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Abstract. The rooted delay-constrained minimum spanning tree prob-
lem is an NP-hard combinatorial optimization problem arising for exam-
ple in the design of centralized broadcasting networks where quality of
service constraints are of concern. We present a construction heuristic
based on Kruskal’s algorithm for finding a minimum cost spanning tree
which eliminates some drawbacks of existing heuristic methods. To im-
prove the solution we introduce a greedy randomized adaptive search pro-
cedure (GRASP) and a variable neighborhood descent (VND) using two
different neighborhood structures. Experimental results indicate that our
approach produces solutions of better quality in shorter runtime when
having strict delay-bounds compared to an existing centralized construc-
tion method based on Prim’s algorithm. Especially when testing on Eu-
clidian instances our Kruskal-based heuristic outperforms the Prim-based
approach in all scenarios. Moreover our construction heuristic seems to
be a better starting point for subsequent improvement methods.

1 Introduction

When designing a network with a single central server broadcasting information
to all the participants of the network some applications, e.g. video conferences,
require a limitation of the maximal delay from the server to each client. Beside
this delay-constraint minimizing the total cost of establishing the network is in
most cases an important design criterium. In another example we consider a
package shipment organization with a central depot guaranteeing its customers
a delivery within a specified time horizon. Naturally the organization wants to
minimize the transportation costs but at the same time has to hold its promise
of being in time.

These network design problems can be modeled using a combinatorial opti-
mization problem called rooted delay-constrained minimum spanning tree (RD-
CMST) problem. The objective is to find a minimum cost spanning tree of a given
graph with the additional constraint that the sum of delays along the paths from
a specified root node to any other node must not exceed a given delay-bound.



More formally, we are given a graph G = (V,E) with a set of n nodes V , a
set of m edges E, a cost function c : E → R

+, a delay function d : E → R
+,

a fixed root node s ∈ V and a delay-bound B > 0. An optimal solution to
the RDCMST problem is a spanning tree T = (V,E′), E′ ⊆ E, with minimum
cost c(T ) =

∑
e∈E′ c(e), satisfying the constraints:

∑
e∈P (s,v) d(e) ≤ B, ∀v ∈ V .

P (s, v) denotes the unique path from the specified root node s to a node v ∈ V .
The RDCMST problem is NP-hard because a special case called hop-con-

strained minimum spanning tree problem, where d(e) = 1, ∀e ∈ E, is shown to
be NP-hard in [1], so all more general variants of this problem are NP-hard
too.

2 Previous Work

Exact approaches to the RDCMST problem have been examined by Gouveia et
al. in [2], but these methods can only solve small graphs with significantly less
than 100 nodes to proven optimality in reasonable time if considering complete
instances.

A heuristic approach was presented by Salama et al. in [3], where a construc-
tion method based on Prim’s algorithm to find a minimum spanning tree [4] is
described. This Prim-based heuristic starts from the root node and iteratively
connects the node which can be reached in the cheapest way without violating
the delay-constraint. If at some point no node can be connected anymore, the de-
lays in the existing tree are reduced by replacing edges. These steps are repeated
until a feasible RDCMST is obtained. A second phase improves the solution by
local search using the edge-exchange neighborhood structure.

There are many recent publications dedicated to the rooted delay-constrained
minimum Steiner tree problem which is a generalization of the RDCMST prob-
lem. In this variant only a subset of the nodes has to be reached within the given
delay-bound, the other nodes can optionally be used as intermediate (Steiner)
nodes. Several metaheuristics have been applied to this variant, e.g. a tabu-search
in [5], a GRASP in [6] and a path-relinking approach in [7].

3 Kruskal-Based Construction Heuristic

A general problem of the Prim-based heuristic especially on Euclidian instances
is the fact that the nodes in the close surrounding of the root node are connected
rather cheaply, but at the same time delay is wasted, and so the distant nodes
can later only be linked by many, often expensive edges, see Fig. 1. The stricter
the delay-bound the more this drawback will affect the costs negatively. This
fact led us to a more de-centralized approach by applying the idea of Kruskal’s
minimum spanning tree algorithm [8] to the RDCMST problem.

