
Letting Ants Labeling Point Features

Michael Schreyer, G̈unther R. Raidl
Institute of Computer Graphics and Algorithms, Vienna University of Technology, Vienna, Austria

{mikes, raidl}@ads.tuwien.ac.at

Abstract - This paper describes an ant colony system (ACS)
for labeling point features. A preprocessing step reduces the
search space in a safe way. The ACS applies local improvement
and masking, a technique that focuses the optimization on criti-
cal regions. Empirical results indicate that the ACS reliably iden-
tifies high-quality solutions which are in many cases better than
those of a state-of-the-art genetic algorithm for point feature la-
beling.

I. INTRODUCTION

Automated cartography and the graphical visualization of
business or technical information are concerned with tagging
graphical objects with text labels. The legibility of a final im-
age is affected by the degree to which graphical features are
obscured by overlaps as well as the degree to which labels are
unambiguously associated to the feature they describe. Exam-
ples of a good and a bad labeling are shown in Fig. 1.

Different labeling tasks are distinguished in cartography
[9], [12]. We focus here on the labeling of point features,
e.g. cities or mountain peaks, only. More precisely, thepoint
feature labeling problem(PFLP), is defined as follows.

Given a set ofn point features in the Euclidean plane, each
feature needs to be labeled by placing a fixed text near to it.
The allowed positions are restricted to a set ofp places in the
feature’s surrounding. Figure 2 shows thep = 8 standard po-
sitions for text labels which are typically used in cartography
[3]. A complete labeling of all features is expressed by a vec-
tor x = (x1, . . . , xn) ∈ {1, 2, . . . , p}n, in which each compo-
nentxi with i = 1, . . . , n identifies the assigned position of
the label for featurei.

In [12], [18], various objectives for meaningful label place-
ment are discussed. We concentrate on the following two

(a)

(b)

Fig. 1. Examples for a good (a) and a bad (b) labeling.

Fig. 2. A point feature’s possible label positions, numbered in their
order of desirability.

goals, which probably have been most often considered with
the PFLP in the past [3]:

(1) The total numberconf (x) of “conflicting” labels that
partly or completely overlap any static image feature or
other label inx should be minimal.

(2) To maximize the degree to which each label is
uniquely associated with the feature it represents, pos-
sible positions around a point feature are assigned dif-
ferent desirabilities. In Fig. 2, the numbering represents
this desirability as it is common in cartography, thus the
upper right position is preferred most [3].

The two goals are combined into the following objective
function onx:

minimize g(x) = conf (x) + wpos ·
n∑

i=1

xi − 1
p

(1)

The second term represents a penalty according to the desir-
abilities of the labels’ actual positions. Constantwpos con-
trols the importance of position desirabilities over conflicts.
Usually, one label overlap should count more than the highest
possible position penalty for one label, thus,0 ≤ wpos ≤ 1.

The PFLP is NP-hard because of the global consequences
a single change of a label’s position might have [10], [14]. As
for every NP-hard problem, an approach for solving the PFLP
either applies exhaustive search, which gives an optimum re-
sult but may be too time-consuming for larger instances, or it
is of heuristic nature and optimality cannot be guaranteed.

Exact approaches include rule based systems as proposed
by Doerschler and Freeman [6]. Cromley [5] and Zoraster
[19] transform the PFLP into a 0/1-integer programming prob-
lem and solve it with branch-and-cut techniques. Recently,
Klau and Mutzel [13] presented another 0/1-integer program-
ming based branch-and-cut approach for the relatedlabel
number maximization problem, in which the number of labels
that can be placed without overlap is maximized.

On the side of heuristic approaches, a simple greedy heuris-
tic [18] and a discrete gradient descent method [11] were
among the first published techniques. Christensen et al. [2]
described a simulated annealing approach and compared it to

ci,j : Pi,j :

i \ j 1 2 3 4
1 2 0 1 0
2 1 1 1 2
3 0 ∞ 0 2

P1,1 = {(2, 4), (3, 4)}
P1,3 = {(3, 4)}
P2,1 = P2,2 = P2,3 = {(3, 2)}
P2,4 = {(1, 1), (3, 2)}
P3,4 = {(1, 1), (1, 3)}

Fig. 3. An example PFLP instance withp = 4 and its conflict table:
conflict numbersci,j and conflict reference listsPi,j .

several other algorithms in [3]. A genetic algorithm (GA) for
the PFLP has been proposed by Verner et al. [17]. It ben-
efits from masking, which allows a solution to inherit a set
of spatially connected high-quality alleles in a guaranteed un-
changed form from a parent solution. Raidl [15] described
another GA that includes a heuristic improvement operator.
A more extensive review on algorithms for the PFLP can be
found in [16].

