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Abstract

We address the Multi Layer Hierarchical Ring Network Design Problem. The aim
of this problem is to connect nodes that are assigned to different layers using a
hierarchy of rings of bounded length. We present a multi-commodity flow based
mixed integer linear programming formulation and experimentally evaluate it on
various graphs. Instances up to 76 nodes and 281 edges could be solved to optimality.
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1 Introduction and Problem Definition

We consider the Multi Layer Hierarchical Ring Network Design (MLHRND)
problem, which finds applications in large, hierarchically structured networks
with a strong need of survivability. The problem description originates from
a cooperation with an Austrian telecommunication provider.

In principle, the simplest way to achieve survivability is the use of a ring
topology since the network stays connected in case of a single node or link
failure. For the backbone of wide area networks a single ring would not be
efficient anymore because two simultaneous failures could disconnect large
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parts of the network. Moreover, requirements with respect to bandwidth and
maximal delays physically limit the size of a ring. To avoid this problem
multiple interconnected rings are frequently used as backbones.

In a Hierarchical Ring Network (HRN) this interconnection is often realized
in a hierarchical fashion using rings on every layer of the hierarchy to allow
scalability. Thomadsen and Stidsen describe in [4] such an HRN for two levels,
where the node set is not partitioned a priori but to determine during the
design process. They discuss different subproblems (clustering, hub selection,
ring design, and routing) and present a Branch-and-Price approach. For this
problem the top level ring is concatenated with any other ring over a single
node (single homing). In this case the network can compensate a link failure
but does not stay connected if the concatenation node fails.

To also cover this situation the rings must be connected over two different
nodes on each ring (dual homing), which is addressed for instance by Karaşan
et al. in [1]. These authors study a two layer network, where the first layer
is connected by overlapping rings and each second layer node is connected to
two different nodes on the first layer. To solve this problem two-index and
three-index models are presented.

MLHRND deals with a hierarchical structure spanning nodes on multiple
layers using rings of bounded length and dual homing to ensure fault tolerance
in case of single link and node failures.

We introduced MLHRND in [2] for the three-layer case and described a
variable neighborhood search (VNS) and a greedy randomized adaptive search
procedure to solve it heuristically. We further argued that the classical Capac-
itated Vehicle Routing Problem can be reduced to MLHRND, i.e., MLHRND
is NP-hard, even for the three layer case.

In [3] we extended the definition of MLHRND to an arbitrary number
(≥ 3) of layers and presented a memetic algorithm (MA). In this work we
model MLHRND as a mixed integer linear program (MIP) using a flow based
approach and practically evaluate this formulation in experiments.

Formally we can define MLHRND as follows. Let G = (V,E) be an undi-
rected graph with vertex set V and edge set E. A weighting function assigns
costs cij ≥ 0 to each edge (i, j) ∈ E. Moreover, V is partitioned into K ≥ 3
disjoint subsets V1, . . . , VK , representing the layers each node belongs to. Edge
set E consists of sets Ek connecting nodes within each layer k = 1, . . . , K and
sets E ′

k, k = 2, . . . , K, connecting nodes between layer k and k − 1.

A feasible solution to MLHRND is a subgraph GL = (V,EL) connecting
all nodes in V and satisfying the following conditions:
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(i) All nodes in V1 are connected by a single independent ring containing no
other node.

(ii) The remaining layers are connected by K − 1 respective sets of paths
containing no nodes from other layers. Each node must appear in exactly
one path, i.e., the paths are node and edge disjoint to ensure reliability.

(iii) The end nodes of each path at layer k ∈ {2, . . . , K} are further connected
to two different nodes (hubs) in layer k − 1, i.e., dual homing is realized.
We refer to the edges in E ′

k connecting paths to hubs as uplinks.

(iv) The two hub nodes a path is connected to must themselves be connected
by a simple path at their layer, i.e., the connection to a ring may not be
established via more than two layers.

(v) The lengths of layer k ∈ {2, . . . , K} paths in terms of the number of edges
is bounded below and above by blk ≥ 1 and buk ≥ blk, respectively.

The objective is to find a feasible solution with minimum total costs.

