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Abstract. We present mixed integer programming approaches for op-
timally solving a combinatorial optimization problem arising in net-
work design with additional quality of service constraints. The rooted
delay- and delay-variation-constrained Steiner tree problem asks for a
cost-minimal Steiner tree satisfying delay-constraints from source to
terminals and a maximal variation-bound between particular terminal
path-delays. Our MIP models are based on multi-commodity-flows and
a layered graph transformation. For the latter model we propose some
new sets of valid inequalities and an efficient separation method. Pre-
sented experimental results indicate that our layered graph approaches
clearly outperform the flow-based model.

1 Introduction

We consider problems arising in client-server network design with additional
quality of service (QoS) constraints. In VoIP and video conferencing multicast
scenarios it is not only important that all participants receive the information
from the central server within a given time limit but also nearly at the same
time. Otherwise upcoming race conditions possibly result in misunderstandings
between the clients. In database replication scenarios it is necessary to guar-
antee the consistency of all mirroring databases. Thus, if updates have to be
deployed the time interval between the first and the last client database apply-
ing the changes should be within a predefined limit. Buffering information at
the server or intermediate nodes in the network shall be avoided as in general
it would increase the total delay and requires the repeated sending of the same
data, annihilating the advantage of distributing information over a multicast
tree. Finally, buffering at the clients is not always a choice since in some online
applications, e.g. gaming and stocktrading, competing users may benefit from
receiving information earlier than others and thus may circumvent the local data
retention. Beside these QoS constraints minimizing the total cost of used con-
nections is in most cases a desired criterium. These problems can be modeled as
rooted delay- and delay-variation-constrained Steiner tree (RDDVCST) problem.

More formally, we are given an undirected graph G = (V,E) with node set
V , a fixed root node s ∈ V , set R ⊆ V \ {s} of terminal or required nodes,
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set S = V \ (R ∪ {s}) of optional Steiner nodes, edge set E, a cost function
c : E → Z

+, a delay function d : E → Z
+, a delay-bound B ∈ Z

+ and a delay-
variation-bound D ∈ Z

+
0 . An optimal solution to the RDDVCST problem is a

Steiner tree T = (V T , ET ), s ∈ V T , R ⊂ V T ⊆ V, ET ⊆ E, with minimum
cost c(T ) =

∑
e∈ET ce, satisfying the delay-constraints

dTv =
∑

e∈PT (s,v)

de ≤ B, ∀v ∈ R, (1)

where PT (s, v) denotes the unique path from root s to node v in tree T , and
dTv the total delay of this path. We further limit the difference between the
path-delays to any two terminal nodes by the constraint

max
u,v∈R

|dTu − dTv | ≤ D. (2)

Here, we present two exact mixed integer programming (MIP) approaches: a
multi-commodity-flow (MCF) model and a delay-indexed formulation on a cor-
responding layered graph. The latter model is tightened by valid inequalities
based on well-known directed connection cuts and a new set of constraints uti-
lizing the delay-variation-bound. We further show that the MCF model is not
competitive regarding the practical computation times.

2 Previous and Related Work

Rouskas and Baldine [12] introduce a variant of the RDDVCST problem called
delay- and delay-variation-bounded multicast tree (DVBMT) problem. In it the
aim is to just find a feasible tree satisfying both the delay- and delay-variation-
constraints without considering edge costs at all. As even this decision version
is NP-hard, this also holds for the RDDVCST problem. To solve the DVBMT
problem the authors present a construction heuristic with relatively high run-
time complexity starting with a feasible path to one terminal node and itera-
tively connecting the rest of the terminals in feasible ways as long as possible
by computing k-shortest-delay-paths. Haberman and Rouskas [6] tackle the RD-
DVCST problem for the first time and present a heuristic similar to the one
in [12] but additionally considering edge costs. Lee et al. [9] provide another
construction heuristic: first, the shortest-delay-paths to all terminals are com-
bined to form a tree naturally satisfying the delay-constraint. Second, tree costs
are reduced possibly violating delay- and delay-variation-constraints. Not feasi-
bly connected terminals are then removed and re-added to the tree by low-delay
paths. Low et al. [11] present a two phase construction approach: in the first
phase a tree is obtained by only considering the costs and the delay-constraint.
If the delay-variation-constraint is violated in this solution the second phase
searches for alternative paths in a distributed way. Sheu et al. [15] improve the
worst-case time complexity of the heuristic in [12] for the DVBMT problem still
obtaining high quality solutions in the sense that the delay-variation is quite low.
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Fig. 1. (a) Example graph G with edge labels (ce, de) and root node 0. Squared nodes
denote terminal nodes and bold edges show the optimal solution for B = 4, D = 0,
with c(T ) = 7. (b) The optimal solution to model MCF has costs c(T ) = 5 but is
infeasible for the RDDVCST problem.

