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Kurzfassung

In dieser Arbeit betrachten wir die Aufgabe der Erstellung eines Ladeplans für eine
Fahrzeugflotte aus der Perspektive einer Elektroladestation. Der Ladeplan soll, unter der
Annahme von zeitabhängigen Strompreisen, die gesamten Ladekosten minimieren. Dabei
soll auch die zeitliche Verfügbarkeit jedes Fahrzeugs, der Ladestand jedes Fahrzeugs
und die maximale Ladeleistung der Ladestation berücksichtigt werden. Ein besonderer
Schwerpunkt liegt dabei auf der maximalen Ladeleistung eines Fahrzeugs, die durch eine
ladestandsabhängige Funktion limitiert wird. Dieser Aspekt des Problems ist besonders
für das Schnellladen von Fahrzeugen relevant.

Da die präsentierten Modelle auf einem diskretisierten Zeithorizont basieren, ist es
möglich, dass die vorgeschriebene maximale Ladeleistung eines Fahrzeugs zu Beginn eines
Zeitschritts nicht während des gesamten Zeitschritts gehalten werden kann. Wir werden
uns dieser Problematik widmen, indem wir die exakte maximale Energie berechnen, die
innerhalb eines Zeitschritts geladen werden kann. Außerdem werden wir auch untere und
obere Schranken für diese maximale Energie herleiten.

Wir werden verschiedene (gemischt-ganzzahlig) lineare Programme einführen, um das
Scheduling-Problem zu lösen. Für eine der Formulierungen zeigen wir, wie man mit Hilfe
eines Schnittebenenverfahrens herausragende Laufzeiten erreichen kann. Weiters sehen
wir uns den Fall an, bei dem die Ladeleistungsfunktion nicht konkav ist und führen eine
Formulierung ein, die stückweise lineare, nicht-konkave Ladeleistungskurven annimmt.
Wir verbessern die Laufzeit dieser Formulierung auf einigen Instanzen, indem wir einen
Branch-and-Cut-Ansatz anwenden. Außerdem sehen wir uns zwei gemischt-ganzzahlig
lineare Formulierungen an, die das Laden ausschließlich in diskreten Energiewerten
erlauben.

Anhand selbst erstellter Probleminstanzen werden alle vorgestellten Ansätze experimentell
untersucht. Zusätzlich führen wir Experimente in einem model based predictive control
scenario durch, das üblicherweise in der Praxis zum Einsatz kommt. Es stellt sich heraus,
dass das Problem effizient durch lineare Programmierung gelöst werden kann, wenn die
Ladeleistungsfunktion der Fahrzeuge konkav und stückweise linear ist. Die Situation ist
wesentlich schwieriger für allgemeine stückweise lineare Funktionen. Hier werden deutlich
höhere Laufzeiten erwartet, um einen optimalen Ladeplan zu erstellen, da ganzzahlige
Variablen in den entsprechenden Modellen notwendig sind. Durch die Approximation
der tatsächlichen Ladeleistungsfunktion mit einer konkaven Funktion können wir die
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besseren Laufzeiten des speziellen linearen Programms ausnutzen. Jedoch können dabei
Ladepläne erstellt werden, die in der Praxis nicht durchführbar sind, da Fahrzeuge ihren
gewünschten Zielladestand nicht erreichen. Wir werden diesen Fehler quantifizieren und
feststellen, dass dieser in der Praxis vernachlässigbar ist.

Schlussendlich werden wir den Leser bei der Auswahl des passenden Problemlösungsmo-
dells unterstützen und Ratschläge für die Wahl von Problemlösungsparametern geben.



Abstract

We consider the task of finding a charging schedule for a vehicle fleet from the perspective
of an electric vehicle charging station. The schedule must minimize the overall charging
costs under time-dependent electricity costs while respecting each vehicle’s temporal
availability, its state of charge, as well as the charging station’s maximum charging power.
A special focus is put on the aspect that each vehicle’s maximum charging power is
limited by a function that depends on the vehicle’s state of charge, which is particularly
important for fast-charging.

Since our presented models are based on a discretized time horizon, a vehicle’s maximum
charging power may decrease within a single time step. We will show how to deal with
this issue by providing an exact derivation for the maximum charging energy of a single
time step, as well as lower and upper bounds.

We introduce different (mixed-integer) linear programming formulations to solve the
scheduling problem. For one of the formulations we show how to achieve outstanding
runtime performance with a cutting plane technique. Also, we consider the case that
the maximum charging power function is non-concave by proposing a formulation that
can handle piecewise linear, non-concave charging power functions. We enhance its
runtime on some instances by applying a branch-and-cut technique. Furthermore two
formulations that allow charging in discrete energy units only are considered and their
respective linear programming relaxations are compared.

All introduced techniques are experimentally evaluated on benchmark instances, which
are partly based on real-world data. We conduct experiments for a model based predictive
control scenario, which is typically deployed in practice. It turns out that the problem
can be efficiently solved by means of linear programming in case the vehicles’ maximum
charging power functions are concave and piecewise linear. The situation is remarkably
more difficult for general piecewise linear functions where one can expect much higher
runtimes for finding an optimal charging schedule, as integral variables are needed in the
respective models. By approximation of the maximum charging power with a concave
function, we can utilize the performance benefits of a specialized linear programming
formulation. By doing so, the charging schedule may be practically infeasible, since
vehicles might not reach their specified target state of charge. We will quantify this error
and see that it is negligible in practice.
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Finally, we will guide the reader on the selection of an appropriate model and give advice
how to choose certain problem solving parameters.
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CHAPTER 1
Introduction

The electric vehicle (EV) market is growing like never before in Europe 1. The rising
number of deployed EVs imposes a need for additional charging infrastructure, as well as
clever algorithms that schedule the charging of a large amount of EVs. Vehicle charging
scheduling is not only limited to industry use-cases anymore, it will sooner or later
become an issue which we will face in our daily lives. Publicly accessible charging stations
are already pervasive in many countries, an exemplary fast-charging station is shown in
Figure 1.1.

A typical scenario that requires such an algorithm, is scheduling the charging of EVs at
a company’s vehicle charging station. Assume EVs are connected at a charging station
and it is known at which times these vehicles will be needed with which state of charges
(SOCs). It is required that the vehicles’ batteries are charged within the given time frame.
Since electricity grid capacities are usually limited, the total amount of power that can
be drawn from the charging station at any time is assumed to be bounded.

We assume a time-of-use electricity tariff, i.e., electricity costs per unit of consumed
energy vary over time and are assumed to be known prior to scheduling. The goal of the
algorithm is to find a charging schedule that respects the aforementioned requirements,
while minimizing the overall charging costs.

An aspect that is practically relevant, in particular in case of fast-charging, is the physical
limitation of a vehicle’s battery. The maximum charging rate of a vehicle is usually
not constant throughout the charging process. Instead, it substantially depends on the
battery’s SOC and tends to be distributed as shown in Figure 1.2. Each vehicle type has
its own maximum charging power curve, which is assumed to be known at the time of
scheduling. The particular focus of this work will be put on scheduling techniques which
take into account such SOC-dependent non-linear maximum charging power functions.

1https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/
mckinsey-electric-vehicle-index-europe-cushions-a-global-plunge-in-ev-sales

1
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1. Introduction

Figure 1.1: SMATRICS fast-charging station located in front of the Schönbrunn Palace,
Vienna.

We deal with a heterogeneous EV fleet, i.e., each vehicle type may have its own maximum
charging power curve.

In our proposed problem-solving approaches we assume a discretized time horizon and can
therefore only limit the maximum charging power of a single time step with a constant
value. The maximum charging power depends on the SOC however, therefore it is not
constant within a single time step. In practice, the charging controller might regulate the
maximum charging power within a single time step. In order to avoid creating erroneous
charging schedules, we consider the maximum charging energy instead.

We deduce one exact and two approximate maximum charging energy functions from the
given maximum charging power function. The exact maximum charging energy function
specifies the precise energy that can be charged in a single time step. However, using
this charging curve with our proposed models can be problematic, since the maximum
grid power can be exceeded within a single time step, as we will explain in Section
3.1. Therefore we consider a lower bound maximum energy function that gives us the
maximum energy when constantly charging with the smallest maximum power function
value within a time step. Analogously, we deduce an upper bound maximum energy
function, for which we assume that it is constantly charged with maximum charging
power of a time step.

Schedules created with the lower bound function underestimate the maximum charging
energy of a vehicle and can therefore be realized in practice flawlessly. However such
schedules are possibly suboptimal regarding the total charging costs. On the contrary,
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Figure 1.2: Typical maximum charging power of an EV depending on the state of charge.
Charging data obtained from Fastned [Fas20].

the upper bound function overestimates the maximum charging energy which can yield
practically infeasible schedules. Nevertheless, we are also interested in schedules created
with the upper bound function, since they indicate the approximation’s impact on the
total charging costs.

Additionally, we preprocess the maximum charging power function in different ways.
On the one hand, we approximate it with a piecewise linear function using different
numbers of linear segments. The size of some introduced models depend on this problem
parameter and its impact will be analyzed in the experimental results. On the other hand,
the maximum charging power function is approximated with a convex hull which results
in a concave maximum charging power function. This specific property is exploited with
a specialized linear programming formulation that relies on concave maximum power
functions.

The effect of the maximum charging power/energy approximation on the solution quality
will be studied by means of computational experiments. Through these approximations,
infeasible schedules might be created, i.e., vehicles might not reach the desired target
SOC. We will quantify this error and also consider the outcome on the total charging
costs.

To accommodate incoming EVs and possible changes in the electricity costs or planned
departure times of EVs, we assume that a model based predictive control (MPC) strategy
[CA13] is applied. This means that the scheduling problem is iteratively (re-)solved in an
online setting whenever any input data changes or after a certain time has passed, and
the actually applied charging plan is continuously adapted accordingly. A rolling horizon
is considered for the model based predictive control strategy, which means that the
scheduling time horizon is temporally moved forward with every solving iteration. Within
the rolling horizon context, vehicles may arrive at different time steps. However, from

3



1. Introduction

the perspective of a single schedule, all vehicles are already connected to the charging
station and can be charged immediately.

1.1 Aim of the Work
The goal of this work is the development and comparison of different problem-solving
approaches for the previously introduced scheduling problem. We first provide a formal
problem specification in order to distinguish our problem from other related problems.
We clarify why maximum charging energy approximations are necessary to generate
sound charging schedules. Then we present different (mixed-integer) linear programming
formulations that deal with the maximum charging power constraints in distinct ways.
After reading this work, the reader should be aware of how the formulations differ and
be able to point out their advantages and drawbacks.

1.2 Outline
The next chapter describes terminology from the field of mathematical programming
which is used in the context of our scheduling problem. Basic concepts like linear
programming, but also more advanced methods, such as the branch-and-cut algorithm,
are explained.
Chapter 3 formalizes our EV charging scheduling problem. The aforementioned issue that
the maximum charging power might be regulated within a single time step is pointed out.
We provide an exact derivation of the maximum charging energy from the maximum
charging power, as well as simplifying lower and upper bounds. It is also explained how
concavity and piecewise linearity relate between the maximum power function and the
maximum energy function.
In Chapter 4, related works are discussed and their key differences are highlighted. We
extract the core ideas from these works and relate them to our problem.
Next, Chapter 5 presents different (mixed-integer) linear programming (MILP) techniques,
in which we specifically focus on the variable maximum charging power constraints. As
we will see, if the maximum charging power function is concave and piecewise linear, we
are able to solve the problem efficiently by means of a linear program. For this specific
circumstance, we consider an effective cutting plane approach that can also be applied
for more general concave maximum power functions which are not necessarily piecewise
linear.
Non-concave, piecewise linear charging power functions are more difficult to deal with.
We introduce a mixed-integer linear program that uses integral variables in order to deal
with such functions. For this model, we will apply a branch-and-cut technique to improve
its runtime on some instances.
Furthermore, we will investigate two MILP formulations which allow charging in discrete
energy units only. We will compare both formulations to each other by inspecting their

4



1.2. Outline

LP relaxations and by showing that one linear programming relaxation is stronger than
the other. Practical experiments will confirm our theoretical insights. One of the energy
discretized formulations is based on a flow network model. We will argue that its flow
variables must be kept integral in general, but may be relaxed to a continuous domain
under special circumstances.

Chapter 6 explains how we generate problem instances for our experiments. We consider
individual instances and whole model based predictive control scenarios with a rolling
horizon. For individual instances, only a single charging schedule has to computed,
whereas we iteratively solve multiple schedules in the MPC scenario. One could say
that a single MPC instance consists of multiple individual instances. The benchmark
instances, both individual and MPC, are partly randomly generated and partly based on
real-world data.

In Chapter 7 we present experimental results of benchmarks that were conducted on a
high performance cluster. It turns out that the linear programming formulation, which
assumes the maximum power function to be concave, shows superior runtime compared
to all other shown formulations. Its cutting plane variant is even faster than the static
approach and scales better with the number of vehicles.

Compared to the linear program with concave maximum power function, the mixed-integer
linear program that can handle non-concave, piecewise linear functions is significantly
slower. Its branch-and-cut approach shows performance benefits on some instances,
however it is still inferior to the linear program in terms of runtime.

Concerning the energy discretized formulations, we will see that its size and runtime
strongly depends on energy discretization factor. Similar to the results in [HPL17], we
can also confirm that the network formulation is faster than the other energy discretized
formulation.

In our experiments, we additionally take a look at the impact of the of different charging
curve approximations regarding charging costs and charging error. We will see that
approximating the maximum power function with few piecewise linear segments is hardly
noticeable in terms of charging costs and charging error. Moreover, approximating the
maximum power function with its convex hull leads to rather small charging errors and
charging costs differences, but may greatly improve solving performance. When it comes
to the upper and lower bound maximum energy approximation, we will see that both
bounds converge to the exact maximum energy function for shorter time interval length.

Finally, Chapter 8 concludes this work and outlines promising future research directions.

5





CHAPTER 2
Methodological Approach

Before we proceed, let us briefly describe some basic terminology from the domain of
mathematical programming, similarly as in [BT97, Wol98].