2 A MIP Model for MLHRND

In this section we present a MIP model for MLHRND using a multi-commodity
based flow to ensure all conditions mentioned in the previous section and a
single-commodity flow to enforce connectivity over the whole network.

Layer k = 1

From condition i we can conclude that finding the layer 1 ring resembles the
classical Traveling Salesman Problem (TSP) that can be solved independently.
Consequently, any feasible TSP solver can be used, e.g., Concorde 1 .

Layers k > 1

The remaining layers influence one another due to the combination of the dual
homing aspect (condition iii) and the connection of the hubs via simple paths
(condition iv). Thus, these layers cannot be treated independently to obtain
an optimal solution, which marks the challenging aspect of MLHRND both to
model and solve it. Note that by relaxing either condition iii or condition iv,
each layer could be solved independently to achieve an optimal solution.

For the given input graph G = (V,E) we define a corresponding directed
graph GD = (V,A), in which we have two reversely directed arcs (i, j) and

1 http://www.math.uwaterloo.ca/tsp/concorde/
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(j, i) for each edge (i, j) ∈ E. Let Ak be the arcs corresponding to Ek and A′
k

the arcs corresponding to E ′
k.

Further, we define binary variables aiα ∈ A′
k with i ∈ Vk−1 and α ∈ Vk. If

set to 1 variable aiα indicates the existence of a circle, which is realized by arc
(i, α) and sending a flow of commodity α from source node α via a path in
layer k, an uplink to layer k− 1, and a path in layer k− 1 to the sink node i.

Additionally, we use binary variables xij, ∀(i, j) ∈ E, to indicate the edges
being part of the solution and flow variables 0 ≤ fα

ij ≤ 1, ∀(i, j) ∈ Ak∪Ak−1∪
A′

k, ∀α ∈ Vk. Then we can formulate the objective function together with
each layer k ∈ {2, . . . , K}:

min
∑

(i,j)∈E
cij · xij (1)

s.t.
∑

(i,α)∈A′k

aiα −
∑

(α,i)∈Ak

fα
αi = 0, ∀α ∈ Vk, (2)

∑

(i,j)∈Ak

fα
ij −

∑

(j,i)∈Ak∪A′k

fα
ji = 0, ∀j ∈ Vk, ∀α ∈ Vk \ j, (3)

∑

(i,j)∈Ak−1∪A′k

fα
ij −

∑

(j,i)∈Ak−1

fα
ji = ajα, ∀j ∈ Vk−1, ∀α ∈ Vk, (4)

∑

α∈Vk

fα
ij ≤ 1, ∀(i, j) ∈ Ak ∪ A′

k, (5)

fα
ij = 0, ∀(i, j) ∈ A′

k, i ∈ Vk ∧ i < α, (6)
∑

(g,h)∈Ak

fα
gh ≥ aiα · blk, ∀α ∈ Vk, ∀(i, α) ∈ A′

k, (7)

∑

(i,j)∈Ak

fα
ij ≤ buk, ∀α ∈ Vk, (8)

∑

(g,h)∈Ak−1

fα
gh ≥ aiα, ∀α ∈ Vk, ∀(i, α) ∈ A′

k, (9)

∑

(i,j)∈A1

fα
ij ≤ |V1| − 1, ∀α ∈ V2, (10)

∑

(i,j)∈Ek∪E′k

xij = 2, ∀i ∈ Vk, (11)

∑

α∈Vk

fα
ij = xij, ∀(i, j) ∈ Ak, (12)
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∑

α∈Vk

fα
ij = xij, ∀(i, j) ∈ A′

k, i ∈ Vk, j ∈ Vk−1, (13)

fα
ij ≤ xij, ∀(i, j) ∈ Ak−1, ∀α ∈ Vk, (14)

aiα = xiα, ∀(i, α) ∈ A′
k, i ∈ Vk−1, α ∈ Vk, (15)

fα
ij ∈ [0, 1], ∀(i, j) ∈ Ak ∪ Ak−1 ∪ A′

k, ∀α ∈ Vk, (16)

xij ∈ {0, 1}, ∀(i, j) ∈ E, (17)

aiα ∈ {0, 1}, ∀(i, α) ∈ A′
k, i ∈ Vk−1, α ∈ Vk. (18)

