplicate individuals whose genes do not differ
from each other. There are several possible reasons for this circumstance. First of all in-
dividuals can be chosen as parent more than once per generation. And since crossover and
mutation are not applied to every individual created, a genotype could be copied more than
once into the next generation without change. Another point is, since mutation and crossover
are random, two operations could lead to the same genotype. Those duplicates do not add
diversity to the pool. Therefore one attempt to improve the search results is to prohibit
duplicate entries in the population pool. However, the results summarised in Figure show
no general noticeable improvement through this method. This option can only be used when
there are enough possibilities to place the objects. Otherwise it might not be feasible to
create a valid children set with no duplicates.

6.9 Counting extrema points

An option was implemented that has the following effect: every time two genotypes are
compared (for example in the quicksort algorithm or parent selection) additionally to the
compactness the amount of extrema points is considered. If two individuals fitness values
differ only slightly (difference is smaller than 0.0000001) then the one that has less points
with the currently best compactness is considered better. Less extrema points means that a
smaller amount of gene changes are needed to achieve a smaller maximum compactness or a
bigger minimum compactness.

Figure[6.10| compares solutions for runs with and without counting extrema points. Com-
parisions for different target functions were made. The runs with y = A = 50 are also

57

Max. Compactness of Best Sol

10

T T T T T T
no duplicates 1
duplicates C—1

x
x * X
%%%é g%é i
L ” |

1 | | | | | | 1 | | | | | | | | |
5 5 DD DD DD DD DD D5 D DD
o o w w w %4 w w w w 73] w w o w w w
B e L B
@ @ o © o o o o o °© o © o @ o, o, o
2% 0 0w oo oeesnnno
© v o oo oo o oo oo oY o oo
L0 & © & 8 & & & o & o oo & o
S O © o 0 © © © 0 0 0 0 o & o O O
O O o M W ood o s o o oo O ol oo
N ™o C C € € € C Cc © Cc Cc € @~ C C© cC
c c @ @ @ @ @ @ @ 4@ @ @ @ c @ @ @
g @ O O D oD DD DD D DD g DD
9 9 9 o o o o o o o o o o @ o o o
o o © nm mn O © n o o o o oo © n o
o o = o o = O M o o o oD o [o TN
g m o o o 0 o o o oo~ o o
o a o

Figure 6.9: Comparison of solutions with and without removal of duplicates from runs for

the minimum maximum compactness.

compared to runs with 4 = A = 100. For the minimisation of the maximum it can be seen
that although counting extrema points led to better solutions for the runs with the smaller
population, doubling the population and children size led to even better results. Counting
extrema points did not lead to notable improvements when added as option to the run with
the higher population size. The option also shows a small improvement for the maximisation

of the minimum and maximum.

Compactness of Best Solution

12

10

I pop50, Extrema Points not colunted —

pop50, Extrema Points counted 1
pop 100, Extrema Points not counted 1
pop 100, Extrerma Points not counted 1

max min min max

Target Function

Figure 6.10: Qualities of solutions with and without counting extrema points for different
target functions and two different population sizes.

58

70

T
pop50, Extrema Points not counted 1
pop50, Extrema Points counted 1
B0 pop 100, Extrema Points not counted T
poplQ0, Extrema Points counted 1
C
o
= L * _
ER T T
wl
I =
& 40 r -
bS]
]
w30 —
C
©
3
£ 20 -
o
O
10 + -
O |
max max

Target Function

Figure 6.11: Qualities of solutions with and without counting extrema points for finding the
maximal maximum and two different population sizes.

6.10 Influence of instance size scaling on run time

In order to investigate the influence of the size of the instance on the run time an instance
was chosen and scaled to create two additional instances for comparison. The single “room”
is quadratic and measures 30x30 fields. 20 objects with the shape shown in Figure [6.12] shall
be placed. The two instances for comparison are “half” which is 15x15 and defines that
10 objects shall be placed and “double” which is 60x60 and defines that 40 objects shall be
placed. Every run calculated 100 generations. The series was executing once for the minimum
maximum and once for the minimum average.

As Table [6.1] shows, within the minimum maximum target function the ratios from small
to room and room to double is quite constant. Regardless of the population number a run
with an instance of the size doubled has a 22 to 27 times longer run time. Interestingly the
ratios for the minimum average target function suggest that the up scaling of the instances
had less effect on the minimum average instance and shows very coherent numbers. Runs for
the room instance where 14 to 15 times slower than runs of the small instance while changing
to the double instance made the run 17 times slower. Figure [6.13] shows the run times of
room compared to half and double and a comparison of the three instances with different
population sizes.

Min Max Min Avg
population || small : room | room : double || small : room | room : double
50 1:22.2 1:21.2 1:14 1:17
100 1:27 1:21.8 1:144 1:17.2
200 1:235 1:23 1:15 1:17.3

Table 6.1: Ratio between instance run times of the minimum maximum and minimum average
runs.

59

4

Figure 6.12: Object shape for the scaling test.

5 %0 -
room room
half 80 |- double
0 4r w 70|
2 2
2 2 oo-
E 3} E
£ e 50r¢
c f=
) g a0 -
® 2 8
[0} o 30 -
E E
Ty F o2
10 -
0 + T 0 + 1
50 100 200 50 100 200
Population Population
a) run time of room compared to half b) run time of room compared to double
60
pop50
pop100
50 Fpop200 ——
wn
2
2 40t
£
£
- 30f
7]
o
8
u 20 f
E
e
10 F
0 |
half room double

Configuration

¢) run time of the three instances compared by
population sizes

Figure 6.13: Comparison of run times for the minimum maximum compactness between
different instance sizes.

