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Abstract
The design of new railway infrastructure is a complex planning process today in most Eu-
ropean countries due to several requirements. From an operational point of view new in-
frastructure basically has to fulfil the requirements defined by the later customers who are
the railway undertakings. Hereby passenger traffic is often organised in a periodic timetable
with well defined arrival and departure times in the hubs. So far there is no automated tool
available to help in determining a minimum cost infrastructure fulfilling all the requirements
defined by a timetable and the operation of the railway system. Instead, this task is typically
carried out manually based on graphical design, human experience, and also intuition. This
paper presents a first formalization of this task as a combinatorial optimization problem
trying to capture the most essential aspects. For solving it promising algorithmic concepts
based on mathematical programming techniques and metaheuristics are sketched.

Keywords
Railway Infrastructure Design, Integrated Timetables, Combinatorial Optimization

1 Introduction

The design of new railway infrastructure is nowadays strongly guided by pre-specified inte-
grated timetables that have been derived from expected traffic to be served [11]. Integrated
timetables synchronize the traffic in major nodes (hubs, e.g., main railway stations in major
cities) at regular time intervals, ensure connectivity between different lines with minimum
waiting times, and allow passengers to easily remember the regular departure and arrival
times. In many European countries, integrated timetables have been successfully introduced
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in the last years and could prove their substantial advantages.
Implementing the concept of integrated timetables, however, imposes major challenges

and constraints, see e.g. [8]. In fact, the almost simultaneous arrival of the most relevant
trains at a station and the strongly regulated travel times between stations, which must be
multiples of a basic cycle interval, frequently demand extensions of existing railway in-
frastructure. Substantial financial investments are typically necessary for building further
tracks, platforms, and other elements in order to be able to realize an integrated timetable
and benefit from its long-term efficiency and higher flexibility.

Considering an integrated timetable as a central dogma when building new or extending
existing railway infrastructure has a major impact on the design process. Unfortunately till
today decisions like where and how to strengthen an existing single route frequently are
done from a predominantly local perspective considering the specific route’s properties and
demands almost only, and timetables are adapted thereafter. Nowadays with an integrated
timetable, dependencies between routes of different trains are much stronger, and impacts
of certain design decisions have a more global influence. A more systematic optimization
approach is thus required in the design in order to achieve a cost-effective solution that
guarantees the constraints imposed by the integrated timetable.

Today’s state of the art in developing the infrastructure layout is given by graphical
procedures upon the required arrival and departure times [19] and validation by micro-
scopic simulation of railway operation [9]. In this paper we present a concrete graph-
theoretic/combinatorial approach for modeling the basic problem. It considers existing rail-
way infrastructure as well as various extension possibilities in a fine-grained track-segment
based way, speed limits on segments in dependence of trains and chosen routes (entry sit-
uation in stations), and various kinds of costs for installing new elements of infrastructure
(tracks and switches) in order to be able to realize the connections as specified by the inte-
grated timetable. The model is flexible in the sense that it can be relatively easily adapted
to further, more special or alternative requirements.

We start by reviewing the so far used graphical estimation process in Section 2. Section 3
then presents the new formal optimization model to determine a minimum-cost demand for
the infrastructure. In Section 4, we discuss the problem from a theoretical point-of-view,
also showing that it belongs to the class of computationally difficult NP-hard problems.
This implies that we cannot expect to find an efficient (i.e., polynomial time) exact algo-
rithm for solving any instance to optimality. Nevertheless, exact methods based on mixed
integer linear programming (MIP) appear highly promising for addressing smaller instances
in practice, and metaheuristic approaches as well as MIP/metaheuristic hybrids seem well
suited to approximately approach larger scenarios. Section 5 briefly sketches first concepts.
Concrete implementations and experimental evaluations using artificial test instances de-
rived from real-world scenarios are work in progress. Finally, Section 6 concludes this
article.

2 Graphical Estimation

Having once defined the hubs for an integrated timetable in a railway network, the railway
lines between the nodes have to be designed in accordance. Starting with a single track line,
the demand for crossing opportunities can be simply identified in the graphical timetable.
Figure 1 shows the situation when two trains with predefined arrival and departure times in
the neighboring nodes want to cross each other on a single track line. Taking into consid-
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Figure 1: Graphical timetable and required infrastructure layout for two trains running on a
line in opposite directions.

Figure 2: Graphical timetable for two additional trains and their required infrastructure.