Linear Programming (LP) deals with the problem of minimizing (or maximizing) a
linear cost function subject to linear equality and inequality constraints. For a general
linear programming problem, we are given a cost vector c = (c1, . . . , cn) ∈ Qn and we
aim to minimize the linear objective function c′x = ∑n

i=1 cixi over all n-dimensional
real-valued vectors x = (x1, . . . , xn), subject to a set of linear equality and inequality
constraints Ax ≤ b with A ∈ Qm×n, b ∈ Qm. Variables x1, . . . , xn are referred to as
decision variables and the set {x | Ax ≤ b} denotes the feasible region. If a solution x∗
minimizes the objective function w.r.t. all feasible solutions, it is an optimal (feasible)
solution and c′x∗ are the optimal costs. A general linear program is stated as

minimize c′x

subject to Ax ≤ b
x ∈ Rn

A linear program of the form

minimize c′x

subject to Ax = b

x ≥ 0

is said to be in standard form. Any standard form linear program is a special case of
a general linear program. Also, each general form linear program can be turned into a
standard form problem.

7



2. Methodological Approach

Linear programming problems can be solved in pseudo-polynomial time w.r.t. the size of
an input instance, by using the ellipsoid method for example. When speaking of the size
of an instance, we refer to the number of bits used to represent a linear programming
instance, assuming an appropriate instance format.

Mixed-Integer Linear Programming (MILP) extends linear programming by
allowing decision variables to be restricted to integral values. More formally, a mixed-
integer program is specified as

minimize c′x+ d′y
subject to Ax+By ≤ b

x,y ≥ 0
x integer

with A ∈ Qm×n,B ∈ Qm×p, b ∈ Qm, c ∈ Qn,d ∈ Qp.

If all decision variables must be integral, we speak of integer programming. Moreover, if
there are no continuous variables and all elements of x are restricted to {0, 1}, we speak
of zero-one integer programming.

Mixed-integer linear programming is more expressive than linear programming due to
the additional integrality constraints, however it comes with the drawback that MILP
formulations are in general much more difficult to solve. Zero-one integer programming,
which is a special case of MILP, belongs to Karp’s 21 NP-complete problems [Kar72].
Therefore, mixed-integer linear programming is, in general, computationally intractable.

The Linear Programming Relaxation of a MILP is obtained by allowing all its
integral decision variables to be continuous. More formally, the linear programming
relaxation of the aforementioned mixed-integer programming problem is defined as

minimize c′x+ d′y
subject to Ax+By ≤ b

x,y ≥ 0

Linear programming relaxations play an important role for the comparison of the strength
of different MILP formulations. Let A and B be two formulations of the same (mixed-)
integer programming problem. We define PA and PB to be the feasible regions of the
linear programming relaxations of A and B respectively. We say that formulation A is
stronger than formulation B, if PA ⊂ PB.

Most importantly, stronger linear programming formulations may lead to better perfor-
mance when solving a (mixed-)integer linear program.

8



The Cutting Plane Method can be used to solve LP problems with a large number
of constraints. In the following we will shortly explain how the cutting plane method
works.

Given a linear program P , we initially relax P to contain only a restricted subset of
constraints (P rel). The relaxed LP problem is solved, which yields a solution x∗. Now,
we distinguish between two possibilities:

• x∗ is also a solution for P . By the fact that any other feasible solution of P is also
a feasible solution of P rel and x∗ is optimal for P rel, it follows that x∗ must be an
optimal solution for P . The algorithm terminates and returns x∗.

• x∗ is not a solution for P , i.e., there exists a constraint in P that is violated by
x∗. We add the violated inequality, a so-called cutting plane, to P rel and re-solve
the linear program. The task of determining such a cutting plane is known as the
separation problem.

The overall procedure is repeated until no more violated constraints are found. In practice
it might be beneficial to add more than one cut in a single iteration.

The cutting plane method can also be used to solve a integer linear program P int. In this
setting, P rel is initialized with the LP relaxation of P int and it is checked whether x∗
is integral in every cutting plane iteration. If not, we add an inequality that all integer
solutions of P int satisfy, but x∗ does not.

Branch-and-Bound (B&B) is a common framework to solve MILP problems. The
idea of a general branch-and-bound approach is the usage of a divide and conquer method,
that splits the problem into smaller subproblems. The decomposition can be represented
as a search tree, in which we use lower and upper bounds to prune certain branches of
the search space.

A globally best incumbent solution with its objective value (global upper bound for
a minimization problem) ub is maintained. We update the incumbent solution and
its corresponding objective if a better feasible solution has been encountered while
implicitly traversing the search tree. Let us give a high level description of a generic
branch-and-bound algorithm, similar to [Wol98].

• Select a subproblem S from the list of open subproblems.
• If S is infeasible, delete it. Otherwise compute a lower bound lb(S) for subproblem
S.

• If lb(S) ≥ ub, delete S.
• If lb(S) < ub, solve S to optimality. Alternatively, further decompose S into smaller

subproblems and add them to the list of open subproblems.

9



2. Methodological Approach

When talking about LP-based branch-and-bound, the LP relaxation of the original mixed-
integer linear program is used to obtain lower bounds bounds, i.e., lb(S) is given by the
objective of the LP relaxation in the current node.

Branch-and-Cut (B&C) embeds the cutting plane method into the branch-and-
bound search tree. It is an LP-based branch-and-bound algorithm that solves the LP
relaxation at each B&B node with a cutting plane method.

A typical scenario in which it is reasonable to apply the branch-and-cut method is the
following. Assume we want to consider a strong (mixed-)integer programming formulation
of a problem, which has a tight LP relaxation but a large number of constraints. We want
to exploit the tight LP relaxation in order to obtain better bounds, however considering
the large set of inequalities from the very beginning would be inefficient. Instead of
initially adding all inequalities to the formulation, the problem is relaxed to contain only a
small set of constraints. Violated cuts are then augmented in different branch-and-bound
nodes, similar to the cutting plane method.

When applying B&C, one needs to think about further questions, e.g. whether cuts
should be added only in the current B&B node or even for multiple nodes. On a related
note, a cut-and-branch algorithm is a branch-and-bound algorithm in which cuts are only
generated at the top node of the search tree. In practice, one clearly faces a trade-off
between quality of the bounds and time spent with solving the LP relaxation.

A Piecewise Linear Function is a real-valued function that is composed of multiple
linear segments. In this work we assume piecewise linear functions to be continuous.

Concave Function. A real-valued function is said to be concave on an interval [a, b],
if for any x1, x2 ∈ [a, b] and any α ∈ [0, 1] it holds that

f(αx1 + (1− α)x2) ≥ αf(x1) + (1− α)f(x2)

Function f is concave on interval [a, b] if and only if −f is convex on interval [a, b].

Convex Set and Convex Hull. Let S be a vector space and C ⊆ S. Set C is said
to be convex, if for any x1, x2 ∈ C and α ∈ [0, 1] it holds that x1α+ x2(1− α) ∈ C.

The convex hull of a (possibly non-convex) set C ′ is defined as the minimal convex set
containing C ′.

10



CHAPTER 3
Formal Problem Modeling

The EV charging scheduling problem with SOC-dependent maximum charging power
(EVS-SOC) formalizes the task of scheduling the charging of a number of EVs such that
the total charging costs are minimized. The charging schedule is preemptive, which
means that the charging process of an EV may be interrupted an arbitrary number of
times. It is assumed that electricity costs change over time and that they are known in
advance. Discrete finite time steps T = {0, . . . , tmax} are used to model the considered
time horizon. Each of these represents a time interval of constant duration ∆t.

The scheduling is controlled by a single central entity, the so-called aggregator. The
total power that can be used from the grid at any time is limited by P gridmax > 0.
Electricity costs per unit of consumed energy are given by ct > 0 individually for each
time step t ∈ T .

Moreover, the EVS-SOC takes as input a set of n EVs V = {1, . . . , n} that are currently
connected to the charging station. For each EV v ∈ V we are given

• its (planned) departure times tdep
v ∈ T ,

• the initial state of charge sv,0 ∈ [0, 1], i.e., the SOC at the beginning of time step
zero,

• the minimum required state of charge when departing sdep
v ∈ [0, 1],

• the battery’s energy capacity Cv > 0, and

• a function Pmax
v : [0, 1] 7→ R+ indicating the battery’s maximum charging power

given its SOC; Pmax
v must be positive for any SOC less than one and is zero for

SOC one; it might or might not be concave.
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3. Formal Problem Modeling

The goal of EVS-SOC is to find a feasible charging schedule that minimizes the total
charging costs while charging each vehicle v from SOC sv,0 to (at least) SOC sdep

v by
time step tdep

v .

3.1 Maximum Charging Energy Function
Since the maximum charging power function Pmax

v depends on the SOC, it is in general
not constant within a single time step. This may lead to the problem that a charging
power set for a time step is not allowed throughout the whole charging interval. The
vehicle’s charging controller will then dynamically adjust (reduce) the actually used
power to never exceed the SOC-dependent maximum power.

In order to take care of this aspect, we turn from considering the charging power to
considering the energy by which an EV can be charged in a time step. We propose
alternative approaches how to deduce an (approximate) maximum energy function
Emax
v (s) : [0, 1] 7→ R+ from Pmax

v that states the maximum energy by which EV v with
SOC s can be charged within duration ∆t.

Exact maximum energy. We determine the maximum charging energy Emax
v that

is achieved when applying the dynamic charging power Pmax
v throughout a whole time

step. Considering an EV v ∈ V with initial SOC sv,t ∈ [0, 1] at some time step
t ∈ {0, . . . , tdep

v − 1}, the time needed to charge the EV to some SOC s′ ∈ [sv,t, 1] using
this dynamic maximum charging power is

Tmin-ex
v (sv,t, s′) = Cv ·

∫ s′

sv,t

1
Pmax
v (s) ds. (3.1)

The maximum energy by which the EV can be charged during a time step of duration
∆t is then

Emax
v (sv,t) = Cv · (s′ − sv,t) s.t.

{
Tmin-ex
v (sv,t, s′) = ∆t for Tmin

v (sv,t, 1) > ∆t
s′ = 1 else.

(3.2)

Hereby we consider in the else case that charging always stops when SOC value one is
reached. While calculating Emax

v (sv,t) is non-trivial for general Pmax
v , it is not difficult to

efficiently determine approximate values computationally in a discretized fashion.

To distinguish this calculation of Emax
v from the variants that come in the next paragraphs,

we denote it by Emax-ex
v .

The problem with this approach is primarily that it is hard to express the maximum grid
power constraint since within a time step the actually used power may vary for each EV
substantially. Instead, we will only be able to express that the maximum grid power is not
exceeded on average within a time step. This, however, may be a too weak condition in
certain applications. Therefore, we consider the following simpler alternatives modeling
lower and upper bounds.

12



3.1. Maximum Charging Energy Function

Lower bound. Here we take the largest power that can be constantly applied through-
out a whole time step of duration ∆t without the charging controller reducing the power.
The time needed to charge the EV to some SOC s′ ∈ [sv,t, 1] using the maximum power
that can be constantly applied is

Tmin-lb
v (sv,t, s′) = Cv · (s′ − sv,t)

mins∈[sv,t,s′] P
max
v (s) . (3.3)

The maximum energy by which the EV can be charged during a time step of duration
∆t is then again obtained by Eq. (3.2) but in conjunction with the above Tmin-lb

v (3.3)
instead of Tmin-ex

v (3.1). We refer to this variant by Emax-lb
v .

By avoiding to set for a time step a power that will have to be reduced by the charging
controller at some point of time, the obtained maximum energy is a lower bound for the
actually obtainable energy Emax-ex

v . Using this maximum energy in our whole problem
setting means that an obtained solution will guarantee that indeed all EVs are charged
to the desired departure SOCs. As we may occasionally use a more restricted charging
power than could actually be applied, the schedule might not be optimal in the original
sense, and a solution’s objective value will be an upper bound for the real optimum.

Upper bound. In contrast to the previous approach, we now take the largest charging
power that can be achieved within a time step of duration ∆t when not restricting the
power otherwise. We make the simplifying assumption that this power can be constantly
applied throughout the whole time step, although in reality the charging controller may
reduce the charging power for part of the time step.

In this case, the time needed to charge the EV to some SOC s′ ∈ [sv,t, 1] is

Tmin-ub
v (sv,t, s′) = Cv · (s′ − sv,t)

maxs∈[sv,t,s′] P
max
v (s) . (3.4)

The maximum energy by which we assume that the EV can be constantly charged during
a time step of duration ∆t is again obtained by Eq. (3.2), now in conjunction with Tmin-ub

defined according to (3.4). We refer to this variant by Emax-ub
v .

When applying this strategy, we will never underestimate the real maximum energy by
which charging can take place, we therefore have an upper bound for Emax-ex

v . For a
solution to the problem, this means that the departure SOCs might not be reached, and
the solution value is a lower bound for an actually optimal solution.

In the lower and upper bound approaches, the obtained errors depend on the choice of ∆t.
One may choose ∆t so that the actual maximum charging power does never decrease
within such a time period by more than some ε. The error in energy with which an EV
is then charged under assumed maximum power is then bounded by ε ·∆t.

We want to point out the following relationships between Pmax
v and its corresponding

maximum energy functions.
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3. Formal Problem Modeling
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Figure 3.1: Emax
v functions for a Hyundai Kona Elektro for ∆t ∈ {5, 10} minutes.

• If Pmax
v is a piecewise linear function, then Emax-lb

v and Emax-ub
v are piecewise linear

functions as well. On the contrary, Emax-ex
v might not be a piecewise linear function,

even if Pmax
v is piecewise linear.

• If Pmax
v is a concave function, so is Emax-lb

v , Emax-ub
v , and Emax-ex

v .

To give the reader an impression how Emax-lb
v , Emax-ex

v , and Emax-ub
v relate to each other,

Figure 3.1 shows these functions for different ∆t values for a Hyundai Kona Elektro.
Note that the area between Emax-lb

v and Emax-ub
v decreases with smaller ∆t values.

In the following chapters we will pursue all three energy functions and investigate the
pros and cons of each in comparison. We will use the notation Emax

v as a placeholder for
any specific energy function from {Emax-ex

v , Emax-lb
v , Emax-ub

v }.

Converting Energy back to Power. In practice, the charging aggregator usually
regulates the maximum charging power instead of the maximum charging energy. Con-
sequently when scheduling with energy values we have to convert back energy values
to power values. For schedules created with Emax-lb

v , the computed energy values of a
schedule can be divided by ∆t to obtain charging power values that can be constantly
applied throughout a single time step. Due to the definition of Emax-lb

v it is ensured that
Pmax
v is not exceeded. On the other hand, for schedules created with Emax-ex

v or Emax-ub
v ,

we can not apply the same conversion since Pmax
v might be exceeded then.