3.1 Stage 1: Merging components

In the beginning of stage one of the construction heuristic all edges are sorted
by ascending costs and then iteratively added to the solution preventing cycles



(a) Prim-based (b) Kruskal-based

Fig. 1. Prim-based heuristic (a) compared to Kruskal-based heuristic (b).

until a feasible spanning tree is formed. In other words, components initially
consisting of single nodes are merged by adding edges to result in one connected
tree. The challenge is to maintain the feasibility of the partial solutions, i.e.
to satisfy the delay-constraint to the root node throughout the whole merging
process. In the Prim-based approach in [3] checking the feasibility of adding
an edge to the existing tree naturally runs in constant time whereas our de-
centralized algorithm needs more effort to achieve this. We have to store and
update additional information for each node v ∈ V :

– the path-delay ds(v) :=
∑

e∈P (s,v) d(e) from the root node to node v

– the maximum delay dmax(v) to any other node in the same component
– the predecessor pred(v) on the path P (s, v), initialized with node v

To initialize ds(v) Dijkstra’s algorithm [9] calculates the path P (s, v), ∀ v ∈ V

with the shortest path-delay. The paths themselves are not added to the solution,
we just keep them in mind to always have a possible feasible connection to the
root node available. This fallback paths are essential for stage two of the heuristic
(see Section 3.2).

At this time we are able to decide if a solution exists or not because if
the shortest-delay-path exceeds the specified delay-bound for any node then we
cannot build a feasible tree and therefore stop here.

Initially we have a set of components C = {C1, ..., Ck}, k = n. Everytime
we add an edge to the solution two components are merged and thereby k is
decreased by 1 until set C only contains one component. For each component Ci

we specify one node vCi
which is nearest to the root node – it can be seen as the

local root node of the subtree Ci. As mentioned above the path P (s, vCi
), vCi

6=
s, is not part of the tree, we just use it for testing the feasibility of a partial
solution.

Now we start iterating over the sorted edge-list. Let e = (u, v) ∈ E be the
next edge on the list and Cu ∋ u, Cv ∋ v be the components incident to e. The
decision of adding e to the tree and thereby merging the two components Cu

and Cv is based upon fulfilling at least one of the following two conditions:

1. ds(u) + d(e) + dmax(v) ≤ B

2. ds(v) + d(e) + dmax(u) ≤ B

So if it is allowed to add edge e to the solution the node information of all nodes
in the newely created component Cuv has to be updated. First of all we have



to specify the new vCuv
. There are many possibilities of choosing this node with

the only constraint that ds(vCuv
) plus the delay of path P (vCuv

, w) has to satisfy
the delay-bound for all w ∈ Cuv. A very simple and fast method turned out to
be the most successful one: if only condition 1 is met then vCuv

= vCu
, when

condition 2 holds, we choose vCv
, and if both conditions are satisfied we prefer

the vCi
where the corresponding inequality has a larger gap to the delay-bound.

Beginning from this chosen local root node for component Cuv we perform
a depth-first search to modify pred(w) and ds(w), ∀ w ∈ Cuv using ds(vCuv

) as
the starting delay. The maximal extents dmax(w) can be determined in linear
time profiting from the tree structure of the component.

The iterations stop if the solution only consists of one component, which
means that it is already feasible, or there are more than one components but no
more edges left in the list. The latter case is handled in stage two.

To conclude, stage one consists of sorting all edges of the graph in O(m log m)
time, testing each one for feasibility in constant time and updating the node
information in O(n) time if an edge is added which can happen at most n − 1
times due to the properties of a tree. So the total runtime is in O(m log m+n2).

