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Abstract - This paper describes an ant colony system (ACS)
for labeling point features. A preprocessing step reduces the
search space in a safe way. The ACS applies local improvement
and masking, a technique that focuses the optimization on criti-
cal regions. Empirical results indicate that the ACS reliably iden-
tifies high-quality solutions which are in many cases better than
those of a state-of-the-art genetic algorithm for point feature la-
beling.
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Fig. 2. A point feature’s possible label positions, numbered in their
order of desirability.

| INTRODUCTION goals, which probably have been most often considered with
. ~ the PFLP in the past [3]:

A'utomated cartpgra}phy anq the graphical V|sua!|zat|on 'of (1) The total numberony () of “conflicting” labels that
business or technical information are concerned with tagging partly or completely overlap any static image feature or
graphical objects with text labels. The legibility of a final im- other label inz should be minimal.
age is affected by the degree to which graphical features are - . .

ge 1s y d VIEh graphi ures (2) To maximize the degree to which each label is

obscured by overlaps as well as the degree to which labels are iauel iated with the feat it ¢
unambiguously associated to the feature they describe. Exam- uniquely associated wi € fealure It represents, pos-
sible positions around a point feature are assigned dif-

ples of a good and a bad labeling are shown in Fig. 1. ¢ t desirabilit In Fig. 2. th beri t
Different labeling tasks are distinguished in cartography erent desirabiiities. In F1g. 2, the numbering represents
this desirability as it is common in cartography, thus the

[9], [12]. We focus here on the labeling of point features, iaht position | ferred {13
e.g. cities or mountain peaks, only. More precisely, bt upper right position is preferred most [3].

feature labeling problentPFLP), is defined as follows. Thg two goals are combined into the following objective
Given a set of, point features in the Euclidean plane, eact{unction onz:

feature needs to be labeled by placing a fixed text near to it. "1

The allowed positions are restricted to a sep @laces in the minimize g(x) = conf(x) + Wpos - Z - (1)

feature’s surrounding. Figure 2 shows fhe- 8 standard po- -1 P

sitions for text labels which are typically used in cartograph . .
[3]. A complete labeling of all features is expressed by avec);i:he second term represents a penalty according to the desir-

tors = (21.....,) € {1.2......p}", Inwhich each compo- 20iles of the labels’ actual positions. Constan, con-
nentx; with ¢ = 1,..., n identifies the assigned position of rols the Importance ot position desirabiiities over contiicts.

the label for feature. Usually, one label overlap should count more than the highest

In [12], [18], various objectives for meaningful label place—po_lsjf]'blggf;'ti'orlllgeﬁarlgytf)or one Iat:cetlr,]thﬂlgbwlposng L. N
ment are discussed. We concentrate on the following two € s NF-hard because ot Ine global consequences

a single change of a label’s position might have [10], [14]. As
for every NP-hard problem, an approach for solving the PFLP
either applies exhaustive search, which gives an optimum re-
o KostomeuurD Wien & sult but may be too time-consuming for larger instances, or it
St. Polten, TO e is of heuristic nature and optimality cannot be guaranteed.
Modingry Exact approaches include rule based systems as proposed
by Doerschler and Freeman [6]. Cromley [5] and Zoraster
et (@) [19] transform the PFLP into a 0/1-integer programming prob-
lem and solve it with branch-and-cut techniques. Recently,
Klau and Mutzel [13] presented another 0/1-integer program-
ming based branch-and-cut approach for the relddbe!
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St. Paltén WienJ & "":"" number maximization problerim which the number of labels
BﬂdaM“d“ﬁgc e that can be placed without overlap is maximized.
o On the side of heuristic approaches, a simple greedy heuris-
’ (b) tic [18] and a discrete gradient descent method [11] were

among the first published techniques. Christensen et al. [2]

Fig. 1. Examples for a good (a) and a bad (b) labeling. described a simulated annealing approach and compared it to