Zhang et al. [8] propose a simulated annealing approach for the RDDVCST prob-
lem using a path-based solution encoding scheme and a path-exchange neigh-
borhood only allowing feasible moves.

To the best of our knowledge only one MIP formulation exists so far for an-
other problem variant in which the delay-variation is minimized: Sheu et al. [16]
present an MCF formulation, which we revise and adapt to the RDDVCST
problem in Section 3. Omitting the delay-variation-constraint yields the more
prominent rooted delay-constrained Steiner tree (RDCST) problem which has
been tackled among others by us in [14]. We proposed a transformation to a
layered graph allowing a strong formulation. However, we argue that the lay-
ered graph can become very large due to its dependency on the delay-bound B,
further possibly resulting in a computationally intractable MIP model. There-
fore, we suggested a so-called adaptive layers framework (ALF) in [14] which
dynamically approximates the structure of the full layered graph and iteratively
computes lower and upper bounds to an optimal solution. Unfortunately, ALF
cannot be applied in a straight-forward way to the RDDVCST problem.

3 Multi-commodity-Flow Formulation

We define a directed graph G′ = (V,A) originating from graph G with arc set
A = {(s, v) | {s, v} ∈ E} ∪ {(u, v), (v, u) | {u, v} ∈ E, u, v 	= s}. Arc delay and
cost values are adopted from the corresponding edges. Following Gouveia [3], an
MCF model for our problem on a directed graph provides the same strength and
needs in general less constraints than on the corresponding undirected graph.
Because of this and since a solution to the RDDVCST problem can be modeled
as an equivalent Steiner arborescence directed out of root node s, we use G′ as
base graph in the rest of the article. Since preprocessing graph G to reduce the
problem size is important to decrease runtimes, we eliminate infeasible edges as
described in [13,14] for the RDCST problem. However, it is not feasible here
to remove suboptimal edges as shown in [13]: In some cases we may have to
choose expensive edges with high delays to satisfy the delay-variation-constraint.
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Nevertheless, we are able to utilize the delay-variation-bound to further reduce
graph G by removing all edges connecting two terminal nodes with de > D since
they clearly cannot appear in any feasible solution. Additionally, in graph G′ we
can safely remove all arcs (u, v) ∈ A with u ∈ R and duv > D.

We use binary decision variables xuv, ∀(u, v) ∈ A. Furthermore, real-valued
flow variables fw

uv, ∀(u, v) ∈ A, ∀w ∈ R, denote the flow on arc (u, v) from root
s to terminal w. The minimal path-delay is described by variable δmin. Model
MCF is defined as follows:

min
∑

(u,v)∈A

cuvxuv (3)

s.t.
∑

(u,v)∈A

fw
uv −

∑

(v,u)∈A

fw
vu =

⎧
⎨

⎩

−1 if v = s
1 if v = w
0 else

∀w ∈ R (4)

δmin ≤
∑

(u,v)∈A

duvf
w
uv ≤ δmin + D ∀w ∈ R (5)

δmin ∈ [1, B −D] (6)

0 ≤ fw
uv ≤ xuv ∀(u, v) ∈ A, ∀w ∈ R (7)

xuv ∈ {0, 1} ∀(u, v) ∈ A (8)

Classical flow constraints (4) describe the flow of one commodity for each terminal
w ∈ R originating in root s, possibly passing any nodes in V \ {s, w}, and ending in
targetnodew, respectively.Constraints (5)addupthedelaysonthepathtoa termi-
nal and define lower and upper delay-bounds over all required nodes respecting the
delay-variationD. Since variable δmin is restricted to [1, B−D] the delay-boundB
is satisfied implicitly. Finally, linking constraints (7) connect flow and arc variables.

