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Abstract

In this thesis we consider different decomposition approaches for mixed integer linear
programming (MILP). We work with well-known techniques from the literature such
as cutting plane methods, column generation, and logic-based Benders decomposition
but also more recently developed approaches based on iteratively refined relaxations.
Moreover, we consider combinations of these algorithms and integrate other techniques
such as constraint programming and/or (meta-)heuristics. The aim of this thesis is
twofold. First, we want to exploit these methods to solve challenging optimization
problems. Thereby we investigate what makes a specific approach effective for dealing
with a particular application and which adjustments and extensions are important to
improve performance. Second, we use the gained insights to advance the methods. The
merits of our discoveries are supported by extensive computational studies that underline
the potential of the proposed enhancements.

The first algorithm we consider is based on column generation in combination with
cutting planes for solving the network design problem with relays. We address a distance
restriction imposed by this problem through transforming the input graph to a so-called
communication graph. Thereby we manage to overcome the limitations of a previous
column generation model from the literature that suffers from a rather unbalanced
decomposition due to shifting too much effort into the pricing subproblem.

The second decomposition approach considered in this thesis is based on logic-based
Benders decomposition. Experiments are conducted for a selective variant of the dial-a-
ride problem. In terms of the decomposition we achieve a separation into an optimization-
based request selection aspect and a feasibility-related routing part. Consequently, we
can exploit specialized algorithms to solve each of them as efficiently as possible. The
selection problem is tackled by a MILP approach that we strengthen through cutting
planes derived from subproblem relaxations. The routing problem is solved through a
hybrid of constraint programming and MILP. We enhance the Benders algorithm by
heuristic speedup techniques and consider different strategies for computing Benders cuts.
An approach deriving Benders cuts from infeasible substructures of minimum cardinality
is proven to be highly effective and also promising for other work in this area.

In the remainder of the thesis we focus on algorithms based on extended formulations
that are solved through relaxations. The first application we consider is a scheduling
problem. We investigate a scenario that demands a very fine-grained time discretization.
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Traditional MILP formulations are known to be inefficient in this context due to the
large number of time instants that have to be considered. We develop an alternative
based on a relaxation obtained by aggregating subsequent time instants into so-called
time buckets. Scheduling in terms of this aggregation is less precise and might therefore
lead to infeasibilities, however, also helps to substantially decrease the problem size. We
retain feasibility and achieve optimality by iteratively splitting time buckets to improve
accuracy where necessary. Moreover, we also exploit the relaxation to derive intermediate
feasible solutions by (meta-)heuristics. Considerable effort is invested into developing
and testing strategies for implementing the refinement step in which the buckets are
subdivided. Our most successful algorithm is based on incorporating additional knowledge
from the intermediate solutions to address the remaining infeasibilities as effectively as
possible. In comparison to standard MILP formulations from the literature we show that
our algorithm performs significantly better. Due to its generality our approach is also
promising for other problems with similar characteristics.

The second approach based on relaxations is used to solve the directed variant of the
network design problem with relays. To consider a modified side constraint we use layered
graphs instead of the aforementioned transformation to a communication graph. The
idea of layered graphs is to extend a base graph along one or multiple dimensions to state
enhanced MILP formulations. In terms of the investigated problem we introduce node
copies according to the traversed distance within the graph. To avoid prohibitive graph
sizes caused by fractional inputs we consider a dynamic approach. We obtain a relaxation
through rounding down all fractional distance values and address potential infeasibilities
by cutting planes. Further strengthening inequalities and symmetry breaking constraints
are added to enhance the resulting model. Our experiments indicate that infeasibilities
in the relaxation are rare, which makes our separation approach effective in practice.

Often the size of layered graphs is prohibitive already for integral inputs. In these
situations we can employ a strategy similar to the algorithm considered for high-resolution
scheduling. Instead of aggregating time instants we omit node copies and redirect arcs
accordingly. The resulting iterative algorithm is based on the observation that only
a (small) subset of the nodes is required to obtain optimal solutions. To this end we
successively reintroduce some of the omitted node copies until optimality can be proven.
Similar to the scheduling problem the success of such an algorithm strongly depends on
the strategy according to which the graph is extended in each iteration. We develop
new path-based approaches to benefit from the structural knowledge encoded in the
layered graph relaxation. A computational study on two benchmark problems shows the
effectiveness of these strategies.



Kurzfassung

In dieser Arbeit werden unterschiedliche Zerlegungsansätzen für gemischt-ganzzahlige
lineare Optimierung (engl. mixed integer linear programming, MILP) untersucht. Hierzu
kommen etablierte Techniken wie das Schnittebenenverfahren, Spaltengenerierung und
die Logik-basierte Benders-Zerlegung, sowie neuere Verfahren basierend auf schrittweise
verfeinerten Relaxationen zum Einsatz. Insbesondere werden Kombinationen dieser Algo-
rithmen mit anderen Techniken, wie Constraintprogrammierung oder (Meta-)Heuristiken
verwendet. Im Rahmen dieser Arbeit werden zwei Hauptziele verfolgt. Zum einen soll
gezeigt werden, wie mit diesen Techniken komplexe Optimierungsprobleme gelöst werden.
Dabei wird zum einen darauf eingegangen, wodurch sich die unterschiedlichen Verfahren
für bestimmte Problemstellungen besonders eignen bzw. welche Anpassungen und Erwei-
terungen notwendig sind, um deren Effektivität zu steigern. Zum anderen werden die
gewonnenen Erkenntnisse genutzt, um die Verfahren weiterzuentwickeln. Die gezogenen
Schlussfolgerungen sowie das Potential der entwickelten Verbesserungen werden durch
ausführliche Experimente demonstriert.

Als erstes Verfahren kommt Spaltengenerierung in Kombination mit dem Schnittebenen-
verfahren zur Lösung des Netzwerkentwurfproblems mit Verstärkern zum Einsatz. Eine
Nebenbedingung dieses Problems betreffend die zurückgelegten Distanzen im Netzwerk
wird dabei mithilfe einer Transformation des Basisgraphen in einen sogenannten Kommu-
nikationsgraphen modelliert. Dadurch wird eine Zerlegung ermöglicht, die im Gegensatz
zu einem ähnlichen Ansatz aus der Literatur den Aufwand im Unterproblem reduziert.

Als Zweites wird ein Algorithmus basierend auf Logik-basierter Benders-Zerlegung entwi-
ckelt für die Lösung einer selektiven Variante des Dial-a-Ride Problems entwickelt. Der
Zerlegungsansatz ermöglicht eine Aufteilung in einen Optimierungsaspekt für die Anfra-
genaufteilung und einen zweiten Aspekt, der die Gültigkeit der entstehenden Routen prüft.
Dadurch können spezialisierte Algorithmen angewandt werden. Der Optimierungsaspekt
wird durch ein MILP-Modell, gestärkt durch Schnittebenen basierend auf Relaxationen
des Subproblems, gelöst. Für das Routenplanungsproblem kommt eine Kombination aus
Constraintprogrammierung und MILP zum Einsatz. Der Benders Algorithmus wird durch
heuristische Techniken beschleunigt. Darüber hinaus werden unterschiedliche Strategien
zur Berechnung der Benders Schnitte untersucht. Am effektivsten zeigte sich eine Variante,
die Schnitte aus ungültigen Strukturen kleinster Kardinalität ableitet. Diese erscheint
vielversprechend für zukünftige Arbeiten in diesem Gebiet.
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Der übrige Teil dieser Arbeit beschäftigt sich mit erweiterten Modellen, die mithilfe
von Relaxationen gelöst werden. Als erste Anwendung wird ein Terminplanungsproblem
untersucht, bei dem eine besonders feine Zeitauflösung berücksichtigt werden muss. Eta-
blierte MILP-Modelle sind entsprechend den Erkenntnissen der bestehenden Literatur
unter solchen Voraussetzung ineffektiv. Als Alternative wird eine Relaxation entwickelt,
die aufeinanderfolgende Zeitpunkte in Zeitintervalle aggregiert. Auf diese Weise kann die
Problemgröße deutlich reduziert werden. Allerdings kann die dadurch verlorene Genauig-
keit zur Verletzung von Nebenbedingungen führen. Um Gültigkeit zu gewährleisten wird
die Relaxation durch schrittweises Aufspalten der Intervalle nach und nach verfeinert.
Mithilfe von (Meta-)Heuristiken werden aus den ungültigen Lösungen gültige Zwischenlö-
sungen abgeleitet. Ein besonderer Fokus liegt auf der Entwicklung und dem Vergleich
von Verfahren zum Aufspalten der Zeitintervalle. Der erfolgreichste Algorithmus nutzt
Informationen, die aus den heuristisch berechneten Zwischenlösungen extrahiert werden,
um Rückschlüsse auf die Ursachen der verletzten Nebenbedingungen zu ziehen. Das
neue Verfahren erreicht dadurch eine deutliche Verbesserung gegenüber den etablierten
MILP-Ansätzen der Literatur. Diese neue Technik erscheint auch vielversprechend für
andere Probleme mit ähnlichen Eigenschaften.

Mithilfe des nächsten Ansatzes wird die gerichtete Variante des obengenannten Netz-
werkentwurfproblems mit Verstärkern gelöst. Um eine abgewandelte Nebenbedingung
zu berücksichtigen, kommen sogenannte layered graphs anstatt des zuvor verwende-
ten Kommunikationsgraphen zum Einsatz. Layered graphs erweitern den Graphen des
Originalproblems anhand einer oder mehrerer Problemdimensionen, um effektivere MILP-
Formulierungen zu ermöglichen. Im Rahmen des betrachteten Problems fügen wir Kno-
tenkopien in Bezug auf die zurückgelegten Distanzen im Graphen ein. Um problematische
Graphengrößen infolge rationaler Distanzen zu vermeiden, kommt ein dynamisches Ver-
fahren zum Einsatz. Dazu werden rationale Distanzen abgerundet und dadurch verletzte
Nebenbedingungen mithilfe von Schnittebenen behandelt. Darüber hinaus wird das resul-
tierende Modell durch weitere Ungleichungen zur Stärkung und Symmetrievermeidung
ergänzt. Die durchgeführten Experimente zeigen, dass Nebenbedingungen infolge des
Rundens nur selten verletzt werden und die Separierung in der Praxis somit sehr effektiv
arbeitet.

In vielen Fällen sind Modelle basierend auf layered graphs bereits bei integralen Eingaben
zu groß, um effektiv genutzt werden zu können. Als Abhilfe kann ein Verfahren ähnlich des
Algorithmus für das obige Terminplanungsproblem eingesetzt werden. Anstatt Zeitpunkte
zu aggregieren, werden Knotenkopien weggelassen und Kanten entsprechend umgelenkt.
Der entstehende Ansatz basiert auf der Erkenntnis, dass optimale Lösungen meist mit
einer (kleinen) Teilmenge der Knoten bestimmt werden können. Der Erfolg des Verfahrens
hängt hier stark von der Strategie ab, anhand derer iterativ weitere Knotenkopien in der
Relaxation ergänzt werden, um eine optimale Lösung zu berechnen. Zu diesem Zweck
werden Pfad-basierte Techniken, gestützt auf strukturelle Informationen des layered graph,
entwickelt. Die Effektivität dieser neuen Verfahren wird anhand von Experimenten mit
zwei unterschiedlichen Optimierungsproblemen demonstriert.
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CHAPTER 1
Introduction

Today’s society is facing an ever-growing demand for our planet’s limited resources.
Striving for their most efficient, economical, and sustainable usage appears to be an
immediate consequence. Algorithms are a valuable tool to help in this respect. Many
tasks that impact our daily life can be modeled as (discrete) optimization problems.
Examples are:

• routing problems that aim at minimizing transportation costs and fuel consumption,

• network design problems that, e.g., aim at minimizing costs for constructing and
operating optical fiber networks, and

• scheduling problems that aim, e.g., at optimizing the utilization of expensive
and/or critical resources or at optimizing production/manufacturing processes and
arranging tasks executed by employees.

A well-known tool to model such problems and for deriving algorithms that compute (op-
timal) solutions is mixed integer linear programming (MILP). This formalism essentially
describes on optimization problem in terms of decision variables subject to linear equality
and inequality constraints and a linear objective function. In some cases such models can
be directly handed over to a general purpose black-box solver to obtain optimal solutions
when given enough time. Unfortunately, MILP is NP-hard. This means that in general
such problems cannot be solved in polynomial time unless P = NP . Nevertheless, some
NP-hard problems can be addressed by (straightforward) polynomially-sized models
and effectively solved by directly applying a MILP solver. However, frequently such an
approach does not lead to state-of-the-art results and is not capable of solving larger
instances in a reasonable amount of time. Fortunately, several advanced techniques
are available to allow for more diverse modeling options and improved computational
performance.
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1. Introduction

Basic MILP models usually involve only a (pseudo-)polynomial number of constraints and
variables. More expressive formulations become possible when also allowing exponential
size. Using even larger models when already struggling with the small ones sounds
counter-intuitive at first. Fortunately, dynamic approaches have been developed to avoid
the full size of the large resulting models: cutting plane methods for dealing with an
exponential number of constraints and column generation for dealing with an exponential
number of variables. The basic idea is to start with a small subset of the constraints and
variables and then iteratively add constraints that are required to establish feasibility
and variables to achieve optimality. For details see Section 2.2.3.

Another well-known strategy is to partition the variables of the model into subsets. In a
first stage a solution with respect to one part of the variables—the master problem—is
computed. Based on the restrictions of these trial values a solution with respect to the
remaining variables is obtained in a second stage—the subproblem. As the decision for
the first variable set ignored restrictions imposed on the other variables, it might not be
possible to obtain a feasible solution for the subproblem. Information regarding such
infeasibilities or otherwise information regarding the influence of the second variable set
on the objective function is incorporated into the master problem by means of additional
inequalities, called Benders cuts. This process is iterated until master and subproblem
provide compatible solutions. Several aspects make such a decomposition promising. The
master and the subproblem are typically much smaller than the original problem and
thus can be solved faster. In particular, either of them might exhibit special structure
that makes it substantially easier to solve. Moreover, the subproblem might decouple
into several independently solvable problems which allows for parallelization. Besides,
it is often the case that one of the two problems turns out to be a known optimization
problem that allows benefiting from existing research and possibly available algorithms.
Further details on this so-called Benders decomposition and its logic-based variant are
provided in Section 2.2.4.

Another technique of exploiting MILP to solve more challenging optimization problems
are relaxations. The idea of a relaxation is to formulate an easier problem that disregards
part of the original problem’s constraints or considers a modified objective function in a
way that possibly extends the solution space to further (infeasible) solutions but retains
all the original solutions and does not overestimate the original solution value (in case of
minimization). Such a relaxed problem can often be solved considerably faster. Often it
is sufficient to disregard only few constraints to obtain a polynomially solvable relaxation
for an originally NP-hard problem. This gives rise to the following strategy. Initially, we
solve the relaxation to optimality and then check whether the obtained solution is feasible
for the original problem. If this is the case, we can stop and know that the obtained
solution is optimal. Otherwise, we derive a more precise relaxation that forbids at least
the current infeasible solution. Iterating this procedure eventually leads to an optimal
solution—assuming that the solution space is finite. The success of such a method relies
on the assumption that solving a (small) series of relaxed problems can be substantially
faster than directly solving the original problem.
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What the methods described above have in common is that they rely on a decomposition
principle. They try to overcome the challenges of the original problem by considering
a sequence of smaller or more efficiently solvable subproblems instead. This thesis is
concerned with different such decomposition methods. In particular, we strongly focus on
MILP-based algorithms as a very popular and versatile tool to obtain optimal solutions
for discrete optimization problems. Our aim is twofold. First, we want to exploit these
methods to design successful solution strategies for solving challenging optimization
problems to optimality. We chose a rather diverse selection of problems to show how such
strategies can be used to deal with different applications. To this end we consider network
design problems, a routing problem, and a scheduling application. Second, we aim at
investigating the properties of these decomposition approaches to explore what makes
them effective. The made observations are used to suggest adjustments and additions
that help in improving these methods.

We start by considering an application of column generation. Our modeling approach
considers a transformation of the input graph into a so-called communication graph.
Thereby we manage to overcome the limitations of a more straightforward model from
the literature that also relies on column generation. Afterwards we consider an approach
using Benders decomposition. We achieve a structural decomposition into an optimization
problem (master problem) and a feasibility problem (subproblem). This allows employing
specialized algorithms to tackle both of them. To this end we solve the master problem
with an MILP approach improved by further inequalities derived from so-called subproblem
relaxations. In terms of the Benders algorithm we use heuristic speed-up techniques to
decrease the time spent in the master problem. The subproblem is solved by means of a
hybridization of constraint programming (CP) and MILP. With this technique we benefit
from the higher speed of the CP approach and use the consistency of the MILP algorithm
to counterbalance the few outliers in which the CP approach is significantly slower.
Moreover, we consider different strategies for deriving Benders cuts. We compare plain
Benders cuts to heuristically strengthened ones, as well as two variants of theoretically
strongest cuts. The next contribution is based on relaxations. We consider a scheduling
scenario in which a very fine-grained time discretization is required. To reduce the size
of the otherwise prohibitive time horizon, we aggregate subsequent time instants into
so-called time buckets. The MILP formulation based on this aggregation constitutes a
relaxation to the original problem. To ensure feasibility we iteratively solve this relaxation
and derive a subsequent more fine-grained model whenever infeasibilities are detected.
In addition, we also employ (meta-)heuristics that are guided by the solutions to the
relaxation and thus yield feasible solutions gradually increasing in quality. Optimality is
proven by establishing feasibility of the relaxation or by deriving a feasible solution that
matches the relaxation’s solution value. Our contribution strongly focuses on a thorough
investigation of different strategies for implementing the refinement process in which
the time buckets are subdivided to improve the precision of the relaxation. This step
is particularly important as it impacts the size of the intermediate MILP models and
the total number of iterations until optimality can be proven, which are the dominant
performance indicators of the algorithm. A similar approach is investigated for network

3



1. Introduction

design problems. Instead of aggregating time instants we reduce the number of nodes
in an originally large graph by redirecting arcs. Some of the omitted nodes are then
incrementally reintroduced to refine the associated relaxation as done for the scheduling
problem above. The main difference comes from the fact that the underlying graph
conveys more structural information. We exploit this additional knowledge to develop
specialized refinement strategies based on graph algorithms.

1.1 Structure of the Thesis
We begin with a short introduction to the used methodological concepts. In this respect
Chapter 2 summarizes the basics of exact and heuristic solution approaches that serve as
foundation for the algorithms considered in this thesis.

Chapters 3 to 7 are devoted to the developed algorithms. All of them have either been
published, are accepted for publication, or are currently submitted to high-class scientific
journals or conferences in the respective field. Detailed information is provided at the
beginning of each chapter.

In Chapter 3 we propose algorithms to obtain optimal solutions for the network design
problem with relays (NDPR). This problem deals with the design of networks in which
certain nodes have to communicate. Due to signal degradation a distance limit is
imposed for sequences of traversed communication links. If signals need to be transmitted
farther, expensive regeneration equipment has to be deployed. The goal of the problem
is to select a set of communication links and a subset of nodes at which regeneration
equipment is deployed such that a given set of node pairs can communicate at minimal
total construction cost. We tackle the problem by algorithms based on exponentially
sized MILP models, improved by strengthening inequalities. Different from an approach
in the existing literature that prices entire commodity connections, we rely on a more
fine-grained strategy based on a preceding graph transformation. This makes it possibly
to reduce the difficulty of the subproblem and thereby improve the balance of the
decomposition.

Chapter 4 considers a selective variant of the dial-a-ride problem (DARP). In the
classical DARP customers have to be transported from pick-up to drop-off locations
by a set of vehicles with limited capacity. Departure and arrival are restricted by
time windows. Moreover, client satisfaction is taken into account by limiting the time
a customer is allowed to be on board of a vehicle to avoid long detours. The most
common setting considers minimization of the total routing cost while assuming that
the number of available vehicles is sufficient to service all customers. We consider a
different scenario in which we drop the assumption that all transportation requests must
be accepted. Therefore, we aim at maximizing the number of served requests. This
appears to be particularly relevant for sponsored systems which often occur in practice.
We use logic-based Benders decomposition (LBBD) as solution method to decompose the
problem into a selection aspect for assigning customers to vehicles and a routing aspect
that checks whether the assignment permits a feasible tour for each vehicle. Through

4



1.1. Structure of the Thesis

this structural decomposition we can employ specialized algorithms with individual
improvements. Different strategies for strengthening Benders cuts are suggested and
extensively compared.

In Chapter 5 we consider a scheduling scenario motivated by a real-world application in
particle therapy for cancer treatment. A complicating circumstance is that tasks have to
be scheduled in high time resolution to use the expensive particle beam as efficiently as
possible. This leads to problems with well-known standard approaches for such problems.
To overcome these issues, we suggest a so-called time-bucket relaxation that aggregates
consecutive time instants to reduce the problem size. This relaxation is then iteratively
refined to eventually obtain an optimal solution. In an extensive computational study we
compare our novel algorithm to well-known approaches from the literature. Moreover,
we provide a theoretical discussion of the potential modeling alternatives. This work
emerged in collaboration with the cancer treatment center MedAustron1 located in
Wiener Neustadt, Austria.

The next two chapters both use models based on so-called layered graphs (LGs). Such
models are based on an extended formulation that considers some problem dimension
explicitly. In particular, LGs are often useful to deal with otherwise challenging modeling
aspects or even encode certain constraints implicitly This leads to larger but more
efficiently solvable models. Of course size may become an issue if the incurred overhead or
the initial problem is too large. In Chapter 6 we use LGs to model the directed network
design problem with relays (DNDPR)—the directed counterpart of the NDPR. Distances
are made explicit by introducing for each node copies with respect to the distances at
which it might be feasibly reached. This allows to implicitly enforce the distance limit by
omitting node copies beyond it. The placement of regeneration equipment is modeled
through arcs that start at a higher layer and return to a node copy at layer zero. Even
for rather small distance limits such an approach may become inefficient when dealing
with non-integral distances that have to be addressed through expensive scaling. We
overcome these issues by an optimality preserving combination of rounding and cutting
planes.

Chapter 7 considers a general framework which is designed to avoid the full size of LGs for
an important class of network design problems. The basic idea is to start with a subgraph
that is substantially smaller but might not be sufficient to enforce all restrictions. This
graph is then iteratively extended until an optimal solution is obtained—or a strong
bound that can be used to verify optimality of a heuristic solution. We focus on the step
in which the graph is extended and investigate the impact of employing different strategies.
A comparison of our newly suggested techniques to those from the literature shows that
(1) this component has a strong influence on the success of such an iterative approach
and (2) advanced techniques can provide significant improvements to the algorithm.

Finally, the thesis is concluded in Chapter 8. We summarize the main findings and give
an outlook on future research directions.

1https://www.medaustron.at
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CHAPTER 2
Methodology

This chapter provides the terminology and the foundations of the algorithmic concepts
used throughout this work. We start with some basic definitions before introducing exact
and heuristic solution methods. Due to the fact that maximization problems can be
converted to equivalent minimization problems (by multiplying the objective function by
minus one) we restrict the discussion to minimization problems.

2.1 Basic Definitions

In this section we provide some basic terminology mainly following Papadimitriou and
Steiglitz [133], Bertsimas and Tsitsiklis [17], and Wolsey [172]. We start by formalizing
the concept of an optimization problem to define global and local optimality. Afterwards,
we give definitions for bounds, relaxations and convexity.

Definition 2.1 ([133, p. 4]). An instance of an optimization problem is a pair (F, c)
with set F being the domain or feasible set and c the objective function or cost function
defined as c : F → R.

Definition 2.2 ([133, p. 4]). For an instance (F, c) an element f ∈ F such that c(f) ≤
c(f ′), ∀f ′ ∈ F , is called global optimum.

The goal of optimization is to identify global optima. For brevity global optima are
sometimes just called optima or optimal solutions if the precise meaning is unambiguous.

Definition 2.3 ([133, p. 4]). An optimization problem is a set of instances.

Definition 2.4 ([133, p. 7]). A neighborhood of an optimization problem with instances
(F, c) is a mapping N : F → 2F .

7



2. Methodology

Definition 2.5 ([133, p. 8]). Given an instance (F, c), an element f ∈ F is called local
optimum or locally optimal with respect to neighborhood N if c(f) ≤ c(f ′), ∀f ′ ∈ N(f).

Definition 2.6 ([133, p. 10]). Given feasible set F and a neighborhood N , if whenever f ∈
F is locally optimal with respect to N it is also globally optimal, we say the neighborhood
N is exact.

Definition 2.7 ([172, p. 24]). Value p ∈ R is called a primal bound for instance (F, c)
with global optimum f∗ iff c(f∗) ≤ p.

Definition 2.8 ([172, p. 24]). Value d ∈ R is called a dual bound for instance (F, c)
with global optimum f∗ iff d ≤ c(f∗).

Remark 2.1 ([172, p. 24]). In minimization problems dual bounds are also called lower
bounds and primal bounds are also called upper bounds. Conversely, in maximization
problems dual bounds are called upper bounds and primal bounds are called lower bounds.

Each of these bounds is called tight if it matches the value of the global optimum. Bounds
are useful to prove optimality: If an element f ∈ F for instance (F, c) has been identified
and a dual bound d is known such that c(f) = d, then f must be a global optimum.
Primal bounds are often obtained by heuristics, see Section 2.3 A common way to derive
dual bounds is to solve so-called relaxations.

Definition 2.9 ([172, pp. 24–25]). An instance (F ′, c′) is a relaxation of instance (F, c)
iff F ′ ⊇ F and c′(f) ≤ c(f), ∀f ∈ F .