6.11 Scaling of complexity

In order to analyse the impact of a growing number of objects on the quality of results a
small test series was performed. Several runs were performed for each configuration, the
target function should minimise the maximum compactness. This series clearly shows that
the amount of objects, which have to be placed to form an optimal placement together, has
a big influence on the performance of the algorithm. Figure provides an overview of the
average of maximum compactness values reached with the different configurations.

In the first configuration only one big element (displayed in Figure [6.15h) had to be
placed and all resulted in the same solution which is displayed in Figure While the
environment (a rectangular room 18 cells high and 44 cells wide) stayed the same for all runs,
the object configuration was altered.

For the second run the big object was cut in half and two identical objects (displayed in
Figure) had to be placed. Although some runs still yielded the same result like the
first configuration, some other formations occurred. The two objects were stacked on top of
each other, but the position of the formation in the environment varied, which led to a higher
average compactness value (see example in Figure .

60

Maximum Compactness of Best Solution

1 \ \
1 2 4 6

Number of placed elements

Figure 6.14: Comparison of the quality of the solutions for minimising the maximum com-
pactness with different object numbers.

a) Objects Run 1 b) Objects Run 2 c) Objects Run 3 d) Objects Run 4

1x ###HHEE] 2x HH#HHHRHHS 2x HHHHHHHARHS 6x HHHHHAHHHHS

HHHBHAHHHH HHHHHAH A HHHHHAHAHH HERHHHHHH
HH#HBHARHHH HHHHHHHHHS HiHHHHHRRH HEHHHHHHHH
HHHBHAHHHH HHHBHAHAHS HHHHHAHAHS

HH#HBHARHHH HHHHHHHHHS HHHHHHHRHHS

HHHBHARHHH HHHHHARAHS

HH#HBHHHHHH HHHHHHHAHS

HHHBHARHHH HHHHHARHHS

HH#HHHHHHHS HHHHHHHHS 2x #HH##HHHHHHS

HHHBHARHHH HHHHHHHAHS

HH#HHH AR HiHHHHHHRS

HHHBHARHHY HHHHHHHAHS

HH##HHHHHHH

HHHBHARHHS

HH#HBH AR

HHHBHARHHY

HH#HHH SRS

HHHHHARHHS

Figure 6.15: Objects that were placed for the complexity runs 1-4. The objects of each of
the configurations b-d can be stacked up to the object of configuration a for run 1.

For the third run four elements of two different sizes (see Figure [6.15k) should be placed,
they add up to the same shape again. Figures [6.16d and [6.16d] show examples of newly
occurring results of this configuration. Although the program still most of the time found
solutions which stack all objects on top of each other, it does not achieve perfectly stacked
objects often. Also, a solution with one object in each corner emerges.

The fourth configuration defines six objects of the same size (displayed in which
add up to the object of the first run again. Many different new placings occur of which two
examples are displayed in Figures [6.16¢| and [6.16f)).

At this small scale there is hardly any difference in the run times. But it is noticeable
that the runs with four and six objects take about one second longer on average than the
runs with one or two objects.

61

a) Result with one big element, b) One result with two elements,
Npaz = 1.27 Npaz = 1.58

c¢) Similar result with four elements, d) Different result with four elements,

Nmao = 1.77 Nmae = 2.24

'
e) New result with six elements, f) Another result with six elements,
Nimae = 2.54 Nmaz = 2.65

Figure 6.16: Example results of runs for the minimum maximum compactness with a different
number of elements that all add up to the same object. The runs were performed with the
following parameters: population: 15, children: 30, generations: 40. The colour key for
compactness values is shown underneath.

62

6.12 Build footprint and cross floor area

The overlap option allows objects to be placed above each other. One big instance (Figure
is used to analyse the effect of the overlap option when many objects that occupy
only one field are placed. The dimensions of the central station instance are 193x162 and it
resembles the central station in Vienna. Many of its unblocked cells are irreclaimable and
therefore not available for placing. 12000 single cell objects are to be placed on this plan.

The fields that are occupied by objects form the building footprint of the solution. The
floor area of the formed structures is the total amount of placed obstacles and therefore the
same for any solution in this test series. We will have a look at the floor area ration (FAR)
which is computed as the ratio of the floor area to the building footprint. The optimisation
of compactness for single point target functions does not find improvements frequently. Since
there are so many objects and points involved the chance that a random action leads to a
better result is small. Therefore in this section only global properties are considered.

a) One solution for the maximisation of the aver- b) One solution for the maximisation of the devi-
age compactness for the central station instance. ation of compactness values for the central station
FAR: 3.94 instance. FAR: 3.02

c¢) One solution for the minimisation of the aver- d) One solution for the minimisation of the devia-
age compactness for the central station instance. tion of compactness values for the central station
FAR: 2.55 instance. FAR: 3.24

Figure 6.17: Comparison of placing solutions with overlaps for the central station instance.

The tests ran with a population of 50, 70 children and 200 generations. The maximisation
of the average compactness led to the biggest average floor area ratio of 3.8. The FAR value
of the maximisation of the deviation of compactness values is a lot lower (2.93 on average).