Today, simulated annealing and hybrid GAs are among the
best choices for large, hard PFLP instances where exact tech-
niques are not applicable anymore. This article describes a
new effective approach following the concept ofant colony
optimization[7].

The next section presents a general preprocessing of prob-
lem data in order to reduce the search space in a safe way.
Section III describes the ant colony system, and Section IV
compares it empirically with simulated annealing and a GA
similar to that of [15] but enhanced by masking as suggested
in [17]. Results indicate that the ant colony system is a strong
competitor for simulated annealing and the GA. In particular
for hard, dense instances, the ant colony system often finds
superior solutions. Section V draws some final conclusions.

II. PREPROCESSING

To be able to efficiently identify conflicting labels of a can-
didate solution during the optimization, aconflict tableis cre-
ated as a part of preprocessing. This data structure holds gen-
eral information about all possible label/label or label/feature
overlaps [15].

A conflict numberci,j ≥ 0 is assigned to each possible la-
bel positionj = 1, . . . , p of each point featurei = 1, . . . , n.
ci,j is zero (“safe”) if label positionj of featurei does not
overlap any feature and can never collide with any other label.
When label positionj of featurei statically overlaps any part
of a feature, the conflict numberci,j is set to∞ marking the
position as “hopeless”. In any other case,ci,j is the total num-
ber of positions of all other labels which at least partly overlap
positionj of labeli, and we additionally store references to all
these conflicting label positions in aconflict reference listPi,j .
See Fig. 3 for an example.

Having the conflict table initialized, a deterministicprob-

lem reductiontakes place, which applies the following two
rules to each featurei = 1, . . . , n:

(1) If a safe label positionj exists (∃j | 1 ≤ j ≤
p ∧ ci,j = 0) and all more desirable positions are hope-
less(∀k = 1, . . . , j−1 : ci,k = ∞), then labeli must be
assigned to positionj in any optimum solution and there-
fore, we permanently fix this assignment and dismiss all
other positionsk 6= j for labeli.

(2) If a safe label positionj exists, any hopeless position
({k | k = 1, . . . , p ∧ ci,k = ∞}) cannot appear in an
optimal solution and is therefore permanently dismissed.

A label whose position could be prematurely fixed by rule
(1) is from now on treated as static image feature, and all label
positions dismissed by rules (1) or (2) are somehow marked
and excluded from any further consideration. In the conflict
table, all conflicts with dismissed label positions are removed
and conflicts with fixed label positions are noted by setting
the corresponding conflict values to∞. Each such reduction
in the conflict table may also enable further reductions. In
this way, larger chain-reactions sometimes arise shrinking the
search space significantly.

III. AN ANT COLONY SYSTEM FOR THE PFLP

In nature, a single ant can be seen as an autonomous agent
whose actions are strongly guided by randomness. While ants
are wandering around looking for food, they deposit phero-
mones on the ground which influence the behavior of follow-
ing ants. Via this indirect communication, calledstigmergy,
a cooperative ant colony is able to efficiently determine the
shortest path between its nest and a food source [1].

This principle has been adopted to attack hard combinato-
rial optimization problems. Dorigo and Gambardella [8] pro-
posed anant colony system(ACS) for the traveling salesman
problem (TSP), which works on a weighted graphG = (V,E)
with node setV and edge setE. Simple autonomous agents,
called artificial ants, create repeatedly independent solutions
by touring the graph in parallel. At each noder ∈ V , an ant’s
decision which edge to follow next is a random choice biased
by local parameters, namely heuristic valuesη(r, s) ≥ 0 and
pheromone valuesτ(r, s) ≥ 0 of all incident edges(r, s) ∈ E.
The pheromone valuesτ(r, s) model the amount of phero-
mones deposited by ants having previously passed the edges,
and they are updated by local and global rules. In particular
when one iteration of the ACS is finished, i.e. each ant has
completed a solution, the pheromone values of the so-far best
solution’s edges are increased to intensify the search near this
solution during the next iterations. For more general informa-
tion on ant colony optimization, see [4], [7].