This guarantees that an optimal solution to a relaxed instance provides a dual bound to
the original instance.

Theorem 2.1 ([172, p. 26]). Let (F, c) be an instance and (F ′, c′) an associated relaxation
with optimal solution f∗ ∈ F ′. If f∗ ∈ F , then f∗ is an optimal solution to the original
instance.

Definition 2.10 ([17, p. 44]). For x1, . . . ,xk vectors in Rn and λ1, . . . , λk non-negative
scalars with

∑k
i=1 λi = 1.

(a) Vector
∑k
i=1 λix

i is called convex combination of the vectors x1, . . . ,xk.

(b) The set of all convex combinations of the vectors x1, . . . ,xk is called convex hull,
denoted by conv(x1, . . . ,xk).

Definition 2.11 ([17, p. 43]). A set S ⊆ Rn is convex if it contains all convex combina-
tions of points x, y ∈ S.

Lemma 2.1 ([17, p. 44]). The intersection of convex sets is convex.
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Definition 2.12 ([17, p. 15]). Let S ⊆ Rn and c : S → R. Function c is convex in S if

c(λx+ (1− λ)y) ≤ c(λx) + c((1− λ)y), ∀x, y ∈ S, λ ∈ [0, 1].

If a function is convex in Rn, we simply call it convex.

Theorem 2.2 ([133, p. 14]). Let (F, c) be an instance with convex set F ⊆ Rn and
convex function c. The neighborhood based on Euclidean distance

Nε(x) = {y ∈ F : ||x− y|| ≤ ε}

is exact for ε > 0.

2.2 Exact Methods
Exact solution methods compute global optima. Solutions for polynomially solvable
problems are usually directly constructed by problem-specific algorithms. Problems
that are NP-hard are often solved via enumeration schemes that prove optimality via
converging sequences of primal and dual bounds.

We start with linear programming (LP) as important basis for mixed integer linear
programming (MILP). In particular, we establish that solutions can be obtained efficiently
as a consequence of optimizing over a convex set. Moreover, we give some basics regarding
duality theory that will be required in the later sections. Then, we explain how LP can
be used to solve more expressive MILP problems. Afterwards, we discuss techniques
to deal with exponentially sized models. These first three sections are mainly based on
Bertsimas and Tsitsiklis [17], Nemhauser and Wolsey [130], Schrijver [157], and Wolsey
[172]. The fourth section is devoted to Benders decomposition (BD) and in particular
logic-based Benders decomposition (LBBD), primarily following Hooker and Ottosson
[91]. Finally, we give a short introduction to constraint programming (CP) based on
Rossi et al. [153].

2.2.1 Linear Programming

An LP problem (as stated in [17, p. 3]) looks as follows:

min c′x (2.1)
subject to a′ix ≥ bi ∀i ∈M1, (2.2)

a′ix ≤ bi ∀i ∈M2, (2.3)
a′ix = bi ∀i ∈M3, (2.4)
xj ≥ 0 ∀j ∈ N1, (2.5)
xj ≤ 0 ∀j ∈ N2. (2.6)

Vector x = (x1, . . . , xn) is the set of decision variables (or just variables) with x ∈ Rn.
Multiplied by the cost vector c = (c1, . . . , cn), with c ∈ Rn, we obtain the objective
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function c′x—the linear form of the more general concept introduced in the previous
section. Finite disjoint index sets M1, M2, and M3 are associated with coefficient vectors
ai ∈ Rn and scalars bi ∈ R. Index set N1 and N2 are disjoint subsets of {1, . . . , n} that
indicate the subsets of non-negative and non-positive variables, respectively. A variable
whose index belongs neither to N1 nor to N2 is called unrestricted or free. Formulas (2.2)
to (2.6) are the set of constraints. An assignment of the decision variables that satisfied
all the constraints is called feasible solution (or just solution if clear from the context).
The set of all feasible solutions forms the feasible region (cf. feasible set as introduced
above). A feasible solution x∗ that minimizes the objective function is called optimal
solution with solution value c′x. When solving an LP problem to optimality, there are
four possible outcomes:

(a) The problem is infeasible because the feasible set is empty.

(b) There exists a unique optimal solution.

(c) Multiple optimal solutions exist.

(d) For every real number K there exists a feasible solution with value less than K. In
this case we say that the solution value is unbounded and associate a cost of −∞.

As already mentioned earlier, maximization problems can be easily transferred to equiva-
lent minimization problems, i.e., max c′x = min−c′x. Moreover, we can replace equality
constraints a′ix = bi by two inequalities a′ix ≤ bi and a′ix ≥ bi. The opposite conversion
requires the addition of variables. Thereby we can transform a′ix ≤ bi to a′ix + si = bi
and a′ix ≥ bi to a′ix− ri = bi with slack variable si ∈ R and surplus variable ri ∈ R. Free
variables xj can be replaced by the difference of two non-negative variables: x+

j − x
−
j

with x+
j , x

−
j ≥ 0. Finally, constraints of the form a′ix ≤ bi can be equivalently stated as

(−ai)′x ≥ −bi. This includes in particular the non-negativity restrictions. Consequently,
LP problems can be formulated exclusively in terms of constraints of the form a′ix ≥ bi.
Using matrix notation we can write:

min c′x (2.7)
subject to Ax ≥ b, (2.8)

with A ∈ Rm×n a matrix and b ∈ Rm a vector.

Geometrical Properties

In the following we provide a geometrical interpretation for LP problems. We will see
that they can be interpreted as multidimensional convex shapes. Moreover, we show
that optimization can be restricted to the corners of these shapes which is important for
deriving solution algorithms.

Definition 2.13 ([17, p. 42]). For A ∈ Rm×n and b ∈ Rm a set that can be described
as {x ∈ Rn | Ax ≥ b} is called polyhedron.
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Definition 2.14 ([17, p. 43]). A set S ⊆ Rn is called bounded if the absolute value of
every component of every element of S is bounded by some constant.

Definition 2.15 ([17, p. 43]). A bounded polyhedron is called polytope.

Theorem 2.3 ([17, p. 44]).

(a) Every polyhedron is a convex set.

(b) The convex hull of a finite number of vectors is a convex set.

Definition 2.16 ([17, p. 46]). Let P be a polyhedron. Vector x ∈ P is called extreme
point of P if there do not exist two vectors y, z ∈ P , both different from x, and a scalar
λ ∈ [0, 1] such that x = λy + (1− λ)z.

Definition 2.17 ([17, p. 63]). A polyhedron P ⊆ R contains a line if there exists a vector
x ∈ P and a non-zero vector d ∈ Rn such that x + λd ∈ P for all scalars λ ∈ R.

Theorem 2.4 ([17, p. 63]). Given a non-empty polyhedron P . Then, the following are
equivalent:

(a) Polyhedron P has at least one extreme point.

(b) Polyhedron P does not contain a line.

Theorem 2.5 ([17, p. 65]). Consider minimization of c′x subject to polyhedron P . If P
has at least one extreme point and there exists an optimal solution, then there exists an
optimal solution which is an extreme point of P .

Algorithms

One of the most well-known algorithms for solving LP problems is the simplex method
proposed by Dantzig in 1947, see [46]. Its basic idea is to start at an extreme point
of the polyhedron and then to traverse the surface of the polyhedron in cost-reducing
direction towards the next extreme point. Observe that the number of extreme points in
a polyhedron is finite for a finite number of constraints. Because we are optimizing over
a convex set, this guarantees that we eventually obtain an optimal solution with this
procedure. Although the number of extreme points is finite, it can still be exponential in
the number of variables and constraints. Due to the existence of problems for which all
extreme points are visited, the simplex algorithm has exponential worst-case complexity.
For the original variant by Dantzig this was shown by the Klee-Minty cube in [99]. Despite
of the worst-case complexity, simplex algorithms are widely used due to their excellent
practical performance.

Khachiyan showed in 1979 that the ellipsoid method can solve LP problems in polynomial
time, see [98]. This result, however, was mostly of theoretical relevance as no practically
efficient implementations of this algorithm could be developed.
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Interior point methods finally led to algorithms with polynomial worst-case behavior that
are suitable for practical applications. In particular barrier methods are known to be
effective in practice. Interior point methods date back to the work by Karmarkar [97] in
1984. Opposed to simplex algorithms interior point methods move along the interior of
the polyhedron.

Modern state-of-the-art solvers such as IBM ILOG CPLEX Optimizer1 or Gurobi2 offer
efficient implementations of both simplex and interior point methods. Having several
options available can be important in practice as certain problem characteristics can lead
to one of the methods performing significantly better.

For the technical details and an in-depth discussion of these LP algorithms we refer to
[17], [130], and [157].

Duality

In the following we give a brief introduction to duality theory. Duality gives not only
important insights for LP but also serves as basis for some of the methods discussed in
the remainder of this chapter.

Let A be a matrix with rows a′i and columns Aj . Using the notation introduced at the
beginning of this section, we formulate the following pair of LP problems as stated in
[17, p. 142]:

min c′x max p′b
subject to a′ix ≥ bi ∀i ∈M1, subject to pi ≥ 0 ∀i ∈M1,

a′ix ≤ bi ∀i ∈M2, pi ≤ 0 ∀i ∈M2,

a′ix = bi ∀i ∈M3, pi free ∀i ∈M3,

xj ≥ 0 ∀j ∈ N1, p′A′j ≤ cj ∀j ∈ N1,

xj ≤ 0 ∀j ∈ N2, p′A′j ≥ cj ∀j ∈ N2,

xj free ∀j ∈ N3, p′A′j = cj ∀j ∈ N3.

Thereby we call the minimization problem primal problem and the maximization problem
dual problem. Each constraint of the primal becomes a variable in the dual with the
same inequality symbol. Equality constraints transfer to free variables. Each variable
becomes a constraint with the opposite inequality symbol. Free variables transfer to
equality constraints.

Theorem 2.6 ([17, p. 144]). If we transform the dual problem into an equivalent mini-
mization problem and then form its dual, we obtain a problem equivalent to the initial
primal problem.

1https://www.ibm.com/analytics/cplex-optimizer (accessed 09/2018)
2http://www.gurobi.com (accessed 09/2018)
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More compactly this is often stated as “the dual of the dual is the primal”.

Primal and dual are related by two important theorems.

Theorem 2.7 (Weak duality, [17, p. 146]). Let c and p be feasible solutions to the primal
and the dual problem, respectively, then

p′b ≤ c′x.

This means that, opposed to relaxations, each feasible solution to the dual problem
provides a valid dual bound for the primal problem. Observe that unboundedness in
either problem implies infeasibility for the other. The reverse implication, however, is
not true because both problems might be infeasible.

Theorem 2.8 (Strong duality, [17, p. 148]). If a linear programming problem has an
optimal solution, so does its dual, and the respective solution values are equal.

2.2.2 Mixed Integer Linear Programming

In the previous section we have seen that LP problems can be solved efficiently, i.e.,
in polynomial time. While the used formalism is quite general, it still misses a rather
important feature: integral variables. The benefit of such variables (in particular the
binary ones) is that they allow modeling choice, i.e., whether a particular solution
component is chosen or not. This, however, comes at a cost: MILP is NP-hard, see, e.g.,
[66]. This means that in general we cannot expect so solve such problems in polynomial
time unless P = NP . An MILP problem in generic form (see [172, p. 3]) reads as follows:

max c′x + h′y (2.9)
subject to Ax + Gy ≥ b, (2.10)

x ≥ 0, (2.11)
y ∈ Zp≥0, (2.12)

with A ∈ Rm×n, G ∈ Rm×p, b ∈ Rm, c ∈ Rn, h ∈ Rp, x ∈ Rn, and y ∈ Rp. If all
variables are integer we call the associated problem integer linear programming (ILP)
problem.

Definition 2.18 (LP relaxation, [172, p. 25]). Given an MILP problem we obtain
the so-called linear programming relaxation (LP relaxation) by dropping the integrality
restrictions.

The LP relaxation provides a dual bound to the solution value of its associated MILP
problem. However, in general it does not provide a feasible solution due to violating the
integrality restrictions.

Definition 2.19 ([172, p. 12]). A polyhedron P ⊆ Rn+p is a formulation for a set
X ⊆ Rn × Zp iff X = P ∩ (Rn × Zp).
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Consequently, there exist infinitely many formulations for each MILP problem. Now
suppose we are given a formulation P for a (bounded) set X with conv(X) = P . Then
it suffices to solve the LP problem for P to obtain an optimal solution for X with
respect to a given objective function as all extreme points of the convex hull satisfy the
integrality restrictions. We call such formulations ideal. The problem, however, is that it
is usually difficult to find a formulation equivalent to the convex hull. In most cases such
formulations involve a very high, i.e., exponential, number of constraints. This is to be
expected from the complexity point of view because a simple characterization (i.e., with
a polynomial number of constraints and variables) of the convex hull of an NP-hard
problem would imply that NP = P.

Knowing that an ideal formulation is the best we can hope for, it makes sense to compare
formulations with respect to their closeness to the convex hull.

Definition 2.20 ([172, p. 16]). Given a set X ⊆ Rn and two associated formulations P1
and P2. We say that P1 is at least as strong as P2 if P1 ⊆ P2 and stronger if P1 ( P2. If
neither P1 ⊆ P2 nor P2 ⊆ P1 we say that the two formulations are incomparable.

Corollary 2.1. Let P1 and P2 be two formulations whose optimal solution values to
their LP relaxations are z1 and z2, respectively. If P1 is stronger than P2, then z1 ≥ z2.

Definition 2.21 ([172, p. 114]). An inequality a′x ≥ b is called valid for set P ⊆ Rn iff
it is satisfied for all x ∈ P .

According to [172, p. 114] valid inequalities a1
′x ≥ b1 and a2

′x ≥ b2 are said to be
equivalent if there exists a scalar λ > 0 such that (a2, b2) = λ(a1, b1). If the two valid
inequalities are not equivalent and there exists a scalar µ > 0 such that a2 ≥ µa1 and
b2 ≤ µb1, then the first inequality is said to be stronger than the second or to dominate
it.

Definition 2.22 ([172, p. 141]). A valid inequality a′x ≥ b is called redundant if
there exist k ≥ 2 valid inequalities in the description of a polyhedron P dominating
a′x ≥ b. Formally this means there exist inequalities ai′x ≥ bi, for P , and weights ui > 0,
i = 1, . . . , k, such that (

∑k
i=1 uiai′)x ≥

∑k
i=1 b

i dominates a′x ≥ b.

Definition 2.23. Let P ⊆ Rn be a formulation for set X and inequality a′x ≥ b be valid
with respect to conv(X). We call the inequality strengthening if P ′ = {x ∈ P | a′x ≥ b}
is a formulation for X such that P ′ ( P .

Solving MILP problems

The most common way to solve MILP problems is to use a branch-and-bound (B&B)
approach (see Land and Doig [103]) in conjunction with an LP solver. The resulting
procedure is called LP-based B&B and is summarized in Algorithm 2.1.

We start by solving the LP relaxation. If there exists an integer variable that is fractional
in the current relaxed solution, we create two new branches. In one branch we add a

14



2.2. Exact Methods

Algorithm 2.1: LP-based branch-and-bound [172, p. 100]
1 problem list L : min{c′x | x ∈ S}
2 z =∞ // best primal bound
3 incumbent x∗ = NULL // best feasible solution
4 while L 6= ∅ do
5 choose set Si and remove it from L
6 obtain optimal LP solution xi,LP and its solution value zi for Si
7 if Si = ∅ then prune Si by infeasibility
8 else if zi ≥ z then prune Si by bound
9 else if xi,LP ∈ S then // LP solution is integral

10 if zi ≤ z then
11 update primal bound z = zi

12 update incumbent x∗ = xi,LP

13 end
14 prune Si by optimality
15 else
16 choose an integer variable xj that is still fractional
17 Si,1 = {x ∈ Si | xj ≤ bxi,LP

j c}
18 Si,2 = {x ∈ Si | xj ≥ dxi,LP

j e}
19 L = L ∪ {Si,1, Si,2}
20 end
21 end

constraint that forces the variable to be at most as large as the rounded-down fractional
value while the other branch adds a constraint that forces the variable to be at least as
large as the rounded-up fractional value. This ensures that the current solution is not
encountered again and eventually guarantees termination. Observe that the dual bounds
obtained within the search tree are only locally valid, i.e., in the respective subtree. The
primal bounds, however, are globally valid. Hence, we store and update the best feasible
solution encountered so far. This solution is referred to as incumbent (solution). The
algorithm considers three types of pruning that can close a branch. If a subproblem does
not contain any feasible solutions, we prune it by infeasibility. Based on the (globally
valid) primal bound z we prune all subproblems with larger dual bound by optimality
as they cannot contain better solutions. Finally, if we encounter a feasible solution, we
update the incumbent if necessary and prune by optimality. Subproblems that cannot be
pruned have to be split further.

The described procedure leaves several questions open. Most importantly: in which
order should the subproblems be considered and which variable should be branched
on? Several general strategies exist, however, modern solvers typically do not rely on
a single strategy but rather act dynamically depending on the structure of the B&B
tree and the subproblems observed so far. In practice, it sometimes makes sense to
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use problem-specific techniques for selecting the variable to branch on. A common
example are problems based on variables that model different structural aspects with
cost-coefficients of different order of magnitude, see, e.g., Chapter 6.

2.2.3 Exponentially Sized Models

Up to now we assumed that formulations are small enough—i.e., of (pseudo-)polynomial
size—to solve them directly with an appropriate algorithm. However, further modeling
options become available when considering models with an exponential number of
constraints and/or variables.

The idea is in both cases to start with a reduced problem that considers only part of
the exponentially many constraints and/or variables and to dynamically add only those
that are required. Such an approach often turns out to be highly efficient when only a
small subset of variables and/or constraints is required to support an optimal solution.
Constraints that are not restrictive can be omitted similar as variables assigned to zero.

Cutting Plane Methods/Branch-and-Cut

We start by explaining an approach to deal with exponentially many variables in LP
problems. At the beginning we consider a relaxation of the original problem by removing
some of the constraints. After solving the relaxation to optimality we check whether any
of the disregarded constraints are violated in the obtained solution. If no violations are
present, we know that this solution must be feasible for the original problem and thus
optimal (cf. Theorem 2.1). Otherwise, we identify one or more violated constraints, add
them to the relaxed model and start over. Approaches of this type date back to the work
of Dantzig et al. [45].

The problem of finding violated constraints for a given relaxed solution is called separation
problem and the added inequalities are referred to as cutting planes, originating from the
fact that these inequalities are essentially hyperplanes that cut-off part of the polyhedron
of the relaxed problem. An efficient separation algorithm is required to make the described
approach successful. In particular, LP problems with a polynomial-time separation routine
are still polynomially solvable, see [130].

Cutting planes can also be used for MILP problems. To this end we slightly modify the
LP-based B&B. In addition to solving the LP relaxation at each node, we also separate
cutting planes exhaustively. The resulting approach is referred to as branch-and-cut
(B&C) algorithm. Under certain conditions a modified approach is used that delays
(part of) the separation to solutions that satisfy the integrality restrictions. This can be
beneficial if too many inequalities are separated for fractional solutions that are redundant
for integral solutions.

We also want to point out that cutting planes are not only used to deal with exponentially-
sized families of inequalities that are required to enforce feasibility. In practice also
strengthening inequalities are often separated dynamically. They lead to tighter LP
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relaxations that speed up the B&B process. Moreover, sometimes even redundant
inequalities are considered. Often they have a strong impact on the formulation (although
not being sufficient to guarantee feasibility) and thereby help to improve convergence.
Modern solvers typically provide several families of general purpose inequalities that are
problem-independent and separated by default. Therefore, such solvers actually have to
be considered B&C approaches, even if no user-defined separation is performed.

Column Generation/Branch-and-Price

Dynamically adding variables to LP problems is called (delayed) column generation
and was first considered in Gilmore and Gomory [73, 74]. The name of this method
comes from the fact that when viewing LP (or MILP) problems in block form, each
column corresponds to a variable and each row to a constraint. For the cutting planes
it was somehow obvious that we want to separate those constraints that are violated
in the current relaxation. Deriving a similar scheme for the variables might not seem
straightforward at first. One difference is that we require a sufficient subset of variables
to guarantee the existence of a feasible solution in the initial iteration. Opposed to the
cutting planes we are not dealing with a relaxation that provides a dual bound but
rather with heuristic solutions that provide primal bounds. Therefore, suitable starting
variables can often be identified by computing a potentially suboptimal solution by means
of a simple constructive heuristic, see Section 2.3, and adding the variables necessary to
encode that solution. A generic alternative would be, e.g., Farkas pricing, see [63]. The
partial model for which we incrementally incorporate further variables is called restricted
master problem.

In the iterative step we aim at identifying variables that have the potential to improve
the current solution. Observe that this is the dual concept of cutting planes. The cutting
planes approach considers an initially infeasible solution and attempts to converge towards
feasibility. Column generation, on the other hand, starts with a potentially suboptimal
solution and works towards optimality.

Definition 2.24 ([17, p. 84]). The reduced costs of variable xj are defined as

cj = cj − p′Aj

where p is the dual variable vector and Aj the j-th column of the coefficient matrix A.

Informally speaking, the reduced costs indicate the cost change for a unit increase in the
associated variable’s value. Therefore, we seek those variables with negative reduced cost
because they may reduce the solution value if included (with non-zero value) in the next
iteration’s solution. Note that the dual solution vectors are readily available in modern
solver implementations. The problem of identifying variables with negative reduced cost
is called pricing subproblem and typically seeks a variable with minimum reduced cost.
If the minimum reduced cost is non-negative, then we cannot improve the objective any
further and the current solution must be optimal. Depending on the problem at hand
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it might be useful to consider adding multiple variables per iteration if there are, e.g.,
variables related to different aspects of the problem that are priced independently.

If column generation is done within the B&B tree to solve MILP problems we refer
to the associated approach as branch-and-price (B&P). Thereby, variables are priced
exhaustively at each node to ensure that the solution values obtained from the respective
LP relaxations represent valid dual bounds.

Finally, the concepts of column generation and cutting planes can be combined to deal
with exponentially many variables and constraints. To this end one typically starts by
pricing variables until none with negative reduced cost remain. Then, one iteration of
separating cutting planes is performed. If no violated inequalities are identified, the
approach terminates with an optimal solution. Otherwise, the violated inequalities are
added to the restricted model and we repeat the process by pricing further variables.
When done within the B&B tree for MILP problems, we refer to this approach as
branch-price-and-cut (BP&C).

2.2.4 Benders Decomposition

We start by explaining the recently introduced LBBD by Hooker and Ottosson [91],
which we use in Chapter 4. It includes the classical BD as a special case, details are
provided below. The idea of BD is to solve large problems based on variables that can
be partitioned into two subsets (x,y) such that the problem separates into one or more
easier solvable subproblems on the x variables after fixing the y variables.

The general shape of these problems is the following, where S is the set of feasible solutions
(typically formulated via a collection of constraints) and Dx,Dy are the domains of x
and y, respectively:

min f(x,y) (2.13)
subject to (x,y) ∈ S, (2.14)

x ∈ Dx, (2.15)
y ∈ Dy. (2.16)

The idea is to decompose the problem into a master problem only using the y variables
and depending subproblems expressed on the x variables. The master problem is obtained
by removing all elements containing x variables. Instead, their contributions are modeled
through additional inequalities (2.18), called Benders cuts:

min z (2.17)
subject to z ≥ βyk(y) ∀k ∈ K, (2.18)

y ∈ Dy. (2.19)

In the above model the new variable z corresponds to the original objective function
f(x,y) and is now determined by the Benders cuts. To solve this model, one starts with
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a reduced master problem containing no (or only a small initial set of) Benders cuts,
yielding a solution ȳ. When considering again the original problem (2.13–2.16) and fixing
the y variables to ȳ, we obtain the following subproblem, solely defined on the x variables
and supposed to be in some sense much easier to solve than the original problem:

min f(x, ȳ) (2.20)
subject to (x, ȳ) ∈ S, (2.21)

x ∈ Dx. (2.22)

The inference dual of the subproblem is defined as follows:

max β (2.23)

subject to (x, ȳ) Dx−−→ f(x, ȳ) ≥ β. (2.24)

Considering the dual of the subproblem we want to find the best possible dual bound
β∗ on the optimal solution value, when y is fixed to ȳ, that can be inferred from the
constraints. The main challenge is to identify a bounding function βȳ(y) providing a
valid dual bound on the optimal objective value of (2.13) given any fixed value y.

If all subproblems are feasible, they yield a valid dual bound βȳ(y) with respect to the
current assignment of the y variables. So-called Benders optimality cuts are derived from
the dual solution and are added to incorporate this information into the master problem.
If one or more subproblems turn out to be infeasible, this means that the considered
solution on the y variables is not acceptable. This information is also communicated
to the master problem by means of Benders cuts which are then called feasibility cuts.
In particular, since infeasible subproblems have unbounded dual, we obtain βȳ(ȳ) =∞.
With this additional information we continue and search for a better assignment of the y
variables by solving the augmented master problem and the corresponding subproblems
again. This procedure is iterated until it is no longer possible to find an assignment
of the y variables that improves the objective and no infeasible subproblems remain.
Then, an optimal solution to the initial problem has been found. We denote by βȳk(y)
the bounding function inferred from the kth trial value ȳk. According to Hooker and
Ottosson [91] it is known that if in every iteration k of the Benders algorithm

• the Benders cut z ≥ βȳ(y) is valid, i.e., any feasible solution (x,y) to (2.13) satisfies
f(x,y) ≥ βȳ(y) and

• βȳk(ȳk) = β where β is the optimal solution to the dual of (2.20),

then, given finite domain Dy for the y variables and if the subproblem dual is solved to
optimality, the generic Benders algorithm terminates with the correct result.