3.2 Non-Linear Model

We now formally define EVS-SOC by the following non-linear program, where variables
xv,t represent the energy by which EV v ∈ V is charged in time step t = 0, . . . , tdep

v − 1.
Variables sv,t indicate the SOC of each EV v ∈ V at the beginning of each time step

14



3.2. Non-Linear Model

t = 0, . . . , tdep
v .

min
∑
v∈V

tdep
v −1∑
t=0

ct · xv,t (3.5)

xv,t ≤ Emax
v (sv,t) v ∈ V, t = 0, . . . , tdep

v − 1 (3.6)∑
v∈V |0≤t<tdep

v

xv,t ≤ ∆t · P gridmax t ∈ T (3.7)

sdep
v ≤ s

v,tdep
v

v ∈ V (3.8)

sv,t = sv,t−1 + xv,t−1/Cv v ∈ V, t = 1, . . . , tdep
v (3.9)

0 ≤ xv,t v ∈ V, t = 0, . . . , tdep
v − 1 (3.10)

0 ≤ sv,t ≤ 1 v ∈ V, t = 0, . . . , tdep
v (3.11)

The objective function (3.5) minimizes the sum of the costs for the total consumed energy
over all time steps. Inequalities (3.6) ensure that the energy by which each EV is charged
during each time step does not exceed the SOC-dependent maximum energy. Note that
this inequality is in general non-linear. Constraints (3.7) limit the total energy consumed
from the grid during each time step to ∆t · P gridmax. The departure SOCs are enforced
by Inequalities (3.8). Equalities (3.9) determine the SOC at the beginning of each other
time step t = 1, . . . , tdep

v for each EV v. Thereunto the previous state of charge sv,t−1
is considered together with the charging rate of the previous time slot xv,t−1, the time
interval length ∆t and the total battery capacity Cv. Variable domains are defined in
(3.10) and (3.11). Due to the domain of variable xv,t, an EV may not discharge.

We remark that in practice, the domain of Pmax
v is often not defined on the entire SOC

interval [0, 1] but just for some restricted [smin
v , smax

v ], 0 < smin
v < smax

v < 1. In the
following, we will regard this issue as an implementation detail and assume the domain
of Pmax

v to be [0, 1].
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CHAPTER 4
Related Work

Substantial research has been done in recent years on the electric vehicle charging
scheduling problem. Although it might seem that most contributions deal with the same
problem, there exist significant differences in the problem formulations. Authors usually
introduce their own unique problem setting, which makes it difficult to compare results
and ideas of different works on this topic. To make the reader aware of the assumed
problem characteristics, we briefly point out the differences in the following.

Concerning the electricity pricing model, most existing work deals with a time-of-use
(TOU) tariff, in which electricity prices depend on the current time of the day [CTL+12,
HPL17, KCE18]. These prices are usually determined by the electricity provider one
day in advance. Other works, instead, assume uncertain bounded electricity prices and
handle uncertainty with robust optimization for instance [KS17].

When it comes to the scheduling task itself, there are two common approaches how to
distribute the task. In one of them, scheduling is performed by a central entity, a so-called
aggregator, which is given full information needed for the scheduling task to create a
global schedule for all EVs [HPL17, KS17]. On the other hand there is distributed
scheduling, where each vehicle makes scheduling decisions on its own [MN19].

In several works it is additionally assumed that the charging station only has limited
charging capacities [HPL17, KS17]. Some of these works describe a scenario in which it
is allowed to exceed these capacities by paying additional costs [HPL17]. In other works,
a certain amount of electricity can be taken for free from a local power supply at the
charging station, e.g. a photovoltaic system. Additional required power can be obtained
from the electricity grid at a TOU tariff [JZ19, KS20].

Another problem characteristic, at which the particular focus of this work lies, is the
battery’s maximum charging rate. Most existing works assume a maximum charging
rate that remains constant for the whole time a battery is charged, see, e.g. [HHS10,
SHTT18]. In practice, however, the typical lithium-ion-battery charging profile has
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4. Related Work

variable maximum charging power that strongly depends on the state of charge, as we
already pointed out in the introduction. Considering this SOC-dependent maximum
charging power more carefully is particularly important in applications where fast-charging
is applied and the maximum charging power is not so much limited by the provided
energy or charging station. Literature on scheduling the charging under consideration of
variable maximum charging power is scarce yet.

Some authors consider the fact that lithium-ion batteries have three charging phases
[PCdA14]. In the first phase, the battery is totally depleted and charged slowly. During
the second „constant-current“ phase, the battery is filled up to approximately 70% of
its total capacity with constant current. The remaining energy is delivered in the third
„constant-voltage“ phase, in which the charging current decreases and the charging voltage
stays constant. To incorporate the three charging phases, the authors of [PCdA14] include
voltage and current in their model.

In other works [MCDM20], a maximum charging power function is deduced from various
parameters of electrical engineering, like battery voltage, output impedance and battery
capacity. A Second-Order Cone Program is then proposed to solve a scheduling problem
with „battery voltage awareness“. In our work we abstract from these specifics and only
take variable charging power in dependence of the SOC into account.

Similarly, the authors of [SB10] describe an approach to generate electric vehicle charging
schedules with the goal of minimizing charging costs and respecting the battery’s charging
profile. They introduce a nonlinear equation that represents the maximum charging
power in dependence of the battery’s internal resistance and its SOC. Moreover, they
claim that the nonlinear charging profile can be approximated with linear equations. A
linear and quadratic formulation is proposed and it is experimentally evaluated whether
charging with the linear formulation exceeds the actual maximum charging power. The
authors conclude the work with the insight that the violation of the power constraints is
relatively small and suggest the usage of the linear formulation due to its better runtime.

Some authors distinguish on another aspect of charging schemes, specifically on the
property whether the charging process of an EV can be interrupted (is preemptive) or
not (is non-preemptive). Both modeling approaches can be found in [HPL17].

As we have seen, many similar problem variants exist in the literature. The authors
of [MG15] provide a broad overview about related works and deployed problem solving
methods. In the following, we will shortly recap most important works that are closely
related to our problem.

Cao et al. [CTL+12] consider a similar problem setting in which also a time-of-use
electricity tariff is assumed. They deal with a maximum charging power function of a
single vehicle. The authors propose a heuristic that aims to minimize the total charging
costs while filling valleys in the energy load demand and respecting the SOC-dependent
maximum charging power.
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El-Bayeh et al. [EBMS+18] study the impact of considering of a maximum charging
power function on the total charging costs. They don’t only respect maximum charging
profiles, but also take discharging profiles into account. In their problem setting, a
nonlinear SOC-dependent maximum charging power function (called battery power
profile in their work) is assumed to be given. They approximate it with a piecewise
linear function and introduce an algorithm that fits the original battery power profile
to the piecewise linear function. Subsequently, they draw a comparison between the
charging costs when charging with a constant maximum charging power and the charging
costs when charging with a vehicle specific SOC-dependent piecewise linear function.
Thereunto they utilize a mixed-integer nonlinear program, which distinguishes their
approach from our problem solving techniques. The authors adopt three different pricing
mechanisms (fixed pricing, time-of-use pricing, dynamic pricing) and conclude their work
with experimental results. They point out the annual charging cost differences that can
be saved by respecting the SOC-dependent maximum charging power function.

Isihara and Limmer [IL20] give a basic formulation of an EV charging scheduling
problem without consideration of variable maximum charging power. With the exception
of this aspect, EVS-SOC essentially corresponds to their C-C variant, where discharging
is not allowed and the charging power can be chosen continuously.

Limmer [Lim20] provides a linear programming formulation that considers multiple
objectives. Minimizing the peak load, maximizing the satisfaction of EV charging
demands under load limit constraints, or minimizing the electricity costs with help of
trading on the electricity market are typical used objectives, that might conflict with
each other. Based on preferences defined by the charging station operator, a trade-off
has to be made.

A common approach to handle multiple objectives in a linear program is to combine
them via a weighted sum. However, it might be difficult to determine these weights in
practice. Therefore a lexicographical approach is presented, where different objectives
are arranged in a hierarchy. The program can be seen as an alternative to the weighted
sum approach, but may also be useful for determining weights for it. Limmer mentions
advantages and drawbacks for both approaches.

Han, Park, and Lee [HPL17] consider a similar problem setting as EVS-SOC. The
authors assume that the charging station has limited grid capacity, which may be exceeded
at the price of paying penalty costs.

Moreover, this work distinguishes charging schemes on the property whether or not the
charging process can be interrupted (i.e., is preemptive) or not (i.e., is non-preemptive).
For both charging schemes a mixed-integer program is presented. Since the formulation
for the preemptive scheme is quite large and impractical on large instances, the authors
additionally introduce an extended formulation which makes use of a transition network.
The idea behind the extended formulation is to let the mixed-integer linear programming
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4. Related Work

solver exploit the intrinsic network structure of the formulation. As experiments show,
the extended formulation has in practice a better run-time performance.

In general, preemptive charging schemes can interrupt the charging process arbitrarily
often. Frequent charging interruptions, however, may introduce deterioration for batteries
or threaten the stability of the charging network. Therefore, the authors address this
issue by limiting the number of charging interruptions. This is accomplished by modifying
the MILP formulation such that frequent interruptions impose additional costs in the
objective function.

Korolko and Sahinoglu [KS17] also address optimal electric vehicle charging in an
unregulated electricity market. The problem setting and inputs are similar to the ones in
[HPL17]. Again, the authors deal with variable electricity prices that are assumed to be
known at the time of scheduling. A discretized time horizon is assumed as well.

Contrary to EVS-SOC, the problem is initially considered from the perspective of a
single EV and a non-linear formulation is developed for it. Subsequently, it is shown
how to solve the non-linear program using a cutting plane technique together with a
linear programming (LP) solver. More concretely, the main idea of the method is to solve
the non-linear program by solving a sequence of linear programs. The algorithm starts
with a relaxation of the non-linear program, which is obtained by omitting all non-linear
constraints from the original non-linear formulation. The resulting relaxation is a linear
program. Based on the solution of the relaxation (which can be easily obtained using
an LP solver), one tries to identify violated non-linear constraints. It is shown how to
construct a corresponding hyperplane, which is in turn added to the linear program to
cut off the current solution. This procedure is iteratively repeated until a certain solution
quality is reached.

The work continues by extending the formulation to multiple EVs. By doing so, one
introduces binary decision variables, which determine the assignment of EVs to time
shifts. The resulting non-linear program can still be solved using the previously explained
cutting plane procedure, however, one needs a MILP solver now.

Last but not least, the authors also come up with a robust optimization approach that
takes into account the uncertainty of electricity prices.

Finally, we want to remark that none of these previous works considered the issue that
the variable maximum charging power in general varies also within a time step of the
discretized time horizon. We are the first considering this aspect in more detail.
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CHAPTER 5
Problem Solving Approaches

In the following we study different ways to deal with the non-linear maximum charging
energy constraints (3.6). We first consider the simpler case that the maximum power
function is concave, where we essentially can solve the problem with an LP formulation
or a cutting plane approach.

5.1 Concave Maximum Energy Functions

As already mentioned before, if Pmax
v is continuous and concave, it follows that also

Emax
v ∈ {Emax-ex

v , Emax-lb
v , Emax-ub

v } is concave as well.

In the following, we will further assume that Emax
v is differentiable. We are aware that,

depending on Pmax
v , this assumption might not be completely valid. Actually, Emax

v

might have breakpoints, in which the left-sided and right-sided limits of the differential
do not coincide. Nevertheless, we will treat Emax

v as if it were differentiable at any SOC
of its domain, since differing left-sided and right-sided limits will not affect the results of
the following modeling approach.

Due to the assumed properties of Emax
v , we can replace the non-linear Inequality (3.6)

from EVS-SOC with the combination of the infinite set of linear inequalities

xv,t ≤ Emax
v

′(ŝ) · (sv,t− ŝ) +Emax
v (ŝ) v ∈ V, t = 0, . . . , tdep

v − 1, ŝ ∈ [sv,0, sdep
v ] (5.1)

where Emax
v

′ is the first derivative of Emax
v . We call the resulting linear programming

model EVS-SOC-LIN.

Note that if Pmax
v is a piecewise linear function, then also Emax-lb

v and Emax-ub
v are

piecewise linear functions. The set of inequalities reduces then to a finite one where we
have one inequality corresponding to each linear function segment.
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5. Problem Solving Approaches

In the spirit of [KS17], who essentially consider a similar kind of inequalities, we can solve
EVS-SOC-LIN by a cutting plane approach. Thereby the relaxation of EVS-SOC-LIN
without Inequalities (5.1) is first solved. Then, Inequalities (5.1) that are violated by the
current LP solution are iteratively determined, added, and the LP problem is re-solved.
The process is repeated until no more Inequalities (5.1) are violated.

The separation of a violated inequality for a current solution (xLP, sLP) to the relaxed EVS-
SOC-LIN works as follows. For all v ∈ V, t = 0, . . . , tdep

v −1, we check if xLP
v,t > Emax(sLP

v,t ).
In this case we add the violated Inequality (5.1) for vehicle v, time step t, and ŝ = sLP

v,t .
Note that for one vehicle, multiple inequalities for different time steps can be added
within a single cutting plane iteration. This separation procedure is performed for all
vehicles v ∈ V and as long as any violated inequalities are found, the augmented LP
problem is re-solved.

An alternative to the above is the following. Whenever xLP
v,t > Emax(sLP

v,t ) for some EV v
and time step t, one can add the violated Inequality (5.1) not only for time step t but for
all time steps t′ = 0, . . . , tdep

v − 1. The intention here is to possibly reduce the number
of needed resolving iterations, but clearly the size of the LP formulation increases more
rapidly. Preliminary experiments indicated that indeed this variant performs better in
practice in most cases. Therefore we apply it in all our experiments documented in the
remainder of this work.

We also compared this variant with the approach presented in [KS17]. In our approaches,
we check for all time steps t = 0, . . . , tdep

v −1 whether Inequality (5.1) is violated, whereas
in [KS17] only the smallest time step that violates Inequality (5.1) is augmented in
each cutting plane iteration. We found that our variant performs slightly better for our
problem instances.