Providing edge costs are strictly positive, objective (3) togetherwith constraints
(4), (7) and (8) describe optimal Steiner trees, cf. [3]. However, by adding con-
straints (5) and (6) detached cycles consisting of Steiner nodes may occur in an
optimal solution to modelMCF , see Fig. 1: arcs (0, 1) and (1, 2) connect both ter-
minal nodes to the root within the given delay-bound B = 4 but result in a delay-
variation ofD = 3. Instead of using optimal arcs (0, 1) and (0, 2) it is cheaper and
feasible in model MCF to add a circular flow for terminal 1 on the detached cycle
(3, 4, 5), so f1

01 = f1
34 = f1

45 = f1
53 = 1and f2

01 = f2
12 = 1.Due to constraints (5) the

“path-delay” to node 1 is now increased to 4 and thusD = 0. To prevent infeasible
solutions we guarantee root connectivity for all used Steiner nodes. Therefore, we
add sets of flow variables and constraints for each Steiner node. But only if there is
an incoming arc to a Steiner node the corresponding flow is activated. This finally
feasible modelMCF ′ extendsMCF by:

∑

(u,v)∈A

fw
uv −

∑

(v,u)∈A

fw
vu =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
∑

(u,w)∈A

xuw if v = s

∑

(u,w)∈A

xuw if v = w

0 else

∀w ∈ S (9)

0 ≤ fw
uv ≤ xuv ∀(u, v) ∈ A, ∀w ∈ S (10)
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Fig. 2. (a) Example graph G with edge labels (ce, de) and root node 0. Squared nodes
denote terminal nodes and bold arcs show the optimal solution for B = 4, D = 1.
Corresponding layered digraph GL before (b) and after (c) preprocessing (arc costs are
omitted).

Flow constraints (9) for Steiner nodes are similar to the counterparts (4) for
terminal nodes but extended by in-degree terms to optionally enable or disable
the corresponding flows.

4 Layered Graph Transformation

Similarly to [5,14] we transform graph G′ = (V,A) to a layered digraph GL =
(VL, AL) with node set VL = {s} ∪ {vl | v ∈ V \ {s}, 1 ≤ l ≤ B}. Thus, we
introduce copies of all nodes except the root for each possible delay value. Arc
set AL = As

L ∪ Ag
L consists of root arcs As

L = {(s, vdsv) | (s, v) ∈ A} and general
arcs Ag

L = {(ul, vl+duv ) | (u, v) ∈ A, u, v 	= s, 1 ≤ l ≤ B − duv}. Arc delays duv
are not needed in GL since they are implicitly contained in the layered structure:
node vl in GL represents node v in G′ with dTv = l in a solution T . Arc costs in
As

L and Ag
L are the same as the costs of corresponding arcs in A.

We want to find an arborescence TL = (V T
L , AT

L ) in GL with V T
L ⊆ VL, AT

L ⊆
AL, rooted in s ∈ V T

L , including exactly one node vl ∈ V T
L for each terminal

node v ∈ R and at most one node ul ∈ V T
L for each Steiner node u ∈ S,

having minimal costs c(TL) =
∑

(uk,vl)∈AT
L
cuv and satisfying the transformed

delay-variation-constraint

max
uk,vl∈V T

L , u,v∈R
|k − l| ≤ D. (11)

An optimal arborescence T ∗
L in GL as defined above corresponds to an op-

timal Steiner arborescence T ∗ for the RDDVCST problem on G′, moreover
c(T ∗

L) = c(T ∗). A solution T ∗ in G is obtained from an arborescence T ∗
L by

simply mapping all nodes vl ∈ V T
L \ {s} to v and arcs to edges correspondingly.
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Due to its possibly huge size preprocessing in GL is even more important than
in G. The following reduction steps are repeated as long as GL is modified by
one of them:

1. A node vl ∈ VL, v ∈ R, is removed if ∃u ∈ R \ {v} with uk /∈ VL, ∀k ∈
{l−D, l +D}, since vl cannot appear in any feasible solution.

2. Let deg−(uk) and deg+(uk) denote the in- and outdegree of node uk, respec-
tively. To partly prevent cycles of length two in G′ an arc (uk, vl) ∈ AL is
removed if deg−(uk) = 1∧(vm, uk) ∈ AL or v ∈ S∧deg+(vl) = 1∧(vl, um) ∈
AL.

3. If node vl ∈ VL \ {s} has no incoming arcs it cannot be reached from s and
therefore is removed.

4. If node vl ∈ VL \ {s}, v ∈ S, has no outgoing arcs it is removed since a
Steiner node cannot be a leaf in an optimal solution.