A. A Graph-Representation of the PFLP

The PFLP is not originally a graph-problem. However, to ap-
ply the idea of ant colony optimization, a graph representation
should be defined on which we can imagine the ants walking,
hereby creating candidate solutions.

Fig. 4. A graph-representation of the PFLP for applying the ant
colony system.

Note that to keep things simple, we neglect from now on
labels fixed and label positions dismissed during preprocess-
ing. It is straight-forward to take them into account in a real
implementation.

Figure 4 shows the graph-representation of the PFLP. Start-
ing from nodea, an ant creates a solution by an iterated two-
step process: Froma it needs to decide which feature – repre-
sented by nodesfi, . . . , fn – to go to. We call this stepfeature
selection. Having moved to the selected feature-nodefi, the
ant has to decide to which of its label positions – represented
by nodesvi,1, . . . , vi,p – to move on. This step implies the
actual labeling of featurei at the corresponding position.

Then, the ant moves to nodea again, and the two steps are
repeated until all nodesf1, . . . , fn have been reached once,
thus all features are labeled and the solution is complete.

The second step, where the labels are actually placed, is the
more crucial one. There, we apply an ACS-typical state tran-
sition rule that uses a heuristic functionη(fi, vi,j) and phero-
mone valuesτ(fi, vi,j) associated to the edges(fi, vi,j), as
Sect. III-C describes. Feature selection is done in a simpler
heuristic way as explained in Sect. III-B.

Figure 5 shows a pseudo-code for the complete ACS. First,
all pheromone valuesτ for edges between feature-nodes and
nodes representing label positions are initialized with a value
τ0 = 1/(n · g(x0)), wherex0 is an initial solution created by
a simple greedy heuristic: Features are processed in random
order, and each label is assigned to the locally best possible
position.

Next, m ants are initialized. Each antk owns a setF k of
yet unprocessed features and a vectorxk in which the ant’s
solution will be stored. All ants build solutions in parallel by
the already mentioned two-step process, communicating only
indirectly via pheromone updates.

At the end of an iteration, when all ants have completed a
solution, each solution is locally improved and evaluated. The
best solutionxib of the iteration is determined, the globally
best solutionxgb eventually updated, and a global pheromone
update is performed. The whole process is repeated until the
improvement of the globally best solution during the lastγ
iterations falls below a thresholdε.

More details of the algorithm are described in the following
subsections.

ALGORITHM ACS–FOR–PFLP:

create initial solutionx0 by a simple greedy heuristic
xgb ← x0 (globally best solution found so far)
τ0 ← 1/(n · g(x0))
∀i = 1, . . . , n, ∀j = 1, . . . , p : τ(fi, vi,j) ← τ0

REPEAT

∀ antsk = 1, . . . , m:
F k = {1, . . . , n}

REPEAT n times (until solutions are completed):

REPEAT ∀ antsk = 1, . . . , m:

i ← select a feature fromF k

F k ← F k \ {i}
∀j = 1, . . . , p: computeϕ(fi, vi,j)

WITH probabilityq0:

b ← arg maxj=1,...,p ϕ(fi, vi,j)

ELSE

chooseb randomly from(1, . . . , p)
with probabilities(ϕ(fi, vi,1), . . . , ϕ(fi, vi,p))

xk
i ← b

τ(fi, vi,b) ← (1− ρ) · τ(fi, vi,b) + ρ · τ0
∀ antsk = 1, . . . , m:

locally improvexk

evaluatexk by computingg(xk)

xib ← arg minx=x1,...,xm g(x) (best solution of iteration)
IF g(xib) < g(xgb) THEN xgb ← xib

∀i = 1, . . . , n, ∀j = 1, . . . , p :
τ(fi, vi,j) ← (1− α) · τ(fi, vi,j)

∀i = 1, . . . , n :
τ(fi, vi,xib

i
) ← τ(fi, vi,xib

i
) + α/g(xib)

UNTIL improvement ofg(xgb) during the lastγ iterations< ε

Fig. 5. The main algorithm of the ACS for the PFLP.

B. Feature Selection

Feature selection must ensure that no feature is selected twice
by the same ant in the same iteration of the ACS. Note that
this is similar in the ACS for the TSP, where each node may
only be reached once in a feasible tour.

Furthermore, feature selection should be stochastic and en-
sure that features are processed in different order in general.
Processing always the same features first would bias the opti-
mization and in general lead to poor local optimal solutions.