It is often the case that not all x variables are linked to each other after the y variables
have been fixed. In these cases it is possible to split the subproblem into smaller problems
that can be solved independently. A prominent example for this case are problems whose
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constraint matrix has dual block-angular structure, see Figure 2.1. This structure is
the dual to the one arising and exploited in Dantzig-Wolfe decomposition [47]. Having
independently solvable, smaller and/or easier subproblems is one of the advantages of
BD as this often helps to deal with much larger problem instances than is possible when
solving the problem as a whole.

y x

co
ns
tr
ai
nt
s

Figure 2.1: Dual block-angular structure of a constraint matrix: A set of y variables
links x variables that could otherwise be considered independently. Gray areas denote
non-zero coefficients.

In the original BD, introduced by Benders [14], the subproblems are restricted to be LP
problems. This makes it possible to derive Benders cuts by means of classical duality
theory. Let

min c′x + f(y) (2.25)
subject to Ax + g(y) ≥ b, (2.26)

x ∈ Rn≥0,y ∈ Dy, (2.27)

be the initial problem with g(y) a vector of functions gi(y). After fixing the y variables
to some trial value ȳ, we obtain the subproblem

min c′x + f(ȳ) (2.28)
subject to Ax ≥ b− g(ȳ), (2.29)

x ∈ Rn≥0, (2.30)

and its dual

max u′(b− g(ȳ)) + f(ȳ) (2.31)
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subject to u′A ≤ c′, (2.32)
u ∈ Rn≥0. (2.33)

If the subproblem is feasible with finite solution u, we obtain an optimality cut of the
form z ≥ u′(b− g(y)) + f(y). Observe that this cut stays valid for any trial value of the
master problem and is tight for the current one. For infeasible or unbounded duals we
obtain a Benders feasibility cut of the form v′(b− g(y)) ≤ 0 where v is a ray that solves

max v′(b− g(ȳ)) (2.34)
subject to v′A ≤ 0′, (2.35)

v ∈ Rn≥0. (2.36)

Geoffrion showed in [72] how to extend this method to other convex optimization methods
using nonlinear convex duality theory. This allows for a systematic generation of the
bounding function by means of duality theory. Unfortunately, this also limits the
applicability of the approach.

The advantage of LBBD is that it permits more general subproblems. However, in
contrast to the traditional BD there exists no (single) systematic way to identify a strong
bounding function for the Benders cuts. Instead, tailored cuts have to be identified with
respect to the encountered subproblems.

Despite of being a relatively new approach LBBD has been applied effectively in several
areas including planning and scheduling (Hooker [90], Hamdi and Loukil [85]), location
problems (Fazel-Zarandi and Beck [59], Wheatley et al. [170]), survivable network design
(Garg and Smith [68]), and vehicle routing (Cire and Hooker [38], Raidl et al. [145, 146]).

Branch-and-Check

The idea behind classical BD and LBBD is to solve the master problem to optimality
in each iteration. However, this might not always be necessary. Suboptimal solutions
can be sufficient to derive relevant cuts for the master problem. In particular, one can
consider a single B&C tree and separate Benders cuts for all identified intermediate
(integral) solutions. In terms of LBBD this idea was first introduced in Hooker [89] and
further examined in Thorsteinsson [161] and is also closely related to the concept of
combinatorial Benders cuts considered by Codato and Fischetti [40]. Thorsteinsson [161]
referred to this strategy as Branch-and-Check (BaC). We will adopt this term in the
following. The comparable strategy in the context of classical BD is often referred to as
Branch-and-Benders-cut, see Rahmaniani et al. [144].

Using the terminology introduced for BD, BaC specifies a single problem defined only on
the y variables together with their constraints. This problem is then solved. Whenever a
feasible solution is encountered within the B&C tree the corresponding subproblems are
derived and solved. Depending on their solutions Benders cuts are added, possibly cutting
off the current solution. The main difference to LBBD is that the master problem is
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solved only once and that Benders cuts are typically generated with respect to suboptimal
assignments of the y variables inside the B&C tree.

Technically, traditional B&C and BaC are very similar. The main difference is that B&C
separates cuts for LP solutions whereas BaC separates cuts only for feasible (integral)
solutions.

When dealing solely with feasibility cuts, i.e., the solution of the subproblems has no
influence on the objective of the master problem, BaC has one advantage over LBBD
that really stands out. Since BaC operates on the B&B tree and iteratively approaches
the feasible area, it is usually capable of finding feasible solutions quite fast. LBBD, on
the other hand, either terminates with an optimal solution or no feasible solution at all.
Often it is possible to derive a feasible solution from the trial values of the intermediate
Benders iterations, however, this requires additional computational effort which is not
incurred when using BaC.

2.2.5 Constraint Programming

Similar to MILP, CP is also based on a set of decision variables and a set of associated
constraints. However, it is not restricted to linear constraints. This somehow reflects the
fact that CP is particularly designed for solving problems that are tightly constrained.
Often also constraint satisfaction problems (CSPs) are considered, i.e., problems without
an objective function for which the goal is to obtain any feasible solution.

The number of available constraint types is quite large and solver-dependent, so listing
them exhaustively would not be meaningful. Therefore, we give a few examples of popular
constraints instead and refer the interested reader to the global constraint catalog, see
https://sofdem.github.io/gccat/gccat/sec5.html. One of the most prominent constraints
is the all_different constraint, which states that for a given set of variables no
two of them may take the same value. Another important constraints is the element
constraint. Given variable i and a table of values T , element(T,i) provides the value
at position i in the table, for brevity also often written as Ti. It might not seem powerful
at first but is required rather frequently, in particular, as it can also be nested. Another
basic modeling tool is the domain constraint. It specifies for a given variable a lower and
an upper bound on the values it may take. Different from MILP, variable domains do
not have to be contiguous but can be arbitrary sets, e.g., specified via the in constraint.
Integral domains are typically preferred due to a higher number of available constraints
and better efficiency of the employed solution method. Nevertheless, also (intervals of)
fractional values are possible.

The solution method for CP is primarily based on (1) constraint propagation and (2)
tree search. The basic idea of constraint propagation is to remove from each variable’s
domain all values that cannot be part of a feasible solution when considering the specified
constraints. Different levels of consistency can be achieved via constraint propagation.
The simplest one is node consistency, which is considered for constraints involving only a
single variable. To achieve node consistency we remove all values incompatible with the
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2.3. Heuristic Methods

unary constraint and afterwards the constraint itself. Hence, the complexity of achieving
node consistency is linear in the number of variables and the cardinality of their domains.
A more complex concept is arc consistency. For a binary constraint (i.e., involving
two variables) arc consistency enforces that for each value of the first variable’s domain
there must exist a value in the second variable’s domain satisfying the constraint and
vice versa. Domain values that are not consistent with this requirement are removed.
Different algorithms have been suggested to achieve arc consistency. They rely on the
fact that binary CSPs can be represented by directed graphs. Thereby, each node of
the graph represents a variable and each arc a constraint relating two variables. The
corresponding algorithms now traverse this graph and successively reduce the variable
domains, also called filtering. Over the years several algorithms with increasing efficiency
have been developed. Among the most well-known algorithms is the AC-3 algorithm by
Mackworth [119] that achieves arc consistency in time O(ed3) and space O(e) where e is
the number of edges in the graph and d the maximum cardinality among the variable
domains. Improved time-efficient is possible, however at the expense of considerably
higher space requirements, see, e.g., Mohr and Henderson [127] and van Hentenryck
et al. [166]. Higher order consistencies exist but are rarely used in practice due to their
increasing complexity.

Once constraint propagation for a certain consistency level finished, there are three
possible outcomes. If there exists at least one variable with empty domain, then the CSP
is infeasible. Should all variable domains be restricted to exactly one value, we identified
a feasible solution. In most situations we will end up in the third case in which none of
the variable domains is empty and some variable domains still contain more than one
value. To obtain a feasible solution or prove infeasibility, we need to continue. This is
done by a tree search that selects one of the variables to branch on. Infeasibility can
only be proven by closing all branches but to show feasibility it suffices to find a feasible
solution in any branch. If an optimization problem is considered, then a B&B scheme
with respect to the encountered solution values has to be employed and all branches have
to be closed to prove optimality. Similar as for MILP this involves several non trivial
decision such as selecting the variable to branch on and deciding how the branching is
performed. Efficient solvers are available, e.g., IBM ILOG CPLEX CP Optimizer3 or
Gecode4.

For further details we refer to Rossi et al. [153].

2.3 Heuristic Methods
The heuristic methods presented in the following can, e.g., be found in Gendreau and
Potvin [70] and Blum and Raidl [23]. Opposed to exact approaches heuristics provide no
quality guarantees on the computed solutions, i.e., the difference to the optimal solution
value might be arbitrarily large. Their main advantage is that by giving up optimality,

3https://www.ibm.com/analytics/cplex-cp-optimizer (accessed 09/2018)
4https://gecode.github.io (accessed 09/2018)
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solutions can be computed much faster. This allows obtaining solutions also for very large
problem instances that cannot be solved by exact approaches in a reasonable amount of
time. Despite of providing no theoretical performance guarantees, more sophisticated
types of heuristics such as metaheuristics often provide near optimal solutions. Therefore,
heuristics can be valuable on their own but may also act as components of other algorithms.
When considering a B&B approach to solve MILP problems, a high-quality starting
solution can be helpful to enable stronger pruning in the tree.

2.3.1 Constructive Heuristics

Constructive heuristics (also construction heuristics) are in some sense the most basic
variant of heuristics. As the name suggests, their idea is to construct a solution step-by-
step. A well-known variant are so-called greedy heuristics. They start with an empty
solution and in each step apply a locally optimal extension until a complete solution
is obtained. The extension step is typically problem-dependent but in most situations
rather easy to come up with. Consider, e.g., a simple tour planning problem such as the
traveling salesman problem (TSP): A so-called nearest neighbor heuristic adds in each
step a connection to the closest not yet visited city.

2.3.2 Metaheuristics

Metaheuristics are general problem-independent algorithms that typically provide solu-
tions of much higher quality than simple constructive heuristics. Some of these algorithms
belong to the class of so-called improvement heuristics, which require a starting solution.
In the following we discuss two simple variants of metaheuristics that are used in this
work. Many more established algorithms of this type exist. Well-known examples include
simulated annealing, tabu search, variable neighborhoods search, genetic algorithms, and
ant colony optimization. For a broad overview see, e.g., Gendreau and Potvin [70].

Local Search

Local search is an improvement heuristic and requires a starting solution, e.g., provided
by a constructive heuristic. The idea is to compute a solution that is locally optimal
according to a specific neighborhood. As shown in Algorithm 2.2 this is done by iteratively
moving to better neighboring solution. For smaller neighborhoods this procedure can
be iterated until none of the possible neighbors provides an improvement. Larger
neighborhoods sometimes cannot be searched exhaustively. This makes it necessary
to terminate according to some other criterion like a time limit, a specific number of
iterations, or a number of iterations without improvement. If a dual bound is known,
termination can also be based on the proximity to this bound.

For choosing a neighbor, there are typically several options available. Common strategies
are random neighbor, next improvement, and best improvement, which choose a random,
the first improving, or the neighbor with the best solution value within the neighborhood
of the current solution, respectively.
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Algorithm 2.2: Local search
Input: initial solution x′, cost function c, neighborhood function N

1 incumbent x∗ ← x′ // best feasible solution
2 repeat
3 choose x ∈ N(x∗)
4 if c(x) ≤ c(x∗) then
5 x∗ ← x
6 end
7 until stopping criteria satisfied

Greedy Randomized Adaptive Search Procedure

The greedy randomized adaptive search procedure (GRASP) has been proposed by
Feo and Resende [60, 61] and is based on the principle of randomizing an underlying
construction heuristic to obtain diverse solutions that are optimized by local search, see
Algorithm 2.3. The idea is that starting from different solutions allows the local search

Algorithm 2.3: Greedy randomized adaptive search procedure
Input: cost function c
Input: randomized greedy heurstic RG, local search algorithm LS

1 incumbent x∗ ← NULL // best feasible solution
2 repeat
3 x← RG()
4 x1 ← LS(x)
5 if c(x1) ≤ c(x∗) then
6 x∗ ← x1

7 end
8 until stopping criteria satisfied

to reach different local optima. This decreases the chances of ending up in a particularly
bad local optimum. The used neighborhoods are typically assumed small enough so that
local optima can be computed for each starting solution.

A common way of randomizing the construction process are so-called restricted candidate
lists. Thereby, we consider only a subset of the possible options to extend the current
partial solution in each step. Among the selected candidates we choose randomly. The
restricted candidate list can be constructed by selecting a specific number of the cheapest
extensions or all extension within a specific range of the best extension. Several other
options and general extensions to the basic GRASP such as biased selection from the
restricted candidate list can be considered, see Resende and Ribeiro [147].
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2.4 Hybrid Methods
The idea of hybrid methods is to combine different solution approaches to benefit from
their strengths by covering their individual weaknesses. An example was already given
above: The convergence of a B&B algorithm for MILP can possibly be accelerated by
providing an initial solution computed by a heuristic. Going a step further one can apply
heuristics at each node of the search tree by using the solutions to the LP relaxations
as guidance. Modern solvers for MILP use general purpose heuristics to derive feasible
solutions, e.g., by rounding fractional values in solutions to LP relaxations.

In general there exists a large variety of hybrid methods that can be classified according
to the components that are chosen and the way in which the individual techniques are
combined. For an extensive discussion we refer to Blum and Raidl [23].

In the following we want to focus on a specific type of hybrid methods: matheuristics.
Matheuristics are essentially a combination of mathematical programming techniques
(such as LP and MILP) and metaheuristic approaches. According to Maniezzo et al.
[121] there exist two main variants: The first one aims to improve the metaheuristic
by exploiting mathematical programming techniques. The second one aims to improve
the mathematical programming technique with the robustness and time efficiency of the
metaheuristic. In this work we are primarily interested in the latter that typically leads
to an exact algorithm.

As a typical example consider the following, see also Puchinger et al. [139]. Sometimes
separation problems or pricing subproblems are too difficult to (always) solve them exactly.
In this situation one can use a strong heuristic instead. As long as the heuristic provides
violated inequalities or columns with negative reduced cost, everything proceeds as usual.
However, at some point the heuristic will stop finding further extensions to the model.
To preserve optimality we have to verify with an exact algorithm that there are indeed no
remaining constraints that are violated or columns with negative reduced cost. If we find
further extensions in this way, the heuristic can be applied again afterwards until the next
exact iteration becomes necessary. In case of column generation we may alternatively
skip this step and settle for a heuristic solution. If we are dealing with cutting planes
that are required to achieve feasibility, simply terminating could result in an infeasible
solution. In some situations this can be resolved by a subsequent repair process. For
cutting planes that are not required to enforce feasibility, exhaustive separation is not
necessary, so we are still guaranteed to obtain an optimal solution.

A technique we use in this work are matheuristics that derive converging sequences of
primal and dual bounds. Thereby, heuristic techniques are used to obtain primal bounds
and relaxations of MILP models are used to obtain dual bounds. By successively improving
the quality of the relaxation we strengthen the dual bound until it becomes tight. At the
same time we use the refined relaxation as guidance for the heuristic component to obtain
better incumbent solutions. Having a sequence of gradually improving primal solutions
is particularly important for practical applications. If the algorithm is terminated due to
a time limit before proving optimality, then it provides at least a good solution whose
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quality correlates with the time spent. Opposed to a pure (meta-)heuristic we also obtain
a dual bound that makes it possible to assess how close we were to proving optimality,
establishing confidence in the obtained solution’s value.
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CHAPTER 3
Exact Approaches for Network
Design Problems with Relays

In this chapter we consider mixed integer linear programming (MILP) models for the
network design problem with relays (NDPR). This problem considers the construction of
communication networks subject to distance restrictions. If signals have to be transmitted
beyond a certain limit, signal regeneration equipment (relays) has to be installed at
intermediate network nodes. By means of a communication graph we model all paths that
can be traversed without the use of relays, i.e., that are no longer than the distance limit.
Valid solutions can be represented by collections of such paths with relays installed at all
nodes where paths are joined. As the number of such links can become very large but
only a small subset is expected to be relevant in practice, we resort to column generation
for increased efficiency. Moreover, we consider a branch-price-and-cut (BP&C) approach
that uses also an exponential umber of constraints to enforce connectivity requirements.

Opposed to previous work on the NDPR which mainly focused on heuristic approaches,
our MILP formulations provide provably optimal solutions. In an extensive computational
study, we analyze the performance of these approaches for instances that reflect different
real-world settings. Finally, we also point out the relevance of the NDPR in the context
of electric mobility.

This chapter has been accepted for publication in the INFORMS journal on Computing:

M. Leitner, I. Ljubić, M. Riedler, and M. Ruthmair. Exact approaches for
network design problems with relays. INFORMS Journal on Computing, To
appear, 2018
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3.1 Introduction

Cabral et al. [30] introduced the NDPR for modeling the design of telecommunication
networks when the maximum distance a commodity (i.e., signal) can travel is bounded
from above by some threshold and when distances exceeding this limit can be covered by
locating special, commodity regenerating equipment (relays) at intermediate locations.
Well-known applications in communication networks arise from signal deterioration and
thus there is the need to regenerate them after some maximum distance by using rather
expensive devices (e.g., repeaters), see, e.g., [30]. Without regeneration, the transmitted
information might be falsified or the signal might be lost. As regeneration devices are
usually expensive the goal is to use as few devices as possible, see [35]. As an alternative
to placing relays the distance along certain connections may also be reduced by installing
additional edges.

Problem Definition

The NDPR is defined on an undirected graph G = (V,E, c, w, d) with relay costs c : V →
N>0, edge costs w : E → N≥0, and edge lengths d : E → N≥0. The edge set E is the
disjoint union of the set of free (e.g., existing) edges E0 = {e | w(e) = 0} and the
set of augmenting edges E∗ = {e | w(e) > 0}. Furthermore, K ⊆ V × V is the set of
commodities. Parameter dmax ∈ N>0 defines the maximum distance a commodity can
traverse without regeneration.

The NDPR consists of selecting augmenting edges Ê ⊆ E∗ to install and nodes V̂ ⊆ V
where relays are to be placed minimizing the resulting costs

∑
i∈V̂ ci +

∑
e∈Ê we. A

solution is feasible iff all commodity pairs from K can communicate using the edges in
Ê ∪ E0 and relays at nodes V̂ . Thereby, two distinct nodes s, t ∈ V can communicate
if there exists a walk W = (s = v0, v1, v2, . . . , vk = t), vi ∈ V , 0 ≤ i ≤ k, that does not
contain a subwalk W ′ = (vl, vl+1, . . . , vl+m), 0 ≤ l ≤ k − 1, m ≥ 0, l + m ≤ k, whose
length d(W ′) =

∑l+m−1
j=l dj,j+1 is greater than dmax and which does not contain a relay at

an intermediate node, i.e., vj /∈ V̂ for l < j < l +m. A walk satisfying these conditions
is called a feasible walk and a feasible path is defined analogously.

An example of an NDPR instance together with an optimal solution is given in Figure 3.1.

Outline and Discussion of the Contributions

Available literature for the NDPR mainly deals with heuristic approaches (see, e.g.,
[30, 102, 100]). On the contrary, we provide a comprehensive computational study of
MILP models and underlying exact algorithms for the NDPR. A common characteristic
of the presented MILP models is that they require an exponential number of variables
representing paths in a so-called communication graph. The communication graph
contains the same nodes as the original graph G and an edge between every two nodes
that can be connected via a feasible path without installing relays.
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Figure 3.1: An NDPR instance and its optimal solution for dmax = 4 and K =
{(0, 3), (0, 4), (2, 5), (3, 4)} in which a relay is installed at node 1 and the augmenting
edge {0, 1} is selected. Nodes are labeled by node index and relay installation costs in
parentheses. Edges are labeled by their lengths and installation costs in parentheses (for
augmenting edges). Solid lines indicate free edges and dashed lines augmenting edges.
Black nodes mark the selected relays in the solution.

For deriving computationally viable optimization tools for the proposed MILP models,
we implemented two BP&C algorithms. Their performance is assessed on a large set of
benchmark instances—some of them taken from the available literature, and some newly
generated ones.

The chapter is organized as follows. In the remainder of this section we summarize
our notation and provide an overview of the related literature. In Section 3.2 we
prove some structural properties of feasible/optimal solutions that will help us to create
tighter formulations. In Section 3.3 we discuss transformations of the input graph
and associated MILP formulations. Section 3.4 provides the details of our algorithmic
framework followed by the presentation of our computational results on a diverse family
of benchmark instances in Section 3.5. Finally, we discuss challenges and open questions
for further research in Section 3.6 where we also summarize our main conclusions.

3.1.1 Notation and Assumptions

To ease notation in many of the results and formulations introduced in the following,
we will consider the node pairs (i.e., commodities) to be directed pairs (u, v) ∈ K. This
assumption is without loss of generality, since there are no costs nor capacities associated
with the routing decisions in the NDPR. Furthermore, we define the set of sources
S = {u | ∃v ∈ V such that (u, v) ∈ K} and the set of targets T u = {v | (u, v) ∈ K}
that have to be reached by source u ∈ S. Similarly, the set of all targets is defined as
T = {v | ∃u ∈ V such that (u, v) ∈ K} =

⋃
u∈S T

u.
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Let δ(W ) = {{i, j} ∈ E | i ∈ W, j ∈ V \ W} denote the set of edges incident to
W ⊆ V in the undirected graph G = (V,E). For a directed graph G′ = (V ′, A′)
and node subset W ⊆ V ′, we define δ+(W ) = {(i, j) ∈ A′ | i ∈ W, j ∈ V \W} and
δ−(W ) = {(i, j) ∈ A′ | i ∈ V \W, j ∈ W} as the set of outgoing and incoming arcs,
respectively.

Finally, observe that edges e ∈ E such that de > dmax as well as commodities (u, v) ∈ K
for which G contains a feasible path between the endpoints, using free edges from E0

only and no relays, can be removed in a preprocessing step. Thus, we assume without
loss of generality that neither of them exists in the given input.

3.1.2 Related Work and Applications in Transportation

The NDPR was introduced by Cabral et al. [30] who showed that the problem is NP-hard
and described heuristic approaches intended to solve large instances. Furthermore, an
MILP formulation of the problem based on an exponential number of variables is described.
Contrary to our path variables derived in the communication graph (cf. Section 3.3.1),
Cabral et al. [30] use variables representing entire walks between the commodities in the
original graph (including the placement of relays). Their formulation is used to derive
lower bounds by means of column generation. At the same time, the subset of generated
columns is used to compute heuristic solutions in a subsequent branch-and-bound (B&B)
phase. Computational results are discussed for instances with up to 62 nodes, 103 edges
and 10 commodities.

A hybrid metaheuristic combining a genetic algorithm with local search has been proposed
by Kulturel-Konak and Konak [102] whereas an improved genetic algorithm is given
in Konak [100]. In the latter article, Konak also introduces a variant of the MILP
formulation by Cabral et al. [30] by using separate variables to represent walks and relay
placements. However, no computational studies concerning this model were conducted.
Instead, some observations regarding the set covering constraints introduced in this
formulation are used in the design of the proposed genetic algorithm. Computational
results are given on instances with up to 160 nodes and 3624 edges and 10 commodities.
Lin et al. [113] proposed a tabu search approach for the NDPR. Their solution method
computes solutions of almost as good quality as the genetic algorithm from Konak [100]
but requires less computation time. Very recently, Xiao and Konak [173] presented a
variable neighborhood search for the NDPR that is combined with an exact algorithm for
the relay placement. Independently from our work an alternative branch-and-price (B&P)
approach was developed in Yıldız et al. [177]. The authors propose MILP formulations
on a so-called virtual network with an exponential number of edges. Their computational
study mainly focuses on a tree formulation specifically designed for the single source case,
i.e., |S| = 1.

A related version of the NDPR, defined on a directed graph and called the directed
network design problem with relays (DNDPR) (see also Chapter 6), has been introduced
in Li et al. [110] where a compact MILP model and a B&P algorithm have been proposed.
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The problem definition is however slightly different from the NDPR: in the DNDPR
only simple paths are allowed for connecting commodity pairs, whereas the NDPR
also allows using walks. In fact, allowing multiple node visits in general makes NDPR
solutions significantly cheaper than DNDPR solutions, see Section 3.2 for further details.
The compact formulation given in [110] exploits the fact that, along a path connecting
a commodity pair, each node can be visited at most once. More precisely, it uses a
single variable per node to record the distance from the source at which it is reached.
Consequently, this formulation cannot be used for solving the NDPR. Their B&P
algorithm, which is very similar to the one considered by Cabral et al. [30], is in
general capable of allowing cycles but in the computational experiments the authors only
consider the acyclic case. Finally, [96] study an extension of the NDPR which considers
survivability, edge capacities, and allows for k-splitting of the routes of a commodity.

Application in Transportation

Yıldız and Karaşan [174] provide a detailed survey on applications of relay placement
problems in transportation. In some of these applications dealing with hub location
issues, hubs are interpreted as relays, i.e., the location of hubs naturally corresponds
to the placement of relays. The underlying problems are concerned with identifying
physical locations of hubs which may serve as places for the exchange of drivers, trucks
and trailers, or as stations where drivers can rest (cf. [164, 31]). Moreover, hubs can be
used for switching transportation means or simply for storing the consignment to be
picked up by other drivers (see [165]). Since certain road sections might be more costly
to use (e.g., if additional tolls need to be paid) or certain possibilities to extend the road
network might exist, the consideration of edge selection is relevant as well. The placement
of refueling stations for alternative-fuel vehicles is another important area where the
NDPR arises as a subproblem. The distance constraints considered in the NDPR are
well motivated by the typical range restrictions of such vehicles, see e.g., Schneider et al.
[156] and the survey by Pelletier et al. [136].