Feature2 [ oy ] lem reductiontakes place, which applies the following two
— %4.|:| 2 o ! rules to each feature= 1, ..., n:
! 4| s (1) If a safe label positiory exists (35 | 1 < 5 <
. ] Feature 3 p A ¢;; = 0)and all more desirable positions are hope-
less(Vk =1,...,j—1: ¢, = 00), then label must be
et P assigned to positiofiin any optimum solution and there-
- Pr1 = {(2,4), (3,4)} fore, we permanently fix this assignment and dismiss all
i\j |1 2 3 4 ) i . .
01 P13 ={(3,4)} other positiong: # j for labels.
2 1 1 1 2 11227411 — f(21’2 1:) {;}2’;)? {,2)} (2) If a safe label position exists, any hopeless position
3 |0 oo 0 2 Pya={(1,1),(L3)} ({k| k=1,...,pAc = oo}) cannot appear in an
Fig. 3. An example PFLP instance with= 4 and its conflict table: optimal solution and is therefore permanently dismissed.
conflict numbers:;,; and conflict reference list8; ;. A label whose position could be prematurely fixed by rule

(1) is from now on treated as static image feature, and all label
positions dismissed by rules (1) or (2) are somehow marked
several other algorithms in [3]. A genetic algorithm (GA) forand excluded from any further consideration. In the conflict
the PFLP has been proposed by Verner et al. [17]. It betable, all conflicts with dismissed label positions are removed
efits from masking which allows a solution to inherit a set and conflicts with fixed label positions are noted by setting
of spatially connected high-quality alleles in a guaranteed utihe corresponding conflict values 40. Each such reduction
changed form from a parent solution. Raidl [15] describeth the conflict table may also enable further reductions. In
another GA that includes a heuristic improvement operatdhis way, larger chain-reactions sometimes arise shrinking the
A more extensive review on algorithms for the PFLP can beearch space significantly.
found in [16].
Today, simulated annealing and hybrid GAs are among the Ill. AN ANT COLONY SYSTEM FOR THE PFLP
best choices for large, hard PFLP instances where exact techin nature, a single ant can be seen as an autonomous agent
niques are not applicable anymore. This article describeswhose actions are strongly guided by randomness. While ants
new effective approach following the conceptanft colony are wandering around looking for food, they deposit phero-
optimization[7]. mones on the ground which influence the behavior of follow-
The next section presents a general preprocessing of prahlg ants. Via this indirect communication, callsigmergy
lem data in order to reduce the search space in a safe waycooperative ant colony is able to efficiently determine the
Section 1lI describes the ant colony system, and Section IShortest path between its nest and a food source [1].
compares it empirically with simulated annealing and a GA This principle has been adopted to attack hard combinato-
similar to that of [15] but enhanced by masking as suggesteil optimization problems. Dorigo and Gambardella [8] pro-
in [17]. Results indicate that the ant colony system is a strorgbsed arant colony systerfACS) for the traveling salesman
competitor for simulated annealing and the GA. In particulagroblem (TSP), which works on a weighted gra@hk= (V, E)
for hard, dense instances, the ant colony system often fingdéth node sef’ and edge sef. Simple autonomous agents,
superior solutions. Section V draws some final conclusionscalled artificial ants, create repeatedly independent solutions
by touring the graph in parallel. At each node V, an ant's
Il. PREPROCESSING decision which edge to follow next is a random choice biased
To be able to efficiently identify conflicting labels of a can-by local parameters, namely heuristic valugs, s) > 0 and
didate solution during the optimizationcanflict tableis cre- pheromone values(r, s) > 0 of all incident edge$r, s) € E.
ated as a part of preprocessing. This data structure holds gdite pheromone values(r, s) model the amount of phero-
eral information about all possible label/label or label/featurenones deposited by ants having previously passed the edges,

overlaps [15]. and they are updated by local and global rules. In particular
A conflict number; ; > 0 is assigned to each possible la-when one iteration of the ACS is finished, i.e. each ant has
bel positionj = 1,...,p of each point featuré = 1,...,n. completed a solution, the pheromone values of the so-far best

¢, ; is zero (“safe”) if label positiory of feature: does not solution’s edges are increased to intensify the search near this
overlap any feature and can never collide with any other labedolution during the next iterations. For more general informa-
When label positiory of featurei statically overlaps any part tion on ant colony optimization, see [4], [7].

of a feature, the conflict numbey ; is set tooo marking the

position as “hopeless”. In any other casg; is the total num- A A Graph-Representation of the PFLP

ber of positions of all other labels which at least partly overlaq_ ] o

position; of labeli, and we additionally store references to all "€ PFLP is not originally a graph-problem. However, to ap-
these conflicting label positions ircanflict reference lisp, ;. Ply the idea of ant colony optimization, a graph representation
See Fig. 3 for an example. should be defined on which we can imagine the ants walking,

Having the conflict table initialized, a determinispeob-  Nereby creating candidate solutions.
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Fig. 4. A graph-representation of the PFLP for applying the ant
colony system.