A simple approach would therefore be to always make a
uniform random choice among all not yet visited nodes from
f1, . . . , fn, thus, to process all features in pure random order.
However, it is generally hard to avoid overlaps when labeling
features in random order: While the first features can usually
be labeled easily without much danger of conflicts, it becomes
hard and often impossible to avoid overlaps when final gaps
need to be processed, i.e. features completely surrounded by
already previously fixed labels of other features.

It proved much more efficient to take care on spatial rela-
tionships of features by always trying to select as next feature
one lying close to a previously processed feature instead of

one from somewhere in the middle of a yet untouched region.
This is accomplished by the following queue-based heuristic.

Let F k = {1, . . . , n} be the set initially containing all fea-
tures. For each ant, a queue is furthermore maintained, which
is initially empty. A feature is always selected by the fol-
lowing actions: If the queue is not empty, one featurei is
dequeued; otherwise, a featurei is picked randomly fromF k

and removed there. Aneighborhood setHi ⊆ F k of yet un-
processed features lying “close” toi is determined, and these
features are put into the queue and removed fromF k. i is
finally returned as selected feature.

Different definitions can be used for the neighborhood set
Hi of a featurei:

(1) Hi consists of theh nearest neighbors of featurei in
F k with respect to the Euclidean distance. If|F k| < h,
thenHi = F k. The features fromHi are queued in order
of increasing distance.

(2) Hi consists of those features fromF k that may stay in
conflict with featurei. These features can be efficiently
identified via the conflict table’s reference listsPi,j , j =
1, . . . , p. The features ofHi can be put either in random
order or again in order of increasing Euclidean distance
into the queue.

Practical experiments have shown slight advantages of
neighborhood definition (1), providing a suitable value is cho-
sen forh. A detailed study on this topic can be found in [16].

C. State Transition Rule for Feature-Nodesfi

When an ant has selected a feature to process, i.e. it has moved
to a certain feature nodefi, each edge to a possible successor
nodevi,j , j = 1, . . . , p, gets assigned a probability

ϕ(fi, vi,j) =
τ(fi, vi,j) · η(fi, vi,j)β

∑p
k=1 τ(fi, vi,k) · η(fi, vi,k)β

. (2)

τ(fi, vi,j) is the pheromone value, andη(fi, vi,j) a heuris-
tic value representing the local attractiveness of nodevi,j . β
controls the relative importance of the pheromone versus the
heuristic value.

The decision over which edge the ant moves – and therefore
to which position the label of featurei is assigned – is made
by the followingpseudo-random-proportional ruleaccording
to [8]:

• With probability q0 ∈ [0, 1) the edge(fi, vi,j) with
maximumϕ(fi, vi,j) is chosen;

• otherwise a random decision is made in which each
edgej = 1, . . . , p is chosen with probabilityϕ(fi, vi,j).

Parameterq0 controls the relative importance of exploita-
tion of already collected knowledge versus (biased) explo-
ration of new possibilities.

The heuristic valueη(fi, vi,j) is a function composed of
three criteria:

• the numberΓ(i, j) of actual overlaps with other labels
or static features that would be newly introduced when
placing labeli at positionj in the current situation,

• the conflict valueci,j of the label position, and

• the general desirability of the label position, expressed
by its indexj.

SinceΓ(i, j), ci,j , j ≥ 0 and smaller values represent more
appealing positions, we combine them in the following way:

η(fi, vi,j) =
wΓ

Γ(i, j) + kΓ
+

wc

ci,j + kc
+

wd

j + kd
(3)

wΓ, wc, wd ≥ 0 are weights controlling the general influ-
ence of the corresponding criterion,kΓ, kc, kd ≥ 0 determine
how strongly the function distinguishes between good and bad
values for each criterion.

D. Global Pheromone Update

At the end of each iteration, pheromone evaporation takes
place on all edges(fi, vi,j), i = 1, . . . , n, j = 1, . . . , p:

τ(fi, vi,j) ← (1− α) · τ(fi, vi,j) (4)

0 < α < 1 is the pheromone decay parameter. Evaporation
decreases the intensity of all pheromones as time goes on and
reduces the danger of premature convergence to poor local
optima.

Then, the best ant of the iteration deposits additional phero-
mones on the edges representing its solutionxib:

τ(fi, vi,xib
i

) ← τ(fi, vi,xib
i

) +
α

g(xib)
, ∀i = 1, . . . , n (5)

Note that this is slightly different to the ACS for the TSP
in [8], where the edges of theglobally best solution are rein-
forced. We have observed here slight advantages when using
the iteration’s best solution instead of the globally best one,
see [16] for more details.