5.2 General Piecewise Linear Maximum Energy
Functions

In the following model, we require for each EV v ∈ V that the maximum charging
energy function Emax

v is a piecewise linear function. Additionally, it is assumed that
each Emax

v function is non-concave, regardless of whether Emax
v is actually concave or

not. We assume that we are given a finite set of SOC values {Sv,k | k = 1, . . . , kmax
v } in

sorted order, with Sv,1 = 0 and Sv,kmax
v

= 1 and the values in between representing the
breakpoints of the piecewise linear function. These values are pairwise distinct and can
be unevenly distributed among the SOC interval [0, 1]. For each Sv,k we know the value
of the maximum charging energy Emax

v (Sv,k).

If we assume again the maximum charging energy function Emax
v to be concave, we can

replace (3.6) in formulation (3.5–3.11) with

xv,t ≤ av,ksv,t + bv,k v ∈ V, t = 0, . . . , tdep
v − 1, k = 2, . . . , kmax

v (5.2)
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5.2. General Piecewise Linear Maximum Energy Functions

such that

av,k = Emax
v (Sv,k)− Emax

v (Sv,k−1)
Sv,k − Sv,k−1

and bv,k = Emax
v (Sv,k−1)− av,kSv,k−1. (5.3)

However, if Emax
v is not concave, we need additional variables and constraints, which

ensure that only one piecewise linear function is active in each SOC interval. We model
the piecewise linear function as suggested in chapter 10.1 of [BT97].

Thereunto we use continuous variables αv,t,k to express the SOC sv,t as a convex combi-
nation of Sv,k and αv,t,k. The variables αv,t,k are also used to represent the maximum
charging energy function as a convex combination of Emax

v (Sv,k) and αv,t,k.

Furthermore we introduce additional binary variables βv,t,k, which are used to ensure
that at most two consecutive αv,t,k and αv,t,k+1 variables are non-zero. By replacing
Constraints (3.6) in formulation (3.5–3.11) with the following Constraints (5.4–5.12), we
obtain a MILP problem, which we refer to as EVS-SOC-GLIN.

sv,t =
kmax

v∑
k=1

Sv,k · αv,t,k v ∈ V, t = 0, . . . , tdep
v (5.4)

xv,t ≤
kmax

v∑
k=1

Emax
v (Sv,k) · αv,t,k v ∈ V, t = 0, . . . , tdep

v − 1 (5.5)

kmax
v∑
k=1

αv,t,k = 1 v ∈ V, t = 0, . . . , tdep
v (5.6)

kmax
v −1∑
k=1

βv,t,k = 1 v ∈ V, t = 0, . . . , tdep
v (5.7)

αv,t,0 ≤ βv,t,0 v ∈ V, t = 0, . . . , tdep
v (5.8)

αv,t,k ≤ βv,t,k−1 + βv,t,k v ∈ V, t = 0, . . . , tdep
v , k = 2, . . . , kmax

v − 1 (5.9)
αv,t,kmax

v
≤ βv,t,kmax

v −1 v ∈ V, t = 0, . . . , tdep
v (5.10)

0 ≤ αv,t,k ≤ 1 v ∈ V, t = 0, . . . , tdep
v , k = 1, . . . , kmax

v (5.11)
βv,t,k ∈ {0, 1} v ∈ V, t = 0, . . . , tdep

v , k = 1, . . . , kmax
v − 1 (5.12)

Equations (5.4) link the SOC values sv,t with the continuous weight variables αv,t,k. The
charging energy xv,t of EV v at time slot t is limited by Inequalities (5.5) to the maximum
charging energy. Constraints (5.6) set the sum of the continuous weights αv,t,k over all
discrete SOC levels k = 1, . . . , kmax

v to one. Equations (5.7) ensure that exactly one βv,t,k
variable is active for each EV v and time slot t. The αv,t,k variables are linked with
the βv,t,k variables by Inequalities (5.8–5.10). Altogether, (5.7–5.10) are the so-called
adjacency constraints, which ensure that at most two consecutive αv,t,k, αv,t,k+1 variables
are non-zero. Constraints (5.11–5.12) define the domain of αv,t,k and βv,t,k respectively.
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5. Problem Solving Approaches

5.2.1 Branch-and-Cut Approach

As we will see in Chapter 7, the EVS-SOC-LIN formulation, which requires Emax
v to

be concave, performs remarkably well. The idea of the following approach is to exploit
the fast runtimes of EVS-SOC-LIN, while extending it to deal with general, possibly
non-concave Emax

v functions.
We introduce a branch-and-cut approach, in which we initially solve a relaxation of
EVS-SOC-GLIN. Instead of restricting xv,t to the piecewise linear Emax

v function, xv,t
now may take any value from the convex hull of {(Sv,k, Emax

v (Sv,k)) | k = 1, . . . , kmax
v } ∪

{(Sv,0, 0), (Sv,k, 0)}.
To obtain the relaxation, we consider the original EVS-SOC-GLIN formulation with
all its variables and constraints except the linking constraints (5.8–5.10). Observe that
contrary to the original formulation, two non-consecutive αv,t,k variables may be non-zero
now.
Whenever a solution candidate is found, we check for all v ∈ V, t = 0, . . . , tdep

v −1 whether
xv,t exceeds the actual Emax

v value at SOC sv,t, i.e., we check if xv,t > Emax
v (sv,t). If this

is the case, a cut is added which links all non-zero αv,t,k variables with their respective
βv,t,k variables, as we did in Constraints (5.8–5.10). Such cuts are separated and added
until for all v ∈ V, t = 0, . . . , tdep

v − 1 it holds that xv,t ≤ Emax
v (sv,t).

5.3 Discretization of Energy
The so-called PCP MILP model in [HPL17] is based on the idea of allowing only a
discrete set of SOC levels and using binary indicator variables for these levels for each
vehicle and each time step. A significant difference of the problem considered there and
our formulation, however, is that in [HPL17] the charging power always has to be either
zero or the maximum allowed value. In this way, discrete charging levels appear naturally,
while we have to do a more explicit discretization to follow similar principles.
We therefore define by EVS-SOC-∆E the variant of our original EVS-SOC problem in
which energy is considered in discrete units of ∆E only, i.e., only multiples of ∆E can
be charged in each time step ∆t. Instead of continuous SOC values, we are now given
for each vehicle v ∈ V a rounded initial energy level at arrival yv,0 and the required
departure energy level ydep

v ∈ N, both as integral multiples of our unit ∆E. Coming
from our original EVS-SOC problem definition, corresponding approximate values for
the initial and departure energies can be obtained by rounding, i.e.,

yv,0 = bsv,0 · Cv/∆Ec and ydep
v = dsdep

v · Cv/∆Ee (5.13)
are the numbers of energy units ∆E at the beginning and at departure, respectively.
Then, it is ensured that yv,0 < ydep

v and vehicle v can have ydep
v − yv,0 + 1 SOC values

{k ·∆E/Cv | k = yv,0, . . . , y
dep
v }.

We now adapt EVS-SOC (3.5–3.11) to EVS-SOC-∆E by replacing variables sv,t with
integer variables yv,t that indicate the number of energy units in each vehicle v stored
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5.3. Discretization of Energy

at the beginning of each time step t. Variable xv,t now represents the number of energy
units ∆E charged into vehicle v at time step t.

min ∆E ·
∑
v∈V

tdep
v −1∑
t=0

ct · xv,t (5.14)

xv,t ≤
⌊ 1

∆E · E
max
v

(
yv,t ·

∆E
Cv

)⌋
v ∈ V, t = 0, . . . , tdep

v − 1 (5.15)∑
v∈V |0≤t<tdep

v

xv,t ≤ b∆t · P gridmax/∆Ec t ∈ T (5.16)

y
v,tdep

v
= ydep

v v ∈ V (5.17)

yv,t = yv,t−1 + xv,t−1 v ∈ V, t = 1, . . . , tdep
v (5.18)

xv,t ∈ {0, . . . , xmax
v } v ∈ V, t = 0, . . . , tdep

v − 1 (5.19)
yv,t ∈ {yv,0, . . . , ydep

v } v ∈ V, t = 0, . . . , tdep
v (5.20)

The upper limit of the domains of the xv,t variables is xmax
v = max

k=yv,0,...,y
dep
v
bEmax

v (k ·
∆E/Cv)/∆Ec.

We now introduce variables λv,t,k ∈ {0, 1} which indicate with value one that yv,t = k,
i.e., vehicle v has SOC k ·∆E/Cv at the beginning of time step t.

This allows to replace the non-linear Constraints (5.15) in formulation (5.14–5.20) by the
following in order to obtain a MILP problem, which we refer to as EVS-SOC-λ.

yv,t =
ydep

v∑
k=yv,0

k · λv,t,k v ∈ V, t = 0, . . . , tdep
v − 1 (5.21)

ydep
v∑

k=yv,0

λv,t,k = 1 v ∈ V, t = 0, . . . , tdep
v − 1 (5.22)

xv,t ≤
ydep

v∑
k=yv,0

⌊ 1
∆E · E

max
v

(
k · ∆E

Cv

)⌋
· λv,t,k v ∈ V, t = 0, . . . , tdep

v − 1 (5.23)

λv,t,k ∈ {0, 1}
v ∈ V, t = 0, . . . , tdep

v − 1,
k = yv,0, . . . , y

dep
v

(5.24)

Equations (5.21) link variables yv,t with the binary variables λv,t,k, and Equations (5.22)
ensure that for each vehicle exactly one λv,t,k variable is one at each time step. Inequali-
ties (5.23) actually limit the maximum energy charged in dependence of the current SOC
level.
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5. Problem Solving Approaches

5.3.1 Network Flow Approach

With PCP-E, a second MILP formulation is proposed in [HPL17] that uses a time-
expanded network point-of-view. Again, however, the charging power is restricted to be
either zero or the maximum allowed value. To adopt the basic idea from this approach,
we again discretize the energy values and SOC as above.

We now consider the following layered flow network for each vehicle v ∈ V . The
nodes are partitioned into layers Nv = Nv,0 ∪ · · · ∪ Nv,tdep

v
, where Nv,0 = {uv,0,yv,0},

N
v,tdep

v
= {u

v,tdep
v ,ydep

v
}, and Nv,t = {uv,t,k | k = yv,0, . . . , y

dep
v } for t = 0, . . . , tdep

v − 1.

A flow through some node uv,t,k represents the case that vehicle v has SOC k ·∆E/Cv at
time t. Therefore, arcs (uv,t,k, uv,t+1,k′) exist for all feasible transitions from one time step
to the next, i.e., for nodes uv,t,k ∈ Nv,t and uv,t+1,k′ ∈ Nv,t+1 if k′ ≥ k ∧∆E · (k′ − k) ≤
Emax
v (k · ∆E/Cv), for 0, . . . , tdep

v − 1. Let Av,t be the set of all these arcs connecting
nodes from Nv,t with nodes from Nv,t+1, t = 0, . . . , tdep − 1. We associate flow variables
fv,t,k,k′ ∈ {0, 1} with the respective arcs.

Using this network and the flow variables, we can reformulate (5.14–5.20) as the following
MILP formulation, which we refer to as EVS-SOC-NET.

min ∆E ·
∑
v∈V

tdep
v −1∑
t=0

ct ·
∑

(uv,t,k,uv,t+1,k′ )∈Av,t

(k′ − k) · fv,t,k,k′ (5.25)

∑
v∈V |0≤t<tdep

v

∑
(uv,t,k,uv,t+1,k′ )∈Av,t

(k′ − k) · fv,t,k,k′ ≤
⌊

∆t · P gridmax

∆E ·
⌋

t ∈ T (5.26)∑
(uv,t−1,k′ ,uv,t,k)∈Av,t−1

fv,t−1,k′,k =
∑

(uv,t,k,uv,t+1,k′′ )∈Av,t

fv,t,k,k′′

v ∈ V, k = yv,0, . . . , y
dep
v , t = 1, . . . , tdep

v − 1 (5.27)∑
(uv,0,yv,0 ,uv,1,k)∈Av,0

fv,0,yv,0,k = 1 v ∈ V (5.28)

∑
(u

v,t
dep
v −1,k

,u
v,t

dep
v ,y

dep
v

)∈A
v,t

dep
v −1

f
v,tdep

v −1,k,ydep
v

= 1 v ∈ V (5.29)

fv,t,k,k′ ∈ {0, 1} v ∈ V, t = 0, . . . , tdep
v − 1, (uv,t,k, uv,t+1,k′) ∈ Av,t (5.30)

The objective function (5.25) minimizes the sum of the costs for the total consumed
energy over all time steps. Inequalities (5.26) limit the total consumed energy units at
each time step to the grids energy capacities b∆t · P gridmax/∆Ec. Rounding is applied
to strengthen the formulation. Equalities (5.27–5.29) are flow conservation constraints,
which ensure that the flow traverses on a path from node uv,0,yv,0 to node u

v,tdep
v ,ydep

v
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5.3. Discretization of Energy

through the network. The domains of the integral flow variables are finally specified in
(5.30).

Integrality of Flow Variables. Note that the flow variables must indeed be integral
here, since in an LP relaxation they may assume fractional values due to Constraint (5.26)
in combination with different costs for different time slots, even for just a single vehicle.

Additionally, keeping the flow variables fractional allows the charging energy to exceed
Emax
v , which will be explained with help of the following example. Assume a flow network

of a single vehicle as shown in Figure 5.1 and let ∆t = 1 hour, ∆E = 1 kWh, P gridmax = 2
kW, C1 = 4 kWh, s1,0 = 0 and sdep

1 = 1. Furthermore, assume Emax
1 (0/4) = 3 kWh,

Emax
1 (1/4) = 1 kWh, Emax

1 (2/4) = 1 kWh, Emax
1 (3/4) = 1 kWh and Emax

1 (4/4) = 0 kWh.

In Figure 5.1a, we can see the only feasible integral flow in the network that does not
exceed the grid Constraints (5.26). However, if continuous flows are allowed, the flow
might split on multiple paths while still respecting Constraints (5.26). Observe that in
the solution indicated in Figure 5.1b, the vehicle’s SOC is 0.5 at time step 1, however
it is charged with 1/3 · 3 + 2/3 · 1 at the same time step, exceeding Emax

1 (0.5). This
exemplary instance should clarify why the network flow variables fv,t,k,k′ must be kept
integral in EVS-SOC-NET.

s

t

1

1

1

(a) Integral Flow

s

t

1/3

1/3

1/32/3

2/3

2/3

(b) Continuous Flow

Figure 5.1: Different solutions for integral and continuous flow variables. Used arcs
are indicated in red and annotated with its corresponding flow value. We abbreviate
s = uv,0,yv,0 , t = u

v,tdep
v ,ydep

v
.