Note that to keep things simple, we neglect from now on
labels fixed and label positions dismissed during preprocess-
ing. It is straight-forward to take them into account in a real
implementation.

Figure 4 shows the graph-representation of the PFLP. Start-
ing from nodea, an ant creates a solution by an iterated two-
step process: Fromit needs to decide which feature — repre-
sented by nodeg, . . ., f,, —to go to. We call this stefeature
selection Having moved to the selected feature-nggethe
ant has to decide to which of its label positions — represented
by nodesv; 1, ...,v;, — to move on. This step implies the
actual labeling of featurgat the corresponding position.

Then, the ant moves to nodeagain, and the two steps are
repeated until all nodeg,, ..., f,, have been reached once,
thus all features are labeled and the solution is complete.

The second step, where the labels are actually placed, is the

ALGORITHM ACS—-FOR-PFLP:

create initial solution:? by a simple greedy heuristic
8> — 20 (globally best solution found so far)

0 < 1/(n - g(2))
Vi=1,...,n,Vj=1,...

REPEAT

0 T(fi,vi,5) < To0

Vantsk =1,...,m:
Fk={1,...,n}
REPEAT n times (until solutions are completed):
REPEAT Vantsk = 1,...,m:
i « select a feature frorfr’®
FF  FF\ {3}
Vi =1,...,p: computep(f;,v; ;)
WITH probability go:
b < arg max;_;
ELSE

choose randomly from(1,...,p)
with probabilities(o(fi, vi1), - . .

p @(fia Ui,]')

.....

7%0(fi7Ui,p))
:Ef —b
T(fisvip) — (L—p) - 7(fi,vip) + o 70
Vantsk =1,...,m:
locally improvez*®
evaluater® by computingg(z*)
z'® — argmin,_,1  ,m g(z) (bestsolution of iteration)
IF g(z'P) < g(«8P) THEN z8P « ziP
Vi=1,...,n,Vj=1,...,p:
T(fi,vi,5) — (1 —a) - 7(fi,vi )
Vi=1,...,n:

T(fi,vi,zib) — 7(fi, v; yiv) + a/g(z™?)

more crucial one. There, we apply an ACS-typical state tran-
UNTIL improvement ofy(x2P) during the lasty iterations< e

sition rule that uses a heuristic functigtif;, v; ;) and phero-
mone values (f;,v; ;) associated to the edgés;, v; ;), as
Sect. 1lI-C describes. Feature selection is done in a simpler
heuristic way as explained in Sect. 1lI-B.

Figure 5 shows a pseudo-code for the complete ACS. First,
all pheromone values for edges between feature-nodes an@. Feature Selection

nodes representing label positions are initialized with a vaIuFe lecti h f . | d twi
70 = 1/(n - g(2°)), wherez? is an initial solution created by eature selection must ensure that no feature is selected twice

a simple greedy heuristic: Features are processed in rand %the same ant in the same iteration of the ACS. Note that

order, and each label is assigned to the locally best possiﬁ S is similar in the ACS for th_e TSP, where each node may
position. only be reached once in a feasible tour.

Next, m ants are initialized. Each aktowns a set* of Furthermore, feature selection should be stochastic and en-

yet unprocessed features and a veatbiin which the ant's ;ure tha_t featlures aLe procesfs edin d|]1:ferent olr((jjir n ghenera_l.
solution will be stored. All ants build solutions in parallel by rocessing always the same features first would bias the opti-

the already mentioned two-step process, communicating o jzation and in general lead to poor local optimal solutions.
indirectly via pheromone updates A simple approach would therefore be to always make a