Figure 3: Infrastructure layout for the combined operation of the four trains.

eration the maximum length of the involved trains, the minimum length of the second track
can be also simply calculated. Of course, the second track should be designed at track speed
to face no restrictions of speed and thereby additional running time.

More complicated becomes the situation when additionally two other trains are sup-
posed to run on this single track section in the same time slot, cf. Figure 2. This might
be the case when two fast trains and two local trains have to be operated to have constant
intervals. For the local services also another meeting point could be defined by adjusting the
arrival and/or departure times in the neighboring nodes. If both services have to be operated
in the same time slot, the combination of all trains specifies the infrastructure layout.

The combination of both services requires at least an infrastructure which is shown in
Figure 3. As a generic rule the minimum number of required tracks is defined by the number
of trains in an infrastructure section. The graphical solution has some short comings as e.g.
train dynamics are not considered exactly but at least it delivers a rough estimation of the
minimum infrastructure layout required in simple scenarios. In more complex scenarios,
this approach quickly becomes inefficient.
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3 Combinatorial Optimization Model

We now model the Integrated Timetable Based Design of Railway Infrastructure (TTBDRI)
as a combinatorial optimization problem, trying to consider the most relevant real-world as-
pects on the one hand while performing simplifications and discretizations where it appears
reasonable and meaningful on the other hand.

The TTBDRI problem has given the following input data.

• The undirected graph G = (V,E) represents the existing railway infrastructure plus
all possible installable extensions on a detailed level. Vertices V correspond to atomic
track segments (or more precisely their respective center points), edges E represent
these segments’ connections, possibly with switches inbetween. Mutually exclusive
extensions (alternatives) are modeled in the graph by independent connected compo-
nents from which only one may finally be used. Multiple parallel tracks are repre-
sented by multiple paths. Each edge e ∈ E has associated a length le ≥ 0 corre-
sponding to the real distance of the centers of the track segments referred to by the
connected vertices. Figure 4 shows an example.

• Let the subgraph G0 = (V 0, E0), with V 0 ⊆ V and E0 ⊂ E, correspond to the
already existing infrastructure, and the graph G′ = (V,E′) with E′ = E \ E0 repre-
sent the additionally possible infrastructure by which the existing infrastructure may
be extended. Nodes v ∈ V have associated installation costs cv ≥ 0 with cv = 0 for
v ∈ V 0.

• Let R ⊆ V be the set of vertices where signaling stations are (to be) located. Paths
starting and ending at such vertices and otherwise containing only vertices from V \R
are called compound routes. Connected components of the network that are delimited
by nodes in R may at any time be accessed by a single train only. A train may enter a
compound route only after it received a reservation, and this reservation stays active
until the train leaves the compound route.
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Figure 4: A railway system connecting two stations and the corresponding graph G on
which the TTBDRI problem is defined. Dashed nodes and arcs indicate potential new in-
frastructure.

4



• Set S represents the major railway stations (hubs) considered in the integrated
timetable. Each railway station s ∈ S has associated a vertex set V (s) ⊂ V corre-
sponding to the tracks at the platforms for boarding/disembarking trains in station s.

• Let GD = (V,A) be the directed version of graph G, where we have for each
edge (u, v) ∈ E two corresponding oppositely directed arcs (u, v), (v, u) ∈ A with
lengths l(u,v).

• An integrated timetable specifies a set of connections C to be realized, where a con-
nection t ∈ C is a tuple (sstart

t , send
t , T start

t , T end
t , GD

t , traint, lt) with sstart
t , send

t ∈ S
being start and destination stations and T start

t and T end
t the times when the train may

leave station sstart
t and has to arrive at station send

t latest, respectively. The connection
has to be realized by a path in the limited subgraph GD

t = (Vt, At) with Vt ⊆ V and
At ⊆ A. It can safely be assumed that GD

t is acyclic. Finally, traint indicates the
used train’s ID. Typically, a train is used for a series of connections. Let l(traint)
refer to the train’s length.

• Values maxspeed t,a ≥ 0 indicate the maximum allowed average speed by which the
train realizing connection t ∈ C may go from the source to the target vertex of arc
a ∈ At.

A solution consists of:

• A subgraph G′′ = (V ′′, E′′) with V ′′ ⊂ V and E′′ ⊆ E′ indicating the infrastructure
to be installed.
Let Ge = (V e, Ee) represent the complete augmented infrastructure, i.e., V e = V 0 ∪
V ′′ and Ee = E0 ∪ E′′.