Additionally, we want to point out the relation to the so-called minimum cost path
problem for plug-in hybrid electric vehicles (PHEVs) considered by Arslan et al. [1].
In this problem a PHEV needs to travel from an origin to a destination node using
gasoline refueling, and electric charging stations while minimizing refueling, charging
and traveling costs. The authors solve the problem with a mixed integer quadratically
constrained formulation. The considered problem is very similar to the NDPR. The
charging stations can be viewed as some kind of relays and the vehicle corresponds to
a single commodity. The primary difference lies in the fact that refueling and charging
stations need to be modeled as two different types of relays which introduces additional
complexity. Nevertheless, our solution techniques introduced for the NDPR (in particular,
the modeling of path segments between two consecutive charging stations and the
generation of the communication graph) might also be relevant for solving the PHEV
problem. The placement of refueling stations has also been considered in Capar et al.
[32] and Yıldız et al. [176] where the goal is to select locations for the refueling stations
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such that the total volume of the refueled demand is maximized for a given set of
origin-destination pairs. Yıldız et al. [176] solve the problem with a B&P approach that
uses an exponential number of path variables to model route feasibility.

Relation to Regenerator Location/Placement Problems

The regenerator location problem (RLP) introduced by Chen et al. [35] is closely related
to the NDPR but focuses on the placement of regenerators (relays) and no additional
edges can be purchased/installed in the network. More precisely, the RLP is a special
case of the NDPR for E∗ = ∅ and K = {(u, v) | u, v ∈ V u < v}, i.e., it is assumed
that all edges have zero cost and all node pairs need to communicate. As the RLP is
equivalent to the maximum leaf spanning tree problem (MLSTP) and the minimum
connected dominating set problem (MCDSP), see, e.g., [71, 117], the NDPR generalizes
these problems as well. Chen et al. [35] provide several MILP formulations for the RLP
which unfortunately cannot be directly used to solve the NDPR since they are not capable
of selecting augmenting edges. We will, however, use the concept of a communication
graph provided in Chen et al. [35] for solving the NDPR, cf. Section 3.3.1 for a detailed
description. Further exact approaches for the RLP have been developed by Rahman et al.
[143] who propose compact formulations and branch-and-cut (B&C) algorithms. In a
recent contribution by Yıldız and Karaşan [174], survivability requirements are added to
the RLP.

Chen et al. [36] introduced the so-called generalized regenerator location problem (GRLP)
which extends the RLP by considering node sets S ⊆ V of potential relay locations and
T ⊆ V of terminal nodes which need to be able to communicate with each other, i.e.,
K = {(i, j) | i, j ∈ T, i < j}. Again, the proposed models for the GRLP cannot be applied
to the NDPR. On the other hand, the NDPR is able to model the GRLP by assigning
infinite costs to the nodes in V \ S or by adding constraints that prohibit that the nodes
in V \ S are chosen as relays. The latter can be easily done in all formulations that will
be introduced in the following.

Another recent contribution by Yıldız and Karaşan [175] considers several practical
extensions like routing, bandwidth allocation, and modulation selection. The proposed
flow model uses an exponential number of variables and is solved by a B&P approach.
Finally, in a broader sense, the NDPR is also related to optimization problems dealing
with wavelength division multiplexing (WDM), but, in contrast to the NDPR, the routing
of an optical signal has to be optimized at two layers, the logical and the physical one,
see, e.g., [142, 160] for further details.

3.2 Solution Properties
In this section we introduce and prove certain structural properties of optimal NDPR
solutions that will be used to derive MILP formulations in the next section. Recall that
a solution consists of a subset Ê ⊆ E∗ of augmenting edges (together with the free edges
E0), and a subset V̂ ⊆ V of nodes where relays have to be installed.
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Figure 3.2: Example instance with a cyclic solution for dmax = 4 and K = {(0, 3)}.
Nodes are labeled by node index and relay installation costs in parentheses. Augmenting
edges are labeled by their lengths and installations costs in parentheses. Dashed lines
indicate augmenting edges. Black nodes mark the selected relays in the solution.

As mentioned above, commodity pairs (u, v) ∈ K are assumed to be ordered, so that
routing a signal from u to v is determined by a feasible (directed) u, v-walk embedded in
the subgraph induced by Ê ∪ E0, and using a subset of relays from the set V̂ . Hence,
even though the solution corresponds to an undirected graph (along with the placement
of relays), routing decisions are given by directed walks that are incorporated in the
solution graph. In our terminology, a feasible walk corresponds to a directed subgraph
embedded in the undirected solution graph, so that each edge can be traversed in both
directions. The number of visits of a node in a feasible walk is equal to the in-degree of
this node in the associated directed graph.

To better illustrate this interplay between the undirected solution graph and the directed
subgraph associated with the routing decisions, let us consider the instance given in
Figure 3.2a and assume dmax = 4 and K = {(0, 3)}. The unique optimal solution which
is visualized in Figure 3.2b selects all edges and places a relay at node 2. The routing
of a signal from node 0 to node 3 is given by a directed walk (0, 1, 2, 1, 3) embedded in
this solution. This walk traverses the edge {1, 2} twice and visits node 1 twice forming
a cycle, cf. Figure 3.2c. Notice that the definition of the NDPR does not forbid such
cycles. As a matter of fact, enforcing that each commodity is connected by a (simple)
path might significantly increase the cost of a solution. In the considered example a relay
would need to be placed at node 1 instead of at 2 and edge {1, 2} would not be traversed.
Consequently, the solution cost would increase from 8 to 12.

In the following, we focus on structural properties dealing with routing decisions in an
optimal NDPR solution. We first prove two properties that are concerned with the
maximum number of node visits for connecting a single commodity before we show that
analogous results also hold when simultaneously considering all commodities with a
common source.

Property 3.1. In every optimal solution there exists for every pair (u, v) ∈ K a feasible
walk from u to v visiting each relay at most once.
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Figure 3.3: Path from u to v visiting node i n times.

Proof. Let W = (u,w0, i, w1, i, . . . , wn−1, i, wn, v) be a feasible u, v-walk in an optimal
solution that consists of subwalks {w0, w1, . . . , wn} with i ∈ V , i 6= u, v, cf. Figure 3.3.
If i is a relay node, then walk W ′ = (u,w0, i, wn, v) visiting node i only once clearly is
a feasible u, v-walk as well. By repeating this argument, we will end up with a feasible
u, v-walk in which each relay node appears at most once.

Property 3.2. In every optimal solution there exists for every pair (u, v) ∈ K a feasible
walk from u to v visiting each non-relay node at most twice.

Proof. Let i ∈ V be the non-relay node closest to u which is visited n > 2 times in a
feasible u, v-walk. Let the feasible u, v-walk be represented as W = (u,w0, i, w1, i, . . . ,
wn−1, i, wn, v) with subwalks {w0, w1, . . . , wn} that do not visit i, cf. Figure 3.3. Clearly,
each subwalk w` (1 ≤ ` ≤ n− 1) that contains no relays can be deleted from W without
violating feasibility. Hence, let us assume that at least one relay is traversed in w`,
for all 1 ≤ ` < n, and let r ∈ V be the relay node with minimum distance from/to
i in any of the subwalks w1, . . . wn (considered undirected). Let (i, v0, v1, . . . , vl = r),
vk 6= i, 0 ≤ k ≤ l, be the corresponding path from i to r with minimum length. Then,
W ′ = (u,w0, i, v0, v1, . . . , vl = r, vl−1, . . . , v0, i, wn, v) is a feasible u, v-walk visiting i
exactly two times. By repeating this procedure for each non-relay node which is visited
more than twice, we can construct a feasible walk with the desired property.

Definition 3.1. A feasible walk w connecting a commodity pair (u, v) ∈ K is called
non-redundant if it does not contain a feasible u, v-subwalk w′, w′ 6= w.

Remark 3.1. Every non-redundant walk satisfies Properties 3.1 and 3.2. If a non-relay
node is visited twice in a non-redundant walk, then the second visit occurs in terms of a
cycle that visits a relay. Each feasible walk can be converted into a non-redundant one
using the reduction techniques from the proofs of Properties 3.1 and 3.2.

Theorem 3.1. Given a source u ∈ S, in every optimal solution one can embed a digraph
rooted at u containing a feasible walk from u to every target v ∈ T u. In this digraph, each
relay has in-degree at most one and each non-relay node has in-degree at most two.
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Figure 3.4: A directed graph rooted at u that needs to reach targets T u = {v, v′, v′′}.
We illustrate the pruning procedure after adding the red walk to the current digraph G̃
shown in black. The pruning procedure applied to nodes z2 and z1 removes subwalks w3
and w′1, respectively.

Proof. We show the existence of such a digraph G̃ by construction. According to
Properties 3.1 and 3.2, for each target v ∈ T u there exists a feasible walk from u to v
with the desired properties. We choose one of the targets v ∈ T u and initialize the graph
G̃ with arcs determining its feasible walk (satisfying Properties 3.1 and 3.2). We then
continue to iteratively insert non-redundant walks for the remaining targets. Whenever a
new walk (associated with a new target) is considered, there are three possibilities: (a)
the graph already contains the walk’s target, (b) the graph and the walk are node-disjoint
(except for the source u), or (c) the graph and the walk share more than one node.

If (a) occurs, we do not modify G̃ and continue with the next target node. Case (b)
allows to add the walk to G̃ without violating the desired properties since the in-degrees
of nodes already present in G̃ do not change. The third case (c) is more difficult to
handle since simply adding the walk might increase the in-degree for some nodes and
thus can destroy the properties we need.

Initially we add the walk to G̃. Let Z = {z1, . . . , zn} be the set of nodes on this walk with
in-degree greater than one. Each of these nodes might be in conflict with the required
properties. To resolve this issue we apply a pruning procedure to each node z ∈ Z.

First, we identify a non-redundant walk in G̃ that reaches z at minimum distance (using
as few edges as possible) from the preceding relay or node u. This walk might visit z at
most twice using a cycle to a relay to reduce the covered distance. Then, we delete all
incoming arcs of z not contained in this walk. Moreover, we iteratively remove preceding
arcs of the already removed ones (not contained in the walk) until we arrive at source
node u, a node that is a target, or a node that has an outgoing walk to a target. For an
example see Figure 3.4.

After processing all u, v-walks in this way we can reach all targets of u in G̃. Moreover,
walks are added such that all nodes in G̃ are guaranteed to meet the required degree
restrictions.
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Figure 3.5: Shortest path connections may be suboptimal due to edge reuse. Paths
(0, 1, 2) and (0, 1, 3) are dominated by (0, 2) and (0, 3), respectively. Nevertheless, the
optimal solution is {{0, 1}, {1, 2}, {1, 3}} (K = {(0, 2), (0, 3)} and dmax = 3). Nodes are
labeled by node index and relay installation costs in parentheses. Edges are labeled by
their lengths and installation costs in parentheses (for augmenting edges). Solid lines
indicate free edges and dashed lines augmenting edges.

3.3 Mixed Integer Linear Programming Formulations
The MILP formulations that will be introduced in the following are based on a com-
munication graph whose construction from the original graph will be explained next.
Afterwards, we will provide two MILP formulations and discuss their properties.

3.3.1 Communication Graph

Communication graph GC = (V,C) is defined on the original node set V and its edge
set C consists of all node pairs {i, j} ⊆ V, i 6= j, for which at least one path P with
length d(P ) ≤ dmax exists in G, i.e., i and j can communicate using edges from E∗ or E0

without installing relays. Recall that (after preprocessing) every feasible path without
relays connecting commodity (u, v) ∈ K in G contains at least one edge e ∈ E∗ with
positive costs. Since multiple paths can be used for connecting a node pair, it is not
clear which one of the potentially exponentially many paths will be used in an optimal
solution and thus all of them need to be considered. Our definition of the communication
graph extends the one introduced in [35] and [36] for solving the (G)RLP. In contrast to
their definition, our communication graph considers all edges e ∈ E and not only those
with zero costs.

Figure 3.5 demonstrates how the existence of common subpaths for several commodities
produces a better solution than the one obtained by combining cheapest subpaths of
the individual commodities. Assume K = {(0, 2), (0, 3)} and observe that the cheapest
0, 2-path is the edge {0, 2} and the cheapest 0, 3-path is edge {0, 3}, both with a cost of
2 yielding a solution with total cost 4. The union of paths (0, 1, 2) and (0, 1, 3) results,
however, in a cheaper solution with total cost 3.

In the following for each pair of distinct nodes b = {i, j}, we define Pb = {p |
p is an i, j-path in G, such that d(p) ≤ dmax} as the set of all feasible i, j-paths in
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G. Furthermore, let P 0
b = {p | p is an i, j-path in G0, such that d(p) ≤ dmax} be

the set of all such paths in G0 = (V,E0), i.e., using only free edges. Then, sets
C0 = {b = {i, j} | P 0

b 6= ∅} and C∗ = {b = {i, j} | P 0
b = ∅ and Pb 6= ∅} define the node

pairs that can be connected using only free edges and using at least one augmenting edge,
respectively. Thus, the edge set C of communication graph GC = (V,C) corresponding
to G = (V,E) is defined as C = C∗ ∪C0, i.e., the set of node pairs that can be connected
using edges in E∗ ∪ E0.

Figure 3.6 illustrates the stepwise generation of a communication graph for the input
graph provided in Figure 3.6a, dmax = 4. After initializing C with the set of free edges E0,
all remaining edges C0 \E0 corresponding to connections that can be established by using
only free edges and no relays are added, cf. the edges {1, 4} and {2, 3} corresponding to
paths (1, 2, 4) and (2, 1, 3), respectively, in Figure 3.6b. Next, all connections possible
through the use of augmenting edges (i.e., either augmenting edges or paths containing
at least one augmenting edge) are considered, see the dashed edges in Figure 3.6c. The
corresponding node pairs are connected by dotted lines in Figure 3.6c. Communication
graph GC is finally obtained by removing potentially existing multi-edges, cf. Figure 3.6d
where connections in C0 and C∗ are displayed by solid and dotted lines, respectively.

The following property of the communication graphs is crucial for developing the MILP
models shown below.

Property 3.3. For every commodity pair (u, v) ∈ K, a non-redundant u, v-walk in the
original graph can be mapped to a simple path in the communication graph with relays
placed at all intermediate nodes (if any).

Proof. According to Remark 3.1 there exists a non-redundant (feasible) walk in the
original graph visiting every relay at most once. Observe that we can partition the walk
in the original graph into maximal feasible subpaths such that none of their intermediate
nodes are relays. Communication graph GC contains an edge for every feasible path that
is not required to visit any relays. Therefore, the mentioned subpaths can be translated
to edges of the communication graph leading to the desired simple path. Conversely,
each simple path in the communication graph can be translated to a non-redundant walk
in the original graph.

Corollary 3.1. For a feasible solution we can identify for each source u ∈ S and all its
targets a tree in the communication graph with relays placed at all intermediate nodes
where each leaf is a target of u such that each (unique) path to a target corresponds to a
feasible walk in the original graph.

Proof. We use the graph obtained according to the proof of Theorem 3.1. Then, we
partition and translate it in the same way as in the proof of Property 3.3.

The MILP formulations introduced in the following subsections make use of flows or
cut-sets to model feasible paths in the communication graph. In addition, the relation
between edges in GC and (an exponential number of) paths in G is established.
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Figure 3.6: Generation of the communication graph for dmax = 4. Nodes are labeled by
node index. Edges are labeled by their lengths. Solid lines indicate free edges, dashed
lines augmenting edges, and dotted lines indicate connections from C∗.

3.3.2 Multi-Commodity Flow Formulation

We first present a multi-commodity flow formulation on the communication graph (MCF)
which uses one set of flow variables for each commodity in K. It utilizes the following
design variables defined on G:

xe =
{

1, if e is installed in the network
0, otherwise

∀e ∈ E∗,

yi =
{

1, if a relay is installed at i
0, otherwise

∀i ∈ V.
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Using A(C) = {(i, j) | {i, j} ∈ C} we define flow variables fuvij for all commodity pairs
(u, v) ∈ K and each direction of edge {i, j} ∈ C, i.e.,

fuvij =
{

1, if the u, v-path in GC traverses edge {i, j} in direction from i to j
0, otherwise.

Finally, we use variables λpb that correspond to the paths p ∈ Pb that have been identified
as possible realizations for the connections b ∈ C∗. More precisely:

λpb =
{

1, if connection b is realized by path p ∈ Pb
0, otherwise

∀b ∈ C∗.

Since no augmenting edges need to be purchased when sending flow through edges from
C0, we do not need to consider path variables for b ∈ C0. The MILP formulation reads
as follows:

(MCF) min
∑
i∈V

ciyi +
∑
e∈E∗

wexe (3.1)

∑
(i,j)∈A(C)

fuvij −
∑

(j,i)∈A(C)
fuvji = 1 ∀(u, v) ∈ K, ∀i ∈ V, i = u, (3.2)

∑
(i,j)∈A(C)

fuvij −
∑

(j,i)∈A(C)
fuvji = −1 ∀(u, v) ∈ K,∀i ∈ V, i = v, (3.3)

∑
(i,j)∈A(C)

fuvij −
∑

(j,i)∈A(C)
fuvji = 0 ∀(u, v) ∈ K,∀i ∈ V, i 6= u, i 6= v, (3.4)

− yi +
∑

(i,j)∈A(C)
fuvij ≤ 0 ∀(u, v) ∈ K,∀i ∈ V \ {u, v}, (3.5)

− (fuvij + fuvji ) +
∑
p∈Pb

λpb ≥ 0 ∀(u, v) ∈ K,∀b = {i, j} ∈ C∗, (µuvb ) (3.6)

xe −
∑

p∈Pb:e∈p
λpb ≥ 0 ∀e ∈ E∗, ∀b ∈ C∗, (αeb) (3.7)

λpb ≥ 0 ∀b ∈ C∗, p ∈ Pb, (3.8)
0 ≤ fuvij ≤ 1 ∀(u, v) ∈ K,∀(i, j) ∈ AC, (3.9)
y ∈ {0, 1}|V |,x ∈ {0, 1}|E∗|. (3.10)

Constraints (3.2)–(3.4) ensure that for each commodity (u, v) ∈ K one unit of flow is sent
from u to v. Every node with outgoing flow that is not the source of the corresponding
flow must be a relay node, cf. Property 3.3. This relation is enforced by inequalities (3.5).
Constraints (3.6) ensure that flow along a connection b ∈ C∗ is only permitted if at least
one of the available path realizations has been selected. Due to Property 3.3, the solution
for each commodity pair (u, v) ∈ K will be a path in GC. Hence, only one arc (i, j) or
(j, i) per edge b = {i, j} will be selected in each variable set. The last set of inequalities
guarantees that for all selected path realizations, the corresponding augmenting edges
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will be part of the solution. Note that each variable set only considers a single pair
(u, v) ∈ K. Arcs targeting u or leaving v are irrelevant with respect to the flow variables,
hence the respective flow variables can be omitted from the formulation.

Pricing subproblem. Since the number of path variables in formulation (MCF) may
be exponentially large, we will use column generation for solving its linear programming
(LP) relaxation. To formulate the pricing subproblem, let µuvb ≥ 0 and αeb ≥ 0 be the dual
variables associated to constraints (3.6) and (3.7), respectively. Then, for each b ∈ C∗,
the pricing subproblem (i.e., find a path p ∈ Pb with negative reduced costs) is defined as

arg min
p∈Pb

 ∑
e∈E∗∩p

αeb −
∑

(u,v)∈K
µuvb

.
Since the second summation is a constant for a fixed b ∈ C∗, it further reduces to finding

arg min
p∈Pb

∑
e∈E∗∩p

αeb ∀b ∈ C∗.

which is a weight constrained shortest path problem (WCSPP) defined on the graph
G = (V,E) with edge weights ω : E → R≥0, defined as ωe = de, for all e ∈ E and edge
costs γ : E → R≥0 defined as

γe =
{

0, e ∈ E0

αeb, e ∈ E∗
∀e ∈ E.

Further details regarding pricing will be provided in Section 3.4.2.

3.3.3 Cut Formulation

We propose an alternative MILP formulation that is based on a single, directed com-
munication graph in which relays are identified by splitting each node i into two copies
i1, i2. Besides relay arcs (i1, i2) for each node i ∈ V , we add arcs (j2, i1) and (i2, j1) for
each edge {i, j} ∈ C, i.e., all incoming arcs target i1 and all outgoing arcs emanate from
i2. We obtain graph G′C = (V ′C, A′C) with node set V ′C = {i1, i2 | i ∈ V } and arc set
A′C = {(i2, j1), (j2, i1) | {i, j} ∈ C} ∪ Ar

C where arcs in Ar
C = {(i1, i2) | i ∈ V } are used

to identify relays. An example of a directed communication graph is shown in Figure 3.7
where solid arcs represent free connections, dotted arcs connections with augmenting
edges, and dash-dotted arcs correspond to relays.

The formulation introduced next represents each feasible u, v-walk of a given commodity
pair (u, v) ∈ K as a directed path from u to v in G′C with relays placed at all intermediate
nodes (cf. Property 3.3). To this end we utilize binary variables x for the augmenting
edges and path variables λ, introduced above. In addition, we associate binary variables
Xij to the arcs (i, j) ∈ A′C of the directed communication graph. Due to the one-to-one

42



3.3. Mixed Integer Linear Programming Formulations

0

1

2

3

3 3

5

2

6

0

1

2

3

01

02

11 12

22

21

31 32

(a) Original graph (b) Communication graph (c) Directed communication graph
G = (V,E0 ∪ E∗) GC = (V,C) G′C = (V ′C, A

′
C)

Figure 3.7: Generation of the directed communication graph G′C = (V ′C, A′C) for dmax = 7.
Nodes are labeled by node index. Edges are labeled by their lengths. Solid lines indicate
free edges, dashed lines augmenting edges, and dotted lines indicate connections from C∗.
Dash-dotted arcs correspond to relays.

correspondence between the arcs in Ar
C and the relays we can use the arc variables

directly to identify the relays. The model then reads as follows:

(CUT) min
∑
i∈V

ciX(i1,i2) +
∑
e∈E∗

wexe (3.11)

∑
a∈δ−(W )

Xa ≥ 1
∀(u, v) ∈ K,∀W ⊂ V ′C,

v1 ∈W,u2 /∈W,
(3.12)

−Xi2j1 +
∑
p∈Pb

λpb ≥ 0 ∀b = {i, j} ∈ C∗, (µ1
b) (3.13)

−Xj2i1 +
∑
p∈Pb

λpb ≥ 0 ∀b = {i, j} ∈ C∗, (µ2
b) (3.14)

xe −
∑

p∈Pb:e∈p
λpb ≥ 0 ∀e ∈ E∗,∀b ∈ C∗, (αeb) (3.15)

λpb ≥ 0 ∀b ∈ C∗, p ∈ Pb, (3.16)
X ∈ {0, 1}|A′C|,x ∈ {0, 1}|E∗|. (3.17)

We will refer to this model as the cut formulation on a directed communication graph
(CUT). Cut-set inequalities (3.12) ensure the existence of a directed path in G′C from u2
(the source copy of u) to v1 (the target copy of v) for each commodity pair (u, v) ∈ K.
By construction, every second arc along this path corresponds to a relay node. Costs
for these arcs are included in the objective function. The remaining arcs of type (i2, j1)
or (j2, i1) correspond to paths between i and j, where b = {i, j} ∈ C∗. Constraints
(3.13) and (3.14) ensure that whenever an arc (i2, j1) or (j2, i1) is used, then at least one
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corresponding path from P{i,j} is selected. Due to the presence of multiple sources, both
arcs (i2, j1) or (j2, i1) can be used in a feasible solution. Finally, constraints (3.15) ensure
that all augmenting edges of the selected paths are included in the solution. Since the
number of these constraints is in general exponential, we will separate them dynamically
only when violated, see Section 3.4.3.

Notice that a feasible solution may contain arcs (j2, i1) and (i2, h1) (for some distinct
nodes i, j, h ∈ V ), but not necessarily the arc (i1, i2). This happens, for example, when
node i is both a target and a source, but it is not contained in any connection passing
through it (and thus there is no need to install a relay at i). As a consequence, the arcs
that correspond to node splitting identify the nodes from V where relays have to be
placed, whereas the arcs linking the node copies of i and j map to the paths p ∈ Pb,
b = {i, j} as in the (MCF) model.

Pricing subproblem. To formally state the pricing subproblem for variables λpb we
associate dual variables µ1

b ≥ 0 and µ2
b ≥ 0 to constraints (3.13) and (3.14), respectively,

and dual variables αeb ≥ 0 to constraints (3.15). Similar to the previous two cases, for
each b ∈ C∗ we need to identify a feasible path with minimum reduced costs

min
p∈Pb

 ∑
e∈E∗∩p

αeb − µ1
b − µ2

b

 .
Thus, we can solve the pricing subproblem by solving for each b ∈ C∗ a WCSPPs with
edge weights set to αeb for e ∈ E∗, and to zero otherwise, see Section 3.4.2 for further
details.

Since formulation (CUT) contains an exponential number of variables (λ) and an
exponential number of cut-set constraints (3.12), a column-and-row generation approach
is employed to solve its LP relaxation (and a BP&C algorithm to find an optimal solution),
see, e.g., [11, 52]. Fortunately, the λ variables are not involved in the connectivity
constraints (3.12). Thus, we can separate these parts so that column generation can be
done independently of cut generation, i.e., the added cuts do not influence the structure
of the pricing subproblem.

3.3.4 Valid Inequalities

We now describe several types of valid inequalities that are redundant for the set of
feasible solutions but can strengthen the models’ LP relaxations.