These preprocessing rules are able to reduce the number of nodes and arcs sig-
nificantly especially for instances with a broad range of delay values. Instances
with a variation-bound too tight to allow a feasible solution are usually hard to
identify. However, our preprocessing procedure is in many of those cases able to
detect infeasibility by removing the whole set VL. Further reduction methods for
Steiner trees can be found in [7,10]. See Fig. 2 for an example of layered graph
transformation, preprocessing, and solution correspondance.

5 Layered Graph Approaches

The model presented in [14] solves the problem variant without the delay-
variation-constraint on layered graphGL. Here, we revise and extend it by adding
an additional set of variables and considering the bounded delay-variation. New
continuous variables ylv, ∀vl ∈ VL \{s}, and xk

uv, ∀(uk, vl) ∈ AL, represent nodes
and arcs in layered graph GL, respectively. Model LAY is defined as follows:

min
∑

(u,v)∈A

cuvxuv (12)

s.t.
∑

vl∈VL

yl
v = 1 ∀v ∈ R (13)

∑

vl∈VL

yl
v ≤ 1 ∀v ∈ S (14)

∑

(uk,vl)∈AL

xk
uv = yl

v ∀vl ∈ VL \ {s} (15)

∑

(uj ,vk)∈AL,u �=w

xj
uv ≥ xk

vw ∀(vk, wl) ∈ Ag
L (16)

x0
sv = xsv ∀(s, v) ∈ A (17)

∑

(uk,vl)∈AL

xk
uv = xuv ∀(u, v) ∈ A, u �= s (18)

δmin ≤
B∑

l=1

l · yl
v ≤ δmin + D ∀v ∈ R (19)
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δmin ∈ [1, B −D] (20)

xk
uv ≥ 0 ∀(uk, vl) ∈ AL (21)

yl
v ≥ 0 ∀vl ∈ VL \ {s} (22)

xuv ∈ {0, 1} ∀(u, v) ∈ A (23)

Constraints (13) and (14) state that from the set of layered graph nodes corre-
sponding to one particular original node exactly one has to be chosen for required
nodes and at most one for Steiner nodes, respectively. Indegree constraints (15)
in GL restrict the number of incoming arcs to a layered graph node vl in de-
pendency of ylv to at most one. Since GL is acyclic constraints (16) are enough
to ensure connectivity. Equalities (17) and (18) link layered graph arcs to origi-
nal arcs. Delay-variation-bound D is guaranteed by (19) and (20). In principle,
variables xuv and ylv are redundant since they can be substituted by Boolean
layered graph arc variables xk

uv using equalities (15), (17) and (18). However,
model LAY is better readable by including them and branching on xuv and
Boolean ylv variables turned out to be more efficient in practice than branching
on variables xk

uv. In fact, branching on original arcs usually is more balanced
since setting xl

uv = 1 for one particular layered graph arc in general is a stronger
constraint on the set of feasible solutions than setting xuv = 1.

6 Valid Inequalities

The following sets of valid inequalities are not necessary for the feasibility of
model LAY but are useful to strengthen it w.r.t. its linear programming (LP)
relaxation denoted by LAYLP.

6.1 Directed Connection Inequalities

The following constraints describe the well-known directed connection inequali-
ties defined on original graph G′:

∑

(u,v)∈A, u∈W, v/∈W

xuv ≥ 1 ∀W ⊂ V, s ∈ W, (V \W ) ∩R 	= ∅ (24)

Let LAY dc denote the variant of model LAY with those inequalities included.
Constraint (24) with W = {s} ensures at least one arc going out of the root, and
a subset of the subtour elimination constraints (equivalent to constraints (24))
with two-node-sets prevents cycles of length two:

∑

(s,v)∈A

xsv ≥ 1 and xuv + xvu ≤ 1 ∀{u, v} ∈ E (25)

Model LAY extended just by constraints (25) is denoted LAY r2.
A stronger variant of (24) can be defined on layered graph GL. For this pur-

pose, we extend GL by additional terminal nodes and arcs. Let G′
L = (V ′

L, A
′
L)
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Fig. 3. All three examples are feasible for LAYLP (arc labels denote variable values of
the LP solution, gray arcs mean xk

uv = 0). (a) The solution violates inequality (24)
with W = {0, 1} and root-constraint (25). (b) Inequality (26) with WL = {0, 11, 13, 1̂}
is violated. (c) The solution with D = 1 is feasible for constraints (27) but not for (28)–
(30) since y1

1 + y3
2 + y4

2 = 1.25 > 1 or y1
1 + y3

2 + y5
3 = 1.5 > 1.

be the graph with nodes V ′
L = VL ∪ RL, RL = {v̂ | v ∈ R} and arc set

A′
L = AL ∪ Â, Â = {(vl, v̂) | vl ∈ VL, v̂ ∈ RL, v ∈ R}. We can now write

∑

(uk,vl)∈A′
L, uk∈WL, vl /∈WL

xk
uv ≥ 1 ∀WL ⊂ V ′

L, s ∈ WL, (V ′
L \WL) ∩RL 	= ∅.