3.2 Stage 2: Extension to a feasible solution

At the end of stage one the graph needs not to be connected, so in stage two the
remaining subtrees are attached to the component which contains the root node
by adding the shortest-delay-path P (s, vCi

), ∀ Ci ∈ C. At least one of the edges
of a path P (s, vCi

) creates a cycle when adding it to the solution, otherwise
all edges of P (s, vCi

) would have been included in stage one. So the main task
in this stage is to dissolve resulting cycles to form a tree without violating the
delay-constraint.

Paths are added by backtracking the shortest-delay-path starting from node
vCi

until a node u with minimal delay ds(u) is reached. We can be sure that path
P (s, u) is already the shortest-delay-path and do not have to go further – in the
worst case however we end up at the root node. Now we add the missing edges
along path P (u, vCi

) until we are back at vCi
. Cycles can occur if edge e = (v, w)

is added and pred(w) 6= w 6= v, indicating that two different paths P (s, w) exist
in the tree. Removing edge (pred(w), w) dissolves this cycle and at the same time
maintains feasibility because the delay ds of any node in component Cw can only
get smaller or stay equal since ds(w) now is the smallest possible delay and all
other nodes depend on that. In Cpred(w) no delays are affected by the removal of
edge (pred(w), w) since all nodes are connected to the root node through path
P (s, vCpred(w)

).
Since the dissolving of cycles can be done in constant time and each node is

examined at most once, stage two runs in O(n).

3.3 Modifications

Two modifications in stage one usually lead to better results when applying a
subsequent improvement method (see Section 5):



1. A delay-factor df ≥ 1 is introduced and multiplied with the left side of the
inequalities when checking the feasibility of adding an edge. In other words,
the delay-bound is lowered by the factor 1

df
.

2. If stage one has added a predefined number of edges < (n − 1) it is aborted
and stage two uses shortest-delay-paths to attach the left components.

Both modifications provide a solution where the gap between the node-delays
ds(v) and the delay-bound is larger than in the spanning tree of the standard
implementation. This higher “residual delay” leads to more possibilites in a
following improvement phase and therefore often results in solutions with less
total cost.

4 GRASP

To provide many different feasible starting solutions for a subsequent improve-
ment phase we extended stage one of the Kruskal-based construction heuristic
with a greedy randomized adaptive search procedure (GRASP) [10]. In each iter-
ation of stage one do:

1. store all feasible edges in a candidate list (CL)
2. select a subset of least-cost edges of CL with

c(e) ≤ min
e∈CL

c(e) + α · (max
e∈CL

c(e) − min
e∈CL

c(e))

for a predefined parameter α ∈ [0, 1] and insert them into a restricted can-
didate list (RCL)

3. randomly choose an edge from the RCL
4. merge components by adding this edge

5 Variable Neighborhood Descent

We introduce a variable neighborhood descent (VND) [11] for improving a con-
structed solution by performing a local search switching between two neighbor-
hood structures: Edge-Replace (ER) and Component-Renew (CR). The standard
implementation of a VND as it is described in [11] was modified to provide here
better results in a shorter runtime: A neighborhood structure is searched by
next-improvement until a local optimum is reached; then we switch to the other
one continuing until no better solution can be found anymore.

A move in the Edge-Replace neighborhood removes the most expensive edge
and connects the resulting two components in the cheapest possible way. A
complete neighborhood search is done in O(nm) time.

A Component-Renew move also deletes the most expensive edge, but com-
pletely dissolves the component which is now separated from the root node; it
then re-adds the individual nodes by applying a Prim-based algorithm. As before
in some cases not all single nodes can be added due to the delay-bound. These
remaining nodes are again joined to the root component by shortest-delay-paths,
dissolving created cycles. A complete neighborhood search is done in O(n3) time.