E. Local Pheromone Update

Every time an ant moves over an edge(fi, vi,j), the follow-
ing local pheromone update rule is applied to the associated
pheromone value:

τ(fi, vi,j) ← (1− ρ) · τ(fi, vi,j) + ρ · τ0 (6)

The pheromone value is slightly modified towards the ini-
tial value τ0 in order to change the attractivity of the used
edges for the other ants building solutions in parallel. In this
way, exploration is emphasized and pheromone information
can be used more efficiently, since ants are searching solu-
tions in a broader neighborhood of the best previous solution.
Parameter0 < ρ < 1 controls the strength of local pheromone
update.

F. Local Improvement

Each created solution is locally improved before its evalua-
tion by processing all features in random order. Each label is
checked if there exists a more desirable position that would
result in no conflict in the current solution. If this is the case,
the label is reassigned to the best position found.

G. Masking

Verner et al. [17] proposedmaskingin their genetic algorithm
for PFLP. This technique preserves good subsets of spatially
related alleles when applying recombination or mutation and
focuses the variation to more critical regions in the surround-
ing of overlaps. We adopted this idea for the ACS as follows.

For each featurei = 1, . . . , n, letDi be the set of itsd near-
est neighboring features under the Euclidean distance metric.
In a given solutionx, we say a feature iscritical if it is either
self involved in a conflict or contained in the nearest-neighbor
setDj of any other featurej ∈ {1, . . . , i − 1, i + 1, . . . , n}
staying in a conflict.

At iterations t ≡ 0 (mod ζ), starting witht = 0, the
ACS performs normally as described so far. However, at each
other iterationt 6≡ 0 (mod ζ), an ant’s solutionx′ from the
preceding iterationt − 1 serves as basis, and variation takes
only place at the features rated critical in the sense defined
before. Thus all uncritical labels fromx′ are simply copied
to x and not processed by the ant. Only local improvement
considers finally again the complete solution and may also
change inherited label positions.

Parameterd therefore controls “how far away” a feature
must lie from any conflict to be considered uncritical, param-
eterζ controls, how often ants are restricted to vary critical
features only.

IV. EMPIRICAL COMPARISON

We empirically compare the ACS to a re-implementation of
the simulated annealing algorithm (SA) of Christensen et al.
[2] and a hybrid genetic algorithm (HGA). HGA is basically
that one described by Raidl [15] enhanced by applying mask-
ing during mutation according to [17]. It uses a steady-state
replacement scheme in which in each iteration one new solu-
tion is created by means of binary tournament selection, uni-
form crossover, masking-mutation, and local improvement as
described in Sect. III-F. Such a new solution always replaces
the worst solution in the population with one exception: To
assure a minimum diversity, duplicates are always discarded.

For the comparison, standard test problem instances with
the following characteristics were adopted from [3]: The num-
ber of features ranges from 50 to 1000, and they are randomly
distributed on a rectangular area of792 × 612 units. Each
label has size40× 7 and must be placed on one ofp = 8 pos-
sible positions according to Fig. 2. The weight of the position
penalty term in the objective function is alwayswpos = 1.

For the ACS, robust parameters settings that work well for
several kinds of problem instances were found by extensive
preliminary tests documented in [16]:m = 6, q0 = 0.7, β =
1.4, α = 0.05, ρ = 0.25, h = 20, d = 20, andζ = 24. The
heuristic functionη(fi, vi,j) used the weightswΓ = wd = 1,
wc = 0 (thus, the conflict valuesci,j were not considered
in these experiments) and offsetskΓ = kd = 4. The ACS
terminated when the improvement ofxgb had dropped below
ε = 0.1% during the lastγ = 600 iterations.

SA was run with exactly those parameter settings suggested

in [2]. HGA used a population size of 100, a mutation prob-
ability of 3% per (unmasked) gene, and each run was termi-
nated when the improvement of the best solution during the
last 20,000 iterations had dropped below0.1%.

Table I shows obtained results. All values are average val-
ues over 15 runs per instance in case of HGA and ACS and
10 runs per instance in case of SA. Printed are the finally
best solutions’ objective valuesg(x), their standard deviations
σ(g(x)), the numbers of finally remaining labels with con-
flicts conf (x), and the numbers of evaluated solutionsevals.