Decomposition of EVS-SOC-NET. If Constraint (5.26) is omitted, EVS-SOC-NET
decomposes into n subproblems, which can be solved independently. More concretely,
each individual subproblem can be represented as minimum-cost flow problem, in which
all arcs have flow capacity 1 and the costs for an arc (uv,t,k, uv,t+1,k′) ∈ Av,t are set to
(k′ − k) ·∆E · ct. When solving the minimum-cost flow problem, the integrality theorem
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5. Problem Solving Approaches

guarantees integral flow due to integral flow demand and arc capacities 1. Therefore,
the obtained flow yields a feasible charging schedule for a single vehicle, which can be
determined efficiently by linear programming for example.

Comparing LP relaxations. Let Pλ and PNET be the polytopes corresponding to
the LP relaxations of the EVS-SOC-λ and EVS-SOC-NET formulations. As we have
seen before, there exists an instance and a solution (x,y,λ) ∈ Pλ but its corresponding
solution f /∈ PNET, i.e., Pλ 6⊂ PNET.

For example, consider an instance with n = 1, ∆t = 1 hour, ∆E = 1 kWh, P gridmax = 10
kW, ct = (2, 1) cent/kWh, tdep

1 = 2, s1,0 = 0, sdep
1 = 1, C1 = 2 kWh and Emax

1 (s) = 2s+ 1
kWh. An optimal solution for this instance maximizes the charged energy in time step
1 due to its cheaper costs of 1 cent/kWh. The relaxed EVS-SOC-λ formulation finds
an optimal solution with x1,0 = 0.5, x1,1 = 1.5, λ1,0,0 = 1, λ1,1,0 = 0.75, λ1,1,2 = 0.25
and λv,t,k = 0 for all remaining λ variables. Clearly, this solution is feasible regarding
Constraints (5.23) since

x1,0 ≤ bEmax
1 (0)c · λ1,0,0 (5.31)

x1,1 ≤ bEmax
1 (0)c · λ1,1,0 + bEmax

1 (1)c · λ1,1,2 (5.32)

Considering the same instance with the LP relaxation of EVS-SOC-NET, we observe
that there is only one path from the start to the end node in the flow network, which
is (u1,0,0, u1,1,1, u1,2,2). Even though Emax

1 (0.5) = 2 kWh, the charged energy is limited
to 1 kWh at SOC 0.5 due to the structure of the network. Therefore there is only one
solution in which we charge 1 kWh at each time step t = 0, 1.

Polytope PNET is contained in polytope Pλ. In the following, we show PNET ⊆ Pλ.
Thereunto we consider an arbitrary instance and show for an arbitrary feasible solution
f ∈ PNET that there exists a corresponding feasible solution (x,y,λ) ∈ Pλ. We define
how (x,y,λ) can be obtained from f .

xv,t =
∑

(uv,t,k,uv,t+1,k′ )∈Av,t

(k′ − k) · fv,t,k,k′ v ∈ V, t = 0, . . . , tdep
v − 1 (5.33)

yv,t =
∑

(uv,t,k,uv,t+1,k′ )∈Av,t

k · fv,t,k,k′ v ∈ V, t = 0, . . . , tdep
v − 1 (5.34)

y
v,tdep

v
=

∑
(u

v,t
dep
v −1,k

,u
v,t

dep
v ,k′

)∈A
v,t

dep
v −1

k′ · f
v,tdep

v −1,k,k′ v ∈ V (5.35)

λv,t,k =
∑

(uv,t,k,uv,t+1,k′ )∈Av,t

fv,t,k,k′
v ∈ V, t = 0, . . . , tdep

v − 1,
k = yv,0, . . . , y

dep
v

(5.36)

1https://www2.cs.duke.edu/courses/fall12/compsci590.1/network_flow.pdf
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5.3. Discretization of Energy

Now we show that (x,y,λ) satisfies Constraints (5.16–5.24). We transform each constraint
of EVS-SOC-λ into a constraint of EVS-SOC-NET by applying the Substitutions (5.33–
5.36).

• Inequalities (5.16): Satisfied by applying Substitutions (5.33) to Constraints (5.26).

• Equalities (5.17): Applying Substitution (5.35) yields equation∑
(u

v,t
dep
v −1,k

,u
v,t

dep
v ,k′

)∈A
v,t

dep
v −1

k′ · f
v,tdep

v −1,k,k′ = ydep
v v ∈ V (5.37)

which is satisfied by the structure of the flow network (k′ = ydep
v ) and Constraints

(5.29).

• Equalities (5.18): We start with showing the equality for t = 1, . . . , tdep
v −1. Shifting

the index t yields

yv,t = yv,t−1 + xv,t−1 v ∈ V, t = 1, . . . , tdep
v − 1 (5.38)

yv,t+1 = yv,t + xv,t v ∈ V, t = 0, . . . , tdep
v − 2 (5.39)

Applying Substitutions (5.33) and (5.34) yields∑
(uv,t+1,k,uv,t+2,k′ )∈Av,t+1

k · fv,t+1,k,k′ =

∑
(uv,t,k,uv,t+1,k′ )∈Av,t

k · fv,t,k,k′ +

∑
(uv,t,k,uv,t+1,k′ )∈Av,t

(k′ − k) · fv,t,k,k′

v ∈ V, t = 0, . . . , tdep
v − 2 (5.40)

and can be simplified to∑
(uv,t+1,k,uv,t+2,k′ )∈Av,t+1

k · fv,t+1,k,k′ =

∑
(uv,t,k,uv,t+1,k′ )∈Av,t

k′ · fv,t,k,k′
v ∈ V, t = 0, . . . , tdep

v − 2 (5.41)

The latter inequality is satisfied by flow conservation Constraints (5.27). Analo-
gously, Equality (5.18) can be shown for time step tdep

v .

• Inequalities (5.19):

0 ≤ xv,t ≤ xmax
v v ∈ V, t = 0, . . . , tdep

v − 1 (5.42)
0 ≤

∑
(uv,t,k,uv,t+1,k′ )∈Av,t

(k′ − k) · fv,t,k,k′ ≤ xmax
v v ∈ V, t = 0, . . . , tdep

v − 1 (5.43)
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with xmax
v = max

k=yv,0,...,y
dep
v
bEmax

v (k ·∆E/Cv)/∆Ec.

Clearly, it holds that 0 ≤ ∑
(uv,t,k,uv,t+1,k′ )∈Av,t

(k′ − k) · fv,t,k,k′ for v ∈ V, t =
0, . . . , tdep

v − 1, since k′ ≥ k and flow variables are non-negative. Furthermore∑
(uv,t,k,uv,t+1,k′ )∈Av,t

(k′−k)·fv,t,k,k′ ≤ xmax
v , since (k′−k) ≤ bEmax

v (k·∆E/Cv)/∆Ec
and ∑(uv,t,k,uv,t+1,k′ )∈Av,t

fv,t,k,k′ = 1 for v ∈ V, t = 0, . . . , tdep
v − 1.

• Inequalities (5.20): We start with showing the equality for t = 0, . . . , tdep
v − 1.

yv,0 ≤ yv,t ≤ ydep
v v ∈ V, t = 0, . . . , tdep

v − 1 (5.44)
yv,0 ≤

∑
(uv,t,k,uv,t+1,k′ )∈Av,t

k · fv,t,k,k′ ≤ ydep
v v ∈ V, t = 0, . . . , tdep

v − 1 (5.45)

Due to the structure of the network it holds that yv,0 ≤ k ≤ ydep
v . Together with∑

(uv,t,k,uv,t+1,k′ )∈Av,t
fv,t,k,k′ = 1 for v ∈ V, t = 0, . . . , tdep

v −1, Inequalities (5.45) are
satisfied. We also consider Inequalities (5.20) for time step tdep

v :
yv,0 ≤ yv,tdep

v
≤ ydep

v v ∈ V (5.46)

yv,0 ≤
∑

(u
v,t

dep
v −1,k

,u
v,t

dep
v ,k′

)∈A
v,t

dep
v −1

k′ · f
v,tdep

v −1,k,k′ ≤ y
dep
v v ∈ V (5.47)

Similar to before, we argue k′ = ydep
v and ∑(u

v,t
dep
v −1,k

,u
v,t

dep
v ,k′

)∈Av,t
f
v,tdep

v −1,k,k′ = 1
for v ∈ V . Hence Inequalities (5.47) and further Inequalities (5.20) are satisfied.

• Equalities (5.21): Satisfied by applying Substitutions (5.34) and (5.36) to Equalities
(5.21).

• Equalities (5.22): Applying Substitution (5.36) yields∑
(uv,t,k,uv,t+1,k′ )∈Av,t

fv,t,k,k′ = 1 v ∈ V, t = 0, . . . , tdep
v − 1 (5.48)

By the network flow conservation constraints, these equalities are satisfied.

• Inequalities (5.23):

xv,t ≤
ydep

v∑
k=yv,0

⌊ 1
∆E · E

max
v

(
k · ∆E

Cv

)⌋
· λv,t,k v ∈ V, t = 0, . . . , tdep

v − 1

(5.49)∑
(uv,t,k,uv,t+1,k′ )∈Av,t

(k′ − k) · fv,t,k,k′ ≤

ydep
v∑

k=yv,0

⌊ 1
∆E · E

max
v

(
k · ∆E

Cv

)⌋
·

∑
(uv,t,k,uv,t+1,k′ )∈Av,t

fv,t,k,k′

v ∈ V, t = 0, . . . , tdep
v − 1

(5.50)
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The latter inequalities are satisfied since (k′ − k) ≤
⌊

1
∆E · E

max
v

(
k · ∆E

Cv

)⌋
holds by

construction of the flow network.

• Inequalities (5.24): Satisfied when applying Substitution (5.36) to Inequalities
(5.30).

Overall, we conclude that the LP relaxation of EVS-SOC-NET is stronger than the LP
relaxation of EVS-SOC-λ. However this comes at a price of introducing a larger number
of variables and constraints to the EVS-SOC-NET model.
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CHAPTER 6
Benchmark Instances

Due to the lack of pure real-world problem instances we randomly generate benchmark
instances and use real-world data as far as possible. We first consider individual EVS-SOC
instances that represent snapshot scenarios at certain times with a specific number of
vehicles that are assumed to have arrived at the charging station following a homogenous
Poisson process. Afterwards, in Chapter 6.2, we will consider whole model based predictive
control scenarios with a rolling horizon.

6.1 Individual EVS-SOC Instances
We distinguish between three types of problem parameters, depending on whether the
parameter is set by the user, randomly generated, or based on real-world data. To the input
data set by the user, we count the number of EVs n, the length of a time interval ∆t, as
well as the grid’s power capacity P gridmax. We generate 30 instances for each combination
of n ∈ {10, 20, 50, 100}, ∆t ∈ {1, 5, 10} minutes, and P gridmax ∈ {10n, 25n, 40n}.

We consider eight different types of EVs shown in Table 6.1. The EV’s battery capacities
were taken from the EV Database https://www.ev-database.de. The respective
maximum power functions Pmax

v were manually extracted from plots found on the website
of a Dutch EV charging station operator https://fastnedcharging.com. More
specifically, 25 up to 70 points of a plot were manually determined in dependence of
notable changes of the gradient, and linear interpolation was applied in between. All
extracted Pmax

v functions are shown in Figure 6.1. Observe that the maximum power
function’s available domain of definition [smin

v , smax
v ] varies among the EVs. If a vehicle

type supports speed charging, the respective most powerful charging curve is used.

Since the Pmax
v data extracted from the original plots is quite fine-grained, we addition-

ally derive simplified piecewise linear approximations with five and ten linear pieces,
respectively. For this task, we utilized the Python package pwlf [JV19], which deter-
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Figure 6.1: Maximum charging power functions Pmax
v for all considered vehicle types.

mines approximately optimal breakpoints automatically. A comparison between the
original Pmax

v and its piecewise approximations is shown in Figure 6.2. Observe that the
approximation of the original Pmax

v function with 10 segments is quite good for most
vehicles.

Remember that the EVS-SOC-LIN formulation only works on concave maximum energy
functions. Whenever we benchmark this formulation, we use maximum charging power
functions that are derived from the original ones by determining the convex hull of the
set of points {(s, Pmax

v (s)) | s ∈ [smin
v , smax

v ]} ∪ {(smin
v , 0), (smax

v , 0)}. From the concavity

EV Name Cv (kWh) smin
v smax

v #Pmax
v -lin. pieces

Energica Ego 21.5 1.1 99.9 53
MINI Cooper Electric 32.6 12.1 93.8 34
BMW i3 42.2 15.1 96.0 26
Hyundai Kona Elektro 67.5 10.1 94.9 28
Tesla Model 3 Long Range 82.0 11.1 99.0 35
Mercedes-Benz EQC 85.0 2.1 97.8 24
Jaguar I-Pace 90.0 8.0 100.0 29
Audi e-tron 95.0 3.1 99.8 44

Table 6.1: Used EV types with battery capacity Cv, Pmax
v domain [smin

v , smax
v ] and the

number of linear pieces of Pmax
v .
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Figure 6.2: Comparison of Pmax
v curves with different number of segments for each vehicle

type.
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Original maximum
charging power data

Piecewise linear
approximation

Concave
approximation

Figure 6.3: Schematic preprocessing flow chart of the charging data.

of Pmax
v follows concavity of Emax

v , as mentioned in Chapter 3. To give the reader a
better understanding of how the charging curves relate to each other, we outline the
preprocessing steps in Figure 6.3. With „original maximum charging power data“ we
refer to the data taken from the charging station operator. Notice that this data is either
approximated with a piecewise linear or concave function (convex hull). With Pmax

v

we refer to any, possibly preprocessed, maximum charging power function. Based on
this curve, the maximum charging energy functions Emax-lb

v , Emax-ex
v and Emax-ub

v are
deduced.

For each EV v ∈ V in a benchmark instance, one of the above EV types is chosen
uniformly at random. Moreover, we choose an availability duration at the charging
station davail

v randomly according to a normal distribution with a mean value of 6 hours
and a standard deviation of 1.5 hours.