At the end of an iteration, when all ants have completed niform random choice among all not yet visited nodes from

solution, each solution is locally improved and evaluated. T & oo fn g thus, to pr<|)|cehss 3" featu.:jes N ?ure rarzldo:nborﬁer.
best solutionz® of the iteration is determined, the globally 'OWEVer Itis generally hard to avoid overlaps when labeling

best solution:2" eventually updated, and a global pheromonéeatures in random order: While the first features can usually

update is performed. The whole process is repeated until t & labeled easily Withoqt much da_nger of conflicts, it _becomes
improvement of the globally best solution during the last ard and often impossible to avoid overlaps when final gaps
iterations falls below a threshotd need to be processed, i.e. features completely surrounded by

More details of the algorithm are described in the foIIowingalready previously fixed Iat_>e_ls of other features. .
subsections. It proved much more efficient to take care on spatial rela-
tionships of features by always trying to select as next feature
one lying close to a previously processed feature instead of

Fig. 5. The main algorithm of the ACS for the PFLP.



one from somewhere in the middle of a yet untouched region. e the conflict value; ; of the label position, and
This is accomplished by the following queue-based heuristic. 4 the general desirability of the label position, expressed
Let F* = {1,...,n} be the set initially containing all fea- by its index;.
tures. For each ant, a queue is furthermore maintained, WhiChSinceF(
is initially empty. A feature is always selected by the fo"appealing positions, we combine them in the following way:
lowing actions: If the queue is not empty, one featurs
dequeued; otherwise, a featuris picked randomly fron#* n(fisvij) = =—— —+ S 4 - 3)
and removed there. Aeighborhood seH; C F* of yet un- ’ L@@ j) + ke cijt+hke  j+ka
processed features lying “close” 1as determined, and these  wr, w,., wy > 0 are weights controlling the general influ-
features are put into the queue and removed fiéfn i is  ence of the corresponding criteridy;, k., kg > 0 determine
finally returned as selected feature. how strongly the function distinguishes between good and bad
Different definitions can be used for the neighborhood setlues for each criterion.
H; of afeature:
(1) H; consists of thex nearest neighbors of featuién  D. Global Pheromone Update

F* with respect to the Euclidean distance| | < h, . _ .
thenH; = F*. The features fron; are queued in order At the end of each iteration, pheromone evaporation takes

of increasing distance. place on all edge§f;, vi;), i =1,....n, j=1,....p:

(2) H; consists of those features frafif that may stay in T(fi,vij) — (L —a)-7(fi,vij) 4)
conflict with featurei. These features can be efficiently

i,7),¢i.5,7 > 0and smaller values represent more

wr w, wq

identified via the conflict table’s reference ligts;, j = 0<a<lis the phgromone decay paramete_r. Evaporation
) N decreases the intensity of all pheromones as time goes on and
1,...,p. The features off; can be put either in random
L : . . . reduces the danger of premature convergence to poor local
order or again in order of increasing Euclidean distance .

into the queue optima.
. g .' . Then, the best ant of the iteration deposits additional phero-
Practical experiments have shown slight advantages gf,\os on the edges representing its solutiin

neighborhood definition (1), providing a suitable value is cho-
sen forh. A detailed study on this topic can be found in [16]. 7(f;, v, ) < 7(fi, v; 4v) + %7 Vi=1,...,n (5)
s Ly s Ly g Tl
C. State Transition Rule for Feature-Nodés Note that this is slightly different to the ACS for the TSP

in [8], where the edges of thglobally best solution are rein-

When an ant has selected a feature to process, i.e. it has moy&%ed_ We have observed here slight advantages when using

toa certaip feature nodg, each_ edge toa poss_i_ble SUCCESSGhe jteration’s best solution instead of the globally best one,
nodev; ;,j = 1,...,p, gets assigned a probability see [16] for more detalils.

7(fi; vi) - n(fisviy)°
(fiyvig) = v T(fijviqk) . n(f:vi B (@) E. Local Pheromone Update

7(fi,vi;) is the pheromone value, andf;,v; ;) a heuris- Every time an ant moves over an edg, v; ;), the follow-
tic value representing the local attractiveness of ngde 5  ing local pheromone update rule is applied to the associated
controls the relative importance of the pheromone versus tid@eromone value:
heuristic value.