The objective function (1) minimizes the costs over all selected edges. Equa-
tions (2) to (4) model the flows. A unit flow of commodity α is initiated at
node α, if there exists an aiα with value 1, i.e., (i, α) is an uplink (2). Flow
conservation within layer k is formulated by equations (3) including the flow
on the second uplink to the first hub, while equations (4) model the flow con-
servation on the preceding layer k− 1 with the flow ending at the second hub
node j for which ajα = 1. Inequalities (5) ensure that on every edge of the
current layer k and its potential uplinks only one commodity can flow, i.e.,
rings must be node and edge disjoint (condition ii).

By defining a natural order for all nodes V , we can break symmetries by
demanding that the flow’s initial node is always smaller than the end node
of the path in Ak. We achieve this by forbidding a flow for commodity α on
uplinks going from i ∈ Vk to j ∈ Vk−1 for all nodes i < α (6).

The lower and upper bounds for the path lengths are enforced by summing
up the edges with flow along the path in Ak in (7) and (8), respectively. As
the lower bound must only hold, if there is a flow of the respective commodity
α, we again use variables aiα for enabling the corresponding constraint in (7).

Dual homing is enforced by equations (9), where we use the same trick as
before. If there is a flow for commodity α, i.e., an uplink is connected to α,
then this flow must span at least one arc in layer k−1. For the dual homing of
layer 2 commodities α we have to limit the flow within layer 1 to a maximum
length of |V1| − 1 (10). To ensure that each node in Vk appears exactly in one
path, equations (11) enforce node degree two with respect to Ek ∪ E ′

k. Since
every node, except nodes in the last layer K, can serve as a hub, the overall
degree in GL of each node is possibly greater than two.

The linking constraints for layer k are formulated by (12) and (13) for the
path edges and uplinks, respectively. If there is a flow of a commodity on edge
(i, j) ∈ Ek ∪ E ′

k then the corresponding xij must be set. If on the other hand
xij is 1, then there must be a flow on the respective edge (i, j). For the flow
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on layer k − 1 the situation is different (14). If there is a flow on the edge
(i, j) ∈ Ek−1 then xij must be set. Now flows of different commodities are
allowed along the same edge and not every selected edge must carry a flow
from layer k, since this edge can also be set through a commodity for layer
k − 1. Equations (15) link the variables aiα inducing flows from α to i with
the corresponding circle-closing edge variables xiα.

Ensuring Connectivity with Single-Commodity Flows

With the model considered so far two issues still remain to obtain a feasible
solution. First, there are no equations that enforce arc variables aiα to be set
to 1. Second, we cannot exclude subtours for commodities α. To solve both
we decided to adapt the classical single-commodity flow (SCF) formulation
for the spanning tree polytope to ensure connectivity over the whole network.
Using flow variables gij, ∀(i, j) ∈ A, we send one unit of flow from some
dedicated source node 0 in layer 1 to each other node in the graph.

∑

(0,i)∈A1∪A′2
g0i = |V | − 1, (19)

∑

(i,j)∈A1

gij −
∑

(j,i)∈A1

gji = 1, ∀j ∈ V1 \ {0}, (20)

∑

(i,j)∈Ak∪A′k

gij −
∑

(j,i)∈Ak

gji = 1, ∀j ∈ V \ V1, (21)

gij ≤ (|V | − 1) · xij, ∀(i, j) ∈ A, (22)

gij ∈ [0, |V | − 1] ∀(i, j) ∈ A. (23)

Equation (19) initiates the flow at node 0 with |V | − 1 units. The flow
conservation for all other layer 1 nodes considers only layer 1 arcs A1 (20).
For the flow conservation of the remaining layers the incoming flow over the
uplinks of the current layer must be taken into account, too (21). The flow
variables are finally linked with the edge variables in (22).

3 Experimental Results

We tested our model on the K = 3 layer scenario and used the same bench-
mark instances as in [3], which are based on TSPLIB 2 and randomly gener-
ated graphs. The original “dense” instances were graphs that contained no

2 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Table 1
Excerpt of our experimental results.