Next, we select an arrival time tarr
v uniformly at random from the interval (−davail

v /∆t, 0)
and obtain a respective departure time tdep

v = dtarr
v +davail

v /∆te. Considering the available
domains of definition of the maximum power functions, we generally assume that each
vehicle shall be charged from a SOC of 20% at arrival to a SOC of 90% at departure. In
our benchmark instances, we therefore choose the initial SOC proportional to the already
bygone availability time, i.e., for all v ∈ V ,

sv,0 = −tarr
v

davail
v /∆t · 0.73 + 0.2 (6.1)

The departure SOC sdep
v is set to 90% for all EVs.

The end of the time horizon is obtained from the last EV’s departure time, i.e., tmax =
maxv∈V tdep

v . Electricity costs per unit of consumed energy ct are independently chosen
for each time step t ∈ T uniformly at random from [1.9, 3.5) cent/kWh.
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6.2. Rolling Horizon Benchmark Scenarios

6.2 Rolling Horizon Benchmark Scenarios

In addition to the individual benchmark instances, we consider rolling horizon simulations
over whole days starting at time 0:00 and ending at 24:00. The time is again discretized
into equally long time steps of ∆t ∈ {5, 10}minutes. Electricity costs per unit of consumed
energy are chosen as in Chapter 6.1 and it is assumed that they are known in advance
for the whole charging period. For the number of vehicles we use n ∈ {10, 20, 50, 100}.
Again, we pick each vehicle type uniformly at random from the set of available vehicle
types.

It is assumed that most vehicles arrive around two peak times at 6:00 and 14:00. For
picking the arrival time tarr

v for a vehicle v ∈ V , we therefore first randomly select
with equal probability one of these two peak times and then sample tarr

v from a normal
distribution with the chosen peak time as mean value and a standard deviation of two
hours. Times outside of the considered horizon of 24 hours are re-sampled.

The charging duration davail
v is chosen as in Chapter 6.1 and tdep

v is derived correspondingly.
Also, sdep

v and P gridmax are set as before. At time 0:00 we set sv,0 = 0.2 and with each
rescheduling we determine sv,0 based on the charging schedule of the previous iteration.

The schedule is (re-)optimized at time 0:00 and then every τ = 10 minutes, always
considering only EVs that are currently available at the charging station. The found
charging schedule is then assumed to be applied for the next τ minutes until a new
schedule is determined.

Thirty independent whole-day scenarios were constructed and are considered in the
experimental evaluation.

Inspecting a single instance. In Figure 6.4, we visualize an optimal solution for a
single individual instance with n = 5, ∆t = 5 minutes using EVS-SOC-GLIN for all
P gridmax ∈ {10n, 25n, 40n}. As maximum energy function we chose Emax-lb

v based on
Pmax
v with 5 piecewise linear segments. A single sub-figure represents an optimal charging

schedule of a vehicle fleet. Bars specify the energy a vehicle is charged with at each time
step. The corresponding scale is located on the left. The grid’s maximum energy supply
P gridmax ·∆t is indicated as horizontal line in each plot. Crosses reveal the electricity
costs for each time step and the appropriate scale is located on the right.

It can be seen that for smaller P gridmax values, there are more time steps in which the
total charged energy reaches the grid’s energy capacities P gridmax ·∆t. For higher P gridmax

values, more vehicles are charged in parallel within a single time step and cheap electricity
costs can be exploited more effectively.

We also visualize an optimal rolling horizon solution with n = 10, ∆t = 5 minutes, τ = 10
minutes using EVS-SOC-GLIN for P gridmax ∈ {10n, 25n} in Figure 6.5. The same Emax

function as for the individual instance above was used. For this instance, the temporal
availability of the vehicles is indicated in Figure 6.5c.
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(c) P gridmax = 40n; charging costs: 290.42 cent

Figure 6.4: Optimal solution for an instance with n = 5, ∆t = 5 minutes, P gridmax ∈
{10n, 25n, 40n} using EVS-SOC-GLIN.

Arrival times are distributed around both peak times 6:00 and 14:00 (time step 72 and
168), as can be seen in Figure 6.5c. EV 7 arrives late and has a relatively short period
of stay. Again, a smaller P gridmax value implies that more time steps have to be fully
exploited, i.e., less charging breaks are planned.
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Figure 6.5: Optimal solution for a rolling horizon instance with n = 10, ∆t = 5 minutes,
P gridmax ∈ {10n, 25n} using EVS-SOC-GLIN.
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CHAPTER 7
Experiments

All formulations were implemented in Julia 1.6.0-rc11 using the the optimization modeling
package JuMP v0.21.5 and Gurobi 9.1.02 as LP/MILP solver. Gurobi was configured to
run in single-threaded mode with a time limit of 30 minutes per instance. All remaining
Gurobi parameters were kept at their default values. The experiments were conducted
on an Intel Xeon E5-2640 v4 with 2.40GHz and 16GB memory limit, running Ubuntu
18.04.5 LTS. If not stated otherwise we report in the following mean or median results
on the 30 problem instances per instance parameter combination (n,∆t, P gridmax, Emax

v ).

7.1 Runtimes

We first focus on the runtimes of the individual approaches and how many instances
could be solved to proven optimality in the given time limit of 30 minutes.

EVS-SOC-LIN. We compare two variants of EVS-SOC-LIN. In one of them, all
maximum charging energy constraints (5.1) are statically added to the LP formulation,
whereas in the other variant these constraints are dynamically separated as cuts via the
cutting plane approach as described in Chapter 5.1. As maximum energy function we
use Emax-ex

v based on the convex Pmax
v functions (without any further piecewise linear

approximation). We set P gridmax = 25n. The results of the comparison are reported in
Table 7.1 and are illustrated in Figure 7.1. Column nseg denotes the total number of
piecewise linear segments of the Emax

v functions over all vehicles. All reported instances
were solved to optimality in all runs. For the cutting plane approach, the total number
of added cuts per instance is denoted by ncuts.

1https://julialang.org
2https://www.gurobi.com
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7. Experiments

n ∆t (min) nseg
Runtime (s) ncuts

Static Cutting Plane Cutting Plane
Mean Median StdDev Median StdDev Mean StdDev

5 1 901 1.19 1.02 1.31 0.38 12800 5986
5 5 901 0.23 0.11 0.90 0.25 1102 542
5 10 901 0.08 0.07 0.97 0.26 322 205

10 1 1802 4.98 3.27 1.65 0.52 25271 9541
10 5 1802 0.59 0.22 1.06 0.24 2341 950
10 10 1802 0.22 0.10 1.01 0.20 757 387
20 1 3605 14.33 8.48 3.29 0.83 60778 18725
20 5 3605 1.21 0.45 1.16 0.27 5117 1547
20 10 3605 0.68 0.20 1.07 0.21 1585 516
50 1 9041 70.69 31.89 9.11 2.66 175979 28195
50 5 9041 4.17 1.58 1.57 0.33 13737 2329
50 10 9041 1.57 0.54 1.15 0.21 3989 858
100 1 18086 280.22 100.87 25.45 9.66 390873 44162
100 5 18086 13.11 4.73 2.11 0.51 27920 3515
100 10 18086 3.80 1.35 1.32 0.34 8126 1419

Table 7.1: EVS-SOC-LIN runtime comparison for concave maximum power functions
and P gridmax = 25n: Solving the static MILP problem versus the cutting plane approach.

Observe that for a fixed ∆t the cutting plane approach shows its performance advantages
with growing n. The improvement is also noticeable if we fix n and consider decreasing
∆t values. Similarly, for a fixed ∆t the number of cuts increases with larger n values,
whereas for a fixed n the number of cuts increases with smaller ∆t values. The results
indicate that the cutting plane technique shows performance benefits when a larger
number of cuts has been separated, i.e., the maximum charging power condition was not
easily fulfilled. Overall, it can be said that the cutting plane variant outperforms the
static model on larger instances and when nseg is larger. We additionally conducted the
experiments for P gridmax = 10n and 40n and observed the same trends.

EVS-SOC-GLIN. Similar to before, we compare two variants of EVS-SOC-GLIN
for the general non-concave maximum charging power functions. In the first variant
we directly solve the static MILP problem in which all linking constraints (5.8–5.10)
are included from the beginning, whereas the second approach is the branch-and-cut
variant (B&C) in which these linking constraints are dynamically added as needed, cf.
Chapter 5.2.1. As maximum energy function we use Emax-ex

v and Emax-lb
v , both based

on the original full resolution Pmax
v functions. For P gridmax ∈ {10n, 25n, 40n} we report

detailed results in Tables 7.2, 7.3, and 7.4, respectively. Columns, nseg[Emax
v ] denote the

total number of piecewise linear segments functions Emax
v consist of, summed over all n

vehicles of an instance. Again, ncuts denotes for the total number of cuts added within
B&C. The last columns indicate the finally remaining optimality gaps between lower and
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Figure 7.1: EVS-SOC-LIN runtime comparison for directly solving the LP problem versus
the cutting plane approach, corresponding to results of Table 7.1.

upper bounds. Only relative gaps of instances with a feasible solution are considered.
For parameter combinations without gaps (marked with “-”), no feasible solution has
been found for any instance. For parameter combinations where no runtime is reported,
all corresponding runs terminated due to an out-of-memory error.

Opposed to EVS-SOC-LIN, not all instances could be solved to optimality by the EVS-
SOC-GLIN variants. Hence, in Tables 7.2, 7.3 and 7.4 we also report the number of
instances nsolved where a feasible solution was found, the number of instances nopt solved
to optimality, as well as the gaps for each group.

Considering the results with P gridmax = 10n, one can notice that the B&C approach
shows performance benefits for a small number n ≤ 20 of vehicles. It is better than
the static variant in terms of solved instances and median runtime, however solves less
instances to optimality. On larger instances, the static variant seems to outperform the
B&C variant in terms of optimally solved instances. For the results with P gridmax = 25n,
the runtime performance benefit of B&C for small n values is still noticeable, however
it is not as strong as for P gridmax = 10n. Lastly, for P gridmax = 40n the static variant
solves more instances to optimality and has better runtime on almost all parameter
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7.1. Runtimes

configurations.

A possible explanation for this observation seems to be that for P gridmax = 10n the
charging energy of a vehicle v is rather limited by P gridmax than by Emax

v . Initial solutions
of B&C will then violate Constraints (5.5) less often, which implies spending less time
for the separation of cuts. This presumption should be supported if we consider the
number of added cuts. Fixing n and ∆t, one can observe that with growing P gridmax

values clearly more cuts are added.

When comparing Emax-lb
v and Emax-ex

v for any fixed P gridmax, n and ∆t value, Emax-ex
v

has more segments than Emax-lb
v due to the nature of its computation. Also, for Emax-lb

v

smaller ∆t values imply a higher number of Emax-lb
v segments. For a fixed n, ∆t the

larger number of Emax-ex
v segments comes with fewer (optimally) solved instances and

higher runtimes for the static and B&C approach.

In order to see how both solution approaches to EVS-SOC-GLIN perform on instances
with fewer piecewise linear segments in Emax

v , we conduct similar experiments using
the approximations of Pmax

v with five segments. There we consider Emax-ub
v instead of

Emax-ex
v , since the number of Emax-ex

v segments does not depend on the number of Pmax
v

segments. We only conduct experiments for P gridmax = 25n to keep the results to a
manageable size. The results can be seen in Table 7.5.

With only a few exceptions, the B&C approach almost always finds more feasible solutions
than the static variant for each parameter group. However, if we compare the number of
optimally solved instances, the static variant seems to be better for most groups. Also, if
the static and the B&C variant find the same number of feasible solutions, the gap of
the static variant is smaller or equal for most parameter combinations.

Due to the fewer number of segments in the Pmax
v functions and consequently also simpler

Emax-lb
v and Emax-ub

v functions, more instances could be solved to optimality and to more
instances feasible solutions could generally be found, when comparing Tables 7.5 and 7.3.
Moreover, the impact of fewer Pmax

v segments is also observable when we consider the
median runtimes and the number of added cuts. For almost all parameter combinations
of n and ∆t, fewer Pmax

v segments lead to lower median runtimes and fewer cuts.

EVS-SOC-λ and EVS-SOC-NET. For the energy-discretized formulations EVS-
SOC-λ and EVS-SOC-NET, we conduct experiments with ∆E ∈ {5, 10} ·∆t, P gridmax =
25n, and Emax-lb

v based on the Pmax
v with the full number of piecewise linear segments.

We choose ∆E in dependence of ∆t as all Emax
v functions scale with ∆t. Selecting a too

large ∆E value together with an Emax
v function, which is based on a small ∆t value, could

even lead to infeasible instances. This is another good reason to link these parameters.

Results of the experiment are reported in Table 7.6. Similarly as before, parameter
combinations where no runtime is reported (marked with “-”) reflect runs terminated
due to an out-of-memory error. For parameter combinations without gaps, a feasible
solution has not been found for any instance.
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7.1. Runtimes

n ∆t (min) nopt nfeas
Runtime (s) Relative Gap (%)

Median StdDev Median
λ NET λ NET λ NET λ NET λ NET

∆E = 5 ·∆t
5 1 1 4 4 9 1800.00 1800.00 228.63 630.91 0.08 100.07
5 5 30 30 30 30 31.21 15.92 78.30 60.71 0 0
5 10 30 30 30 30 1.14 1.38 3.66 2.64 0 0
10 1 0 1 0 2 1800.00 1744.32 0.00 78.74 - 0.01
10 5 30 30 30 30 150.52 59.69 137.35 70.45 0.01 0
10 10 30 30 30 30 3.92 3.29 9.59 3.52 0 0
20 1 0 0 0 0 1800.00 - 0.00 - - -
20 5 22 30 30 30 866.66 174.27 602.53 147.37 0.01 0.01
20 10 29 29 29 29 22.73 8.21 19.20 5.94 0.01 0
50 1 0 0 0 0 1800.00 - 0.00 - - -
50 5 0 29 2 30 1800.00 663.61 0.00 417.12 0.07 0.01
50 10 29 29 29 29 94.09 29.21 164.54 24.19 0.01 0

100 1 0 0 0 0 1800.00 - 0.00 - - -
100 5 0 15 0 18 1800.00 1553.97 0.00 485.46 - 0
100 10 28 29 29 29 416.53 74.34 457.50 47.82 0.01 0

∆E = 10 ·∆t
5 1 5 9 9 25 1800.00 1800.00 527.35 746.94 0.01 13.82
5 5 28 28 28 28 9.30 3.42 27.27 11.1 0 0
5 10 30 30 30 30 0.58 0.37 0.72 0.75 0 0
10 1 0 4 0 12 1800.00 1800.00 328.57 708.27 - 104.24
10 5 27 27 27 27 76.56 9.24 81.55 11.25 0.01 0
10 10 30 30 30 30 1.43 0.95 2.91 0.98 0 0
20 1 0 0 0 2 1800.00 1800.00 328.48 1037.07 - 110.85
20 5 24 26 26 26 275.91 22.48 444.30 29.46 0.01 0
20 10 29 29 29 29 3.88 1.55 9.52 3.12 0.01 0
50 1 0 0 0 0 1800.00 - 548.41 - - -
50 5 6 23 19 23 1800.00 70.72 794.35 96.26 0.03 0
50 10 27 27 27 27 16.16 5.24 29.53 3.57 0.01 0

100 1 0 0 0 0 1800.00 - 547.58 - - -
100 5 0 22 2 22 1800.00 129.58 809.32 200.7 0.04 0
100 10 26 26 26 26 79.43 11.57 130.83 7.4 0.01 0

Table 7.6: EVS-SOC-λ (λ) and EVS-SOC-NET (NET) with Emax-lb
v based on the original

Pmax
v , P gridmax = 25n, on the restricted set of the first ten instances per n and ∆t.