63

220 R

0 it
2o

#0000
22000 i it

200 ki i

1200 i HHE

202000000 i) BB

22aaaaaan L B SHBRRERE

R e skt

[AEEEEREN R T

O

LTI e o wenn s

L S

ETVAS T

L W

O B

e e O

RTINS

20 B

LB L)

O B

L B

P e

PRt O B
IR I O B
A EE TR i 2

jeran. P A

R

L e
B R 2 g

L0 A

D200 00 B

B 20000 B

L e LR R R

LB 0000000 S

TR 2000000000)

LR 220000000000 R

O B 0
D SR)
R B
B) B 0
HEERRBED) R
R SR 2
DR) S 0 |

B S 2000999900900

2R 2222200000000 PrTRIT

2202200000 par)

sraaarraaarraripgss .

R P T e
L
P T T B
2000000000000 L R

2200000000000

Hg 20000000000 .
i 200000000
#2200 0000
s 000000 R
BRI 00000
B0

R 00000
R 000
B 0 000
000
AR 000
R0 00 0
R0 00
B 000

...... .

, 2900000000 R
’ R 0000000000) R
’ R 2220000
2 P 2raa00s
s LD 2200
” R S ’ 1200
, Ly L ”
> HkH Y
, L. apnann 22
> L e L
’tmuw”,..‘4,,..4.,..H,,..‘.,..44,,..‘.,,..‘.xuwuaw.‘.,..‘”
R N
ety ;
LU anwnnn
BB
R T
ROt SRR IR 22
T N srrog
S aasaaaaaaaaaasaaisaasiiaasiiaies srraag
s saaasaaassaaasaaassaaisass siisiey
aaaaaaaaaaaaaaaasaaaaaiaaiiiaaiiaans sraipg
S assaaaaaaaasaaassaaassaassiarsaasrrns sras gy
S aaraaaaaaaaaiaaairaairaaaiiaariaaiiiaaes YT
aaaaaaanaaaaaaaaaaaaaasaaarsaasraaaiiiaies FEEETT 4
R T T T P P T P P P R P PR PP EERRETYN
T T T P P FERET T e
e aaaasaaaasaaasaasasaaassaaassarsarsss PR
aaaraaaaaaaaaaaaaaaaiiaaaiaaaiiaaaisaaiiiairians TR
s aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaiaaiiiaasariiass EERTERRP A
R T T P R T e P R P P PP P T P PP R PP EERRRR RPN
P T P P FER TPV

P P PRI S ST A

e e ———

i aaaaaaaaaaaaaaaaraaaaaaaaaaaaaaaaaaaaaaraaaraaaaaaaaaaaa a2 0000000000000 0) pEM MR R R R R S
sraaary i aaaaaaa i aa s aa s s a s s a i aa s s r s raa a0 0000000000000 00 0 R

Figure 6.18: Instance: central station

Figure 6.19: Heat map of a solution for a maximum average run of the main station instance.
The compactness values of the free fields is coded as usual (blue for low values, red for high
values) and the obstacles are shown in light grey for single obstacles up to black for the
maximum obstacles overlapping in one place.

The second highest average FAR value of 3.45 was reached with the minimisation of the
deviation. The minimisation of the average area only led to an average FAR of 2.54 (example
solution in Figure . When looking more closely at the two solutions of the minimum
target functions it can be noticed that there are more small open spaces in the minimum
deviation solution in Figure which resembles the higher FAR value.

As can be seen in Figure the maximum average solution shows more longer straight
lines that contain higher compactness values which can hardly be found in the maximum
deviation solution in Figure The figures show that the placing for the maximum
average and maximum deviation make use of the free irreclaimable space in the bottom right
of the environment. By placing the obstacles diagonal of each other many points with long
narrow views into the free space emerge. They contain the highest compactness values in the
maps. The solutions for the minimum average and minimum deviation on the other hand
block the view into that free space with obstacles that were placed right next to each other
instead of diagonal.

Figure [6.19] shows the obstacles coded in grey scale from light grey for few obstacles to
black for the most overlapping obstacles. Most overlapping obstacles are collected at the
border to area where no obstacles can be placed. This is probably because of the mechanism
that tries to solve overlaps.

While there are noticable differences between the used target functions, 200 generations
is not a lot for such a big instance. But the central station instance has many defined objects
and overlaps are allowed. The optimal solution might be to put all obstacles on top of each
other or to build on every available unblocked space. After a run with u = A = 50 for 5000
generations of maximising the average compactness for example only few obstacles remained
visible on the 2D map (see Figure. This might be an undesired effect. In order to guide
the optimisation process it could be useful to set a maximum building hight.

6.13 Performance check against a local improvement

In order to evaluate if, after the end of the evolutionary algorithm, movements of one element
exist that would lead to an improvement, a local search algorithm was created. This local

65

Figure 6.20: After 5000 generations most obstacles were placed on top of each other in order
to generate a high average compactness.

14 L I I EA 300 gen||:| i
local improvement after EA 300 gen 1
EA 700 gen

12 - local improvement after EA 700 gen C——1 |

local improvement on randomly generated solutions 1

10 -

Compactness of Best Solutions
[#4]
T
%
|

6 - -
a _
e EEET
2r Ee=S 7
O | | | |
max min min max min avg max dev

Target Function

Figure 6.21: Comparison of EA runs with local improvement on the solutions of those runs
and with local improvement on randomly generated solutions.

search tries to further improve a given placing solution. It chooses one placed object at
random and evaluates each possible movement of it. It iterates through the environment
fields in a spiral that starts at the element’s original position. If a position is found that
leads to a higher fitness value for the solution, the object is moved there and the next object
is chosen. The algorithm ends if no improving movement can be found for any of the objects
of the current solution.