(26)
We denote model LAY augmented by constraints (26) by LAY ldc. It can be
easily seen that inequalities (26) include (24). Fig. 3(a) and 3(b) show examples
for strengthening model LAY LP.

Inequalities (25) are included in the model a priori while (24) and (26) need
to be separated dynamically during branch-and-cut. Violated inequalities are
found via maximum flows (FIFO push-relabel method [2]) in a support graph
using the current optimal LP relaxation values as arc capacities. Capacities for
arcs Â are set to 1.

6.2 Delay-Variation Inequalities

Let Lv = {l | vl ∈ VL} ⊆ {1, ..., B} denote the set of possible layers in GL for a
node v ∈ V . We know that a terminal node uk ∈ VL, u ∈ R, on layer k ∈ Lu can
only be in a feasible solution if no other terminal node vl ∈ VL, v ∈ R, on layer
l ∈ Lv outside the interval [k −D, k +D] is included. This leads to inequalities

yku + ylv ≤ 1 ∀u, v ∈ R, ∀k ∈ Lu, ∀l ∈ Lv, |k − l| > D. (27)
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The number of inequalities (27) is in O(|R|2 · B2). We can aggregate them to
form stronger constraints

yku +
∑

l∈Lv\{k−D,...,k+D}
ylv ≤ 1 ∀u, v ∈ R, ∀k ∈ Lu. (28)

The number of these is in O(|R|2 ·B). Now we relate arbitrary subsets of layers
of two terminal nodes leading to a violation of the delay-variation-constraint:

∑

l∈L′
u

ylu +
∑

l∈L′
v

ylv ≤ 1 ∀u, v ∈ R, ∀L′
u ⊆ Lu, ∀L′

v ⊆ Lv with

|lu − lv| > D, ∀lu ∈ L′
u, ∀lv ∈ L′

v (29)

In the most general variant we consider infeasible combinations of arbitrary
subsets of layers of an arbitrary subset of terminal nodes:

∑

v∈R′

∑

l∈L′
v

ylv ≤ 1 ∀R′ ⊆ R, ∀v ∈ R′, ∀L′
v ⊆ Lv, with

|lu − lv| > D, ∀u, v ∈ R′, ∀lu ∈ L′
u, ∀lv ∈ L′

v (30)

Note that due to the inequalities’ conditions w.r.t. R′, v, and L′
v, the sum on

the left side can include at most B y-variables, but the number of constraints
can be exponential. We denote model LAY with constraints (30) by LAY dv. In
Fig. 3(c) an example is given where constraints (28)–(30) tighten LAY LP.

To find violated inequalities (30) we consider an optimal LP solution S and
build a support graph GS = (VS , AS) with node set VS = {s} ∪ {vl ∈ VL | v ∈
R, ylv > 0} and arcsAS = {(s, vl) | vl ∈ VS\{s}}∪{(vk, vl) | vk, vl ∈ VS\{s}, k <
l, �vi ∈ VS : k < i < l} ∪ {(uk, vl) | uk, vl ∈ VS \ {s}, u 	= v, k < l, l− k > D}.
Furthermore, we assign arc costs ca = ylv, ∀a = (uk, vl) ∈ AS .

Lemma 1. Given an LP solution S and the corresponding graph GS, each path
P ⊆ AS with source node s and costs c(P ) > 1 corresponds to an inequality (30)
IPS by solution S and vice versa.