The decision over which edge the ant moves — and therefore 7(fivig) = (L= p) 7o vi5) + - 7o ©
to which position the label of featuridis assigned — is made  The pheromone value is slightly modified towards the ini-
by the followingpseudo-random-proportional ruleccording tial value 7 in order to change the attractivity of the used

to [8]: edges for the other ants building solutions in parallel. In this
e With probability ¢y € [0,1) the edge(fi, v, ;) with ~ Way, exploration is emphasized and pheromone information
maximume(f;, v; ;) is chosen; ’ can be used more efficiently, since ants are searching solu-

ions in a broader neighborhood of the best previous solution.

* otherwise a random decision is made in which eaCbaramete@ < p < 1 controls the strength of local pheromone
edgej = 1,..., pis chosen with probabili(f:,vi ;). ~ P 9 P

Parameter;, controls the relative importance of exploita-
tion of already collected knowledge versus (biased) expl
ration of new possibilities.

The heuristic value)(f;,v; ;) is a function composed of Each created solution is locally improved before its evalua-
three criteria: tion by processing all features in random order. Each label is

e the number (7, j) of actual overlaps with other labels checked if there exists a more desirable position that would
or static features that would be newly introduced whernesult in no conflict in the current solution. If this is the case,
placing label: at positionj in the current situation, the label is reassigned to the best position found.

cff. Local Improvement



G. Masking in [2]. HGA used a population size of 100, a mutation prob-
ability of 3% per (unmasked) gene, and each run was termi-

Vemer etal. [17] proposeahaskingn their genetic algorithm a,g/lted when the improvement of the best solution during the

for PFLP. This technique preserves good subsets of spati 5t 20,000 iterations had dropped below%
related alleles when applying recombination or mutation an Tablé | shows obtained results. All values are average val-
focuses the variation to more critical regions in the surrounqj-

. o es over 15 runs per instance in case of HGA and ACS and
ing of overlaps. We adopted this idea for the ACS as fOIIOWSlO runs per instance in case of SA. Printed are the finally
For each feature= 1, ... n, let D; be the set of itd near- b

¢ neiahboring feat der the Euclid dist ¢ est solutions’ objective valuggz), their standard deviations
est neighboring features under the Lucidean distance me r('f‘i'g(:v)), the numbers of finally remaining labels with con-
In a given solutione, we say a feature isritical if it is either

; : . . . : flicts conf (x), and the numbers of evaluated solutiensls.
self involved in a conflict or contained in the nearest-neighbor Most of the time. HGA and ACS found better solutions
Stetl.)j O.f any Ot]t;.e; featurg € {L,...,i—Li+1,...,n} than SA. While HGA exhibits slight advantages over ACS on
S ?/tm? m? cor; 'E .O d tarti itht — 0. th smaller instances with up to = 450 features, the ACS is su-
erationst = (mod ¢), starting wi = U & herioronthe harder, denser cases. Statistitedts reveal that
ACS performs normally as described so far. However, at eaﬁqe differences iy (z) from ACS and HGA fom > 500 are
. . \ o >
other :jtgrat}tont ’t’i‘ ?71 (IlrlOd ¢), an agt S.SOIUUSW f.“’tm thtek significant at &.1% error-level. It is furthermore remarkable
preceding fteration — 1 Serves as basis, and vanation 1akeg, i Acg created almost always solutions with fewer conflict-
only place at the features rated critical in the sense defing labels than HGA

before. Thus all uncritical labels fromf are simply copied Regarding the number of needed evaluations, ACS is supe-
o z_and nqt process_ed by the ant. Only I(_)cal |mprovemer|1}or in any case. However, this does not mean that ACS is the
considers finally again the complete solution and may alﬁgstest For HGA and ACS, average CPU-times, mea-

chgnge m?e&t(:ﬁ Ial:fxel posm?nT. “how f » 4 feat sured in seconds on a Celeron/450MHz PC are also printed in

"’t‘rl‘?‘”}e © ere Ofrf tctonbro s qz/jv ag awayt' al €alre raple 1. In particular for the larger instances, ACS needed sig-
must i€ from any contlict to be considered uncritical, para nificantly more time due to its higher computational effort for

eter¢ controls, how often ants are resiricted to vary critica enerating one candidate solution. CPU-times are not printed
features only. for SA since those runs were performed on a different ma-

IV. EMPIRICAL COMPARISON chine. Neverthele.ss,.we gould clearly see that SA is gengrally

. . . the fastest, despite its high numbers of evaluated solutions.

