
A Kruskal-Based Heuristic for the Rooted
Delay-Constrained Minimum Spanning Tree

Problem

Mario Ruthmair and Günther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria

{ruthmair|raidl}@ads.tuwien.ac.at
http://www.ads.tuwien.ac.at

1 Introduction

The rooted delay-constrained minimum spanning tree (RDCMST) problem is
an NP-hard [1] combinatorial optimization problem arising for example in the
design of centralized broadcasting networks, where quality of service constraints
are of concern. The objective is to find a minimum cost spanning tree of a given
graph with the additional constraint that the sum of delays along the paths from
a specified root node to any other node must not exceed a given delay-bound.

More formally, we are given a graph G = (V,E) with a set of nodes V , a set
of edges E, a cost function c : E → R+, a delay function d : E → R+, a fixed
root node s and a delay-bound B. An optimal solution to the RDCMST problem
is a spanning tree T = (V,E′), E′ ⊂ E, with minimum cost c(T) =

∑
e∈E′ c(e),

satisfying the constraints:
∑

e∈P (s,v) d(e) ≤ B, ∀v ∈ V . P (s, v) denotes the
unique path from the specified root node s to a node v ∈ V .

Exact approaches to the RDCMST problem have been examined by Gouveia
et al. in [2], but these methods can only solve small graphs with less than 100
nodes to proven optimality in reasonable time if considering complete instances.
A heuristic approach was presented by Salama et al. in [1], where a construc-
tion method based on Prim’s algorithm to find a minimum spanning tree [3] is
described. This Prim-based heuristic starts from the root node and iteratively
connects the node which can be reached in the cheapest way without violating
the delay-constraint. If at some point no node can be connected anymore, the de-
lays in the existing tree are reduced by replacing edges. These steps are repeated
until a feasible RDCMST is obtained. A second phase improves the solution by
local search using the edge-exchange neighborhood structure.

A general problem of the Prim-based heuristic is the fact that the nodes in
the close surrounding of the root node are connected rather cheaply, but at the
same time delay is wasted, and so the distant nodes can later only be linked
by many, often expensive edges, see Fig. 1. The stricter the delay-bound the
more this drawback will affect the costs negatively. This fact led us to a more
de-centralized approach by applying the idea of Kruskal’s minimum spanning
tree algorithm [4] to the RDCMST problem.

(a) Prim-based (b) Kruskal-based

Fig. 1. Problem of Prim-based heuristic (a) compared to Kruskal-based heuristic (b).

2 Kruskal-Based Construction Heuristic

Our Kruskal-based heuristic constructs a solution in two stages. Stage one sorts
all edges by ascending costs and then iterates over this list. An edge is added to
the solution if no cycle is created and if it is possible to connect the newly created
component to the root node in any way without violating the delay-constraint.
To speed up this feasibility-check additional information has to be stored in each
node. This information consists of the shortest-path-delay to the root node and
the maximum delay to any other node in the same component.

At the end of stage one the graph need not to be connected, so in stage two
the left components are attached to each other by adding the shortest-delay-path
from the root node to each component. Resulting cycles have to be dissolved to
form a feasible tree.

The runtime of stage one is in O(|E| log |E|+|V |2), stage two runs in O(|V |3).

3 Variable Neighborhood Descent

Additionally we use a variable neighborhood descent (VND) [5] for improv-
ing a constructed solution. The VND uses two neighborhoods: Expensive-Edge-
Removing (EER) and Component-Renewing (CR).

A move in the EER-neighborhood removes the most expensive edge and
connects the resulting two components in the cheapest possible way.

A CR-neighborhood-move also deletes the most expensive edge, but com-
pletely dissolves the component which does not include the root node; it then
re-adds the individual nodes by applying Prim’s algorithm. As before in some
cases not all single nodes can be added due to the delay-bound. These left nodes
are again added by shortest-delay-paths, dissolving created cycles.

4 Preliminary Results

Our Kruskal-based heuristic for the RDCMST problem – applied to large com-
plete instances of 500 nodes – produces usually significantly better solutions than
the Prim-inspired algorithm, especially if the delay-constraint is strict, see the
exemplary result in Table 1.

Table 1. Comparison of Kruskal- and Prim-based heuristic, applied on a set of 30
random complete instances with 500 nodes (B denotes the delay-bound). The results
of the tests using the GRASP-extension are average values of 30 runs stopping after
five iterations without gain.

Prim Prim Kruskal Kruskal Kruskal
+VND +VND +GRASP+VND

B c σ t[s] c σ t[s] c σ t[s] c σ t[s] c σ t[s]

6 19790 1734 3.4 9611 630 25.7 10791 654 0.2 9498 660 15.3 8901 711 197.7
10 9483 1628 0.3 5781 662 23.8 7075 338 0.2 4797 221 18.7 4462 227 242.9
15 5831 1072 0.2 3862 422 24.8 5551 431 0.2 3068 173 20.8 2872 118 260.5
20 4229 841 0.1 2940 389 23.8 4737 388 0.2 2309 102 21.3 2182 88 292.5

Concerning the runtime our construction heuristic can compete with the
Prim-based approach, although the administration effort is higher when updat-
ing the node information in each step of stage one. We can observe that the
runtime is nearly independent of the specified delay-bound B in contrast to the
Prim-based heuristic, where tight bounds lead to longer runtimes due to the
repeated delay-relaxation process, see Table 1.

Results when also applying the VND indicate that the Kruskal-based solution
is a more promising starting point for improvement with the EER- and CR-
neighborhoods than the Prim-based solution.

To improve the quality of the results we used a greedy randomized adaptive
search procedure (GRASP) [6] in stage one of the Kruskal-based construction
heuristic to provide more different starting solutions for the VND.

References

1. Salama, H.F., Reeves, D.S., Viniotis, Y.: The delay-constrained minimum spanning
tree problem. In Blum, C., Roli, A., Sampels, M., eds.: Proceedings of the 2nd IEEE
Symposium on Computers and Communications – ISCC ’97. (1997) 699–703

2. Gouveia, L., Paias, A., Sharma, D.: Modeling and solving the rooted distance-
constrained minimum spanning tree problem. Computers and Operations Research
35(2) (2008) 600–613

3. Prim, R.C.: Shortest connection networks and some generalizations. Bell System
Technical Journal 36 (1957) 1389–1401

4. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-
man problem. Proceedings of the American Mathematics Society 7(1) (1956) 48–50

5. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applica-
tions. European Journal of Operational Research 130(3) (2001) 449–467

6. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of
Global Optimization 6(2) (1995) 109–133