Comparing both formulations, the network model finds more feasible solutions and also
solves more solutions to optimality for any n, ∆t, and ∆E. Also, the network model
has better median runtime for almost all parameter combinations. For some parameter
groups, the relative gap of EVS-SOC-NET is larger than the relative gap of EVS-SOC-λ,
which can be explained by the fact that the network model finds more feasible solutions.

For a fixed n, ∆t, and model, it can be seen that smaller ∆E values have a negative
impact on the runtime. Interestingly, smaller ∆t values seem to have a stronger impact
on the runtime than for the EVS-SOC-GLIN approach, whose corresponding results are
depicted in Table 7.3. This comes at no surprise, since a smaller ∆t also implies a smaller
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7. Experiments

∆E. Lastly, it should be mentioned that for fixed ∆t and any of the energy-discretized
models, scaling the number of vehicles seems to have less impact on the runtime than for
EVS-SOC-GLIN.

7.2 Charging Cost Differences & Charging Errors

While the simpler approximations of the original Pmax
v functions lead to shorter runtimes,

there is clearly a tradeoff concerning the precision of the model, introduced errors, and
final solution qualities. We have a closer look on these aspects in the following.

First, we evaluate EVS-SOC-GLIN on six different Emax
v functions: Emax-ex

v , Emax-lb
v ,

and Emax-ub
v , each based on the five-segment Pmax

v approximation and the original Pmax
v .

Since we want to measure the impact of the different charging curves on the charging
costs, we select a high P gridmax value of 40n as in this case the variable maximum
charging power constraints have higher impact. Only results on instances solved to
optimality are reported. Also, we only consider instances where a solution for all six
Emax
v functions was found. Parameter combinations where no such instances exist were

omitted. The median charging costs can be found in Table 7.7. Values in the brackets
next to Emax-lb

v and Emax-ub
v state the charging cost gaps to Emax-ex

v in percent, i.e.,
100% · (|Emax-ex

v − Emax
v |)/Emax-ex

v for Emax
v ∈ {Emax-lb

v , Emax-ub
v }.

n ∆t (min) Median Charging Costs
Emax-lb
v (%-gap) Emax-ex

v Emax-ub
v (%-gap)

Original Pmax
v

5 1 109.08 0.10 108.97 108.86 0.09
5 5 213.13 0.28 212.27 211.30 0.31
5 10 240.32 0.54 239.25 238.53 0.51
10 5 398.31 0.33 396.74 395.08 0.34
10 10 444.95 0.50 441.55 438.64 0.41
20 10 867.07 0.55 859.80 851.13 0.48

5-segment approx. Pmax
v

5 1 109.10 0.10 108.98 108.88 0.10
5 5 213.10 0.28 212.45 211.53 0.31
5 10 240.41 0.50 239.34 238.67 0.48
10 5 398.27 0.31 396.78 395.15 0.33
10 10 444.74 0.48 441.38 438.67 0.40
20 10 867.02 0.54 859.65 851.57 0.47

Table 7.7: Objective value comparison using EVS-SOC-GLIN and different Emax
v functions

based on the five-segment Pmax
v approximation and the original Pmax

v ; P gridmax = 40n.

Observe that for fixed ∆t and varying n, the relative median charging cost difference
of Emax-lb

v and Emax-ub
v to Emax-ex

v does not change significantly. One might notice that
the relative median charging cost gaps are smaller for decreasing ∆t values. Overall, the
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7.2. Charging Cost Differences & Charging Errors

largest relative median charging cost difference is 0.55%, the differences are therefore
negligible for the shown parameter groups.

It is worth mentioning that for fixed n and ∆t, the five-segment approximation of Pmax
v

influences the charging costs only marginally, even for large instances. For example
consider n = 20, ∆t = 10 minutes and Emax-ex

v and observe that the objective value differs
by about 0.15 cent only between the original Pmax

v and the five-segment approximation.
This insight seems to be particularly relevant, since it shows that approximating Pmax

v

with a lower number of linear pieces is reasonable for practice.

When realizing a charging plan in practice with a different Pmax
v function than used

for scheduling, the specified target SOCs sdep
v might not be reached for some vehicles.

We measure this error by generating a charging schedule with Emax-ub
v and simulating

the actual maximum energy function with Emax-lb
v and Emax-ex

v . In the simulation, the
actually charged energy is set to be the minimum from the corresponding planned charged
energy and the actual maximum energy function. The resulting mean deviation from the
target SOC, the mean charging error, can be seen in Table 7.8. For a single instance, we
determined the mean charging error over all vehicles, whereas for an instance group we
again took the mean of the charging errors from the individual instances.

n ∆t (min)
Mean Charging Error (% SOC)

Original Pmax
v 5-seg. approx. Pmax

v

Emax-lb
v Emax-ex

v Emax-lb
v Emax-ex

v

5 1 0.59 0.32 0.57 0.29
5 5 2.54 1.37 2.55 1.37
5 10 4.00 2.08 3.79 1.97
10 1 0.61 0.32 0.59 0.30
10 5 2.67 1.45 2.67 1.45
10 10 4.08 2.18 4.08 2.15
20 1 0.51 0.27 0.52 0.26
20 5 2.77 1.51 2.73 1.49
20 10 4.36 2.37 4.37 2.38
50 5 2.77 1.51 2.74 1.50
50 10 4.40 2.40 4.40 2.40

100 5 2.88 1.58 2.88 1.60
100 10 4.51 2.45 4.49 2.45

Table 7.8: Charging error comparison when scheduling with Emax-ub
v using EVS-SOC-

GLIN and realizing the schedule with Emax-lb
v and Emax-ex

v . P gridmax = 40n.

Fixing n, ∆t and the number of Pmax
v segments, it can be seen that the mean charging

error is higher for Emax-lb
v than for Emax-ex

v . Also for a fixed n and Emax
v , the mean

charging error decreases with smaller ∆t. On the contrary, the number of vehicles does
not seem to influence the mean charging error for fixed ∆t and Emax

v .
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Figure 7.2: Mean charging cost gaps of EVS-SOC-LIN and EVS-SOC-GLIN with
P gridmax = 40n.

EVS-SOC-LIN and EVS-SOC-GLIN. Charging cost gaps between solutions of
formulation EVS-SOC-LIN and EVS-SOC-GLIN can be found in Figure 7.2. As before,
we only consider instances that were solved to optimality. For EVS-SOC-LIN we use
Emax-lb
v based on the concave Pmax

v , whereas for EVS-SOC-GLIN we use Emax-lb
v based

on Pmax
v with 5 segments. P gridmax is again set to 40n. For n ∈ {50, 100} and ∆t = 1

minute, all mean charging cost gaps are zero, therefore the respective bars are not shown
in the figure. Comparing the gaps of both formulations, one can notice that there are
no significant differences for varying n or ∆t values. The charging costs differ at most
0.35% for n = 20, ∆t = 1 minute. However, when it comes to runtime, both variants of
EVS-SOC-LIN are significantly faster than any EVS-SOC-GLIN variant, as we have seen
before in Table 7.1 and Table 7.3.

For the exact same setting as above, we also measure the charging error when scheduling
with the convex Emax-lb

v used in EVS-SOC-LIN and realizing the plan with the, in general,
non-convex Emax-lb

v used in EVS-SOC-GLIN. The mean charging error is shown in Figure
7.3. It can be said that for a fixed ∆t, the mean charging error does not significantly
change for a varying number of vehicles. However, for a fixed n, the mean charging error
grows with decreasing ∆t. An explanation for this observation might be that on instances
with smaller ∆t, solutions tend to be more precise in terms of the error induced by time
discretization. Therefore the difference between a convex and non-convex Emax

v function
could have more impact on solutions of instances with small ∆t values. Overall, the
mean charging cost difference does not exceed 1.5% SOC for any n and any ∆t and may
be neglected in practice.
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Figure 7.3: Mean charging error when scheduling with convex Emax-lb
v and realizing the

plan with non-convex Emax-lb
v using P gridmax = 40n.

Model Based Predictive Control Simulations. For the rolling horizon scenarios,
we conduct experiments using formulation EVS-SOC-LIN and EVS-SOC-GLIN. We use
Emax-lb
v and Emax-ub

v for both formulations, but for EVS-SOC-LIN the corresponding
concave approximation of Pmax

v , whereas for EVS-SOC-GLIN the five-segment approxima-
tion of Pmax

v . P gridmax is set to 40n. The results of the experiment are shown in Table 7.9.
Absolute charging cost differences are determined by subtracting the EVS-SOC-GLIN
objective from the EVS-SOC-LIN objective. Relative charging costs are based on the
absolute charging costs divided by the objective of EVS-SOC-GLIN.

Similar to before, for fixed n, ∆t, and Emax
v , the charging costs of EVS-SOC-LIN and

EVS-SOC-GLIN only differ marginally. The maximum gap is 0.27% for n = 100, ∆t = 5
minutes, and Emax-lb

v . As expected, the absolute charging cost difference increases with a
higher number of vehicles. The relative gaps, however, seem to remain in the same order
of magnitude for growing n.
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n ∆t (min) Emax
v

Charging Cost Difference
Absolute (cent) Relative (%)
Mean StdDev Mean StdDev

5 5 Emax-lb
v 0.97 0.73 0.22 0.16

5 5 Emax-ub
v 0.70 0.54 0.16 0.12

5 10 Emax-lb
v 0.91 0.60 0.20 0.12

5 10 Emax-ub
v 0.54 0.49 0.13 0.11

10 5 Emax-lb
v 1.75 0.99 0.20 0.11

10 5 Emax-ub
v 1.18 0.80 0.14 0.09

10 10 Emax-lb
v 1.78 0.77 0.20 0.08

10 10 Emax-ub
v 0.80 0.54 0.09 0.06

20 5 Emax-lb
v 3.78 1.34 0.21 0.08

20 5 Emax-ub
v 2.52 1.07 0.14 0.06

20 10 Emax-lb
v 3.80 1.03 0.21 0.06

20 10 Emax-ub
v 1.81 0.70 0.10 0.04

50 5 Emax-lb
v 9.14 2.42 0.20 0.05

50 5 Emax-ub
v 6.38 1.98 0.14 0.04

50 10 Emax-lb
v 9.39 2.64 0.21 0.06

50 10 Emax-ub
v 4.28 1.13 0.10 0.03

100 5 Emax-lb
v 24.42 2.40 0.27 0.03

100 5 Emax-ub
v 10.67 5.45 0.12 0.06

100 10 Emax-lb
v 19.96 4.82 0.22 0.05

100 10 Emax-ub
v 8.75 2.27 0.10 0.02

Table 7.9: Rolling Horizon charging cost difference for EVS-SOC-LIN vs EVS-SOC-GLIN
using Emax-lb

v and Emax-ub
v ; P gridmax = 40n.
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CHAPTER 8
Conclusions