Figure shows a comparison of runs with the EA and local improvements. EA runs
were executed with 300 and 700 generations. The local improvement was applied to all
solutions afterwards. For comparison the local improvement was also applied to randomly
generated solutions. Regarding the used target functions the local improvement after the EA
runs was most useful for the maximisation of the deviation of compactness values. The rest of
the improvement runs could not notable improve the solution quality. The comparison with
the local improvement runs that were applied to randomly generated solutions show that a
better starting solutions leads to a higher quality solution of the local improvement. Often
by moving only one object no improvement can be found although better solutions exist.

66

CHAPTER

Heuristic Approach

7.1 Introduction

The evolutionary algorithm is useful to find good solutions but its usage has some drawbacks.
Many parameters need to be configured. The results for the different environments show for
example that the population size, children size and the generation number which work well for
one environment might be too small for a bigger environment. The population number and
children number also influence the performance of the group size for tournament selection. As
Rittel and Webber [1] mentioned, time is an important factor and for an automatic planning
tool it is important to present diverse solutions within a short period of time. Especially
for larger environments the run time of the evolutionary algorithm takes several hours or
even days. Therefore this chapter discusses the development of a fast construction heuristic
approach which is able to produce solutions which often reach reasonable compactness values
and produces different solutions within short time.

By analysing the results of the EA runs an emerging pattern can be discovered that
supports high compactness values. This pattern can be used to develop simple rules for object
placing for a heuristic. The Shadow Casting algorithm is used as a basis and is extended
with object placing rules. This enables the heuristic to use field of vision information to
decide where to place the objects. This technique results in a fast heuristic that can achieve
interesting results in simple environments.

7.2 Analysis of evolutionary results

The analysis of common emerging picture for the different target functions was already pre-
sented in Section As pointed out in that context, the minimisation of the compactness
value (in discrete space) can be achieved by simply forming a rectangle around the point
that shall be minimised. The points with maximum compactness show isovists which are
shaped star-like with many long “fingers”. This shape is more complex and interesting. The
heuristic shall take as input an environment and a point in that environment. It shall then
place obstacles in a way that the preset point will have a high compactness. When looking
at the position of placed objects around the vision points of isovists with high compactness,
it stands out that the objects are placed diagonal to each other. They seem to be arrange in
a diagonal line that allows the observer to look through between them. This results in many
narrow vision lines. This observation will be used in the construction of the heuristic.

67

7.3 Basic deterministic heuristic

For simplicity we decide that the heuristic will be placing objects of the size of one cell. There
is no specific number of objects that need to be placed. The heuristic decides on its own how
many objects it needs to place in order to reach a high compactness. Since the end product
shall produce different results it needs to be non-deterministic. However the first version will
be a deterministic one.

For the heuristic the shadow casting algorithm can be reused. While calculating the field
of vision it will also place obstacles based on the information it gathered so far. It will
calculate the distance to the first visible obstacle in each direction. This value is then divided
by a constant and the result is taken as the distance in which obstacles shall be placed.
From the distance and the slope it is then possible to calculate where the first object shall be
placed. Once this point is reached within the shadow casting algorithm an obstacle is placed
on it. Afterwards it is calculated where the next point shall be placed. This is simply the
cell diagonal of the last placed obstacle in order to achieve diagonal lines of obstacles which
offer many small points through which the observer can look through.

In the following section the design process for the algorithm will be described in more
detail.

Algorithm design

The diagonals that pass right through the vision point offer good possibilities for long lines
of sight with a high perimeter value. In the maximum compactness point lit maps they are
usually free of any placed obstacles. Therefore the heuristic shall not place any obstacle
directly at the diagonals. The best point to start an obstacle line is therefore one place next
to the diagonal in a distance to the vision point that blocks the view to the cells right next
to the diagonal but leaves enough free space on the other side of it to produce more “fingers”.

Assume that one object o is placed in distance d to the vision point p. The further the
walls behind o are from p the bigger the non-visible area grows that lies in the shadow of o. If
the shadowed area reaches a specific size then the compactness can be increased by removing
o and placing two new obstacles diagonal of each other in a bigger distance to p than d. This
will result in an additional visible area that can be seen when looking between the two new
obstacles and therefore increases the compactness. The quality of the distance is therefore
influenced by the distance to the environment obstacles. The heuristic will simple divide
the distance between the vision point and the closest environment obstacle by a constant
distDivider. In order to evaluate the quality of different distDivider values experiments
with different distances are executed and analysed.

The heuristic needs to iterate through the cells around the vision point, for which the
shadow casting algorithm is used. The heuristic is built upon it and extends the castLight
Algorithm Before the castLight call for each octant the variables objOuterDist and
objInnerDist variables are set to 0. These contain the deltaOuter and deltalnner values
at which the next obstacle shall be placed. This means that in the program part where
it is decided if an obstacle shall be placed, the current deltaOuter will be compared to
objOuter Dist and the current deltalnner will be compared to deltalnnerDist.

After a cell was set visible a call to calcObjToPlace (see Algorithm is inserted. If it
is the first call for this octant it calculates the initial objOuter Dist and objInnerDist. This is
done by calculating the slope for the current cell which is then used to call get DistToN ear Block.
This function calculates the nearest obstacle on the slope and returns its distance to the vi-
sion point. The distance is divided by the distDivider value and the result is assigned as
the first objOuter Dist value. The objInnerDist is simply one less than the objOuter Dist
so that the cell next to the diagonal on the side closer to the vision point is chosen.