Most of the time, HGA and ACS found better solutions
than SA. While HGA exhibits slight advantages over ACS on
smaller instances with up ton = 450 features, the ACS is su-
perior on the harder, denser cases. Statisticalt-tests reveal that
the differences ing(x) from ACS and HGA forn ≥ 500 are
significant at a0.1% error-level. It is furthermore remarkable
that ACS created almost always solutions with fewer conflict-
ing labels than HGA.

Regarding the number of needed evaluations, ACS is supe-
rior in any case. However, this does not mean that ACS is the
fastest. For HGA and ACS, average CPU-timestCPU mea-
sured in seconds on a Celeron/450MHz PC are also printed in
Table I. In particular for the larger instances, ACS needed sig-
nificantly more time due to its higher computational effort for
generating one candidate solution. CPU-times are not printed
for SA since those runs were performed on a different ma-
chine. Nevertheless, we could clearly see that SA is generally
the fastest, despite its high numbers of evaluated solutions.
The reason is that SA creates a new solution from a previous
one by just changing one label’s position. In this way, an in-
cremental evaluation is possible, and the computational effort
is minimal.

Figure 6 shows part of a solution to a real geographical
problem instance. The complete instance hasn = 1501 fea-
tures and could be solved by the ACS without overlaps and a
final objective value ofg(x) = 215.75 in 35.6 seconds.

V. CONCLUSIONS

The main features of the proposed ACS for point feature
labeling are: the deterministic problem reduction during pre-
processing, the heuristic feature selection strategy which con-
siders spatial relationships of features, the local improvement
of created solutions, and masking which effectively focuses
the optimization to critical regions in the surrounding of con-
flicting labels.

Results show that the ACS is able to identify high-quality
solutions. In particular for hard, dense instances, these so-
lutions are usually significantly better than those obtained by
simulated annealing and a state-of-the-art hybrid genetic al-
gorithm for point feature labeling. The main reasons for the
high performance of the ACS are the strong local heuristics
and the good balance between exploration and exploitation.

Future work should try to reduce the rather large number of
strategy parameters which must be set appropriately in order
to provide a good balance between exploration and exploita-
tion. Probably, self-adaption mechanisms can help here.

TABLE I
RESULTS OF SIMULATED ANNEALING (SA), THE HYBRID GA (HGA), AND THE ANT COLONY SYSTEM (ACS).

SA HGA ACS
n

g(x) conf (x) evals g(x) σ(g(x)) conf (x) evals tCPU [s] g(x) σ(g(x)) conf (x) evals tCPU [s]

50 0.5 0.0 41,251 0.4 <0.01 0.0 20,014 4.9 0.4 <0.01 0.0 1,802 <0.1
100 1.5 0.0 82,798 1.4 <0.01 0.0 20,012 4.1 1.4 <0.01 0.0 1,374 <0.1
150 4.2 0.0 126,411 3.7 <0.01 0.0 20,242 4.6 3.8 0.10 0.0 2,875 0.3
200 6.8 2.0 169,959 4.6 0.03 0.0 20,397 6.2 4.7 0.09 0.0 2,986 0.6
250 17.7 8.0 214,107 9.4 0.10 0.0 20,544 7.9 9.6 0.20 0.0 3,549 1.1
300 18.5 0.0 261,368 18.2 0.19 1.0 20,773 11.7 18.4 0.16 1.0 4,414 3.6
350 36.8 10.3 305,757 22.0 0.25 0.1 20,662 14.7 22.2 0.32 0.0 4,666 3.3
400 35.8 0.6 352,770 34.6 0.55 1.5 21,324 19.3 35.0 0.47 0.7 6,534 6.7
450 47.7 4.3 398,063 39.5 0.45 1.0 21,019 22.2 39.6 0.40 1.0 8,418 11.7
500 74.4 21.1 440,866 57.7 0.84 2.5 21,601 28.0 55.3 0.81 1.1 9,170 15.0
550 89.5 27.6 486,704 77.9 1.35 12.1 22,978 33.8 75.8 1.18 10.2 14,541 57.2
600 116.9 40.1 529,178 101.8 1.56 19.8 25,626 44.3 97.6 0.87 17.2 16,542 73.0
650 161.6 69.1 574,111 143.3 1.76 37.3 28,995 58.4 137.0 1.99 35.8 22,850 178.8
700 177.2 72.1 618,253 165.0 1.84 40.1 30,532 68.9 157.9 1.50 37.8 21,246 167.4
750 199.9 74.9 663,544 180.5 2.22 36.3 29,031 73.0 172.7 1.63 33.9 23,388 201.1
800 260.5 119.9 704,693 245.4 3.08 81.3 45,934 135.4 230.7 1.57 79.7 30,017 408.3
850 290.6 133.4 748,523 275.9 2.37 90.3 45,395 147.4 258.1 1.59 84.4 31,515 471.3
900 337.4 164.8 791,061 323.3 2.65 125.3 48,409 172.9 299.2 2.14 123.5 32,790 583.3
950 366.5 182.1 834,695 375.2 3.80 148.5 52,182 201.2 345.4 2.95 146.0 34,666 671.5