Proof. Assume a path P in GS starting in s with costs c(P ) > 1 is given. By
relating arc a = (uk, vl) to variable ylv the sum of arc costs of P corresponds to a
sum of ylv-variable values since ca = ylv. Due to the definition of GS P can only
consist of arcs (uk, vl) ∈ AS with k < l and either u = v or u 	= v ∧ l − k > D.
Therefore the sum of variables ylv corresponding to a path P forms the left side
of a feasible inequality (30) and since c(P ) > 1 we obtain a violated inequality
IPS for solution S. Now, let IS be a violated inequality (30) for solution S. First
we remove all variables with ylv = 0 and sort the remaining sum of variables ylv
by ascending layers l. Due to the constraint definition no two variables can have
the same layer l and if we consider two consecutive variables yku and ylv then
either u = v or u 	= v ∧ l − k > D. Furthermore, there has to be either an arc
(uk, vl) ∈ AS or in case of u = v possibly a path P ′ = (uk, . . . , ul) including
other nodes ui with k < i < l. So the series of variables in IS can again be
related to a path P in GS starting in s and since the sum of variable values is
larger than 1 the costs of path P are at least that high. ��
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Following Lemma 1 we now search for the longest paths from s to at most |R|
leaves in GS . The single-source longest path problem can here be solved in linear
time since GS is a directed acyclic graph, cf. [1]. Obviously, all inequalities IP

′
S

corresponding to sub-paths P ′ ⊂ P with c(P ′) > 1 are dominated by IPS . To
further strengthen inequality IPS we try to feasibly add as many summands as
possible, not only the node variables which are positive in solution S. Otherwise
similar violated inequalities are possibly found in further iterations. So if we
consider an arc (vk, vl) ∈ AS on a violating path P connecting two layered
graph nodes corresponding to the same original node we additionally add all
variables yiv, ∀vi ∈ VL, k < i < l, to IPS . Using this separation routine we
are able to guarantee that the “most violated” inequalities are found hopefully
resulting in a large increase of the optimal LP relaxation value.

7 Experimental Results

We implemented all models using IBM CPLEX 12.3 as MIP solver with default
settings. Each run has been performed on a single core of an Intel Xeon E5540
processor with 2.53 GHz, and an absolute limit of 10 000 CPU-seconds has been
applied to each experiment. We tested our models on instances originally pro-
posed by Gouveia et al. [4] for the spanning tree variant of the RDCST problem,
focusing on the most difficult subset E with Euclidean costs and the root s placed
near the border. Each instance set consists of five complete input graphs with 21
or 41 nodes and a specific range of possible discrete edge delay values, e.g. E21-10
denotes the set of instances where |V | = 21 and de ∈ {1, . . . , 10}, ∀e ∈ E. We set
R = {0, . . . , �|V |/2�}, D ∈ {1, 3} for sets E21-10 and E41-10, and D ∈ {10, 30}
for set E21-100. We applied all mentioned preprocessing methods for graph re-
duction prior to solving. It turned out to be beneficial to declare flow variables
fw
uv and layered graph variables ylv and xk

uv integer since CPLEX can make use
of it both to reduce the model size in the presolving phase and to speed up the
solving process by additionally branching on these variables.

Test results comparing different model variants are shown in Table 1 where
dashes denote either a 100% gap or reached time limit. In general, the obtained
integrality gaps even if adding all valid inequalities, are much higher than those
of the corresponding RDCST problem without the delay-variation-constraint,
cf. [14]. This documents that the delay-variation-constraint indeed imposes a
big additional challenge. It can clearly be seen that while the LAY variants
performed at least reasonably well, model MCF ′ is not competitive in most
cases. Only for the small E21-100 instances MCF ′ can sometimes outperform
the other methods since here the number of nodes is quite low resulting in
a manageable number of flow variables and the delay-bounds are rather high
which is disadvantageous for the layered graph approaches.

Note that none of the polyhedrons of MCF ′
LP and LAY LP without additional

valid inequalities dominates the other since there are cases where the optimal
LP values of the first model are better than those of the second and vice versa.
In case of small delay-bounds layered graph models mostly outperform other
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Table 1. Comparison of models (1: MCF ′, 2: LAY r2, 3: LAY r2/dc, 4: LAY r2/ldc, 5:
LAY r2/dv, 6: LAY r2/dv/dc, 7: LAY r2/dv/ldc) on test sets from [4] (B: delay-bound,
D: delay-variation, #opt: number of optimal solutions (out of 5), gap: average gap in
percent, t: median CPU time in seconds; best results are printed bold)

#opt gap [%] t [s]

Set B D 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

E21-10 10 1 5 5 5 5 5 5 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2599 1 1 1 1 1 1
3 5 5 5 5 5 5 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1882 2 2 4 2 2 2