• For each connection t ∈ C a directed path Pt ⊆ At starting at a vertex from V (sstart
t )

and ending at a vertex from V (send
t ).

Considering the signaling stations R as separators, Pt can be partitioned into a list of
successive compound routes Lt = (Pt,1, . . . , Pt,λt

).
The length of a compound route Pt,i, i = 1, . . . , λt, is l(Pt,i) =

∑
a∈Pt,i

la.

• For each arc a = (u, v) ∈ Pt, t ∈ C, an actual (average) speed 0 < speed t,a <
maxspeed t,a. To keep the model a combinatorial optimization problem, we may
restrict ourself to an appropriately chosen discrete set of allowed average speeds σ,
i.e., speed t,a ∈ σ ∧maxspeed t,a.
Consequently, the train takes time Tt,a = la/speed t,a for going from the center of
track segment u to the center of segment v.

• For each route Pt,i, i = 1, . . . , λt, t ∈ C, a reservation time slot (T enter
t,i , T exit

t,i ) in
which the train will safely be able to pass this route.
Safety margins are added: When the train takes total time

Tt,i =
∑
a∈Pt,i

Tt,a (1)

for passing the route, the reservation time slot has duration

T exit
t,i − T enter

t,i = (1 + 2α) · Tt,i, (2)
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i.e., margins α · Tt,i are added before the train is expected to enter and after the train
is expected to leave, respectively.

To be feasible, a solution must satisfy:

• For each connection t ∈ C: ∀(u, v) ∈ Pt → u, v ∈ V e ∧ (u, v) ∈ Ee, i.e., the
infrastructure used in the chosen paths must exist or be installed.

• All constraints for realizing possible extensions (e.g., mutual exclusivity of some al-
ternatives) must be adhered.

• The time slots of consecutive routes of a connection overlap exactly by the corre-
sponding safety margins.

• For each connection t ∈ C, the earliest start and latest arrival times T start
t and T end

t are
adhered, respectively.

• At each time, each edge e ∈ Ee may only be used in at most one reserved route.

• If the same train is used for two successive connections, its arrival vertex at the first
connection’s target station must be the same as the vertex where it leaves from in the
second connection.

The objective is to find a feasible solution with minimum total costs∑
v∈V ′′

cv +
∑
t∈C

∑
a∈Pt

c(t, a, speed t,a), (3)

where the first term refers to the costs of the infrastructure to be installed and function
c(t, a, speed t,a) represents costs for the train passing arc a with speed speed t,a. Assum-
ing that higher speeds and in particular unnecessary speed changes are less desirable, this
function may in the simplest case be

c(t, a, speed t,a) = ε · speedγt,a, (4)

where ε is a small constant and γ > 1.

4 Computational Complexity of TTBDRI and Related Work

The stated problem is in general difficult to solve from a theoretical as well as practical
point of view. This is documented by the fact that TTBDRI obviously generalizes sev-
eral well-known NP-hard combinatorial optimization problems, such as the classical multi-
commodity flow problem with resource constraints.

With respect to railway optimization, TTBDRI contains a variant of the diverse train
scheduling/timetabling problems that have already received considerable attention in the
literature, see e.g. [20, 5, 12, 4]. In particular, Caprara et al. [5] give an explicit proof
showing that any polynomial-time approximation algorithm with worst-case performance
guarantee is hopeless for their problem variant unless P=NP. The reduction is from the
notoriously NP-hard maximum independent set problem and can be adapted to our case.

The main goal in our work, however, lies in the infrastructure design aspect, and in
this respect we are not aware of any other directly comparable work, besides the already
mentioned graphical solution approach [19].

More generally, TTBDRI has similarities to a variety of network design problems as
they appear in telecommunication applications, see e.g. [3].
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5 Solution Approaches for TTBDRI

We approach the problem from two sides: On the one hand we are working on a mixed
integer programming (MIP) based method to solve smaller instances to proven optimality.
As it is unrealistic to assume that we will be able to solve large real-world scenarios in
this way in reasonable time, we also consider (meta-)heuristics and hybrid optimization
techniques to obtain approximate solutions on the other hand.