1000 437.9 251.3 875,286 444.7 4.39 209.7 57,931 241.3 408.6 2.44 208.6 35,772 791.0

Fig. 6. Part of a solution to a geographical problem instance with
n = 1501 features. ACS was running 35.6 seconds.

References

[1] R. Beckers, J. L. Deneubourg, and S. Goss. Trails and U-turns in the
selection of the shortest path by the ant Lasius Niger.Journal of Theo-
retical Biology, 159:397–415, 1992.

[2] J. Christensen, J. Marks, and S. Shieber. Placing text labels on maps and
diagrams. In P. S. Heckbert, editor,Graphic Gems IV, pages 497–504.
Academic Press, 1994.

[3] J. Christensen, J. Marks, and S. Shieber. An empirical study of algo-
rithms for point-feature label placement.ACM Transactions on Graph-
ics, 14(3):203–232, 1995.

[4] D. Corne, M. Dorigo, and F. Glover.New Ideas in Optimisation.
McGraw-Hill, 1999.

[5] R. G. Cromley. A spatial allocation analysis of the point annotation
problem. InProceedings of the 2nd International Symposium on Spatial
Data Handling, pages 38–49, 1986.

[6] J. Doerschler and H. Freeman. A rule-based system for dense-map
name placement.Communications of the ACM, 35(1):68–79, 1992.

[7] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for
discrete optimization.Artificial Life, 5(2):137–172, 1999.

[8] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative
learning approach to the traveling salesman problem.IEEE Transac-
tions on Evolutionary Computation, 1(1):53–66, 1997.

[9] S. Edmondson, J. Christensen, J. Marks, and S. Shieber. A general
cartographic labeling algorithm.Cartographica, 33(4):13–23, 1997.

[10] M. Formann and F. Wagner. A packing problem with applications to
lettering of maps. InProceedings of the 7th Annual Symposium on
Computational Geometry, pages 281–288, 1991.

[11] S. A. Hirsch. An algorithm for automatic name placement around point
data.The American Cartographer, 9(1):5–17, 1982.

[12] E. Imhof. Positioning names on maps.The American Cartographer,
2(2):128–144, 1975.

[13] G. W. Klau and P. Mutzel. Optimal labelling of point features in the
slider model. In D.-Z. Du, P. Eades, V. Estivill-Castro, X. Lin, and
A. Sharma, editors,Proceedings of the 6th Annual International Com-
puting and Combinatorics Conference, volume 1858 ofLNCS, pages
340–350. Springer, 2000.

[14] J. Marks and S. Shieber. The computational complexity of cartographic
label placement. Technical Report TR-05-91, Harvard University, Cen-
ter for Research in Computing Technology, Cambridge, MA, 1991.

[15] G. R. Raidl. A genetic algorithm for labeling point features. InPro-
ceedings of the Interntational Conference on Imaging Science, Systems
and Technology, pages 189–196, 1998.

[16] M. Schreyer. Ein Genetischer Algorithmus und ein Ant Colony Sys-
tem für das Point Feature Labeling Problem. Master’s thesis, Vienna
University of Technology, Vienna, Austria, 2001.

[17] O. V. Verner, R. L. Wainwright, and D. A. Schoenefeld. Placing text
labels on maps and diagrams using genetic algorithms with masking.
INFORMS Journal on Computing, 9(3):266–275, 1997.

[18] P. Yoeli. The logic of automated map lettering.The Cartographic Jour-
nal, 9(2):99–108, 1972.

[19] S. Zoraster. The solution of large 0–1 integer programming prob-
lems encountered in automated cartography.Operations Research,
38(5):752–759, 1990.