68

Algorithm 7.1: calcObjToPlace
input : castLight state, direction d, boolean xInner
output: new to be placed object distance
curSlope < state.deltalnner/state.deltaOuter;
dist < getDistToNearBlock(startz, starty, curSlope, d, zInner);
dist « round(dist/dist Divider);
objOuter Dist < dist;
objInnerDist < objOuterDist — 1;

After the call to calcObjToPlace the function checkObjToPlace is called. This function
(shown in Algorithm evaluates if an object shall be placed in the current cell and calcu-
lates the new objOuter Dist and objInnerDist by reducing the inner distance and increasing
the outer distance. The resulting cell in which the next obstacle shall be placed is therefore
diagonal to the one in which the last object was placed.

Algorithm 7.2: checkObjToPlace
input : castLight state, direction d, boolean xInner
output: new to be placed object distance, new object placings
if objOuter Dist = abs(state.deltaOuter) & objInnerDist = abs(state.deltalnner)
then
object Placings.add(state.cur X, state.curY’);
objOuter Dist + +;
objInnerDist — —;

Algorithm shows how the nearest obstacle on a specific slope is found. Each iteration
the distance deltaOuter to the origin point is increased by one. The coordinate of the outer
direction is simply the distance while the coordinate of the inner direction is calculated using
the distance and slope. If the analysed cell is blocking or not visible the distance is calculated
with the Pythagorean theorem and returned.

Algorithm 7.3: getDistToNearBlock
input : vision point x, vision point y, slope, direction d, boolean xinner
output: distance to first obstacle on slope in the passed direction
p < Point(z,y);
deltaOuter < 1;
while true do
if zInner then
dY + deltaOuter;
dX < deltaOuter x slope;
else
dX < deltaOuter;

dY < deltaOuter * slope;
p.y <y +dY xd.deltaY;
p.x +— x4+ dX *xd.deltaX;
if p is part of env obstacles, out of map or not visible then
| return \/deltaOuter? + (deltaOuter x slope)?;
deltaOuter — —;

69

Evaluation

In the following section this heuristic solution is evaluated. As a first step a dist Divider value
needs to be chosen which is then used in the following test runs. Afterwards the solutions
that are found by the heuristic are compared to some solutions which were found by the
evolutionary algorithm.

Evaluation of divider value

In order to evaluate which divider values lead to good results several test runs with three
different instances were performed. In each test environment one point was marked as the
point at which the compactness shall be maximised. The results which are presented in
Figure [7.]] show that a value of 4.7 leads to a local maximum in all three instances. In the
BienalePavilion instance the marked point was closer to a wall than in the other two instances.
Higher dist Divider values lead to smaller distances to the vision point and very closely placed
obstacles can block big parts of the vision field. Although there might be different optimum
values for dist Divider for different instances, 4.7 seems to lead good results for all used test
cases and will be used in the following.

Bienale Paviion
Haupbahnhof
Simple

Compactness of solution

| 1 1 1 I 1
3.5 4 45 4.7 5 5.5
Divider

Figure 7.1: Compactness comparison of solutions of runs with different dist Divider values.

Comparison with evolutionary runs

After the distDivider value was chosen the heuristic is applied to different test instances.
Additionally to instances which were used previously for the evaluation of the evolutionary
algorithm, another instance was used. This instance, called “Simple”, is one square room,
bigger than the Room instance and without any obstacles. Figure shows an example
result found with the evolutionary algorithm in comparison with the result that the heuristic
calculated. The evolutionary algorithm had 70 objects available for placing, which are more
than the heuristic used. The compactness the heuristic reached was even better than the
example result that was found by the evolutionary algorithm.

Figure shows the heuristic results for the Main Station instance for a point similar to
the one that was found by the evolutionary algorithm. Please note that the heuristic ignores
irreclaimable points which allowed it to set the obstacles a little bit further from the point
than the evolutionary algorithm could. The evolutionary algorithm reached a compactness
of 186.44, while the heuristic result has a compactness of 311.52 for a similar point. The
evolutionary run for 5000 generations which found this solution ran for almost two days.

70

"
"
] n
"
" "m "=
- n
n -.l
n

LI] .. L
-"
" P i
| |
n .. L | |
1

a) Lit map for a placing found by the evolutionary b) Lit map for the placing found by the determin-
algorithm for the Simple instance using a popula- istic heuristic for the Simple instance.
tion of 150 and 200 generations. Compactness: 218.39

Compactness: 207.5

Figure 7.2: Lit maps for maximum compactness points of the Room instance. Red: vision
point. Black: environment obstacles. Blue: placed obstacles. Grey: non-visible area.

The heuristic is able to provide results almost instantly. The open irreclaimable space in the
south of the environment naturally helps to produce high compactness values when random
objects are placed at the border to the irreclaimable space. This influences the evolutionary
algorithm and maximum points always seem to be located in that area. But the heuristic
expects that the point at which the compactness shall be maximised is provided as an input.
Setting the point at another place shows that an even higher compactness can be reached.
An example can be seen in Figure (7.4

N -
e) .-’ LY .
X i . \'\
a) Lit map for a maximum compactness point b) Lit map for the placing found by the deterministic
for a maximum average run for the Main Station heuristic for a similar point.
instance. Compactness: 311.52

Compactness: 186.44

Figure 7.3: Lit maps for maximum compactness points of the Main Station instance. Red:
vision point. Black: environment obstacles. Blue: placed obstacles. Grey: non-visible area.