Instance b lp lb g[%] t[s] #BnB best ub algo

rand30-3-10-384-d 4-6 78659.25 84801.63 0.0 565 11311 84801.63 mip,ma,vns

rand35-3-10-529-d 4-4 81641.30 86242.90 2.0 20000 163073 87942.81 ma,vns

rand35-3-10-529-d 4-6 81641.30 85056.55 0.0 824 7214 85056.55 mip,ma,vns

rand45-5-15-865-d 4-6 91655.12 94477.87 2.4 20000 47186 96835.30 mip,vns

rand45-5-15-197-s 4-6 91655.12 96835.30 0.0 1855 33294 96835.30 mip

att48-4-10-992-d 4-6 54840.60 57072.71 6.4 20000 13004 58476.25 ma,vns

att48-4-10-167-s 4-6 54842.42 58591.88 0.0 8661 70817 58591.88 mip

berlin52-5-15-1166-d 4-6 12628.36 12727.43 13.2 20000 14021 13295.40 ma

berlin52-5-15-201-s 4-6 12628.36 13294.29 0.0 6480 52401 13294.29 mip

eil76-5-20-2595-d 7-11 834.03 842.30 — 20000 1017 853.50 ma,vns

eil76-5-20-281-s 7-11 839.34 856.15 0.0 12540 21734 856.15 mip

edges between layer 1 and 3, since they cannot occur in a feasible solution.
We additionally created “sparse” graphs, where we defined layer 1 to be fully
connected, added a simple random solution, ensured for each layer to be two-
connected, and then randomly added edges to the closest nodes and hubs. We
implemented our MIP approach in Java 1.6 using IBM CPLEX 12.5. All tests
were performed on a single core of an Intel Xeon (Nehalem) Quadcore CPU
with 2.53 GHz and 3GB of RAM. As stopping criterion we defined a time
limit of 20 000 seconds for each test case. For the lower bound blk we always
assumed one edge as the minimum length for all paths.

Due to space limitations we can only present an excerpt from our results in
Table 1, while all test results together with the instances can be downloaded
from www.ads.tuwien.ac.at/w/Research/Problem Instances. Column In-
stance refers to the underlying graphs, either the names from the TSPLIB or
rand for the random instances. The following values represent the numbers
of nodes in the graphs, layers 1, layers 2, and edges, while d indicates a dense
and s a sparse graph. Column b lists the upper bound path lengths for layers
2 and 3. Columns lp, lb, and g list the linear programming (LP) relaxations,
lower bounds and the percentage gaps ((upper bound – lower bound) / up-
per bound) obtained by CPLEX, a dash indicates that no integral solution
was found. Moreover, the total run times (t) in seconds and the numbers of
branch-and-bound nodes (#BnB) are provided. Column best ub presents the
best upper bounds known together with the corresponding algorithms (algo)
from [2,3] that generated these solutions. Note that only the MIP approach
can solve sparse instances.
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The run times to obtain the LP values for instances with up to 30 nodes are
always less than one second. With the increasing number of nodes the run time
also increases up to 650 seconds for the dense instances, while for the sparse it
never exceeds three seconds. When solving the problem to integrality almost
all test cases with up to 35 nodes are solved to optimality. For all test cases
the lower bound is improved in comparison to the LP-value. The scalability
for the larger dense instances show the limits of our approach. For rand45 we
find a gap of 2.4%, for att48 a gap of 6.4%, and for berlin52 a gap of 13.2%,
while even finding an integral solution for eil76 is not possible. On the sparse
instances our approach scales much better and finds optimal solutions even
for test cases berlin52 and eil76.

4 Conclusions and Future Work

We presented a multi-commodity flow based formulation to solve the Multi
Layer Hierarchical Ring Network Design problem and experimentally eval-
uated it. To ensure connectivity for the whole network we used a single-
commodity flow approach. We were able to solve dense instances with up
to 35 nodes and sparse with up to 76 nodes and 281 edges. In the future
we will focus on decomposition techniques, e.g., Benders decomposition, to
solve larger instances. In a hybrid metaheuristic context, we expect good re-
sults by utilizing the proposed MIP model within a large neighborhood search
approach.
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