Connectivity Cuts in the Original Graph

The example given in Figure 3.8 shows that connectivity constraints (3.18) can be violated
in LP solutions of (MCF) and (CUT), respectively. These constraints ensure that the
value of each (undirected) cut separating the source and target of a commodity is at least
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Figure 3.8: A partial solution to the LP relaxation of (MCF) that violates connectivity
constraints (3.18) for commodity (u, v) ∈ K. The total flow in the communication graph
from source u to its target v equals 1. However, the value of the minimum u-v cut in the
original graph is only 0.5.

one. Since cut inequalities including free edges are trivially satisfied, we only consider
subsets W inducing cuts without free edges in (3.18):∑

e∈δ(W )
xe ≥ 1 ∀W ⊂ V : δ(W ) ∩ E0 = ∅,∃(u, v) ∈ K : u /∈W, v ∈W. (3.18)

One can further strengthen the quality of the LP relaxation by replacing undirected
cut-set inequalities (3.18) by their directed counterparts. To this end, we introduce for
each root u ∈ S variables zuij ≥ 0, ∀{(i, j) | {i, j} ∈ E∗}. Variable zuij is set to one if one
can embed in the original graph a directed path from u to some v ∈ T u using arc (i, j).
Then, constraints (3.18) can be enhanced by:∑

a∈δ−(W )
zua ≥ 1 ∀W ⊂ V : δ(W ) ∩ E0 = ∅,∃(u, v) ∈ K : u /∈W, v ∈W, (3.19)

zuij + zuji ≤ x{i,j} ∀u ∈ S, {i, j} ∈ E∗, (3.20)
zuij , z

u
ji ≥ 0 ∀u ∈ S, {i, j} ∈ E∗. (3.21)

It can easily be seen that the directed connectivity constraints (3.19) are at least as
strong as the undirected ones introduced above. From Figure 3.9 we conclude that they
can be strictly stronger if there exists at least one commodity source with more than one
target (in the presence of linking constraints (3.20)). Note that similar to the undirected
variant, we do not add cut-set inequalities for node subsets with incident free arcs.

Since both classes of connectivity constraints are of exponential size, we will dynamically
separate them, see Section 3.4.3 for details.

Relay Constraints

For the (CUT) model we additionally exploit the fact that a relay has to be placed at
some node iff it is an intermediate node along a path within the communication graph.
This results in the following constraints that are added to the (CUT) model:∑

a∈δ−(i1)
Xa ≤ min(|S|, |δ(i)| − 1) ·X(i1,i2) ∀i /∈ S ∪ T, (3.22)
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Figure 3.9: A solution to the LP relaxation for K = {(u, v1), (u, v2)} and w{u,v1} =
w{u,v2} = 1, w{v1,v2} = 3. The solution is optimal with respect to the undirected cut-set
inequalities but not with respect to the directed ones which will cut off this LP solution.

∑
a∈δ+(i2)

Xa ≤ min(|T |, |δ(i)| − 1) ·X(i1,i2) ∀i /∈ S. (3.23)

The first set of constraints makes sure that a relay is installed at each node i which
does not belong to any commodity pair, whenever there is an arc entering i1. Similarly,
whenever there is an arc leaving i2, and node i is not a source, there has to be a relay
installed at i.

These constraints benefit from the fact that the (CUT) model uses only one set of
variables to ensure connectivity in the communication graph. They are particularly
effective if the big-M constants are small, e.g., if only a single source node exists. These
constraints turned out to be beneficial not only for strengthening the LP relaxation of
the (CUT) model, but also for improving the convergence concerning the dynamically
separated inequalities.

3.4 Algorithmic Framework

We developed BP&C algorithms for the MILP formulations described in the previous
section, see Table 3.1 for a summary. In the following, after providing some remarks on
preprocessing that aim to reduce the size of the problem instances, we present additional
details (including separation and pricing procedures) of these algorithms.

3.4.1 Preprocessing

Recall that at the beginning, we remove all edges e ∈ E such that de > dmax. If graph
G separates into several connected components, and there exists a pair (u, v) ∈ K such
that u and v belong to different components, then the instance is clearly infeasible. Note
that if the problem admits a feasible solution and it contains more than one connected
component, every component describes a separate problem instance that can be solved
independently. Next, we identify and remove all pairs in K that can be connected using
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Model Type B Graph

(MCF) BPC
∑

(u,v)∈K
µuvb Communication graph GC

(CUT) BPC µ1
b + µ2

b Directed communication graph G′C

Table 3.1: Algorithm overview. Name (Model), considered decomposition algorithm
(Type), model specific pricing subproblem threshold for WCSPP (B), and considered
communication graph (Graph).

solely free edges from E0 and no relays (this can be easily done by applying shortest
path algorithms on G0 = (V,E0)).

For the separation procedures explained in Section 3.4.3, few commodities with many
targets per source are preferable. To this end, we use the fact that commodity pairs
can be reordered because in an undirected graph the existence of a feasible u, v-walk
implies the existence of a feasible v, u-walk. We heuristically reorder the commodities as
follows. First, we compute for each node the number of times it appears in a commodity
pair. Then, we iteratively choose the node i with the highest count (breaking ties by
node index), reorder the commodity pairs involving i by setting i to be the source, and
decrease the counts of all nodes by the number of times i is involved in an associated
commodity. The procedure is repeated until the count of every node becomes zero.

3.4.2 Column Generation

We use column generation to deal with the exponential number of path variables in
the considered models. The paths we are looking for correspond to the edges of the
communication graph. Due to Property 3.3, these edges represent loop-free paths between
node pairs b = {i, j}. More precisely, for each b ∈ C∗, the reduced costs, denoted by Rb,
of its associated path variable are calculated as

Rb = min
p∈P (b)

∑
e∈E∗∩p

αeb −B

where the value of the constant B depends on the considered formulation and is given in
Table 3.1.

As already mentioned, for each b ∈ C∗, this pricing subproblem is a WCSPP defined
on the graph G = (V,E) with non-negative edge weights ωe = de, for all e ∈ E and
non-negative edge costs γe = αeb if e ∈ E∗ and γe = 0, otherwise. The goal is to find a
path in G connecting a node pair b = {i, j} that minimizes the sum of edge costs and
whose weight does not exceed dmax.

In our implementation we add one variable corresponding to a least cost path for each
b ∈ C∗ in each pricing iteration if it has negative reduced costs. Our decision to add
at most |C∗| variables in each iteration is based on preliminary experiments indicating
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that this strategy outperforms other options such as adding only a single variable in each
iteration.

Initial set of columns. We initially add a set of variables ensuring that there exists
a feasible solution to the LP relaxation. To this end, we add a variable corresponding
to a connection with minimal length for each b ∈ C∗. Such a connection can easily be
found with Dijkstra’s algorithm (see [54]) using the edge lengths as costs.

Solving the pricing subproblems. The WCSPP on a graph with nonnegative edge
costs is a weakly NP-hard problem for which fast pseudo-polynomial exact algorithms are
available. For the implementation in our models we use the generic resource-constrained
shortest path algorithm from the Boost Graph Library (BGL) in version 1.63.0, see [18].
To speed up performance we prevent path expansions leading to costs larger than or
equal to B since such paths can never result in negative reduced costs.

3.4.3 Separation

Depending on the formulation, up to three different families of exponentially-sized
constraints can be considered. We separate the three classes in the following order:
(1) undirected cut-set inequalities (3.18) on the original graph, (2) directed cut-set
inequalities (3.19) on the original graph, and (3) cut-set inequalities (3.12) on the
communication graph (for the (CUT) model). Only if no violated inequalities of previous
classes can be found, we continue with the next class. Violated inequalities of all three
classes are identified by maximum flow computations according to the commodity pairs
using the algorithm by Cherkassy and Goldberg [37]. Thereby, the edge (or arc) capacities
are set to the current LP solution values plus a small value in order to prefer sparse cuts,
i.e., those that contain the fewest edges or arcs, respectively. In case of ties, we always
choose a cut that is closest to the target node. To avoid adding too many cuts we only
consider inequalities that are violated by a value of at least 0.5.

Connectivity in the Original Graph.

As noted in Section 3.3.4, directed cuts on the original graph are stronger than their
undirected counterpart for commodity sources that need to be connected to more than
one target. Therefore, if |T u| = 1 for some (u, v) ∈ K, we only add undirected cut-set
inequalities (3.18) for this commodity pair. Otherwise, we add variables zu and consider
the directed constraints (3.19). That way, we always use the strongest variant of the
connectivity inequalities while avoiding unnecessary overhead whenever possible. We
note that such a separation strategy also benefits from the aforementioned reordering of
the commodity pairs.

For connectivity cuts based on the original graph, we also consider so-called nested cuts
(see, e.g., Ljubić et al. [115]): We set the arc capacities of just added cuts to one and
repeat the flow computation to possibly find other violated inequalities. The procedure is

48



3.4. Algorithmic Framework

continued until no further violations can be detected. Observe that the capacity updates
influence the subsequent separation steps. To avoid an unwanted bias we consider the
commodity pairs in a random order based on a fixed seed.

Connectivity in the Communication Graph.

Since connectivity constraints (3.12) on the communication graph are not redundant,
their separation is not optional, i.e., they need to be applied at least to all integer
solutions encountered during the B&B procedure. In our implementation, we additionally
use these cuts to cut off fractional solutions, applying the maximum-flow procedures
described above.

3.4.4 Initial Pool of Inequalities

We now shortly summarize the set of valid inequalities that are used to initialize our
models.

Cuts in the Original Graph.

As mentioned above, both types of the original graph connectivity cuts are dynamically
separated. To speed up convergence we add a subset of these inequalities a priori to the
model:∑

a∈δ−(v)
zua = 1 ∀(u, v) ∈ K : |T u| > 1, δ(v) ∩ E0 = ∅, (3.24)

∑
a∈δ−(i)

zua ≤
∑

a∈δ+(i)
zua ∀u ∈ S : |T u| > 1, ∀i ∈ V \ (S ∪ T ), δ(i) ∩ E0 = ∅. (3.25)

If undirected cuts are separated for at least one commodity pair (i.e., ∃u ∈ S : |T u| = 1),
we also add the following inequalities since each commodity source and target node has
at least one incident edge:∑

e∈δ(i)
xe ≥ 1 ∀i ∈ V : i ∈ S ∪ T, δ(i) ∩ E0 = ∅. (3.26)

Similarly, we know that relays are never isolated. Thus, we add the following type of
inequalities to (MCF):∑

e∈δ(i)
xe ≥ yi ∀i ∈ V : i /∈ S ∪ T, δ(i) ∩ E0 = ∅. (3.27)

Equivalent constraints are considered for the (CUT) model by replacing yi by X(i1,i2).

Cuts in the Communication Graph.

We add all constraints from Section 3.3.4 a priori to model (CUT), extended by the
following inequalities that ensure that each target has at least one incoming arc and each
source has at least one outgoing arc:

49



3. Exact Approaches for Network Design Problems with Relays

∑
a∈δ−(v1)

Xa ≥ 1 ∀v ∈ T,

∑
a∈δ+(u2)

Xa ≥ 1 ∀u ∈ S.

3.4.5 Heuristic

Feasible NDPR solutions and initial upper bounds for our algorithms are obtained
by using heuristic (CH1) originally introduced in [30]. Its basic idea is to iteratively
compute a solution by solving the problem for the individual commodities. In each
iteration all previously added augmenting edges and relays are assigned zero costs. In
our implementation we perform ten runs of (CH1) in which we vary the order in which
the commodities are considered (fixed seed random order) and finally adopt the best
solution found. Columns required to represent the respective solution are added to the
initial formulation.

For each commodity (i.e., in each iteration) we need to solve the minimum cost path
problem with relays (MCPPR). Our implementation uses a variant of the pseudo-
polynomial dynamic programming (DP) algorithm introduced by [105]. Their algorithm
for the MCPPR solves the problem on a directed graph. In the undirected variant we
need to make sure that, once an edge has been traversed in one direction, using it in
the other direction incurs no additional costs. The simplest way of handling this is to
augment the DP states by a set of already used edges, see Algorithm 3.1 for the adjusted
pseudocode. Each state is a tuple of the form x = (πc

x, π
d
x, ξx, vx, E

∗
x) where πc

x denotes
the cost of the current walk, πd

x the distance from the last relay or the starting node
along the walk, ξx a reference to the preceding state, vx the final node of the walk, and
E∗x the set of already traversed edges. As suggested in [105], the list of states L is ordered
according to non-decreasing cost to allow for early termination once a state containing
the target node as final node is reached.

After the ten runs of (CH1) we perform a final run for which we set the costs of all
relays and edges selected by the best solution to zero. The idea behind this run is to
remove possible redundancies with respect to the selected relays and edges. Thereby, it
is important to break ties regarding the ordering of L by prioritizing states with smaller
πd
x. We denote the modified algorithm by (CH1+).

3.4.6 Solver Configuration

Our algorithms are implemented in C++ using SCIP 3.2.1 (see [64]) as BP&C framework
and CPLEX 12.6.3 as LP solver. The dual simplex method has been used for solving the
LP relaxations as it outperformed other options (primal simplex, barrier) in preliminary
experiments. All experiments have been performed in single thread mode with presolving,
probing, and the solvers general purpose heuristics turned on. General purpose cutting
planes have been deactivated.
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Algorithm 3.1: DP algorithm for the MCPPR in an undirected graph
Input: graph G = (V,E, c, w, d), E = E0 ∪ E∗, pair (s, t) ∈ K
Data: cheapest path Mdi to i at distance d
Data: set L of unexpanded states

1 L← {(0, 0,NULL, s, ∅)}
2 forall d ∈ {0, . . . , dmax}, i ∈ V do Mdi ← NULL
3 while L 6= ∅ do
4 select first x ∈ L and remove it from L
5 forall {vx, j} ∈ δ(vx) do
6 d̂← πd

x + d{vx,j} // arrival distance at j

7 if d̂ ≤ dmax then
8 ĉ← πc

x // cost at j
9 if {vx, j} /∈ E0 ∪ E∗x then ĉ← ĉ+ w{vx,j}

10 Ê∗ ← E∗x ∪ ({vx, j} ∩ E∗) // traversed augmenting edges at j
11 if j 6= t ∧ (M0j = NULL ∨ ĉ+ cj < πc

M0j
) then // expansion with

relay at j

12 M0j ← (ĉ+ cj , 0, x, j, Ê∗)
13 L← L ∪ {M0j}
14 end
15 if Md̂j = NULL ∨ ĉ < πc

Md̂j
then // expansion without relay at j

16 Md̂j ← (ĉ, d̂, x, j, Ê∗)
17 L← L ∪ {Md̂j}
18 end
19 end
20 end
21 end
22 return arg minx∈Mdt:0≤d≤dmax π

c
x

3.5 Computational Study

In this section we first give details on benchmark instances which are then used to
compare the performance of the developed BP&C algorithms and to demonstrate their
advantages and drawbacks.

3.5.1 Benchmark Instances

We consider three groups of benchmark instances: (1) instances from [30], (2) instances
introduced by [100], and (3) an entirely new set of instances (ARLP), generated to reflect
some of the real-world properties not covered by the previous two families.

Cabral instances. These instances have been introduced by [30], see Table 3.2 for an
overview. They are extremely sparse 4-grid graphs in which each node is connected only
to its direct vertical and horizontal neighbors. All edges have costs greater than zero
(i.e., E0 = ∅) and the maximum distance is equal to 70 for all instances. There are 180
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instances in this family: for a fixed input graph and the given number of commodities, 10
instances are generated by sampling the set of commodities. All commodities share one
node, i.e., we can reorder them such that |S| = 1. The number of nodes varies between
20 and 60. Although |K| ∈ {5, 10}, we point out that for some instances the “effective”
number of commodities is smaller than specified by the instance. This is due to two
reasons. First, some instances contain the same commodity more than once. Second,
some instances contain commodities for which the source and target are identical. Since
commodities of this type are trivially connected by the empty path, we simply ignore
them. Column |K| in Table 3.2 reports the average number of effective commodity pairs.

Konak instances. These instances, which were generated by randomly placing and
connecting nodes on a grid, were originally introduced by Konak [100]. The number of
nodes varies between 40 and 160. The length of each edge {i, j} is set to the Euclidean
distance between i and j while its cost is either set equal to the edge length (type I) or to
dmax − d{i,j} (type II). The basic instance properties (|V |, |E0|, |E∗|, |K|, and dmax) are
shown in Tables 3.3 and 3.4. Instances with an identical number of nodes and the same
dmax are based on the same graph and only the number of commodities differs. There
are 40 instances in total, 20 of each type. Notice that also for this family of instances,
the number of commodities is extremely low (|K| ∈ {5, 10}). In some instances free edges
are present but their number is always rather small.

ARLP instances. This newly generated set of benchmark instances is intended to
complement the previous two sets available from the literature. Both, Cabral and Konak
instances assume |K| ∈ {5, 10}. On the contrary, ARLP instances aim to simulate
applications where many node pairs need to communicate. We refer to this set as
augmented RLP (ARLP) instances since we require all nodes to communicate with each
other, as it is the case for the RLP (cf. Section 3.1.2). In contrast to the RLP, the set of
augmenting edges E∗ is not empty, and in contrast to the Konak and Cabral instances, a
significant number of zero cost edges exists.

The instances have been generated as follows. Nodes are placed randomly on a 100× 100
grid and edges with length equal to the Euclidean distance (rounded up) between two
nodes are added whenever this distance does not exceed 30. Each edge is chosen to
be a free edge with probability 20, 50, or 80 % in instance subsets 20F, 50F, and 80F,
respectively. The costs wij of augmenting edges {i, j} are chosen randomly according
to a normal distribution with parameters µ = dij , σ = 5 (rounded up). Relay costs
are chosen randomly according to the normal distribution µ = 10 · w̄, σ = 20 (rounded
up) where w̄ denotes the average cost of augmenting edges. Finally, dmax = 50 for all
instances and K contains all pairs that cannot be connected using solely free edges, i.e.,
K = {(u, v) | (u, v) ∈ V × V, u < v} \ C0 (see Section 3.4.1).

In addition, a second set of instances (denoted as ARLP-p25) with a smaller number of
commodities has been created. Each such instance is generated from an ARLP instance
by adopting each commodity with a probability of 25 %. The main characteristics of sets
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ARLP and ARLP-p25 are summarized in Tables 3.5 and 3.6, respectively. The instances
are already preprocessed, in the sense that our preprocessing procedures do not apply.
Especially, we only consider instances that are connected, i.e., they consist of a single
connected component. Furthermore, we define the set K so that commodity pairs that
can be connected only using free edges and without relays are not included.

The ARLP and the ARLP-p25 instance sets are available at https://www.ac.tuwien.ac.
at/research/problem-instances/#Network_Design_Problem_with_Relays.

3.5.2 Computational Results

Test results reported in this section have been obtained on an Intel Xeon E5540 machine
with 2.53GHz. The computation time limit has been set to 7200 seconds and the memory
limit to 8GB RAM. As discussed in Section 3.4.3 we use a violation threshold of 0.5 when
separating strengthening inequalities. This threshold is only considered when solving the
problem to integer optimality. When reporting LP bounds in this section, we add all
violated inequalities. This means that independent experiments are conducted for the
two cases. This leads to situations in which the integer run finds an optimal solution
but the LP run terminates due to the time or the memory limit as a result of excessive
separation of cutting planes. Conversely, it is also possible that the LP gap is tighter
than the final optimality gap of the integer run if the latter cannot progress fast enough.

Tables 3.2–3.6 summarize the results. Both models (MCF) and (CUT) are compared with
respect to the LP relaxation gap (LP gap [%]), the final optimality gap (opt. gap [%]),
the used computation time (t [s]), and the number of priced columns (columns). LP and
optimality gaps are computed as 100 · (UB∗ − LB)/UB∗ where UB∗ is the best known
upper bound and LB is the lower bound obtained by the respective algorithm. The upper
bounds shown in the tables in column UB∗ are printed bold iff the given value is shown
to be the optimal objective value by any of the considered algorithms. Entries marked
with “ML” indicate that an experiment has been terminated due to the memory limit.
Furthermore, for some of the most challenging instances it was impossible to obtain a
lower bound within the imposed time limit. In these cases the LP or optimality gap
cannot be computed and respective fields are marked with “TL”. Finally, for the heuristic
(CH1+) we report the percentage increase with respect to the best known upper bound
given by 100 ·UBH/UB∗ where UBH is the objective value obtained by (CH1+).

Cabral Instances

Mean values of the computational results obtained for instances from set Cabral are
provided in Table 3.2. Each row corresponds to ten instances for the given instance graph
and the number of commodities.

We first notice that both algorithms provide very small LP gaps, with the gaps from
(CUT) being consistently smaller than those from (MCF). This can be explained by the
fact that the big-M coefficients in inequalities (3.22) are equal to one since all commodities
have the same source in this instance set. This advantage concerning the quality of LP
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LP IP

Gap [%] Opt. gap [%] t [s] Columns

Instance |V | |E∗| |K| (CH1+) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT)

4A5B70L5K 20 31 4.5 100.2 0.7 0.7 0.0 0.0 < 1 < 1 21 24
4A5B70L10K 20 31 7.9 103.8 1.4 1.2 0.0 0.0 1 1 34 51
5A5B70L5K 25 40 4.2 105.0 1.6 1.4 0.0 0.0 1 < 1 34 39
5A5B70L10K 25 40 8.5 105.7 1.6 1.5 0.0 0.0 1 1 49 70
6A5B70L5K 30 49 4.7 101.3 0.6 0.2 0.0 0.0 1 1 48 50
6A5B70L10K 30 49 8.8 102.1 2.0 1.5 0.0 0.0 4 3 78 102
7A5B70L5K 35 58 4.5 101.6 1.4 1.2 0.0 0.0 1 2 57 50
7A5B70L10K 35 58 8.4 102.3 2.1 1.7 0.0 0.0 6 5 98 115
8A5B70L5K 40 67 4.7 103.3 1.6 1.2 0.0 0.0 4 3 90 73
8A5B70L10K 40 67 8.9 106.0 2.9 2.6 0.0 0.0 11 7 127 142
9A5B70L5K 45 76 4.8 105.3 1.3 1.3 0.0 0.0 4 2 88 66
9A5B70L10K 45 76 9.0 105.3 2.4 1.9 0.0 0.0 19 8 176 158
10A5B70L5K 50 85 5.0 103.5 2.2 1.6 0.0 0.0 8 7 127 111
10A5B70L10K 50 85 9.4 104.3 2.4 2.3 0.0 0.0 32 14 210 184
11A5B70L5K 55 94 4.6 100.8 1.9 1.8 0.0 0.0 5 4 103 86
11A5B70L10K 55 94 9.1 105.7 1.3 0.4 0.0 0.0 45 11 242 170
12A5B70L5K 60 103 4.7 104.7 1.2 0.8 0.0 0.0 9 8 142 114
12A5B70L10K 60 103 9.0 103.0 3.9 2.6 0.0 0.0 179 26 357 252

Table 3.2: Results on the Cabral instances. Column |K| reports the average number of
effective commodity pairs. (CH1+) gives the ratio between the objective value obtained
by the heuristic and the best known upper bound. We report the LP gap, the optimality
gap, the total computation time in seconds (t [s]), and the number of priced columns.
Each row reports a mean value over a set of ten instances. Best values are marked bold.

bounds carries over to the integral runs leading to significantly smaller computation
times for the (CUT) model. Both models require a comparable number of columns to
solve the instances to optimality. In general, the number of priced columns is rather low,
which can be explained by the sparsity of the considered input graphs.

Our results constitute a clear improvement compared to the results reported by Cabral
et al. [30] where these instances have been introduced. Whereas Cabral et al. [30] provide
only heuristic solutions with relatively large optimality gaps (with up to 20 % with respect
to their best-performing arc-path based formulation), we are able to solve all instances
to provable optimality—in most cases within a few seconds only. Moreover, our (CUT)
formulation features very small LP gaps that range between 0.2 % and 2.6 % on these
instances.

Konak Instances

In contrast to the Cabral instances, for this data-set, the number of targets per given
source does not exceed two (and is usually only one). Hence, the structure of optimal
solutions on the communication graph is less arborescence-like, it is rather an intersection
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of multiple source-target walks. In Tables 3.3 and 3.4 we compare the performance of the
proposed exact approaches for instances of type I and type II, respectively. We report
the LP gaps, the final optimality gaps, the overall computation times and the numbers
of priced columns. Among the instances of type I and II, 11 out of 20 and 18 out of 20
are solved to optimality, respectively. Interestingly, it turns out that instances with edge
lengths equivalent to the costs (type I) are significantly harder to solve for our algorithms
than those where edge costs and edge lengths are inversely correlated (type II).

Konak type I. We first compare the LP gaps reported in Table 3.3. Considering only
those cases when both algorithms are able to finish the computation of the LP bound,
we observe that the gaps of both formulations are the same. This is not surprising since
the benefits of inequalities (3.22) diminish due to multiple source and target nodes in
each instance. In general, these instances are much harder to solve for our algorithms
than those from the Cabral set. The main reason is that the graphs are much denser
which leads to higher separation and pricing efforts.

The performance for the complete runs (until finding an optimal integer solution or
reaching the time limit) is consistent with the LP bound results. While the majority of
instances with at most 60 nodes could be solved by both algorithms, the final optimality
gaps are quite large for instances with 80 and more nodes. Both algorithms feature
similar computation times with a slight advantage for the (MCF) model. The main
advantage of the (CUT) formulation is that it can provide bounds for all instances. The
(MCF), on the other hand, cannot provide bounds for the two most difficult instances
within the time limit of two hours. We observe that our algorithms improve the initial
upper bounds received from the heuristic (reported in the column (CH1+)) for all but
two instances with 80 nodes and the instances with 160 nodes.