Table 1. Comparison of Prim- and Kruskal-based heuristics, applied on random in-
stance sets with 500 and 1000 nodes (B: delay-bound, C: only construction, CV: con-
struction and VND, CGV: construction with GRASP and VND, c: average final ob-
jective values, σ: standard deviations, t[s]: running times in seconds).

R500 R1000

Prim-based Kruskal-based Prim-based Kruskal-based

B Test c σ t[s] c σ t[s] c σ t[s] c σ t[s]

6 C 19651 1583 0.1 10785 643 0.0 24053 3065 0.5 14717 710 0.0
CV 9624 624 0.8 9177 633 0.5 11691 845 4.0 10123 544 3.0

CGV 9340 578 12.2 9067 643 9.2 10858 558 64.6 9942 505 57.5

8 C 13020 1709 0.0 8285 428 0.0 15291 1826 0.0 11779 575 0.0
CV 6795 546 0.8 6035 292 0.5 9433 1163 4.2 6796 322 3.2

CGV 6352 368 13.8 5871 293 12.8 7719 471 68.8 6610 284 60.3

10 C 9555 1666 0.0 7071 328 0.0 11275 2051 0.0 10277 500 0.0
CV 5914 686 0.8 4554 210 0.8 7299 747 4.3 5172 219 3.3

CGV 4975 274 14.7 4421 200 13.5 5715 408 72.7 5040 202 70.3

15 C 5793 1037 0.0 5565 401 0.0 6945 1113 0.1 7996 533 0.0
CV 3941 432 1.1 2939 142 0.8 4726 562 4.7 3402 158 3.6

CGV 3102 238 15.9 2811 117 16.0 3459 205 79.8 3291 121 86.4

20 C 4235 861 0.0 4733 379 0.0 4972 892 0.1 6788 437 0.1
CV 2947 378 1.1 2215 117 0.9 3410 415 5.0 2603 108 5.1

CGV 2247 192 15.0 2124 87 18.9 2579 112 84.9 2517 83 98.7

30 C 2783 400 0.0 3757 359 0.0 3382 502 0.2 5062 475 0.2
CV 2011 245 1.2 1553 87 1.0 2314 204 7.5 1888 67 6.4

CGV 1501 88 19.2 1468 69 21.7 1825 61 111.3 1812 56 134.3

40 C 2070 318 0.0 3353 353 0.0 2540 358 0.5 3979 416 0.5
CV 1496 194 1.4 1221 52 1.1 1894 212 7.4 1562 55 7.4

CGV 1167 56 20.8 1155 52 25.4 1491 45 134.1 1486 42 189.1

6 Experimental Results

Our testing environment consists of Intel quad-core processors with 2.83 GHz
and 8 Gigabytes of RAM. Three kinds of tests are performed to compare the
Kruskal-based to the Prim-based heuristic [3]:

1. only the deterministic construction heuristic (in the result tables this test is
abbreviated with “C”)

2. the deterministic construction followed by the VND, using df = 1.5 (“CV”)
3. the construction with the GRASP extension followed by the VND, using

α = 0.25, stopping after ten starts without gain and taking the average
values of 30 runs (“CGV”)

The instance sets R500 and R1000 each contain 30 complete instances with 500
and 1000 nodes and random integer edge-costs and -delays uniformly distributed
in [1, 99]. The root node is set to node 0 in all tests. The comparison of only
one constructed solution (test “C” in Table 1) indicates that our Kruskal-based
heuristic produces usually significantly better solutions than the Prim-inspired
algorithm, especially if the delay-constraint is strict. Only in tests with high



Table 2. Comparison of Prim- and Kruskal-based heuristics, applied on Euclidian
instance sets with 500 and 1000 nodes (B: delay-bound, C: only construction, CV:
construction and VND, c: average final objective values, σ: standard deviations, t[s]:
running times in seconds).