While the heuristic returns better results than the evolutionary algorithm for the previous
instances, it also has its drawbacks. The Bienale Pavilion instance contains environment
obstacles around the middle of the room. If the point that shall be maximised is positioned
close to these blocking objects then the distance to the wall is in those directions very small.
This causes the obstacles to be placed very close to the vision point. The obstacles therefore
block big parts of the view which results in a lower compactness. Figure shows that only
one of four sides is unblocked and offers longer lines of view.

71

Figure 7.4: Lit map for the placing found by the deterministic heuristic for a different point
of the Main Station instance. Compactness: 415.72

-'. L ': . o
e o | " =
O .
- —
'.'_'.__—. =k = . A ..}
- .
-~ 1
a) Lit map for a maximum point found by the b) Lit map for the placing found by the deter-
evolutionary algorithm for the Bienale Pavilion ministic heuristic for a similar point.
instance. Compactness: 91.3

Compactness: 202.51

Figure 7.5: Lit maps for maximum compactness points of the Bienale Pavilion instance. Red:
vision point. Black: environment obstacles. Blue: placed obstacles. Grey: non-visible area.

7.4 Introducing diversity: a random factor

Since automatic planning tools shall present different solutions which provide new ideas to
the planner, a random factor needs to be implemented. The basic deterministic function
calculates the distance between the vision point and the walls on the diagonal once for each
octant. But just one or several steps away from the diagonal the distance to the wall following
the new slope could already be very different. Recalculating the distance for every slope would
result in placings that do not follow the diagonal placing pattern and therefore in a lower
compactness. But recalculating at some good points could also lead to a higher compactness.
This will be used for the random component in the following solution. An option will be
implemented into the checkObjToPlace function (extension shown in Algorithm [7.4).

Algorithm 7.4: checkObjToPlace
input : castLight state, direction d, boolean xInner
output: new to be placed object distance, new object placings
if objOuter Dist = abs(state.deltaOuter) and objInnerDist = abs(state.deltalnner)
then
object Placings.add(state.cur X, state.curY);
lastODistInner = objInnerDist;
lastODistOuter = objOuter Dist,;
objOuter Dist + +;
objInnerDist — —;
if rand > limit then
newDistanceCalculation(state, d, zInner);

If a produced random number exceeds a preset limit then the distance will be calculated for

72

the current slope. The object’s distances in inner and outer direction are saved before they are
adjusted. The recalculation function is shown in Algorithm[7.5] The next object will be placed
one cell closer to the vision point in inner direction. This ensures that one object is placed per
inner distance. If the new outer distance is the same like the previous one it is increased by
one. This shall prevent that two objects are placed right next to each other forming a blocking
row or column. If the new objOuterDist is smaller than the current distance the castLight
algorithm operates with then the octant needs to be relaunched because the distance in which
the object shall be placed has already been processed completely. In case of a relaunch the
obstacles that were placed so far are kept and the objOuter Dist and objInnerDist values
are kept as well.

Algorithm 7.5: newDistCalculation

input : castLight state, direction d, boolean xInner
output: new to be placed object distance, if octant needs to be relaunced
curSlope < state.deltalnner/state.deltaOuter;
dist + getDistToNearBlock(startz, starty, curSlope, d, zInner);
dist < round(dist/dist Divider);
objOuter Dist + dist;
objInnerDist < abs(deltalnner) — 1;
if lastODistOuter = objOuterDist then
‘ objOuter Dist + +;
if objOuterDist < state.distance) then
‘ state.relaunchOctant < true;

Figure [7.6] and each show two different examples of the non-deterministic heuristic
for the Simple and the Main Station instances. We have seen bigger compactness values in
the previous solutions which were found by the evolutionary algorithm or the deterministic
heuristic. But the values are still at the higher end and the solutions present different ideas.
The algorithm is fast and can produce ten different results in less than one second for instances
of this size.

Especially in bigger environments it can be interesting to set more than one point at which
the compactness shall be maximised. The Main Station offers a lot of space and includes
different sections which fields of visions only overlap slightly. Figure |7.8| shows a solution
for an example in which 14 maximising points were set. They were processed sequentially
with each one treating the obstacles that were set for the previous points like environment
obstacles. Figure displays the compactness map for the environment and all obstacles
that were placed while Figure shows the merged visible area for all 14 vision points.

73

a) Lit map for a solution found by the heuristic b) Lit map for another solution found by the
with a random component. heuristic with a random component.
Compactness: 193.36 Compactness: 194.46

Figure 7.6: Lit maps for two solutions for the Simple instance found by the heuristic using a
random component. Black: environment obstacles. Blue: placed obstacles. Grey: non-visible
area.

a) Lit map for a solution found by the heuristic b) Lit map for another solution found by the
with a random component. heuristic with a random component.
Compactness: 373.4 Compactness: 302.22

Figure 7.7: Lit maps for two solutions for the Main Station instance found by the heuristic
using a random component. Black: environment obstacles. Blue: placed obstacles. Grey:
non-visible area.

a) Compactness map for the environ- b) Lit map for the same solution that shows in
ment with all obstacles set for all max- white the area that is visible from any of the max-
imisation points. imisation points, which are marked in red.

Figure 7.8: Solution for the Main Station instance in which a maximising compactness solu-
tion was calculated for 14 points sequentially.

74

CHAPTER

Conclusions and Future Work

8.1 Conclusions

For this master thesis two algorithms were developed that place multiple objects in a discrete
2D environment. The first one is an EA and optimises diverse objective functions based on
compactness values in the solution environment. A version of the Shadow Casting algorithm
was used to calculate the fields of vision that were needed to calculate the compactness.