Konak type II. The results shown in Table 3.4, compared with those obtained for
instances of type I, clearly indicate that for our algorithms type II instances are easier to
solve than the type I instances. The above discussed relation between the two approaches
remains roughly the same, both regarding the quality of the LP gaps and the overall
performance. In total 18 out of 20 instances of this group could be solved to optimality
by the (MCF), three more than by the (CUT) model. The LP gaps are much smaller
than for the type I instances and for two instances the LP gap is even zero. The upper
bounds obtained from (CH1+) have been shown to be optimal by our algorithms in two
cases and have been improved by them for all remaining ones except the largest one
(160N_10K_35L).

ARLP Instances

Recall that the Cabral and Konak instances contain very few commodities and almost no
free edges. The influence of the ratio of free edges to augmenting edges on the proposed
approaches as well as the influence of a larger number of commodities is therefore
investigated on the set of ARLP instances. Results obtained for the ARLP instances
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LP IP

Gap [%] Opt. gap [%] t [s] Columns

Instance |V | |E0| |E∗| |K| dmax UB∗ (CH1+) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT)

40N_5K_30L 40 0 198 5 30 473.80 102.7 11.9 11.9 0.0 0.0 16 27 299 227
40N_5K_35L 40 0 272 5 35 352.08 102.7 21.0 21.0 0.0 0.0 1173 533 1012 767
40N_10K_30L 40 0 198 10 30 518.98 108.2 15.9 15.9 0.0 0.0 180 152 401 421
40N_10K_35L 40 0 272 10 35 399.36 112.3 23.1 23.1 6.6 8.0 7200 7200 1043 1027
50N_5K_30L 50 0 279 5 30 283.79 120.3 0.0 0.0 0.0 0.0 1 5 232 186
50N_5K_35L 50 0 372 5 35 260.24 100.0 1.2 1.2 0.0 0.0 6 27 565 499
50N_10K_30L 50 0 279 10 30 540.39 103.8 13.0 13.0 0.0 0.0 158 411 540 557
50N_10K_35L 50 0 372 10 35 404.32 111.9 11.8 11.8 0.0 0.0 204 261 1177 1307
60N_5K_30L 60 0 305 5 30 509.12 103.2 21.5 21.5 0.0 0.0 39 70 509 541
60N_5K_35L 60 0 412 5 35 377.02 105.8 10.9 10.9 0.0 0.0 48 94 939 1146
60N_10K_30L 60 0 305 10 30 678.84 107.0 24.4 24.4 0.0 0.0 886 1063 703 730
60N_10K_35L 60 0 412 10 35 499.64 112.9 19.0 19.0 0.0 0.0 891 1400 1498 1520
80N_5K_30L 80 0 641 5 30 353.86 105.2 15.7 15.7 9.1 10.0 7200 7200 3887 3784
80N_5K_35L 80 0 853 5 35 334.21 103.2 19.9 TL 16.1 16.7 7200 7200 9110 8394
80N_10K_30L 80 0 641 10 30 513.02 100.0 36.7 TL 32.0 35.2 7200 7200 3613 3815
80N_10K_35L 80 0 853 10 35 516.91 100.0 43.0 TL 44.4 42.2 7200 7200 6952 8592
160N_5K_30L 160 3 2770 5 30 298.31 100.0 29.7 TL 29.6 28.2 7200 7200 15941 23489
160N_5K_35L 160 3 3621 5 35 314.52 100.0 TL 37.0 58.1 37.2 7200 7200 20303 30877
160N_10K_30L 160 3 2770 10 30 470.54 100.0 TL TL TL 44.1 7200 7200 11229 23027
160N_10K_35L 160 3 3621 10 35 484.97 100.0 TL TL TL 50.2 7200 7200 11872 36042

Table 3.3: Results on the Konak instances (type I). Column UB∗ provides the best
known upper bounds, optimal bounds are marked bold. (CH1+) gives the ratio between
the objective value obtained by the heuristic and the best known upper bound. We
report the LP gap, the optimality gap, the total computation time in seconds (t [s]), and
the number of priced columns. Best values are marked bold. If an algorithm failed to
compute a lower bound due to the time limit, the respective gap entry is marked with
“TL”.

and all considered percentages of free edges (20 %, 50 %, or 80 % of all available edges)
are summarized in Table 3.5. It is not surprising that the most difficult instances are
those with only 20 % free edges and that the instances become significantly easier to
solve as this percentage increases. Notice that, due to the huge number of commodities,
the model (MCF), which performed quite well on the other two data sets, can now only
deal with the smallest instances with 40 nodes and some instances with 50 nodes. For
larger instances (MCF) always hits the memory limit due to its excessive size. Clearly,
using the (CUT) model greatly helps to overcome this issue.

As before, (MCF) provides the same LP gaps as (CUT) whenever both models manage
to terminate within the time limit. The ARLP instances are more challenging for the
(CUT) model as well. This can be explained by the excessive number of cuts that need to
be generated, especially for the calculation of LP bounds, where no violation threshold is
used. Moreover, the effects of the connectivity cuts in the original graph diminish on this
data set due to the presence of a substantial number of free edges. Overall, (CUT) is
clearly the best-performing model for this data-set. It is able to find optimal solutions
for 22 out of 24 instances. The (MCF) model, on the other hand, manages to solve only
six instances to optimality. As for the other instance sets, the upper bounds obtained
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LP IP

Gap [%] Opt. gap [%] t [s] Columns

Instance |V | |E0| |E∗| |K| dmax UB∗ (CH1+) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT)

40N_5K_30L 40 1 197 5 30 247.27 100.1 0.0 0.0 0.0 0.0 < 1 1 111 80
40N_5K_35L 40 0 272 5 35 111.30 101.7 7.1 7.1 0.0 0.0 9 17 459 314
40N_10K_30L 40 1 197 10 30 292.62 100.1 4.4 4.4 0.0 0.0 13 18 293 267
40N_10K_35L 40 0 272 10 35 140.51 101.0 7.7 7.7 0.0 0.0 61 45 690 625
50N_5K_30L 50 1 278 5 30 119.80 100.0 0.0 0.0 0.0 0.0 < 1 1 98 104
50N_5K_35L 50 0 372 5 35 155.57 105.2 1.0 1.0 0.0 0.0 2 33 422 547
50N_10K_30L 50 1 278 10 30 279.70 100.6 2.0 TL 0.0 0.0 3 28 247 432
50N_10K_35L 50 0 372 10 35 206.22 102.1 1.6 TL 0.0 0.0 32 127 828 1303
60N_5K_30L 60 3 302 5 30 317.32 104.0 14.2 14.2 0.0 0.0 7 26 337 444
60N_5K_35L 60 0 412 5 35 166.35 100.0 0.0 0.0 0.0 0.0 < 1 3 315 446
60N_10K_30L 60 3 302 10 30 414.32 120.4 12.2 12.2 0.0 0.0 52 88 444 583
60N_10K_35L 60 0 412 10 35 242.32 100.1 5.2 5.2 0.0 0.0 21 53 748 1016
80N_5K_30L 80 2 639 5 30 134.73 108.6 4.9 4.9 0.0 0.0 32 167 1455 1705
80N_5K_35L 80 1 852 5 35 104.04 100.4 2.0 2.0 0.0 0.0 46 306 2307 2899
80N_10K_30L 80 2 639 10 30 187.17 105.0 8.1 8.1 0.0 0.0 695 625 2756 2501
80N_10K_35L 80 1 852 10 35 168.62 102.2 11.2 TL 0.0 12.9 4382 7200 7947 9114
160N_5K_30L 160 9 2764 5 30 78.61 106.2 6.6 6.6 0.0 4.2 1491 7200 12812 23985
160N_5K_35L 160 9 3615 5 35 68.15 101.4 9.0 9.0 0.0 6.7 5273 7200 29676 30003
160N_10K_30L 160 9 2764 10 30 112.06 106.1 6.5 TL 5.7 11.6 7200 7200 16850 26344
160N_10K_35L 160 9 3615 10 35 117.19 100.0 TL TL 10.3 33.4 7200 7200 22324 34909

Table 3.4: Results on the Konak instances (type II). Column UB∗ provides the best
known upper bounds, optimal bounds are marked bold. (CH1+) gives the ratio between
the objective value obtained by the heuristic and the best known upper bound. We
report the LP gap, the optimality gap, the total computation time in seconds (t [s]), and
the number of priced columns. Best values are marked bold. If an algorithm failed to
compute a lower bound due to the time limit, the respective gap entry is marked with
“TL”.

from (CH1+) are improved for almost all instances by our algorithms which only fail
to improve them for one of the most challenging problems (80N50L20F_A) and prove
optimality of one solution obtained by (CH1+).

ARLP-p25 instances. The purpose of evaluating our algorithms on this family of
instances was to study the influence of the number of commodities on the algorithmic
performance. Recall that for the ARLP instances, each node pair is a commodity, i.e.,
|K| is in O(|V |2). For the ARLP-p25 instances, the number of commodities is reduced to
a quarter. In general, the results indicate that as long as the number of commodities
remains O(|V |2), the NDPR is much more difficult to solve than when the number
of commodities is fixed to a small constant value (as for the Cabral and the Konak
instances). Moreover, the remaining commodities still enforce solutions that guarantee
full connectivity since the optimal objective values do not change for the corresponding
instances. The detailed results are provided in Table 3.6.

Again, the LP gaps of both models are the same whenever both of them terminated
within the time limit. However, this time more LP bounds have been obtained due to
the smaller number of commodities. The quality of the bounds is roughly comparable to
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LP IP

Gap [%] Opt. gap [%] t [s] Columns

Instance |V | |E0| |E∗| |K| UB∗ (CH1+) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT)

40N50L20F_A 40 26 124 724 874 122.5 TL 10.7 TL 0.0 7200 142 132 1340
40N50L20F_B 40 35 123 688 874 113.3 TL 13.4 TL 0.0 7200 139 147 1196
40N50L50F_A 40 89 78 513 837 103.9 15.2 15.2 0.0 0.0 2504 14 59 83
40N50L50F_B 40 71 72 586 876 108.3 6.4 6.4 0.0 0.0 2683 7 76 74
40N50L80F_A 40 146 32 443 516 100.0 0.0 0.0 0.0 0.0 10 2 1 0
40N50L80F_B 40 154 35 423 777 100.9 6.6 6.6 0.0 0.0 155 5 18 23
50N50L20F_A 50 44 212 1111 815 106.5 TL 5.9 ML 0.0 ML 416 ML 3973
50N50L20F_B 50 59 235 1022 656 131.2 TL 2.8 ML 0.0 ML 72 ML 3032
50N50L50F_A 50 132 157 719 543 104.4 9.6 TL ML 0.0 ML 11 ML 114
50N50L50F_B 50 117 132 873 775 100.8 TL 5.8 ML 0.0 ML 30 ML 211
50N50L80F_A 50 175 51 788 630 143.8 11.1 TL 0.0 0.0 211 10 25 7
50N50L80F_B 50 212 58 682 572 119.2 0.0 0.0 0.0 0.0 29 5 1 0
60N50L20F_A 60 72 269 1549 775 111.1 ML 5.5 ML 0.0 ML 257 ML 3685
60N50L20F_B 60 63 268 1588 976 129.7 ML 17.8 ML 0.0 ML 1397 ML 3725
60N50L50F_A 60 216 204 1036 628 115.8 TL ML ML 0.0 ML 44 ML 201
60N50L50F_B 60 197 200 1103 743 103.0 TL ML ML 0.0 ML 58 ML 255
60N50L80F_A 60 311 85 854 503 119.7 2.1 TL ML 0.0 ML 16 ML 16
60N50L80F_B 60 283 74 1041 624 110.1 9.9 ML ML 0.0 ML 18 ML 4
80N50L20F_A 80 123 525 2729 1084 100.0 ML 35.1 ML 34.0 ML 7200 ML 19111
80N50L20F_B 80 124 545 2659 790 125.8 ML TL ML 9.6 ML 7200 ML 21190
80N50L50F_A 80 335 342 1916 498 120.9 ML ML ML 0.0 ML 65 ML 71
80N50L50F_B 80 366 375 1902 541 135.5 ML TL ML 0.0 ML 159 ML 424
80N50L80F_A 80 548 148 1834 577 101.4 ML ML ML 0.0 ML 67 ML 5
80N50L80F_B 80 597 158 1532 549 159.2 ML ML ML 0.0 ML 85 ML 4

Table 3.5: Results on the ARLP instances. Column UB∗ provides the best known upper
bounds, optimal bounds are marked bold. (CH1+) gives the ratio between the objective
value obtained by the heuristic and the best known upper bound. We report the LP
gap, the optimality gap, the total computation time in seconds (t [s]), and the number of
priced columns. Best values are marked bold. Entries marked with “ML” indicate that
an experiment has been terminated due to the memory limit. If an algorithm failed to
compute a lower bound due to the time limit, the respective gap entry is marked with
“TL”.

those of the ARLP instances. The number of optimal solutions found does not change
when reducing the number of commodities, i.e., optimal solutions have been found for 22
out of 24 instances. For the (MCF) the number of instances solved to optimality greatly
increases from 6 to 14, mainly due to the smaller number of commodities reducing the
size of the model. Surprisingly, the impact on the algorithmic performance of (CUT) is
much smaller. In fact, in several cases the reduced instances are even harder to solve.
As mentioned above the optimal solutions remain the same as for the original instances.
Therefore, we “loose” constraints that might help to prove optimality earlier. This is
particularly relevant to the (CUT) model where the number of variables is independent
of the number of the commodity pairs. As before, one solution obtained from (CH1+) is
shown to be optimal and all but one of the remaining upper bounds from (CH1+) are
improved by our approaches.
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LP IP

Gap [%] Opt. gap [%] t [s] Columns

Instance |V | |E0| |E∗| |K| UB∗ (CH1+) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT) (MCF) (CUT)

40N50L20F_A_p25 40 26 124 181 874 119.2 11.4 11.4 11.7 0.0 7200 106 499 1429
40N50L20F_B_p25 40 35 123 172 874 102.7 14.6 14.6 11.2 0.0 7200 109 529 1238
40N50L50F_A_p25 40 89 78 129 837 102.2 15.2 15.2 0.0 0.0 152 10 58 81
40N50L50F_B_p25 40 71 72 147 876 104.8 6.4 6.4 0.0 0.0 112 3 80 96
40N50L80F_A_p25 40 146 32 111 516 100.0 0.0 0.0 0.0 0.0 2 1 2 0
40N50L80F_B_p25 40 154 35 106 777 100.9 6.6 6.6 0.0 0.0 20 2 16 22
50N50L20F_A_p25 50 44 212 278 815 106.0 TL 6.1 TL 0.0 7200 611 572 4396
50N50L20F_B_p25 50 59 235 256 656 122.0 TL 2.8 TL 0.0 7200 209 547 4256
50N50L50F_A_p25 50 132 157 180 543 112.0 9.6 9.6 0.0 0.0 179 5 142 153
50N50L50F_B_p25 50 117 132 219 775 100.0 5.8 5.8 0.0 0.0 4431 11 273 184
50N50L80F_A_p25 50 175 51 197 630 124.0 11.1 11.1 0.0 0.0 26 2 17 3
50N50L80F_B_p25 50 212 58 171 572 119.2 0.0 0.0 0.0 0.0 6 1 1 3
60N50L20F_A_p25 60 72 269 388 775 116.3 TL 5.5 TL 0.0 7200 2174 366 4904
60N50L20F_B_p25 60 63 268 397 976 126.0 TL 18.4 TL 0.0 7200 4412 343 4037
60N50L50F_A_p25 60 216 204 259 628 115.8 8.0 TL 0.0 0.0 6777 46 220 237
60N50L50F_B_p25 60 197 200 276 743 122.3 8.5 8.5 4.7 0.0 7200 45 242 360
60N50L80F_A_p25 60 311 85 214 503 148.7 2.1 2.1 0.0 0.0 125 7 25 24
60N50L80F_B_p25 60 283 74 261 624 124.5 9.9 9.9 0.0 0.0 81 16 15 14
80N50L20F_A_p25 80 123 525 683 1095 100.0 TL 35.8 ML 33.9 ML 7200 ML 19296
80N50L20F_B_p25 80 124 545 665 1024 100.0 TL TL ML 35.4 ML 7200 ML 21959
80N50L50F_A_p25 80 335 342 479 498 120.9 1.1 TL 0.0 0.0 1890 28 155 193
80N50L50F_B_p25 80 366 375 476 541 141.6 TL TL TL 0.0 7200 181 224 538
80N50L80F_A_p25 80 548 148 459 577 100.2 2.6 TL 0.0 0.0 826 40 17 14
80N50L80F_B_p25 80 597 158 383 549 132.1 9.7 TL 0.0 0.0 1580 55 13 12

Table 3.6: Results on the ARLP-p25 instances. Column UB∗ provides the best known
upper bounds, optimal bounds are marked bold. (CH1+) gives the ratio between the
objective value obtained by the heuristic and the best known upper bound. We report the
LP gap, the optimality gap, the total computation time in seconds (t [s]), and the number
of priced columns. Best values are marked bold. Entries marked with “ML” indicate
that an experiment has been terminated due to the memory limit. If an algorithm failed
to compute a lower bound due to the time limit, the respective gap entry is marked with
“TL”.

Sensitivity analysis. The number of feasible walks realizing a connection of some
commodity pair depends on the distance limit in relation to the edge lengths. More
specifically, it depends on the average number of edges that can be part of a feasible
subpath that uses no relays. In the following, we want to investigate the effect of this
characteristic on our algorithms. To this end, we consider the Cabral instances and vary
the distance limit dmax.

The unmodified Cabral instances feature a distance limit of 70 and the edge lengths
are chosen uniformly at random from the interval [10, 30]. Therefore, a feasible path of
maximal length consists on average of three to four edges. Increasing dmax by a value of
30 means that a feasible path without relays may contain at least one additional edge.
We consider distance limits between 40 and 220 in steps of 30 for our experiment. The
results are visualized in terms of box plots in Figure 3.10 for the (CUT) model.
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Figure 3.10: Sensitivity analysis regarding the distance maximum dmax on the Cabral
instances for the (CUT) model. Each box considers 180 instances. Both box plots use a
logarithmic scale.

Due to the increasing number of possible options for connecting the commodity pairs
it can be expected that the instances become more challenging as the distance limit
increases. This can be verified in terms of the box plots. However, we can also see
that the computation times increase only moderately. Per step the median computation
time rises by roughly one second. Similarly, the number of columns required to solve an
instance to optimality increases. The respective results obtained with the (MCF) model
are quite similar except that the baseline lies a bit higher. In total, we can conclude that
the performance of our algorithms remains quite robust against changes to the distance
limit.

Solution shape and characteristics. In this section, we analyze the structure of
optimal solutions for two small examples corresponding to instances 40N30C50L20F_A
and 40N30C50L80F_A from the ARLP set with 20 % and 80 % of free edges, respectively.
In Figures 3.11a and 3.12a we visualize the two corresponding optimal solutions. We
notice that for 40N30C50L20F_A, despite the fact that there are 724 commodities, only
three relays need to be installed (with a reasonable complement of augmentation edges)
to enable these communications. In Figure 3.11, we compare the optimal solution of
40N30C50L20F_A with the one obtained for the same input graph, but with a much
smaller number of commodities: the set of commodities K′ is obtained by removing all
commodities except those containing the node that is involved in the fewest commodities.
The structure of the obtained optimal solution is similar to the original one, with three
installed relays and a comparable number of augmentation edges. Along with the results
reported for the ARLP instances, this figure indicates that the estimated investment costs
do not increase linearly with the number of commodities. In general there are higher
investment costs for setting up the infrastructure, and once it is established, marginal
increase in the number of commodities will not be reflected in the increase of the set-up
costs (cf. the solution values in Tables 3.5 and 3.6).
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(a) 40N30C50L20F A (original) (b) 40N30C50L20F A (K′)

Figure 3.11: Solutions to ARLP instance 40N30C50L20F_A with different numbers of
commodities. Solid lines indicate free edges and dashed lines augmenting edges. Selected
relays are marked with triangles. On the right the single source is marked with a square.

Figure 3.12 visualizes the optimal solutions for 40N30C50L80F_A and its “sparser”
variant (with the set of commodities K′ constructed as above), respectively. We observe
that when 80 % of available edges are free, the need to install augmentation edges almost
vanishes but a certain number of relays still needs to be installed to enable communications.
Comparing the optimal solution for the sparser problem with the original one, we notice
that the number of relays can be reduced, if the source node is centrally located, as in
the shown example.

3.6 Conclusion
In this work we introduced new MILP formulations for solving the NDPR that utilize
an exponential number of variables (and constraints). We proved several conditions and
properties of optimal solutions and revised the concept of communication graphs for the
NDPR to state our MILP formulations. Two BP&C algorithms have been developed. The
first one is based on a multi-commodity flow formulation on an undirected communication
graph whereas the second is based on a cut-set formulation on a directed communication
graph. The computational study on instances from the literature and a newly created set
of instances shows that the cut-set formulation on the directed communication graph has
the overall best performance. The multi-commodity flow formulation on the undirected
communication graph performs reasonably well, but only up to a limited number of nodes
and/or commodities. Due to its excessive number of variables, the latter formulation
exhibits serious memory issues that makes it less appealing for practical applications
involving larger graphs or a higher number of commodities.
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(a) 40N30C50L80F A (original) (b) 40N30C50L80F A (K′)

Figure 3.12: Solutions to ARLP instance 40N30C50L80F_A with different numbers of
commodities. Solid lines indicate free edges and dashed lines augmenting edges. Selected
relays are marked with triangles. On the right the single source is marked with a square.

We conducted a sensitivity analysis on the Cabral instances with different dmax restrictions.
The results showed that our algorithms are quite robust against changes to this parameter
featuring only a comparatively small increase in computation times and priced columns.

Compared to the previous attempt from the literature to develop an exact model for
the NDPR by [30], the main advantage of our modeling approach is that we do not use
variables corresponding to entire walks between commodities (including the decisions for
placing relays). Instead, we consider only simple paths between two consecutive relays
and model the decision where to place the relays through the communication graph.
That way, our pricing draws a computational advantage from the fact that augmenting
edges can be simultaneously shared by multiple commodities. The positive effect of our
modeling approach is striking for instances with many commodities, where the need for
the simultaneous reuse of augmenting edges is even more amplified.

3.6.1 Future Work

Besides telecommunication network design, the NDPR can be used to answer strategic
questions in the context of electric mobility. A company running its operations based
on a fleet of electric vehicles (EVs), be it a logistics company or an e-car provider, faces
a difficult decision problem of planning the underlying charging infrastructure. Due to
expensive EV batteries and their limited range, a stable and robust charging infrastructure
is crucial for running the business suitably. Since building and/or renting charging stations
is expensive, logistic companies or e-car providers are interested in minimizing the number
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of charging stations whilst enabling travel between specific locations (cf. commodities).
Furthermore, in some metropolises (including Stockholm, Gothenburg, and Singapore)
congestion taxing or congestion charging mechanisms are implemented. This means that
shorter distances can be traversed (e.g., via shortcuts through the inner city), but in
that case a certain road toll is to be paid(see, e.g., [58, 104]). Similarly, urban freeways
passing through a downtown area can be subject to compulsory electronic toll (like the
case in Santiago de Chile, or some Norwegian cities). Consequently, if a company is
interested in building charging stations for its fleet, it also has to gauge whether toll
roads are to be used. When making strategic decisions, costs for toll roads are typically
estimated over a longer planning period and considered as fixed link costs.

Two main strategic design questions arising in this complex decision process are addressed
by the NDPR: Given a family of origin-destination pairs EVs need to travel, and given
the existing links that can be traversed:

1. What are the optimal locations for placing the charging stations and how many of
them are needed?

2. Could the available infrastructure be enhanced by including additional links (short-
cuts), to reduce the travel distances?

The relevance of the NDPR for planning EVs’ charging infrastructure has not been
sufficiently acknowledged in the existing literature. This is maybe due to the additional
aspects that need to be taken into account when dealing with e-mobility. These include
restricting the distance arising from detours necessary for vehicle recharging and the
maximum number of (time-consuming) recharging stops an EV requires before reaching
its final destination. Although the NDPR does not consider these additional aspects,
there is no doubt that the problem plays an important role for e-mobility applications
for two reasons: (1) the NDPR may appear as a subproblem (i.e., in some decomposition
schemes), and (2) the proposed algorithms can be used to derive heuristic solutions in
multi-phase approaches, where the complex decision process is approached step-by-step.
Hence, the NDPR provides important insights for the companies running their business
with a fleet of EVs. It helps in estimating the initial set-up costs (induced by the
installation of recharging stations and potential purchases of road-toll passes). Moreover,
by using a correlation between the edge lengths and lengths of the trips, the routing
decisions obtained through an NDPR solution implicitly help in estimating a lower bound
on the number of required EVs. Similarly, assuming that all trips will be covered, an
upper bound on the expected profit can be calculated.

Interesting and more difficult NDPR variants that are important directions for future
work include the following aspects: (1) limiting the maximum number of recharging stops
(relays) used by a single commodity, (2) limiting the maximum waiting times imposed by
recharging, or (3) limiting the overall trip length per commodity.
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CHAPTER 4
Solving a Selective Dial-a-Ride

Problem with Logic-based
Benders Decomposition

In the previous chapter we employed column generation as solution approach. While
being used for decades and belonging to the most well-known decomposition techniques
for mixed integer linear programming (MILP) it is still very successful and achieves
state-of-the-art results for various problems. The approach considered in this chapter
also originates from a well-established technique, Benders decomposition (BD), which
has been first proposed in the 1960s. BD received only moderate attention for several
years before enjoying a renaissance since the 2000s, see [144]. During this time also an
interesting extension, logic-based Benders decomposition (LBBD), was developed that
will be considered in the following.