15 1 0 5 5 5 5 5 5 23.4 0.0 0.0 0.0 0.0 0.0 0.0 - 6 13 126 13 11 73
3 1 5 5 5 5 5 5 14.8 0.0 0.0 0.0 0.0 0.0 0.0 - 18 25 346 16 21 117

20 1 0 5 5 2 5 5 3 31.2 0.0 0.0 7.3 0.0 0.0 4.1 - 55 85 - 210 181 1077
3 0 5 5 1 5 5 4 18.9 0.0 0.0 14.8 0.0 0.0 2.3 - 284 870 - 220 243 7381

25 1 0 5 5 0 4 3 1 27.9 0.0 0.0 19.1 1.5 4.8 14.2 - 347 434 - 4592 2330 -
3 0 5 5 1 5 5 1 17.2 0.0 0.0 46.2 0.0 0.0 12.3 - 787 1730 - 2934 3115 -

E41-10 10 1 0 5 5 5 5 5 5 - 0.0 0.0 0.0 0.0 0.0 0.0 - 26 43 414 26 33 79
3 0 5 5 4 5 5 5 62.1 0.0 0.0 0.5 0.0 0.0 0.0 - 116 191 779 43 63 223

15 1 0 4 0 0 1 0 0 - 2.7 15.6 24.3 8.7 10.3 24.4 - 3631 - - - - -
3 0 2 0 0 4 2 0 - 8.5 15.1 30.2 0.8 4.3 17.2 - - - - 6707 - -

20 1 0 0 0 0 0 0 0 - 27.5 26.1 88.2 34.9 32.7 56.0 - - - - - - -
3 0 0 0 0 0 0 0 - 28.3 27.6 71.2 22.8 18.8 51.4 - - - - - - -

25 1 0 0 0 0 0 0 0 - 35.3 35.2 - 52.5 68.4 - - - - - - - -
3 0 0 0 0 0 0 0 - 35.3 33.9 - 27.6 26.8 71.1 - - - - - - -

E21-100 100 10 0 5 5 4 5 5 5 19.8 0.0 0.0 0.8 0.0 0.0 0.0 - 42 76 1489 46 49 168
30 4 5 5 5 5 5 5 1.7 0.0 0.0 0.0 0.0 0.0 0.0 2733 89 193 349 79 36 65

150 10 0 4 2 0 1 0 0 45.5 2.9 10.0 53.9 23.6 20.4 67.9 - 2152 - - - - -
30 1 5 4 1 4 5 1 13.9 0.0 0.6 27.1 1.6 0.0 8.6 - 3405 2034 - 8009 7673 -

200 10 0 1 0 0 0 0 0 37.3 22.5 33.5 91.0 59.9 76.4 - - - - - - - -
30 2 1 1 0 1 1 1 8.4 17.2 15.8 46.0 17.5 17.8 63.2 - - - - - - -

250 10 0 0 0 0 0 0 0 48.0 62.6 66.0 - - - - - - - - - - -
30 1 1 1 1 1 1 1 22.0 26.0 26.0 80.0 37.6 37.3 80.0 - - - - - - -

modeling approaches, cf. [4,5,14]. However, we can also notice the disadvantage
of such models that increasing delay-bounds result in higher runtimes. When
comparing different layered graph models, LAY r2 and LAY r2/dv performed best.
Obviously, directed connection cuts are rarely in graph G′ and never in GL

helpful to improve computation times. Reasons for this are both the higher
complexity of the separation problem compared to the fast method for finding
violated inequalities (30) and the fact that in most cases the number of added
connection cuts is rather high leading to slow LP relaxation computations.

8 Conclusion and Future Work

We tackled the rooted delay- and delay-variation-constrained Steiner tree prob-
lem by using two different MIP models based on multi-commodity-flows and a
layered graph transformation. Furthermore, we proposed sets of valid inequalities
for the second model particularly targeting the bounding of the delay-variation
and provided an efficient separation method. Experimental results clearly show
the superiority of layered graph models with or without delay-variation cuts.
Nevertheless, the generally still relatively large integrality gaps of the LAY mod-
els ask for investigating also other modeling approaches, e.g. path models. New
insights can be achieved by comparing the polyhedra of our models in detail,
possibly leading to further strengthening inequalities. For addressing the poor



236 M. Ruthmair and G.R. Raidl

scalability of the LAY models w.r.t. larger delay-bounds, an appropriate exten-
sion of the adaptive layers framework [14] seems to be highly promising.
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