The exploration of the parameter settings showed that settings with increased generation
number reached a better solution quality. For higher generation numbers an increase of the
population size led to more significant improvements than a further increase of the generation
number. This may indicate that the search space needs to be explored broadly in order to
find the best solutions. This is probably linked to the solution representation. Moving one
obstacle slightly can lead to a big change in compactness and therefore fitness value. As was
shown by comparing the EA performance with a local improvement algorithm it is common
that although moving one obstacle of a solutions leads to no improvement better solutions
might exist. A solution representation which has the property that small changes in an
individual lead to small changes in the fitness value would be desirable. But the results also
showed that for most of the used target functions the EA still performs better than a simple
local improvement on a random solution. Reproducible patterns emerged for the different
evaluated target functions which, again, confirmed the usability of the compactness in target
functions and provided the possibility to explore the properties of different solutions.

In the developed EA the mutation rate was implemented as an overall chance to mutate
one gene. If many obstacles have to be placed the mutation of only one gene has only a
small chance to influence the target function value, especially if a local property should be
optimised. To counter this shortcoming multiple mutation steps were executed depending on
the amount of obstacles to be placed. This problem could be overcome by using a mutation
rate as mutation chance per gene instead, which is common practice for EAs but was not
used in this thesis.

An architectural designer needs to explore different solutions. While the EA did produce
interesting and useful results it took several hours to provide results for big instances, which
often is not practical. Based on the analysis of the patterns that the solutions of the EA
showed for the maximisation of the maximum compactness, a heuristic was developed. This
second algorithm is based on the Shadow Casting algorithm and can produce solutions to
maximisation placing problems with simple objects very fast. Multiple points can be defined
and the objects are placed in a way such that those points reach a relatively high compactness.

The heuristic places the objects in a distance to a maximisation point that is based on the
distance between the point and the closest wall in the direction of the obstacle placement. It

75

was demonstrated that the heuristic can be used to create interesting placings that offer points
with high compactness values and enclosing but not fully connected structures. The heuristic
was created in order to calculate solutions with high compactness areas which offer spiky
fields of vision. The experiments show that this heuristic can be successfully used to generate
vision points with a high compactness. The heuristic can also be executed multiple times
for different points in one environment sequentially which creates a solution that contains
several points with a higher than average compactness. The amount of maximisation points
as well as their distance to each other can influence the pattern of the obstacle placings and
the scale of the compactness values.

This thesis showed one possibility to development a fast heuristic that is based on the
Shadow Casting algorithm. Such heuristics can enhance the working process of architects by
providing multiple inspiring solutions within short time.

8.2 Future Work

The EA offers an option to allow obstacles to be stacked above each other. If this option is
activated the best solutions may contain only a few points on which many stacking obstacles
were placed. In such cases it could be interesting to employ a maximum building hight in
order to control the amount of obstacles that can be placed above each other.

While the heuristic did show interesting and satisfying results, it was demonstrated that
in the used approach walls that are placed close to the maximisation point can lead to view
blocking placings. Those configurations lead to compactness values which are a lot lower
than the maximum that can be reached with a better placing. Improvements or adjustments
for such special cases would be necessary. It may be useful to compare the current line of
sight length to the line of sight length to the left and right in order to find out if placing an
obstacle at this position would block a long view line fully instead of dividing it into two. In
this case the placing positions should be adjusted.

Low compactness values for fields of vision of points can be reached by enclosing the
points with a closed rectangular object placing. The heuristic could be extended to providing
both, low and high compactness values, by adding rectangular walls around minimum points.
The distance of the walls to the minimum point and the decision if the maximisation should
be done before or after the walls for the minimum points was set would depend on the
application. A high average compactness might be reached by combining several maximum
point creations. The optimal amount and location of those points need to be investigated.

The heuristic decides on its own how many single point objects it will place in the world.
More objects could easily be placed without changing the compactness values of the maximum
points if they are placed in an area that is not part of any of the fields of vision of the maximum
points. Many extensions could be added to the heuristic in order to guide the placing process.
For example defining a minimum or maximum distance of obstacles to the maximum points.
This extension could be added in the newDistCalculation by adjusting the calculated dist
value if it is out of the set boundaries.

A different approach could be to design desired fields of vision for environments and
create the object placings in such a way that they form those fields of vision. Such a reverse
approach could be promising to create environments with customised fields of vision.

In the Chapter [2]it was discussed that the representation of real environments in discrete
space can have a big effect on its compactness. In continuous space a circle has the lowest
possible compactness. In discrete space the lowest compactness is reached by any rectangle.
This has to be considered for real life applications. If rounded corners or rooms shall be
considered it might be necessary to develop a solution in continuous space.

76

[10]

[11]

[12]

Bibliography

Rittel HWJ and Webber MM. Dilemmas in a General Theory of Planning.
Elsevier Scientific Publishing Company, Policy Sciences 4, Pages 155-169, 1973

Donath D, Konig R, Petzold F, Schneider S and Knecht K. KREMLAS - Entwicklung
einer kreativen evolutiondren Entwurfsmethode fiir Layoutprobleme in Architektur und
Stadtebau.