We empirically compare the ACS to a re-implementation 0fhe reason is that SA creates a new solution from a previous
the simulated annealing algorithm (SA) of Christensen et gl o by just changing one label’s position. In this way, an in-

[2] and a hybrid genetic algorithm (HGA). HGA is basically cremental evaluation is possible, and the computational effort
that one described by Raidl [15] enhanced by applying maslg minimal.

ing during mutation according to [17]. It uses a steady-state Figure 6 shows part of a solution to a real geographical
replacement scheme in which in each iteration one new SO'HFobIem instance. The complete instance has 1501 fea-
tion is created by means of binary tournament selection, Unjjjres and could be solved by the ACS without overlaps and a

form crossover, masking-mutation, and local improvement gg, objective value of(z) = 215.75 in 35.6 seconds.
described in Sect. llI-F. Such a new solution always replaces

the worst solution in the population with one exception: To V. CONCLUSIONS
assure a minimum diversity, duplicates are always discarded. The main features of the proposed ACS for point feature

For the. comparison, s.tandard test problem instances W'It?;beling are: the deterministic problem reduction during pre-
the following characteristics were adopted from [3]: The num-

rocessing, the heuristic feature selection strategy which con-
b_er (.)f features ranges from 50 to 1000, and they_ are rando”ﬂ?ﬁers spatial relationships of features, the local improvement
distributed on a rectangular area ©f2 x 612 units. Each

. of created solutions, and masking which effectively focuses
label has sizd0 x 7 and must be placed on onef= 8 pos- g y

: I . . . ..._the optimization to critical regions in the surrounding of con-
sible positions according to Fig. 2. The weight of the p03|t|orﬁic,[m'3J labels 9 9
penalty term in the objective function IS alwaygo, = 1. Results show that the ACS is able to identify high-quality

For the ACS, robust parameters settings that work well fq

| kinds of problem inst tound b ¢ Uolutions. In particular for hard, dense instances, these so-
several Kinds of problem instances were found by extensif;, g are usually significantly better than those obtained by
preliminary tests documented in [16h = 6, ¢o = 0.7, 8 =

simulated annealing and a state-of-the-art hybrid genetic al-
14, a = 0.05, p = 0.25, h = 20, d = 20, and¢ = 24. The gorithm for point feature labeling. The main reasons for the
heuristic functior(f;, v ;) used the weightarr = wq = 1, high performance of the ACS are the strong local heuristics
We = 0 (thus,_the conflict values; ; were not considered and the good balance between exploration and exploitation.
in these experiments) and offséts :bkd = 4. The ACS Future work should try to reduce the rather large number of
terminated vvhen the mprovemgnt:cﬁ had dropped below strategy parameters which must be set appropriately in order
e = 0.1% during the lasty = 600 iterations. to provide a good balance between exploration and exploita-

SAwas run with exactly those parameter settings suggestﬁgn_ Probably, self-adaption mechanisms can help here.



TABLE |
RESULTS OF SIMULATED ANNEALING (SA), THE HYBRID

GA (HGA), AND THE ANT COLONY SYSTEM (ACS).

Fig. 6. Part of a solution to a geographical problem instance with

(1

[2

(3]

[4]
[5]