We propose an LBBD approach for solving a selective dial-a-ride problem (DARP). This
problem considers transportation requests of people from pick-up to drop-off locations.
Users specify time windows with respect to these points. Requests are served by a given
vehicle fleet with limited capacity and maximum tour duration per vehicle. Moreover,
user inconvenience considerations are taken into account by limiting the travel time
between origin and destination for each request. In contrast to previous work we do not
focus on travel cost minimization under the assumption that all requests can be satisfied
but rather consider maximization of the number of served requests with a given vehicle
fleet. This appears to be particularly relevant for funded systems that have to cope with
overallocation.

In our study we in particular investigate the impact of strengthening the Benders cuts.
We compare plain Benders cuts to heuristically strengthened ones, as well as two variants
of theoretically strongest cuts. Moreover, we consider heuristic boosting techniques as
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4. Solving a selective DARP with LBBD

well as valid inequalities to speed up solving the Benders master problem. The models are
implemented as LBBD and also as Branch-and-Check (BaC) algorithms and empirically
compared on a diverse set of benchmark instances.

This chapter has been published in Computers & Operations Research:

M. Riedler and G. R. Raidl. Solving a selective dial-a-ride problem with
logic-based Benders decomposition. Computers & Operations Research, 96:
30–54, 2018

4.1 Introduction
The DARP considers the design of vehicle routes for a set of customers who specify
transportation requests from origin (pick-up) to destination (drop-off) points. Users
typically impose time windows with respect to these locations. To reduce user inconve-
nience the time required to go from the pick-up to the drop-off location (ride time) is
limited. The available requests shall be served by a fleet of vehicles. Each vehicle has a
limited capacity corresponding to the number of customers that can be transported and
a maximum total travel time. The restriction on the tour duration is important in order
to deal with regulations regarding driver shifts.

As done by Jaw et al. [95], Cordeau [41], and others we distinguish between outbound
and inbound requests. An outbound request considers the case that a customer wants
to go from some starting location to a destination. An inbound request corresponds
to the opposite case, i.e., a customer who wants to return to his/her starting location.
According to the survey presented in [134] customers have different priorities with respect
to the adherence to time windows. For outbound requests it is critical to stay within the
time window at the drop-off location and for inbound requests it is important to adhere
to the time window at the pick-up location.

In the literature several variants of the DARP have been investigated, see [42, 44, 135].
The two main variants are the static and the dynamic case. In the former it is assumed
that all requests are known in advance whereas in the latter requests become known
gradually over time and routes need to be adjusted accordingly. There are also mixed
variants for which some requests are known in advance and some are revealed dynamically.
Moreover, there is a distinction between the single- and the multi-vehicle case. In the
former variant the requests have to be served using a single vehicle and in the latter
multiple vehicles are available. In the following we deal with a variant of the static
multi-vehicle DARP.

4.1.1 Outline and Discussion of the Contributions

In many DARP applications it is assumed that all requests can be served and that the
total travel expenses together with the user inconvenience have to be minimized. In
contrast, we consider the scenario that in general not all customers can be handled with
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the given fixed-size vehicle fleet and aim at maximizing the number of served requests.
This is intended to deal with situations in which dial-a-ride systems are overallocated.
In these cases serving as many customers as possible appears to be more relevant than
savings due to shorter tour lengths. Of course user inconvenience considerations still
have to be taken into account to provide reasonable service conditions.

We consider solution algorithms based on LBBD (see Hooker and Ottosson [91]) and
BaC (see Thorsteinsson [161]). The Benders master problem focuses on the selection of
requests and their assignment to vehicles. It is modeled as integer linear programming
(ILP) that we enhance through valid inequalities originating from subproblem relaxations.
For solving the Benders subproblems, which correspond to the route planning tasks,
we consider MILP as well as constraint programming (CP) approaches. In particular,
we also present a hybrid approach that combines MILP and CP. Several strategies for
constructing Benders cuts are studied. We consider cuts derived from greedily obtained
minimal infeasible request subsets, the full set of all minimal infeasible request subsets,
as well as the set of all minimum cardinality infeasible request subsets and compare
them to the unrefined cuts that are directly obtained from the subproblem assignments.
Moreover, we consider heuristic boosting techniques to possibly speed up the solution
process. To this end we terminate the master problem prematurely according to a specific
termination criterion and use the suboptimal solution to derive Benders cuts. As soon as
no further cuts can be obtained this way, we fall back to solving the master problem to
optimality and continue with regular Benders iterations. This is necessary to obtain a
provably optimal solution. As termination criterion we consider a decreasing sequence of
thresholds for the optimality gap and an increasing sequence of time limits. Employing
an adaptive approach we start at the first element of the sequence and move to the next
one whenever no further cuts can be found with the current termination condition. A
more flexible approach allows traversing the sequence in both directions, depending on
whether cuts could be obtained or not. The suggested algorithms are tested extensively
on a novel set of benchmark instances as well as on instances from the literature.

The remainder of the chapter is organized as follows. We first provide an overview of
previous work in the area. Then, we give a formal definition of the specific problem
variant, including a complexity discussion. In terms of the formal specification we provide
a compact reference model that is a straightforward extension of the MILP from [41]
for the tour-length-minimization DARP. In the main part we present the details of
our decomposition approaches; including important implementation details. Finally, we
discuss computational results on various test instances and conclude with an outlook on
future research directions.

4.1.2 Previous Work

The DARP has a rather long research history. Among the first was the work by Psaraftis
[138] that deals with the static single-vehicle variant. Sexton and Bodin [158, 159] solve
the problem by splitting it into a routing and a scheduling phase which they formally
describe in the context of BD. The routing is done by an insertion heuristic. In [24] the
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same authors use this approach to tackle the multi-vehicle case by first forming clusters of
requests and then solving the single-vehicle problem for each cluster. Since they construct
the clusters (grouping close customers) as well as the routes heuristically, neither method
can guarantee optimal solutions. Later on, this approach for the multi-vehicle problem has
been refined by using so-called “mini-clusters”, see [53, 55]. The most recent contribution
by Ioachim et al. [92] relying on this technique shows the positive influence of using
mathematical optimization methods to globally define the set of “mini-clusters”. The
authors argue that more sophisticated techniques provide a significant advantage over
simpler heuristic approaches. However, all of these algorithms are still heuristics.

Only few contributions so far do not minimize traveling costs. Wolfler Calvo and Colorni
[171] maximize the number of served customers and consider a penalty term regarding
user inconvenience. This term considers the relative ratio between the direct and the
actual travel time. The authors consider a fast heuristic construction approach based on
an auxiliary graph.

Berbeglia et al. [15] and Häme and Hakula [86] focus on feasibility checking of DARP
instances. Similarly, also the large neighborhood search by Jain and van Hentenryck [93]
has been tested as feasibility checking algorithm. Although we consider an optimization
problem here, we are still concerned with feasibility checking when it comes to the
Benders subproblems.

For a broader overview on the DARP we refer to the surveys by Cordeau and Laporte
[44, 42] and Parragh et al. [135].

An optimization problem closely related to the DARP is the pickup and delivery problem
with time windows (PDPTW). The main difference between the two problems is that
the PDPTW primarily deals with the transportation of goods rather than persons. As
a consequence, it does not consider user inconvenience and related concerns. In this
area branch-price-and-cut (BP&C) approaches have been shown to be able to provide
state-of-the-art results in terms of exact solution approaches, see Ropke and Cordeau
[151] and Baldacci et al. [8]. For further details consider the survey conducted in [135].

Recently, also revenue maximizing variants of the PDPTW have been considered. In Qiu
and Feuerriegel [140] and Qiu et al. [141] each transportation request is assigned a profit.
The goal is then to identify a subset of requests to be served with a given heterogeneous
vehicle fleet that maximizes the revenue, i.e., sum of profits minus transportation cost.
The problem is solved using a graph search algorithm as well as a set packing formulation
for the case of a homogeneous vehicle fleet. A similar scenario is also considered in
Gansterer et al. [65] and solved with different metaheuristic approaches.

Somewhat related are also certain variants of the team orienteering problem. A contribu-
tion in this respect is from Baklagis et al. [7] who solve a variant considering pick-up and
delivery with a branch-and-price (B&P) approach.

Finally, we want to review contributions that are relevant to our work from the method-
ological point of view, i.e., works that apply (logic-based) BD in the context of vehicle
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routing problems. Cire and Hooker [38] consider the home health care problem in which
medical services need to be provided to patients. Each service is represented as a job
and requires a certain minimal qualification level. The services are provided by nurses
that travel to the patients. The aim is to design routes and shift plans such that all
required services can be provided while minimizing the costs for the nurses’ working
hours. The problem is solved using LBBD. In the master problem the jobs are assigned
to the nurses and the subproblems determine the actual shift plan and route per nurse.
After solving a subproblem a cut is introduced into the master problem reflecting the
cost of the assignment or prohibiting an infeasible allocation. In case of an infeasible
subproblem it is often possible to strengthen the obtained cut by identifying a subset of
assigned jobs that is the cause of the infeasibility. Moreover, a local search procedure
is employed that tries to repair infeasible solutions by reassigning jobs to other nurses.
The authors solve the master problem only heuristically and therefore optimal solutions
cannot be guaranteed. In the computational study the LBBD approach is compared to a
CP model which it outperforms clearly.

The bi-level vehicle routing problem (VRP) considers the distribution of goods in two
stages. The goods are first transported from the main depot to satellite depots. Starting
at each satellite depot the goods are then brought to the customers. This kind of VRP
arises for example in newspaper distribution. Raidl et al. [145, 146] consider a bi-level
VRP with a global restriction on the time until which all customers need to receive their
goods. The assignment of customers to the satellite depots is pre-specified. Deliveries are
carried out with a homogeneous fleet of vehicles with restricted capacity. The goal is to
perform all deliveries within the time limit at minimal routing cost. Due to the structure
of the problem routing costs at the first level as well as for every satellite depot can be
considered independently. However, the levels are still interlinked via the global time
limit. These properties provide a promising basis for the application of LBBD. Raidl et al.
[145, 146] consider a decomposition approach in which the master problem determines
the route from the main depot to the satellite depots. With the now fixed starting
times at the satellite depots the corresponding routes can be computed independently as
subproblems. Infeasibilities (due to the global time limit) are prevented by computing a
minimal starting time for each satellite depot that guarantees the existence of a feasible
route. Hence, only Benders optimality cuts are required. These cuts turn out to be quite
strong here since routing costs can only be reduced given a smaller starting time at the
respective depot. Raidl et al. [145] consider an exact variant of this decomposition, as well
as a hybrid approach with either the master or the subproblems solved via metaheuristics,
and a completely heuristic approach. In Raidl et al. [146] the hybrid approach is further
refined by verifying and, if needed, correcting the heuristically added Benders cuts in a
second phase. With this approach the obtained solution is guaranteed to be provably
optimal and the solution process is much faster than the purely exact one.
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4.2 Formulations
The DARP is defined on a directed graph G = (N,A). Given n requests, node set N
consists of two copies of the depot {0, 2n+ 1}, the set of pick-up locations P = {1, . . . , n},
and the set of drop-off locations D = {n+ 1, . . . , 2n}. A request corresponds to a pair
(i, n + i) such that i ∈ P and (n + i) ∈ D. In the following, we occasionally identify
requests by their corresponding pick-up locations. The load (e.g., the number of persons
to be transported) at each pick-up location i ∈ P is given by qi ≥ 0 and the same amount
is to be unloaded at the drop-off location, i.e., qn+i = −qi. The service duration at each
node i ∈ N is given by di ≥ 0. For the depot q0 = q2n+1 = d0 = d2n+1 = 0 holds. In
addition, each node i has an associated time window [ei, li], ei < li.

The set of arcs is defined as A = {(i, j) | (i = 0 ∧ j ∈ P ) ∨ (i, j ∈ P ∪D ∧ i 6= j ∧ i 6=
n+ j) ∨ (i ∈ D ∧ j = 2n+ 1)}. The non-negative travel time of arc (i, j) is tij and the
maximum user ride time is denoted by L > 0. We are given a set of vehicles K and every
vehicle k ∈ K has a maximum capacity Qk > 0 and a maximum route duration T k > 0.
Moreover, we assume that a time horizon limited by T is given, i.e., all requests have to
be served in the time window [0, T ].

The goal is to serve as many requests as possible respecting all time windows, precedence
constraints, capacity restrictions, maximum route durations, and the maximum ride
times.

4.2.1 Complexity

The original DARP has been shown to be NP-hard (see Baugh et al. [12]) and we will
show that the problem still remains NP-hard under the modified scenario. Our proof is
based on the traveling salesman problem (TSP) and the decision problem variant of the
selective DARP (S-DARP-D). Both are provided in the following. The TSP is well-known
to be NP-hard, see Garey and Johnson [66].

Definition 4.1. TSP [66]
INSTANCE: Set C of m cities, distance cij ∈ Z>0 for each pair of cities i, j ∈ C, positive
integer B.
QUESTION: Is there a Hamiltonian tour of C having length B or less?

Definition 4.2. S-DARP-D
INSTANCE: Selective DARP instance, positive integer n′.
QUESTION: Is there a feasible solution to the selective DARP serving at least n′ requests?

Theorem 4.1. The selective DARP is NP-hard.

Proof. We show NP-hardness of the selective DARP via a reduction from the TSP to
S-DARP-D. First, we create a request for each city in C setting di = qi = 0 for the pick-up
and drop-off locations. Moreover, a single vehicle with Q1 = T 1 =∞ is considered. For
the pick-up nodes we set the time windows to [0, B] and for the drop-off nodes we set the
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time windows to [B + 1,∞]. The maximum user ride time is assumed to be unrestricted,
i.e., L = ∞. For i and j, both pick-up nodes, we set tij = cij . The remaining travel
times are set to zero. There exists a Hamiltonian tour of C with length B or less iff the
constructed S-DARP-D instance allows serving at least |C| requests.

Corollary 4.1. The selective DARP remains NP-hard when the triangle inequality holds
for the travel times tij; including the even more specific cases of the L1 (rectilinear)
metric and the L2 (Euclidean) metric.

Proof. Use the transformation stated above, but start from a TSP instance with the
respective properties. The TSP is known to be also NP-hard under these conditions, see
Garey et al. [67].

4.2.2 Compact Model

The following MILP model is a slightly modified variant of the one introduced in [41]. We
are going to refer to it as compact model (CM). The difference is that we are maximizing
the number of requests served, instead of minimizing travel costs.

We use binary variables xkij for each arc (i, j) ∈ A per vehicle k ∈ K. Moreover, variables
Bk
i and Qki are used to track for each vehicle k ∈ K the beginning-of-service time and

the load at node i ∈ N after serving i, respectively. Finally, we use variables Lki to model
the ride time of each request identified by its pick-up location i ∈ P on vehicle k ∈ K.
The model reads as follows:

max
∑
k∈K

∑
(i,j)∈A:j∈P

xkij (4.1)

subject to
∑
k∈K

∑
(i,j)∈A

xkij ≤ 1 ∀i ∈ P, (4.2)

∑
(i,j)∈A

xkij −
∑

(n+i,j)∈A
xkn+i,j = 0 ∀i ∈ P,∀k ∈ K, (4.3)

∑
j∈P

xk0j = 1 ∀k ∈ K, (4.4)

∑
(j,i)∈A

xkji −
∑

(i,j)∈A
xkij = 0 ∀i ∈ P ∪D,∀k ∈ K, (4.5)

∑
i∈D

xki,2n+1 = 1 ∀k ∈ K, (4.6)

(Bk
i + di + tij)xkij ≤ Bk

j ∀(i, j) ∈ A,∀k ∈ K, (4.7)
(Qki + qj)xkij ≤ Qkj ∀(i, j) ∈ A,∀k ∈ K, (4.8)
Bk
n+i − (Bk

i + di) = Lki ∀i ∈ P,∀k ∈ K, (4.9)
Bk

2n+1 −Bk
0 ≤ T k ∀k ∈ K, (4.10)

ei ≤ Bk
i ≤ li ∀i ∈ N, ∀k ∈ K, (4.11)
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ti,n+i ≤ Lki ≤ L ∀i ∈ P,∀k ∈ K, (4.12)
max{0, qi} ≤ Qki ≤ min{Qk, Qk + qi} ∀i ∈ N, ∀k ∈ K, (4.13)
xkij ∈ {0, 1} ∀(i, j) ∈ A, ∀k ∈ K. (4.14)

The objective function (4.1) determines the number of served requests by counting the
selected arcs leading to pick-up nodes. Constraints (4.2) ensure that each request is
served by at most one vehicle. These are the only differences to the original model.
Constraints (4.3) guarantee that pick-up and drop-off of each request are served by
the same vehicle. Equalities (4.4) to (4.6) ensure that each vehicle leaves the depot as
well as each node it visits and that it finally returns to the depot. Constraints (4.7)
and (4.8) enforce that the B and Q variables are set correctly. Note that in addition
to tracking the beginning-of-service times these constraints also serve as a variant of
Miller-Tucker-Zemlin constraints to prevent subtours. Equalities (4.9) calculate the ride
time for each request and inequalities (4.10) limit the route duration for each vehicle.
The remaining inequalities ensure that the used variables stay within their respective
domains.

The quadratic constraints (4.7) and (4.8) can be linearized as follows:

Bk
i + di + tij −Mk

ij(1− xkij) ≤ Bk
j ∀(i, j) ∈ A, ∀k ∈ K, (4.15)

Qki + qj −W k
ij(1− xkij) ≤ Qkj ∀(i, j) ∈ A, ∀k ∈ K, (4.16)

with the big-M constants set toMk
ij = max{0, li+di+tij−ej} andW k

ij = min{Qk, Qk+qi},
respectively.

4.2.3 Decomposition Approach

For the decomposition approach we split the problem into a master problem and several
subproblems. The master problem is responsible for assigning the requests to the vehicles.
When an assignment has been identified, we generate one subproblem per vehicle to
check if a feasible tour exists. The model reads as follows:

(master) max
∑
k∈K

∑
i∈P

yki (4.17)

subject to
∑
k∈K

yki ≤ 1 ∀i ∈ P, (4.18)

Benders cuts ∀k ∈ K, (4.19)
yki ∈ {0, 1} ∀k ∈ K,∀i ∈ P. (4.20)

The master problem maximizes the number of served requests. Constraints (4.18) ensure
that each request is assigned to at most one vehicle. The Benders cuts (4.19) will be
provided by the subproblems. They are responsible for preventing infeasible assignments
of requests. Furthermore, we will later augment this basic master problem by initially
provided valid inequalities originating from a relaxation of the subproblem.

72



4.2. Formulations

We formulate the subproblems sub(k, I) based on a vehicle k ∈ K and a subset I ⊆ P of
the requests. Dependent on a solution ȳ to the master problem we identify for each vehicle
k ∈ K the set Ik = {i ∈ P | ȳki = 1} of assigned requests. Each of these sets results in an
independently solvable subproblem sub(k, Ik). The subproblems can be stated similarly
to the compact formulation introduced in the previous section and essentially constitute
feasibility-based single-vehicle DARPs.

For subproblem sub(k, I) let P I = I and DI = {n+ i | i ∈ I} be the pick-up and drop-off
locations corresponding to set I, resulting in a restricted set of nodes N I = {0, 2n+ 1} ∪
P I∪DI . According to N I we define the reduced arc set AI = A\{(i, j) | i /∈ N I∨j /∈ N I}.
The subproblems can now be modeled as follows:

(sub(k, I)) min 0 (4.21)
subject to

∑
(i,j)∈AI

xij = 1 ∀i ∈ P I ∪DI , (4.22)

∑
j∈P I

x0j = 1, (4.23)

∑
(j,i)∈AI

xji −
∑

(i,j)∈AI
xij = 0 ∀i ∈ P I ∪DI , (4.24)

∑
i∈DI

xi,2n+1 = 1, (4.25)

Bi + di + tij −Mk
ij(1− xij) ≤ Bj ∀(i, j) ∈ AI , (4.26)

Qk + qj −W k
ij(1− xij) ≤ Qj ∀(i, j) ∈ AI , (4.27)

Bn+i − (Bi + di) = Li ∀i ∈ P I , (4.28)
B2n+1 −B0 ≤ T k, (4.29)
ei ≤ Bi ≤ li ∀i ∈ N I , (4.30)
ti,n+i ≤ Li ≤ L ∀i ∈ P I , (4.31)
max{0, qi} ≤ Qi ≤ min{Qk, Qk + qi} ∀i ∈ N I , (4.32)
xij ∈ {0, 1} ∀(i, j) ∈ AI . (4.33)

The objective function (4.21) is constant since we are only interested whether there exists
a feasible tour or not, i.e., this is actually a decision problem. In each subproblem all
assigned requests I have to be served. We no longer need to enforce that pick-up and
drop-off locations are visited by the same vehicle since we consider only one vehicle. It is
sufficient to use constraints (4.22) for ensuring that the pick-up and drop-off locations of
all assigned requests are visited. The remaining parts stay the same.

In addition to the MILP formulation we also provide a CP model similar to the one
introduced in [15] but restricted to the single vehicle case and slightly adjusted. To
formulate element constraints we define a bijective function π : N I → {0, . . . , 2 · |I|+ 1}
mapping the nodes required in the subproblem to a consecutive range as follows. Depot
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node 0 is mapped to itself and depot copy 2n+ 1 is mapped to 2 · |I|+ 1. Nodes in P I
are mapped to {1, . . . , |I|} and those in DI to {|I| + 1, . . . , 2 · |I|} such that π(i) = j
iff π(i + n) = j + |I|, ∀i ∈ P I . Accordingly, we define sets P̃ I = {π(i) | i ∈ P I},
D̃I = {π(i) | i ∈ DI}, and Ñ I = P̃ I ∪ D̃I ∪ {0, 2 · |I|+ 1}. Additionally, we specify an
appropriately reduced travel time matrix t̃ij = tπ−1(i)π−1(j), ∀(i, j) ∈ Ñ I × Ñ I and load
vector q̃i = qπ−1(i), ∀i ∈ Ñ I . Observe that the remaining input (service duration and
time windows) is not part of element constraints and therefore does not need transformed
data structures.

To provide the model we use three sets of variables which are successor variables s[i],
∀i ∈ Ñ I \{2 · |I|+ 1}, load variables q[i], ∀i ∈ Ñ I , and beginning-of-service time variables
b[i], ∀i ∈ Ñ I . The model reads as follows:

(sub(k, I))
allDifferent(s), (4.34)
b[i] + t̃i,|I|+i + dπ−1(i) ≤ b[|I|+ i] ∀i ∈ P̃ I , (4.35)
b[i] + t̃i,s[i] + dπ−1(i) ≤ b[s[i]] ∀i ∈ Ñ I \ {2 · |I|+ 1}, (4.36)
b[i+ n]− (b[i] + dπ−1(i)) ≤ L ∀i ∈ D̃I , (4.37)
b[2 · |I|+ 1]− b[0] ≤ T k, (4.38)
q[i] + q̃s[i] = q[s[i]] ∀i ∈ Ñ I , (4.39)
s[i] ∈ {j | (i, j) ∈ AI} ∀i ∈ Ñ I \ {2 · |I|+ 1}, (4.40)
domain(b[i], eπ−1(i), lπ−1(i)) ∀i ∈ Ñ I , (4.41)
domain(q[i], q̃i, Qk) ∀i ∈ P̃ I , (4.42)
domain(q[i], 0, Qk + q̃i) ∀i ∈ D̃I , (4.43)
q[0] = 0, (4.44)
q[2 · |I|+ 1] = 0. (4.45)

Constraints (4.34) ensure that each node has a unique successor. Assuming that the
triangle inequality holds, we know that the beginning-of-service times at the pick-up
location and the corresponding drop-off location differ at least by the direct travel
time (4.35). Constraints (4.36) model the time needed to travel from a node to its
immediate successor. Inequalities (4.37) and (4.38) restrict the ride time and tour
duration appropriately. The load restrictions are considered by constraints (4.39). The
remaining constraints specify the variable domains.

Benders Cuts

If a subproblem turns out to be infeasible, we need to add a cut preventing that the
requests that caused the infeasibility are again assigned to the same route in subsequent
iterations. The easiest way to do this is to add a Benders cut preventing the exact same
assignment and any superset of it.
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In iteration j we denote by Ikj the requests assigned to vehicle k ∈ K and by Kj = {k ∈
K | sub(k, Ikj ) is infeasible} the set of vehicles for which the subproblem turns out to be
infeasible. The corresponding Benders cuts are:

∑
i∈Ikj

yki ≤ |Ikj | − 1 ∀k ∈ Kj . (4.46)

This basic cut, however, frequently can be strengthened as it is likely that the infeasibility
is caused by a proper subset of the assigned requests. Similar to the notation used in
[40] we classify sets Ikj as follows:

Definition 4.3. We call a set of requests Ikj infeasible iff subproblem sub(k, Ikj ) is
infeasible and feasible otherwise.

Definition 4.4. We call an infeasible set of requests Ikj irreducible infeasible set (IIS)
iff the removal of any request turns it into a feasible set. Otherwise, we call Ikj reducible
infeasible set.

Reducible infeasible sets lead to unnecessarily weak Benders cuts. Therefore, we never
want to add cuts that are based on reducible infeasible sets. In general, there exist
several IISs of smaller cardinality for each reducible infeasible set Ikj . All such sets are
by definition minimal and, thus, lead to non-dominated cuts within this class of cuts.
Note that the IISs with respect to a given base set can have different cardinality. For
practical reasons it makes sense to prefer smaller sets when the number of IISs gets large.
Moreover, each Benders cut prevents assignments that are supersets with respect to its
underlying IIS. Hence, IISs of minimum cardinality are in general able to cut-off larger
parts of the search space.