Verlag der Bauhaus-Universitdt Weimar, 2012

Batty M. Ezploring isovist fields: space and shape in architectural and urban
morphology.
Environment and Planning B: Planning and Design, volume 28, Pages 123-150, 2001

Turner A, Doxa M, O’Sullivan D and Penn A. From isovists to visibility graphs: a
methodology for the analysis of architectural space.
Environment and Planning B: Planning and Design 28(1), Pages 103—-121, 2001

Conroy and Dalton. Spatial Navigation in Immersive Virtual Environments.
PhD Thesis, University College London, 2001

Wiener JM, Holscher C, Biichner SJ and Konieczny. Gaze Behaviour during Space
Perception and Spatial Decision Making.
Psychological Research, Springer, Pages 1-17, 2011

Schneider S and Koénig R. Ezploring the Generative Potential of Isovist Fields.
Generative Design - Volume 1 - eCAADe 30, Pages 355-364, 2012

Benedikt ML. To take hold of space: isovists and isovist fields.
Environment and Planning B, Volume 6, Pages 47-65, 1979

DeLanda M. Deleuze and the Use of the Genetic Algorithm in Architecture.
Between Bladerunner and Mickey Mouse: New Architecture in Los Angeles Exhibition,
2001

Tandy CRV. The isovist method of landscape survey.
Symposium: Methods of Landscape Analysis, Pages 9-10, 1967

Koch D. Isovists revisited. Eqocentric space, allocentric space, and the logic of the
Mannequin.

Proceedings: Eighth International Space Syntax Symposium, Santiago de Chile
Pontifical Catholic University of Chile, Paper Ref #8144, 2012

Bergstrom B. FOV using recursive shadowcasting.
http://www.roguebasin.com/index.php?title=FOV_using_recursive_
shadowcasting, visited on 08.12.2015

77

http://www.roguebasin.com/index.php?title=FOV_using_recursive_shadowcasting
http://www.roguebasin.com/index.php?title=FOV_using_recursive_shadowcasting

[18]

[19]

[20]

[21]

22]

23]

78

Jones G. Genetic and Evolutionary Algorithms.
Encyclopedia of Computational Chemistry. John Wiley & Sons, 1998

Béack T, Hammel U and Schwefel HP. Evolutionary Computation: Comments on the
History and Current State.
IEEE Transactions on Evolutionary Computation Volume 1, No. 1, Pages 3-17, 1997

Rozenberg G, Back T and Nok J. Handbook of Natural Computing
Springer, 2012

Back T, Foussette C and Krause P. Contemporary Evolution Strategies.
Springer, Natural Computing Series, 2013

Eiben AE, Smith JE. Introduction to Evolutionary Computing.
Springer, Natural Computing Series, 2003

Simon D. Fvolutionary Optimization Algorithms.
John Wiley & Sons, 2013

Mitchell M. An Introduction to Genetic Algorithms.
MIT Press, 1998

Kruse R, Borgelt C, Klawonn F, Moewes C, Steinbrecher M and Held P. Computational
Intelligence.
Springer, Texts in Computer Science, 2013

Frazer J. An Fvolutionary Architecture.
Architectural Association, London, 1995

Knecht K. Generierung von Grundriss-Layouts mithilfe von Evolutiondren Algorithmen
und K-dimensionalen Baumstrukturen.
D. Donath und R. Kénig, Working Papers Informatik in der Architektur, Nr. 9, 2011

Romero J and Machado P. The art of artificial evolution : a handbook on evolutionary
art and music.
Springer, Natural Computing Series, 2008

O’Neill M and Ryan C. Grammatical Evolution.
IEEE Transactions on Evolutionary Computation, Vol. 5, No. 4, Pages 349-358, 2001

Quiroz JC, Louis SJ, Banerjee A and Dascalu SM. Towards creative design using
collaborative interactive genetic algorithms.
IEEE Congress on Evolutionary Computation, Pages 1849-1856, 2009

Coates PS and Hazarika L. The use of Genetic Programming for applications in the
field of spatial composition.

Proceedings of the 2nd Generative Art Conference (GA1999), Milan: Generative Design
Lab Milan Polytechnic University, 1999

Elezkurtaj T. FEvolutiondre Algorithmen zur Unterstiitzung des kreativen
architektonischen Entwerfens. PhD dissertation.
Vienna University of Technology, Institut fiir Architekturwissenschaften, 2004

Howard E. Improved Shadowcasting in Java.
http://www.roguebasin.com/index.php?title=Improved_Shadowcasting_in_
Java, visited on 08.12.2015

http://www.roguebasin.com/index.php?title=Improved_Shadowcasting_in_Java
http://www.roguebasin.com/index.php?title=Improved_Shadowcasting_in_Java

	Introduction
	Methodology

	Isovist and Compactness Background
	Isovist
	Compactness
	Compactness in discrete space
	Recursive Shadow Casting
	Compactness calculation

	Related Work
	Introduction
	Isovist properties and human behaviour
	Generative approaches in architecture
	Conclusion

	Evolutionary Approach: Introduction
	Problem definition
	Background to evolutionary algorithms
	Evolutionary algorithm variants
	Evolutionary algorithms in architecture

	Evolutionary Approach: Details
	Overview
	Evolutionary algorithm for object placement
	Shadow Casting algorithm
	Typical solutions

	Evolutionary Approach: Evaluation
	Test setting
	Number of generations
	Mutation and crossover
	Children
	Population size
	Crossover points
	Tournament group size
	Removal of duplicates
	Counting extrema points
	Influence of instance size scaling on run time
	Scaling of complexity
	Build footprint and cross floor area
	Performance check against a local improvement

	Heuristic Approach
	Introduction
	Analysis of evolutionary results
	Basic deterministic heuristic
	Introducing diversity: a random factor

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