E500 E1000

Prim-based Kruskal-based Prim-based Kruskal-based

B Test c σ t[s] c σ t[s] c σ t[s] c σ t[s]

0.8 C 19.12 0.44 0.1 18.03 0.40 0.1 27.56 0.43 0.7 25.40 0.32 0.3
CV 19.00 0.47 1.4 17.53 0.40 2.1 27.15 0.65 22.0 24.81 0.32 15.6

0.9 C 19.11 0.41 0.1 18.04 0.38 0.1 27.48 0.44 0.7 25.36 0.32 0.4
CV 19.02 0.37 1.6 17.41 0.36 2.2 26.97 0.76 20.9 24.65 0.29 16.3

1.0 C 19.17 0.49 0.1 17.83 0.43 0.1 27.38 0.49 0.8 25.32 0.29 0.4
CV 18.97 0.49 1.9 17.26 0.34 2.1 26.80 0.93 16.7 24.51 0.31 15.4

1.5 C 18.92 0.48 0.2 17.46 0.52 0.1 27.30 0.50 1.0 24.78 0.32 0.4
CV 18.75 0.56 2.9 16.79 0.36 2.4 26.71 1.07 23.9 23.85 0.26 19.4

2.0 C 18.87 0.60 0.2 17.37 0.49 0.1 27.29 0.46 1.1 24.54 0.37 0.5
CV 18.69 0.67 3.3 16.51 0.33 2.6 26.33 1.29 34.6 23.49 0.23 16.6

3.0 C 18.53 0.59 0.2 17.02 0.49 0.1 27.04 0.43 1.2 24.17 0.29 0.6
CV 18.09 0.80 4.0 16.22 0.30 2.3 25.69 1.43 48.9 23.14 0.24 14.0

delay-bounds the Prim-based solution exceeds the Kruskal-based one, but this
advantage disappears when also applying the VND. In this test and also when
using the GRASP extension (“CV” and “CGV”) our heuristic outperforms the
Prim-based approach with clear statistical significance. In addition we can ob-
serve a higher dependence of the Prim-based heuristic on the specific edge-costs
and -delays of the instances noticeable in the higher standard deviation values.

Concerning the runtime the Kruskal-based approach can compete with the
Prim-based one and often even beats it, although the administration effort is
higher when updating the node information in each step of stage one. We can
observe that the runtime is nearly independent of the specified delay-bound
B in contrast to the Prim-based heuristic, where tight bounds lead to longer
runtimes due to the repeated delay-relaxation process, see Table 1. The general
slight increase of the runtime when raising the bound is caused by the fact that
in a preprocessing step all edges with d(e) > B are discarded since no feasible
solution can include these edges. So tests with lower delay-bounds have to handle
less edges.

Additionally we tested our construction heuristic on two sets each consisting
of 15 Euclidian instances from the OR-Library originally used for the Euclidian
Steiner tree problem [12]. These instances consist of 500 respectively 1000 points
randomly distributed in the unit square and the edge-costs correspond to the
Euclidian distances between these points. We extended these input data by edge-
delays normally distributed around the associated costs and chose a point near
the center as root node. The results shown in Table 2 clearly demonstrate the
superiority of the Kruskal-based heuristic even if using high delay-bounds. At
no time even the VND-improved Prim-based solution reaches the quality of our
just constructed spanning tree.



7 Conclusions and Future Work

We introduced a Kruskal-based construction heuristic for the rooted delay-
constrained minimum spanning tree problem which produces faster and bet-
ter results especially for tight delay-bounds and Euclidian edge-costs compared
to the Prim-based approach. The runtime is almost independent of the delay-
constraint and the cost- and delay-values of the instances. Furthermore the
Kruskal-based heuristic seems to be a better starting point for improvement
with the presented VND and GRASP.

In the future we want to extend the VND with more neighborhoods maybe
based on new solution representations to better diversify the search and therefore
find new feasible solutions. Furthermore, we try to apply a modified version of our
de-centralized construction heuristic on the rooted delay-constrained minimum
Steiner tree problem and compare it to existing approaches.
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