Our MIP approach utilizes the concept of a space-time network as described in [4]. It
is obtained by extending graph G with the dimension of time: The nodes of the network
correspond to pairs of space and time, they are multiple copies of V indexed by a discrete
selection of times, e.g. every 10 seconds over the whole time interval considered in the
timetable. The network is acyclic and all arcs are directed from a node indexed with a
lower time to a node indexed with a higher time. Arcs are established for all possibilities
of a train going from one node in V no an adjacent node, considering all possible times
for leaving the source node and arriving at the destination when going with each of the
possible speeds σ. Graphs GDt considered for the individual connections t ∈ C induce
corresponding subnetworks.

Using this space-time network, it is straight-forward to express TTBDRI by a multi-
commodity flow formulation with additional constraints. For each train we define an indi-
vidual commodity and enforce subsets of nodes that must be passed in accordance to the
connections specified in the timetable. Similarly to [5] we express the aspect that compound
routes may only be accessed exclusively by one train with conflict sets.

Unfortunately, the space-time network will become extremely large when a meaningful
set of discrete times as well as a larger railway infrastructure is considered. Thus, the multi-
commodity flow model can in practice not directly be applied in the sketched way. Instead,
we are considering an adaptive approach: We start with a relatively small network consider-
ing only few discrete times and an abstract, macroscopic representation of the infrastructure.
The flow model is then iteratively solved on this network, which is incrementally extended
to get better and more precise solutions. We refer in this respect to our adaptive layers
framework [18, 17] which works well in the context of delay-constrained minimum tree
problems.

Furthermore, a Dantzig-Wolfe Decomposition of the flow formulation yields an alter-
native MIP model that is based on path variables, i.e., a model that considers variables for
all possible train paths Pt for realizing the connections. While this model cannot be solved
directly due to the exponential number of variables, column generation and branch-and-
price [6] provide promising approaches for practically efficient algorithms. Their key-idea
is to start with a small set of paths, solving the linear programming relaxation and augment-
ing the model iteratively with additionally considered path variables which are identified
by solving a pricing subproblem. Borndörfer et al. [4] sketch a similar approach. Fischer
and Helmberg [7] further described a related dynamic graph generation to solve pricing
problems for very large graphs. As column generation based methods are frequently prone
to problems with degeneracy, the consideration of stabilization techniques plays a major
role. We expect that we will be able to adapt our stabilization approach described in [10]
for constrained tree network design problems. It it should speed up column generation for
TTBDRI considerably.

With respect to heuristic methods, we work on a variable neighborhood search approach
[14] that utilizes a set of specifically designed neighborhood structures, among them also
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very large scale neighborhood search techniques [1]. One basic strategy, for example, is
to remove a small number of connections and reinsert them in an optimal (or almost op-
timal) way. This smaller subproblem can be solved by either the multi-commodity flow
approach described above or, if it comes to single connections, by dynamic programming,
a label-correcting algorithm, or A∗ search. See [15] for a general overview on such hybrid
metaheuristics. As partly already finding any feasible solution is a challenging task due to
the many constraints, we further consider constraint programming [16] to be very useful in
this context. Last but not least, we intend to combine the column generation approach with
the variable neighborhood search in a way similar to the SearchCol framework from [2].
This hybrid method is expected to combine the benefits of the column generation approach
with the better scalability of the metaheuristics.

6 Conclusions

The design of new railway infrastructure in order to meet a given demand specified by a peri-
odic timetable has so far been mainly done manually or by relatively simple graphical tools.
This paper presents a first formal model to express this problem as a combinatorial optimiza-
tion problem. It turned out that this problem is (loosely) related to several other well known
combinatorial optimization problems and obviously is NP-hard. Subsequently we sketched
our work in progress: Based on a space-time network, a multi-commodity flow MIP formu-
lation can be derived. Following a Dantzig-Wolfe Decomposition a path-formulation can
be obtained, which can be approached by column generation and branch-and-price. Besides
these MIP methods, we work on a variable neighborhood search that utilizes very large scale
neighborhood structures in order to approximately solve larger problem instances in prac-
tice in reasonable time. Particularly promising seem to by hybrid approaches that combine
MIP and metaheuristic techniques. A special challenge are appropriate techniques to keep
the space-time network as small as possible or to avoid its explicit creation.

We finally note that a sparser, more economical infrastructure might be more at risk of
running into deadlocks when trains are scheduled too naively. Therefore, deadlock preven-
tion becomes more important, cf. [13].
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