n = 1501 features. ACS was running 35.6 seconds. (14
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" SA HGA ACS
g(@) conf(z) _ evals | g(@) ol(g()) conf(z) evals tcpu 5] | 9(z) o(9(z)) conf(z) evals tcpu [5]
50 0.5 0.0 41,251 04 <0.01 0.0 20,014 49 04 <0.01 0.0 1,802 <0.1
100 15 0.0 82,798/ 1.4 <0.01 0.0 20,012 41 1.4 <0.01 0.0 1,374 <0.1
150 4.2 0.0 126,411 3.7 <0.01 0.0 20,242 44 3.8 0.10 0.0 2,875 0.3
200 6.8 2.0 169,959 4.6 0.03 0.0 20,397 6.2 4.7 0.09 0.0 2,986 0.6
250 17.7 8.0 214,107 9.4 0.10 0.0 20,544 79 96 0.20 0.0 3,549 1.1
300 185 0.0 261,368 18.2 0.19 1.0 20,773 11.7 184 0.16 1.0 4,414 3.6
350 36.8 10.3 305,757 22.0 0.25 0.1 20,662 147 222 0.32 0.0 4,666 3.3
400 35.8 0.6 352,770 34.6 0.55 1.5 21,324 19.3 35.0 0.47 0.7 6,534 6.1
450 47.7 4.3 398,063 39.5 0.45 1.0 21,019 22.2 39.6 0.40 1.0 8,418 11.7
500 74.4 21.1 440,86 57.7 0.84 25 21601 28.0 55.3 0.81 11 9,170 15.
550 89.5 27.6 486,704 77.9 1.35 121 22,978 33.8 758 1.18 10.2 14,541 57.p
600 || 116.9 40.1 529,178 101.8 1.56 19.8 25,626 448 97.6 0.87 17.2 16,542 73.0
650 || 161.6 69.1 574,111 143.3 1.76 37.3 28,995 58.4137.0 1.99 35.8 22,850 178.8
700 || 177.2 72.1 618,253 165.0 1.84 40.1 30,532 68.9 157.9 1.50 37.8 21,246 167.4
750 || 199.9 749 663,544 180.5 2.22 36.3 29,031 73.0172.7 1.63 339 23,388 2011
800 || 260.5 119.9 704,693 245.4 3.08 81.3 45,934 135.4 230.7 157 79.7 30,017 408.3
850 || 290.6 133.4 748,523 275.9 2.37 90.3 45,395 14744 258.1 1.59 84.4 31,515 4718
900 || 337.4 164.8 791,061 323.3 2.65 125.3 48,409 172/9299.2 214 1235 32,790 5833
950 || 366.5 182.1 834,695 375.2 3.80 1485 52,182 20123454 2.95 146.0 34,666 6715
1000 || 437.9 251.3 875,286 444.7 4.39 209.7 57,931 241/3408.6 2.44 208.6 35,772 791)0
[6] J. Doerschler and H. Freeman. A rule-based system for dense-map
name placemenCommunications of the ACN85(1):68—79, 1992.
[7] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for
discrete optimizationArtificial Life, 5(2):137-172, 1999.
[8] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative
learning approach to the traveling salesman probléBEE Transac-
Lorgores tions on Evolutionary Computatioi(1):53-66, 1997.
0, osemmens [9] S. Edmondson, J. Christensen, J. Marks, and S. Shieber. A general
cartographic labeling algorithnCartographica 33(4):13-23, 1997.
[10] M. Formann and F. Wagner. A packing problem with applications to
lettering of maps. IrProceedings of the 7th Annual Symposium on
Computational Geometrpages 281-288, 1991.
[11] S. A. Hirsch. An algorithm for automatic name placement around point
data.The American Cartographe®(1):5-17, 1982.
[12] E. Imhof. Positioning names on map$he American Cartographer
2(2):128-144, 1975.
[13] G. W. Klau and P. Mutzel. Optimal labelling of point features in the
slider model. In D.-Z. Du, P. Eades, V. Estivill-Castro, X. Lin, and

A. Sharma, editorsProceedings of the 6th Annual International Com-
puting and Combinatorics Conferenceolume 1858 ofLNCS pages
340-350. Springer, 2000.

J. Marks and S. Shieber. The computational complexity of cartographic
label placement. Technical Report TR-05-91, Harvard University, Cen-
ter for Research in Computing Technology, Cambridge, MA, 1991.

G. R. Raidl. A genetic algorithm for labeling point features. Piro-
ceedings of the Interntational Conference on Imaging Science, Systems
and Technologypages 189-196, 1998.

M. Schreyer. Ein Genetischer Algorithmus und ein Ant Colony Sys-
tem fur das Point Feature Labeling Problem. Master’s thesis, Vienna
University of Technology, Vienna, Austria, 2001.

O. V. Verner, R. L. Wainwright, and D. A. Schoenefeld. Placing text
labels on maps and diagrams using genetic algorithms with masking.
INFORMS Journal on Computing(3):266-275, 1997.

P. Yoeli. The logic of automated map letterinhe Cartographic Jour-

nal, 9(2):99-108, 1972.

S. Zoraster. The solution of large 0-1 integer programming prob-

lems encountered in automated cartographyperations Research
38(5):752-759, 1990.