In this study, we formally introduced the EVS-SOC problem in which we put particular
focus on dealing with vehicle-specific, state of charge dependent maximum charging power
limitations. We addressed the issue that the maximum charging power Pmax

v may be
regulated within a single time step by turning towards considering the maximum amount
of energy that can be charged in a time step. To this end, we proposed an exact derivation
Emax-ex
v as well as simpler lower and upper bounds Emax-lb

v and Emax-ub
v . One should

keep in mind that the gap between Emax-lb
v and Emax-ub

v decreases with smaller time
interval length ∆t. Once more, we recall that charging schedules generated with Emax-lb

v

are guaranteed to be realizable in practice, whereas additional schedules generated with
Emax-ub
v help us with the estimation of the charging cost differences and charging errors

induced by the time discretization.
Let us recapitulate the most important experimental results in the following. Four
different mixed-integer linear programming formulations, EVS-SOC-LIN, EVS-SOC-
GLIN, EVS-SOC-λ, and EVS-SOC-NET, were proposed. Although EVS-SOC-λ and
EVS-SOC-NET might scale well with the number of vehicles, they pose the problem of
selecting an appropriate energy unit ∆E and quickly run out of memory for smaller ∆E
values. At this point it should be stressed again that the size of ∆E must be chosen in
dependence of ∆t. For this reason, comparing the energy discretized models to other
formulations is difficult, since ∆E clearly has an impact on the runtime of EVS-SOC-
λ, and EVS-SOC-NET. Comparing the energy discretized formulations to each other,
EVS-SOC-NET has been shown to be a stronger model w.r.t. the LP relaxation and
also performs significantly better than EVS-SOC-λ in practice on almost all parameter
groups.
When taking a closer look at EVS-SOC-LIN, we realized that the static and the cutting
plane approach are both quite fast. Compared to the other proposed formulations,
EVS-SOC-LIN performs an order of magnitude faster in our experiments. Considering
the runtime difference between the static and the cutting plane approach, a substantial
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performance benefit of the latter can be observed. Moreover, we have seen that the
runtime of the cutting plane approach scales better with an increasing number of vehicles
or decreasing ∆t values. Its advantages become even more visible when the maximum
charging energy of a vehicle has to be exploited, i.e., a large number of cuts has to be
separated.
Concerning the static and branch-and-cut approach of EVS-SOC-GLIN, we found that
the branch-and-cut (B&C) variant performs better with a small number of vehicles. For
larger instances, however, the static variant is superior in terms of runtime. It also
shows performance advantages for larger grid capacity (P gridmax) values. Results of the
experiments indicate that the B&C approach is slower than the static variant when a
large number of cuts has to be separated. Nevertheless, there are a few instances where
B&C is faster. Additionally, we realized that B&C finds more feasible solutions in the
majority of the experiments. Overall, for both EVS-SOC-GLIN approaches, it is also
worth mentioning that fewer Pmax

v segments clearly reduced the runtime.
Different approximations of the maximum charging power (e.g. piecewise linear ap-
proximation or convex hull approximation), as well as the maximum charging energy
(Emax-lb

v , Emax-ub
v ) have been proposed. We studied the charging cost differences and the

charging errors induced by these approximations. Regarding the charging cost differences,
it turned out that there are only marginal charging cost differences between schedules
generated with Emax-lb

v /Emax-ub
v and schedules generated with Emax-ex

v . The number of
vehicles did not show any noticeable impact on the cost differences for this comparison.
Nevertheless, we observed that a smaller time interval length ∆t reduces the charging cost
differences. Additionally, it was shown that for our instances the approximation of Pmax

v

with 5 piecewise linear segments does not have any noticeable impact on the charging
costs. We also inspected the charging cost differences when generating schedules based
on the original Pmax

v function and its concave approximation. It turned out that the
charging cost differences are quite small, specifically the median charging cost differences
did not exceed 0.35% for any shown parameter group.
As already mentioned, approximating the maximum charging energy might lead to the
issue that vehicles do not reach their desired target state of charge. To measure these
effects, we generated charging schedules with Emax-ub

v and simulated the actual charging
with Emax-lb

v . Experimental results have shown that the mean charging error does not
exceed 4.5% SOC even for ∆t = 10 minutes. For this experiments, we could also detect
a correlation between the size of ∆t and the charging error, more specifically the mean
charging error decreases with smaller ∆t. In another simulation setting, we considered
the mean charging error when generating a charging schedule based on a concave Pmax

v

approximation and realizing it with the original Pmax
v . The mean charging error is rather

small, the mean deviation from the vehicle’s target state of charge are at most 1.5%.
To see whether the concave approximation of Pmax

v accumulates large charging cost differ-
ences in a whole day scenario, we conducted model based predictive control simulations
with the original Pmax

v and its concave approximation. The relative charging cost gaps
were even smaller with a maximum value 0.27% for 100 vehicles and ∆t = 5 minutes.
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In a bigger picture, where we utilize one of the formulations within a model based
predictive control strategy, we would discourage the usage of the energy discretized
models due to the aforementioned problems with ∆E. Instead, we recommend the usage
of EVS-SOC-LIN or EVS-SOC-GLIN together with a reasonably small ∆t value of few
minutes, in order to reduce errors introduced by time discretization. Depending on
whether EVS-SOC-GLIN is performant enough for a presumed problem setting (i.e., it
finds a charging schedule within the reoptimization interval) its usage is advised to reduce
the danger of significant charging cost differences and charging errors. It seems promising
to approximate Pmax

v with 5 to 10 piecewise linear segments to improve runtime in this
scenario.

In case EVS-SOC-GLIN does not find charging schedules in reasonable time, one might
fall back on EVS-SOC-LIN and its cutting plane approach to rapidly generate charging
schedules with concave Pmax

v functions. The introduced errors are insignificant as we
have seen.

In future work it would be interesting to investigate whether the runtime of EVS-
SOC-GLIN can be improved. On some instances, the branch-and-cut technique is slower
than the static variant. One could try to add different cuts to the model and thereby
speed up the solving process. Besides that, it might be possible to come up with a
different formulation than EVS-SOC-GLIN, that can also handle non-concave, piecewise
linear maximum charging power functions.

Concerning the computational hardness of EVS-SOC from a theoretical point of view,
it is an open question whether the problem is tractable for general maximum power
functions, i.e, whether it is in P or NP-hard. Especially the hardness of the problem if
Pmax
v is non-concave and piecewise linear is an important problem setting that should be

investigated.

Another aspect worth pursuing is the question whether known vehicle arrival times have
a significant impact on the charging costs of a rolling horizon schedule. In the presented
scenario, successively arriving vehicles are simulated, however they are not incorporated
into the schedule until arrival at the charging station. One may expect that priorly
known arrival times lead to better exploitation of cheap charging time slots and therefore
come along with cheaper total charging costs. Furthermore it would be interesting to
study the effect of the rescheduling interval on charging costs and charging errors in the
rolling horizon context.

One could also investigate a similar problem variant, where we allow discharging of
vehicles in order to enable mutual charging of EVs. This idea has already been mentioned
in [IL20], however its impact on the total charging costs has not yet been studied. One
could further extend the model by allowing the charging station to supply energy to the
electricity grid in exchange for monetary reward.

57





List of Figures

1.1 SMATRICS fast-charging station located in front of the Schönbrunn Palace,
Vienna. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Typical maximum charging power of an EV depending on the state of charge.
Charging data obtained from Fastned [Fas20]. . . . . . . . . . . . . . . . 3

3.1 Emax
v functions for a Hyundai Kona Elektro for ∆t ∈ {5, 10} minutes. . . 14

5.1 Different solutions for integral and continuous flow variables. Used arcs
are indicated in red and annotated with its corresponding flow value. We
abbreviate s = uv,0,yv,0 , t = u

v,tdep
v ,ydep

v
. . . . . . . . . . . . . . . . . . . . . 27

6.1 Maximum charging power functions Pmax
v for all considered vehicle types. 34

6.2 Comparison of Pmax
v curves with different number of segments for each vehicle

type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Schematic preprocessing flow chart of the charging data. . . . . . . . . . . 36
6.4 Optimal solution for an instance with n = 5, ∆t = 5 minutes, P gridmax ∈

{10n, 25n, 40n} using EVS-SOC-GLIN. . . . . . . . . . . . . . . . . . . . 38
6.5 Optimal solution for a rolling horizon instance with n = 10, ∆t = 5 minutes,

P gridmax ∈ {10n, 25n} using EVS-SOC-GLIN. . . . . . . . . . . . . . . . . 39

7.1 EVS-SOC-LIN runtime comparison for directly solving the LP problem versus
the cutting plane approach, corresponding to results of Table 7.1. . . . . . 43

7.2 Mean charging cost gaps of EVS-SOC-LIN and EVS-SOC-GLIN with P gridmax =
40n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.3 Mean charging error when scheduling with convex Emax-lb
v and realizing the

plan with non-convex Emax-lb
v using P gridmax = 40n. . . . . . . . . . . . . 53

59





List of Tables

6.1 Used EV types with battery capacity Cv, Pmax
v domain [smin

v , smax
v ] and the

number of linear pieces of Pmax
v . . . . . . . . . . . . . . . . . . . . . . . . 34

7.1 EVS-SOC-LIN runtime comparison for concave maximum power functions
and P gridmax = 25n: Solving the static MILP problem versus the cutting
plane approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.2 EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb
v

and Emax-ex
v based on the original Pmax

v functions and P gridmax = 10n. . . 44
7.3 EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb

v

and Emax-ex
v based on the original Pmax

v functions and P gridmax = 25n. . . 45
7.4 EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb

v

and Emax-ex
v based on the original Pmax

v functions and P gridmax = 40n. . . 46
7.5 EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb

v

and Emax-ub
v based on five-segment piecewise linear approximations of the

original Pmax
v functions, P gridmax = 25n. . . . . . . . . . . . . . . . . . . . 48

7.6 EVS-SOC-λ (λ) and EVS-SOC-NET (NET) with Emax-lb
v based on the original

Pmax
v , P gridmax = 25n, on the restricted set of the first ten instances per n

and ∆t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.7 Objective value comparison using EVS-SOC-GLIN and different Emax

v func-
tions based on the five-segment Pmax

v approximation and the original Pmax
v ;

P gridmax = 40n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.8 Charging error comparison when scheduling with Emax-ub

v using EVS-SOC-
GLIN and realizing the schedule with Emax-lb

v and Emax-ex
v . P gridmax = 40n. 51

7.9 Rolling Horizon charging cost difference for EVS-SOC-LIN vs EVS-SOC-GLIN
using Emax-lb

v and Emax-ub
v ; P gridmax = 40n. . . . . . . . . . . . . . . . . . 54

61





Bibliography

[BT97] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to linear organisation,
volume 6 of Athena scientific optimization and computation series. Athena
Scientific, 1997.

[CA13] E.F. Camacho and C.B. Alba. Model Predictive Control. Advanced Textbooks
in Control and Signal Processing. Springer London, 2013.

[CTL+12] Yijia Cao, Shengwei Tang, Canbing Li, Peng Zhang, Yi Tan, Zhikun Zhang,
and Junxiong Li. An optimized EV charging model considering TOU price
and SOC curve. IEEE Transactions on Smart Grid, 3(1):388–393, 2012.

[EBMS+18] Claude Ziad El-Bayeh, Imad Mougharbel, Maarouf Saad, Ambrish Chandra,
Dalal Asber, and Serge Lefebvre. Impact of considering variable battery
power profile of electric vehicles on the distribution network. In 2018 4th
International Conference on Renewable Energies for Developing Countries
(REDEC), pages 1–8, 2018.

[Fas20] Fastned. Fastned – Supersnel laden langs de snelweg en in de stad:
www.fastnedcharging.com, 2020.

[HHS10] Sekyung Han, Soohee Han, and Kaoru Sezaki. Development of an optimal
vehicle-to-grid aggregator for frequency regulation. IEEE Transactions on
Smart Grid, 1(1):65–72, 2010.

[HPL17] Jinil Han, Jongyoon Park, and Kyungsik Lee. Optimal scheduling for
electric vehicle charging under variable maximum charging power. Energies,
10(7):933, 2017.

[IL20] Takahiro Ishihara and Steffen Limmer. Optimizing the hyperparameters of a
mixed integer linear programming solver to speed up electric vehicle charging
control. In Pedro A. Castillo, Juan Luis Jiménez Laredo, and Francisco
Fernández de Vega, editors, Applications of Evolutionary Computation,
volume 12104 of LNCS, pages 37–53. springer, 2020.

[JV19] Charles F. Jekel and Gerhard Venter. pwlf: A Python Library for Fitting
1D Continuous Piecewise Linear Functions, 2019.

63



[JZ19] Wei Jiang and Yongqi Zhen. A real-time EV charging scheduling for parking
lots with PV system and energy store system. IEEE Access, 7:86184–86193,
2019.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Ray-
mond E. Miller and James W. Thatcher, editors, Proceedings of a symposium
on the Complexity of Computer Computations, held March 20-22, 1972, at
the IBM Thomas J. Watson Research Center, Yorktown Heights, New York,
USA, The IBM Research Symposia Series, pages 85–103. Plenum Press, New
York, 1972.

[KCE18] Majid Khonji, Sid Chi-Kin Chau, and Khaled M. Elbassioni. Approximation
scheduling algorithms for electric vehicle charging with discrete charging
options. In Hartmut Schmeck and Veit Hagenmeyer, editors, Proceedings
of the Ninth International Conference on Future Energy Systems, e-Energy
2018, pages 579–585. ACM, 2018.

[KS17] Nikita Korolko and Zafer Sahinoglu. Robust optimization of EV charging
schedules in unregulated electricity markets. IEEE Transactions on Smart
Grid, 8(1):149–157, 2017.

[KS20] Aastha Kapoor and Ankush Sharma. Optimal charge/discharge scheduling
of battery storage interconnected with residential PV system. IEEE Systems
Journal, 14(3):3825–3835, 2020.

[Lim20] Steffen Limmer. Electric vehicle charging control with consideration of
hierarchical objectives. Technical report, Honda Research Institute Europe,
2020.

[MCDM20] T. Morstyn, C. Crozier, M. Deakin, and M. D. McCulloch. Conic opti-
mization for electric vehicle station smart charging with battery voltage
constraints. IEEE Transactions on Transportation Electrification, 6(2):478–
487, 2020.

[MG15] Joy Chandra Mukherjee and Arobinda Gupta. A review of charge scheduling
of electric vehicles in smart grid. IEEE Syst. J., 9(4):1541–1553, 2015.

[MN19] Keisuke Mizuno and Toru Namerilkawa. Optimization of power flow and
scheduling for EV charging based on distributed control. In 12th Asian
Control Conference, ASCC 2019, Kitakyushu-shi, Japan, pages 627–631.
IEEE, 2019.

[PCdA14] Fabio Antonio V. Pinto, Luís Henrique M. K. Costa, and Marcelo Dias
de Amorini. Modeling spare capacity reuse in EV charging stations based on
the li-ion battery profile. In International Conference on Connected Vehicles
and Expo 2014, ICCVE, pages 92–98. IEEE, 2014.

64



[SB10] Olle Sundström and Carl Binding. Optimization methods to plan the charg-
ing of electric vehicle fleets. In Proceedings of the international conference
on control, communication and power engineering, pages 28–29. Citeseer,
2010.

[SHTT18] Bo Sun, Zhe Huang, Xiaoqi Tan, and Danny H. K. Tsang. Optimal scheduling
for electric vehicle charging with discrete charging levels in distribution grid.
IEEE Transactions on Smart Grid, 9(2):624–634, 2018.

[Wol98] L.A. Wolsey. Integer Programming. Wiley Series in Discrete Mathematics
and Optimization. Wiley, 1998.

65


	Kurzfassung
	Abstract
	Contents
	Introduction
	Aim of the Work
	Outline

	Methodological Approach
	Formal Problem Modeling
	Maximum Charging Energy Function
	Non-Linear Model

	Related Work
	Problem Solving Approaches
	Concave Maximum Energy Functions
	General Piecewise Linear Maximum Energy Functions
	Discretization of Energy

	Benchmark Instances
	Individual EVS-SOC Instances
	Rolling Horizon Benchmark Scenarios

	Experiments
	Runtimes
	Charging Cost Differences & Charging Errors

	Conclusions
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