Unfortunately, there is neither an efficient way to compute all IISs nor those of minimum
cardinality. However, by means of a greedy strategy (similar to what is done in [90]) we
are at least able to reduce a given base set to an IIS efficiently, see Algorithm 4.1. The
algorithm tries to remove requests one after another and checks each time if the resulting
set is still infeasible. If this is the case, we keep the smaller set, otherwise we proceed
with the next request.

Note that the order in which the requests are considered has in general a strong influence
on the outcome of the algorithm. As mentioned before, smaller IISs are usually preferable
as they cut off larger parts of the search space. The greedy strategy cannot guarantee to
compute a set of minimum cardinality. Consequently, we should attempt to order the
requests heuristically to increase the chances of ending up with a small set. Unfortunately,
it is not trivial to find an appropriate ordering that can be computed quickly. One
strategy would be to prioritize the removal of requests that are unlikely to be the cause
of the infeasibility. However, identifying these requests is again difficult. Following
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Algorithm 4.1: Greedy set reduction
Input: set I of requests and vehicle k ∈ K such that sub(k, I) is infeasible.

1 foreach i ∈ I do
2 if sub(k, I \ {i}) is infeasible then
3 I = I \ {i}
4 end
5 end
6 return I // I is now an IIS

preliminary experiments, we finally decided in favor of low computation times by just
keeping the natural order of the requests. To decrease the chances of ending up with
bad results we apply the greedy reduction twice, the second time in reverse order and
add both obtained cuts if they are distinct. The quality of heuristically computed sets is
analyzed by comparing to variants in which we add cuts for all IISs as well as only for
those of minimum cardinality.

Cuts obtained for one vehicle can also be added to the master problem for other vehicles
with equally or more restrictive characteristics:

Definition 4.5. We define a partial order on the vehicles denoted by ≤k:

k1 ≤k k2 ⇔ (Qk1 ≤ Qk2) ∧ (T k1 ≤ T k2) ∀k1 ∈ K, k2 ∈ K.

We can add Benders cuts for all vehicles with at most the capacity and the maximum
tour length of the vehicle for which the infeasibility has been detected:

∑
i∈Ikj

yk
′
i ≤ |Ikj | − 1 ∀k ∈ Kj ,∀k′ ∈ K : k′ ≤k k. (4.47)

4.3 Algorithmic Framework

We start with some remarks on preprocessing that help to reduce the size of the problem
instances for certain cases. Then, we present details for our algorithms and further
techniques for speeding up the solving process.

4.3.1 Preprocessing

In this section we describe the used preprocessing techniques. They are based on the
concepts introduced in [41]. We point out our modifications.
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Time Window Tightening

In [41] several techniques for time window tightening are introduced. For outbound
requests we can set the time window at the pick-up location to ei ← max{ei, en+i−L−di}
and li ← min{ln+i − ti,n+i − di, li}. Similarly, we set the time windows for drop-
off nodes of inbound requests to en+i ← max{en+i, ei + di + ti,n+i} and to ln+i ←
min{li + di + L, ln+i}. The time windows on depot copies 0 and (2n + 1) are set to
e0 = e2n+1 ← mini∈P∪D{ei − t0i} and l0 = l2n+1 ← maxi∈P∪D{li + di + ti,2n+1}.

We consider a minor modification to avoid unwanted effects when requests are too close
to the depot, i.e., t0i > ei or li + ti,2n+1 > T . In these cases we might end up with
increasing the time horizon [0, T ]. To avoid this we additionally apply ei ← max{ei, t0i}
and ln+i ← min{ln+i, T − tn+i,2n+1} for i ∈ P . Afterwards it is safe to tighten the time
windows at the depot nodes as described. Alternatively, this can be taken into account
during the following arc elimination.

Arc Elimination

As done in [41] we also eliminate arcs from A that cannot be part of a feasible solution.
The following situations are considered:

• arcs (0, n + i), (i, 2n + 1), and (n + i, i) are infeasible for i ∈ P (this is already
considered by the definition of the arc set),

• arc (i, j) is infeasible if ei + di + tij > lj ,

• arcs (i, j) and (j, n+ i) with i ∈ P , j ∈ N are both infeasible if tij +dj + tj,n+i > L,

• arc (i, n+ j) with i, j ∈ P is infeasible if path (j, i, n+ j, n+ i) is infeasible as there
is no other feasible path using that arc while serving i and j,

• symmetric to the previous condition arc (n+ i, j) with i, j ∈ P is infeasible if path
(i, n+ i, j, n+ j) is infeasible,

• arc (i, j) with i, j ∈ P is infeasible if paths (i, j, n+ i, n+ j) and (i, j, n+ j, n+ i)
are both infeasible as the path can only be infeasible due to the arc itself or a time
window violation when reaching either of the drop-off locations; visiting further
nodes may only increase the degree of violation,

• symmetric to the previous condition arc (n+ i, n+ j) with i, j ∈ P is infeasible if
paths (i, j, n+ i, n+ j) and (j, i, n+ i, n+ j) are both infeasible.

When checking the feasibility of paths, we also need to compute the forward time slack.
In [43] the forward time slack Fi at node i in a path from i to q is computed as follows:

Fi = min
i≤j≤q

 ∑
i<p≤j

Wp + max {0,min {lj −Bj , L− Pj}}

 , (4.48)
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where Wi denotes the waiting time at node i and Pi represents the ride time for the
request with destination node i ∈ D. For the remaining i we define Pi = −∞. The second
term of the inner minimum-function, i.e., L − Pj , is required to prevent any requests
from exceeding the maximum user ride time.

If time windows of the requests do not prevent vehicles from returning too late to the
depot, i.e., li+ ti,2n+1 > T for i ∈ P , we augment the paths considered above by including
the depot (2n+ 1) as final node. Similarly, it makes sense to add depot 0 as first node if
t0i > ei can be the case for some pick-up locations i ∈ P . If this is not done, we might miss
detecting some infeasibilities. This can happen due to a too early beginning-of-service
time in the former case and due to a too high forward time slack in the latter case.

Infeasible Request Pairs

As stated in [41] two requests (i, n+ i) and (j, n+ j) cannot be served by the same vehicle
if all possible paths serving the two requests turn out to be infeasible. According to the
precedence constraints the following paths have to be considered:

(i, j, i+ n, j + n),
(i, j, j + n, i+ n),
(i, i+ n, j, j + n),
(j, i, i+ n, j + n),
(j, i, j + n, i+ n),
(j, j + n, i, i+ n).

Observe that a request is only feasible (assuming that the triangle inequality holds) if
the direct connection between pick-up and drop-off is feasible. Therefore, we assume
that both (i, i+ n) and (j, j + n) are feasible since it makes no sense to consider per se
infeasible requests. Thus, it is sufficient to check if at least one of the following options is
available:

(i, j) ∧ (j, i+ n) ∧ (i+ n, j + n),
(i, j) ∧ (j + n, i+ n),
(i+ n, j),
(j, i) ∧ (i+ n, j + n),
(j, i) ∧ (i, j + n) ∧ (j + n, i+ n),
(j + n, i).

If none of them is possible, these two requests cannot be served by the same vehicle. As
a consequence, this allows the removal of all arcs between the nodes associated with the
pick-up and drop-off locations of requests i and j.
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Let C be the set of all incompatible request pairs identified by their pick-up locations,
i.e., C ⊆ {(i, j) | (i, j) ∈ P × P, i < j}. Then, we can add the following constraints to
the master problem:

yki + ykj ≤ 1 ∀k ∈ K,∀(i, j) ∈ C. (4.49)

These constraints are essentially instances of Benders cuts for which the set of infeasible
requests has cardinality two. Therefore, these are the smallest non-dominated cuts of
type (4.46). Such cuts are particularly valuable due to their strong expected impact on
the model. They are enumerated exhaustively and added to the initial formulation. We
also add comparable constraints to the compact model using the sum of outgoing arcs
for nodes i and j instead of the assignment variables.

In [41] the incompatible request pairs are used to fix certain requests to vehicles. This
cannot be done here since it is unknown which requests will be served and which will be
rejected.

4.3.2 Subproblem Relaxations

In this section we describe the used subproblem relaxations which are incorporated into
the master problem in terms of valid inequalities. The purpose of these constraints is to
integrate subproblem knowledge into the master problem to avoid poor assignments in
earlier iterations where only few Benders cuts are present.

Capacities

We consider pairs of requests that are guaranteed to be together on the vehicle if served
within the same tour. Based on these “overlapping requests” we construct a conflict
graph to derive clique inequalities.

Definition 4.6. Request (i, n+i) overlaps with request (j, n+j) for i, j ∈ P if there exists
a feasible path serving the two requests but paths (i, i+ n, j, j + n) and (j, j + n, i, i+ n)
are both infeasible.

Informally this means that two requests overlap if they can be served by a single vehicle
but not in strict succession.

We then define graph GC = (V C, EC) with V C = P and EC = {{i, j} | request (i, i +
j) overlaps with request (j, n + j), i ∈ P, j ∈ P, i 6= j}. In this graph we identify all
maximal cliques. This can be done by the Bron-Kerbosch algorithm, see [28]. The cliques
in GC define sets of requests that have to be on board together when served by the same
vehicle. We now need to determine whether all of them fit in the vehicle simultaneously.
For each maximal clique and each vehicle k ∈ K we sum up the loads of the corresponding
requests, starting with the smallest one until we exceed the vehicle capacity. Then, we
know the maximum number of requests in the clique that can be served by this vehicle.
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Let C be the set of all maximal cliques in GC. For each C ∈ C let kkC be the maximum
number of requests in C that fit into vehicle k ∈ K. Then, we can add the following
inequalities to the master problem:∑

i∈C
yki ≤ kkC ∀C ∈ C : kkC < |C|. (4.50)

Observe that these cuts are similar to the Benders cuts (4.46) introduced before. However,
the difference between kkC and |C| can be larger than one and thus these cuts are in
general distinct.

Note that if there are several vehicles with the same capacity, these constraints need
only be computed once per capacity variant. As the graph GC is typically sparse, it is
reasonable to search for all maximal cliques. Since the number of these cuts is usually
not that large, we add all of them to the initial formulation.

Again, we also add this type of constraints to the compact model using the sum of
outgoing arcs instead of the assignment variables.

Computing a Lower Bound on the Tour Duration

We compute for each node i ∈ N the minimal time required to reach the next node,
i.e., tmin

i = min(i,j)∈A tij . If we consider a subset I ⊆ P of the requests (given by the
respective pick-up nodes), we can compute a lower bound on the time required to serve
all requests as follows:

tmin
R = tmin

0 +
∑
i∈I

(tmin
i + di + tmin

n+i + dn+i). (4.51)

This relaxation gives us a (frequently weak) lower bound on the time required to serve
the requests in I. We use this value to state the following constraints in the Benders
master problem:

tmin
0 +

∑
i∈P

yki (tmin
i + di + tmin

n+i + dn+i) ≤ T k ∀k ∈ K. (4.52)

This bound can be improved in certain cases. If tmin
i and tmin

n+i refer to the same target
node v′ (i.e., tmin

i = tiv′ and tmin
n+i = tn+i,v′), we consider the closest successors for i and

(n+ i) excluding v′. We then choose the successor nodes resulting in the combined shorter
distance tmin

i + tmin
n+i and update the tmin values accordingly. If neither i nor (n+ i) has

an outgoing arc to a node different from v′, then the request is infeasible. This type of
constraints is not considered for the compact model since tour duration restrictions are
already explicit there.
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4.3.3 Implementation of the Decomposition Approaches

The decomposition approach introduced in Section 4.2.3 can be implemented using LBBD
or BaC. Algorithm 4.2 shows the basic functionality of the LBBD algorithm (ignoring
Lines 12 to 15 for the moment). Remember that our decomposition approach uses only
feasibility cuts, i.e., the subproblems do not directly contribute to the master problem’s
objective function. This means that LBBD either terminates with an optimal solution or
no solution at all. BaC, on the other hand, relies on regular branch-and-cut (B&C) which
means that it computes lower and upper bounds and tries to close the gap between them.
Therefore, it usually provides a feasible solution prior to proving optimality. To make this
also possible for LBBD we employ a repair heuristic (Line 13) to derive feasible solutions
from intermediate infeasible master assignments, possibly even closing the optimality gap
allowing premature termination. Details on the used repair heuristic will be given below.

Algorithm 4.2: Logic-based Benders algorithm
1 j ← 0 // iteration counter
2 repeat
3 j ← j + 1
4 feasible ← true
5 solve master problem
6 foreach k ∈ K do
7 if sub(k, Ikj ) is infeasible then
8 add Benders cuts to the master problem
9 feasible ← false

10 end
11 end
12 if feasible = false then
13 repair() // construct feasible solution heuristically

// check whether optimality gap could be closed
14 if obj(master problem) = obj(repair) then feasible ← true
15 end
16 until feasible = true ∨ time limit reached

// if feasible=true then optimal solution found
// else potentially suboptimal, repaired solution

In Figure 4.1 we illustrate a simple iteration of the Benders algorithm. We consider three
requests and one vehicle. The instance properties are shown in Figure 4.1a. To keep the
example simple without terminating immediately we do not consider valid inequalities
for the master problem here. Time window tightening and arc elimination have been
applied to obtain a smaller graph, see Figure 4.1b. Initially the master problem assigns all
requests to the single vehicle. This turns out to be infeasible. Once we try to reduce the
identified infeasible assignment {1, 2, 3}, we find out that subsets {2, 3} (Figure 4.1c) and
{1, 3} (Figure 4.1d) are IISs of minimum cardinality. However, subset {1, 2} (Figure 4.1e)
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is feasible. Therefore, we add Benders cuts that prevent requests 2 and 3 as well as 1 and
3 to be in the same tour, respectively. In the second master iteration requests 1 and 2 are
assigned to the vehicle. Now we are able to identify a feasible tour for the subproblem
(Figure 4.1f) and the algorithm terminates with an optimal solution serving requests 1
and 2 but rejecting request 3.

Benders Cuts

In our experiments in Section 4.4 we will consider four strategies for constructing Benders
infeasibility cuts: variant simple uses the unmodified master assignment, aIIS uses all
IISs that can be obtained from the initial assignment, mIIS uses all IISs of minimal
cardinality, and gIIS uses heuristically computed IISs. The IISs for variants aIIS and
mIIS are computed using bottom-up enumeration by extending an initially empty set
with the assigned requests until it becomes infeasible (including appropriate pruning for
the minimum cardinality variant). Variant gIIS applies Algorithm 4.1 once in ascending
and once in descending natural order of the request indices to obtain two IISs. If both
turn out to be equivalent, the second set is discarded. As there is no connection between
the order of request indices and their properties, this means that there is no strategic
decision involved.

Repair Heuristic

Similarly as done in [38] we use a repair heuristic to construct feasible solutions based
on infeasible assignments obtained from the Benders master problem. To this end we
consider the input sets Ik, k ∈ K, with some of them possibly being infeasible. We
construct a solution for each vehicle by assigning requests to it one at a time. If a request
can be served by the vehicle, it is assigned to that vehicle, otherwise skipped. We first
try to insert the requests selected by the Benders master problem. This step simplifies if
the related subproblem turned out to be feasible because we can directly add all requests
in this case. Afterwards we consider the unassigned requests. Requests that could not be
served are added to the pool of unassigned requests and might be used by the remaining
vehicles. Algorithm 4.3 provides details.

Note that the order in which the requests are considered has a significant impact on
the outcome of the algorithm. However, the Benders master problem already makes a
selection which provides (especially in later iterations) a reasonable starting assignment
from which typically only few requests need to be removed. Hence, we avoid sorting the
requests to save computation time since repair operations need to be performed rather
frequently and thus execution speed is critical. For the same reasons we avoid a second
pass over the vehicles that might be profitable due to freed-up requests.

Subproblem

In Section 4.2.3 we introduced the MILP and CP formulations for the Benders subproblems.
The former is a compact model and can be implemented in a straightforward way. For
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Coordinates Time window

Node x y e l q d

depot 0 0 0 60 0 0
p1 -2 2 17 30 1 3
d1 -6 3 40 55 -1 3
p2 6 7 12 25 1 3
d2 -2 -5 35 50 -1 3
p3 4 -5 32 41 1 3
d3 -7 -6 45 50 -1 3

|K| = 1, T 1 = 60, Q1 = 3, L = 20
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(e) Considering requests 1 and 2 (f) Optimal solution

Figure 4.1: A simple Benders iteration without valid inequalities for the master problem.
There exists no feasible tour visiting all three requests. The combination of request 3
with either of the remaining two turns out to be infeasible. Requests 1 and 2 can be
served together which also constitutes the unique optimal solution.
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Algorithm 4.3: Repair heuristic
Input: set P of requests, identified by the pick-up locations
Input: sets Ik, k ∈ K of potentially infeasible assignments
Output: pairwise disjoint feasible sets Ik, k ∈ K of requests assigned to the

vehicles
1 F ← P \

⋃
k∈K I

k // set of unassigned requests
2 foreach k ∈ K do
3 if sub(k, Ik) is feasible then
4 Ĩk ← Ik

5 Ik ← ∅
6 else
7 Ĩk ← ∅
8 foreach i ∈ Ik do
9 if sub(k, Ĩk ∪ {i}) is feasible then

10 Ik ← Ik \ {i}
11 Ĩk ← Ĩk ∪ {i}
12 end
13 end
14 end
15 foreach i ∈ F do
16 if sub(k, Ĩk ∪ {i}) is feasible then
17 F ← F \ {i}
18 Ĩk ← Ĩk ∪ {i}
19 end
20 end
21 F ← F ∪ Ik // unused requests might be assigned to the

other vehicles

22 Ik ← Ĩk

23 end
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the CP model we additionally incorporated the custom branching heuristic presented by
Berbeglia et al. [15]. Their approach branches on the successor variables s[i], prioritizing
variables with minimum cardinality domains. Ties are broken by counting the number of
appearances of each value within all minimum cardinality domains, choosing the variable
for which the sum of appearance counts of the values of its domain is maximal. We use
no custom value selection heuristic and always pick the minimum value of the domain of
the variable on which is branched.

4.3.4 Heuristic Boosting

Empirical tests have shown that the master problem of the LBBD approach frequently
finds good or even optimal solutions fast. Afterwards, a significant amount of time is
typically spent to close the relative gap between lower (LB) and upper (UB) bound, i.e.,
the optimality gap (UB− LB)/LB. However, closing the gap might not be required to
obtain an intermediate solution yielding high-quality Benders cuts. Note the similarity to
BaC which also derives Benders cuts from potentially suboptimal solutions encountered
during the B&C search. The following sections describe our approaches exploiting this
observation.

Gap Boosting

To reduce the time spent on closing the optimality gap of the Benders master problem
we terminate the solving process when the optimality gap falls below a certain threshold.
This is done until no further Benders cuts can be found with this strategy. Then, we
proceed with regular Benders iterations without premature termination, i.e., using a
threshold of zero, until no additional Benders cuts can be identified. Thus, we still obtain
an optimal solution but might save time that is “wasted” on closing the optimality gap.

The difficulty is to choose a suitable threshold for premature termination, especially
in earlier iterations. Using a large threshold has higher potential for speedup but can
also lead to significantly worse intermediate solutions. Correspondingly we might obtain
weaker Benders cuts, implying a larger number of master iterations.

To overcome the limitations of using a single threshold, we consider a more sophisticated
adaptive approach based on a decreasing sequence of thresholds. Initially we start with
the largest threshold and then switch to the subsequent smaller one every time no further
cuts can be identified. Apart from this iterative variant we consider an up-and-down
approach that allows the gap threshold to adjust in both directions. As before, we switch
to the next smaller threshold whenever no further cuts can be identified. In addition, we
now also switch back to the previous larger threshold if cuts could be added, for details
see Algorithm 4.4. To preserve optimality the smallest threshold needs to be zero (or a
sufficiently small numerical constant). For the used threshold values see Section 4.4.2.
Preliminary experiments have shown that using a small sequence of specific values is
superior to a more fine-grained approach, e.g., based on a geometric/arithmetic series.
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Algorithm 4.4: Adaptive gap boosting (up-and-down)
Input: decreasing sequence of gap thresholds g = (gm, gm−1, . . . , g1) with

gi > gi−1 for 1 < i ≤ m
1 i← m
2 while termination criteria not met do
3 solve Benders master problem until a relative optimality gap ≤ gi is reached
4 derive and add Benders cuts
5 if no Benders cuts found ∧ i > 1 then i← i− 1
6 else if no Benders cuts found ∧ i = 1 then terminate // optimal
7 else if Benders cuts found ∧ i < m then i← i+ 1
8 end

A similar—yet different—approach is considered in Tran and Beck [163]. There the
authors also terminate the master problem prematurely according to a threshold on the
optimality gap. However, their motivation is to complete at least a single master iteration
from which a heuristic solution is derived. In contrast, our approach is designed in an
optimality preserving way while speeding up the overall computation.

Observe that the considered objective function is integral. Thus, it is also possible to
specify a threshold for the absolute optimality gap (UB − LB) instead of the relative
one. Preliminary experiments have shown that the behavior is roughly the same when
choosing comparable thresholds.

Time Limit Boosting

Early termination based on the optimality gap helps to reduce time spent in the Benders
master problem. However, the amount of time that is used still might vary substantially.
As an alternative we may directly limit the time allowed to be spent on finding a solution
to each master problem instance. However, a fixed time limit might not accommodate for
the increasing size of the master problem due to the Benders cuts. To deal with this we
again consider a more flexible adaptive approach. In the beginning we use the smallest
value of an increasing sequence of time limits and switch to the next larger one whenever
no additional cuts can be found. Again, we consider a variant in which the time limit is
adjusted in both directions. Optimality is preserved by using the total remaining time as
final value of the sequence. For the used time limits see Section 4.4.2.

Solving the Subproblems Heuristically

We further tried to improve the solving of the subproblems by first using heuristics as
done in [145]. To this end we employed a simple iterative algorithm that attempts to
find a feasible route for the requests assigned to a vehicle during the Benders iterations.
The algorithm constructs a route by inserting nodes sequentially, prioritizing those with
the smallest amount of time left in their service window or the least remaining ride time.
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Due to the heuristic nature of the algorithm we can accept the result if a feasible route
has been found. However, if no valid route can be computed, we still have to check with
an exact approach whether this result is correct. Preliminary tests have shown that the
employed heuristic required such exact reevaluations quite frequently, outweighing the
provided speedup from the positive cases.

4.4 Computational Study

In this section we are going to present the computational results for the considered
algorithms with their variants. We start by giving details on the used test instances
and the motivation for their selection. Then, we provide details on the actually used
configuration. Finally, we present the obtained results.

4.4.1 Test Instances

The most commonly used benchmark instances for the classical DARP are those by
Cordeau and Laporte [43] and Cordeau [41]. The first set is mainly interesting for testing
with heuristics due to the large number of requests considered. Therefore, we decided
to use the latter. The mentioned work considers instances of up to 48 requests and 4
vehicles. In Ropke et al. [152] this set got extended with instances of up to 96 requests
and 8 vehicles. The properties of this instance set are shown in Table 4.1.

Berbeglia et al. [15] consider variants of these instances with modified maximum user
ride times of L = 30 and L = 22, respectively, and a variant with 75% of the originally
available vehicles. We consider the original instances and two of the modified variants
excluding the one with L = 22 because it turned out that this modification makes some
requests infeasible, i.e., not even a tour containing no other requests is feasible1. The
unmodified instances are guaranteed to be feasible, i.e., it is known in advance that
all requests can be served. Therefore, they are only of minor relevance for testing our
algorithms. As shown in Berbeglia et al. [15] and Häme and Hakula [86] also most of the
modified instances are feasible.

Under these premises we decided to generate further, for our scenario more relevant,
instances. We aim at two aspects: First, we require instances that are more challenging
from the “packing” perspective. This means that it is not guaranteed that all requests
can be served. We accomplish this by choosing the number of requests large in relation to
the length of the time horizon. Second, the existing instance set is too diverse to precisely
measure the impact of certain instance properties. In particular, we are interested in
instances with different degrees of utilization, i.e., the number of requests compared to
the number of available vehicles. To this end, we consider scenarios with four and five
vehicles and a (small) fixed time horizon while only varying the number of available
requests.

1For an example see request 21 in instance a6-60.
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Instance n |K| L Q T Instance n |K| L Q T

a2-16 16 2 30 3 480 b2-16 16 2 45 6 480
a2-20 20 2 30 3 600 b2-20 20 2 45 6 600
a2-24 24 2 30 3 720 b2-24 24 2 45 6 720
a3-18 18 3 30 3 360 b3-18 18 3 45 6 360
a3-24 24 3 30 3 480 b3-24 24 3 45 6 480
a3-36 36 3 30 3 720 b3-36 36 3 45 6 720
a4-16 16 4 30 3 240 b4-16 16 4 45 6 240
a4-24 24 4 30 3 360 b4-24 24 4 45 6 360
a4-32 32 4 30 3 480 b4-32 32 4 45 6 480
a4-40 40 4 30 3 600 b4-40 40 4 45 6 600
a4-48 48 4 30 3 720 b4-48 48 4 45 6 720
a5-40 40 5 30 3 480 b5-40 40 5 45 6 480
a5-50 50 5 30 3 600 b5-50 50 5 45 6 600
a5-60 60 5 30 3 720 b5-60 60 5 45 6 720
a6-48 48 6 30 3 480 b6-48 48 6 45 6 480
a6-60 60 6 30 3 600 b6-60 60 6 45 6 600
a6-72 72 6 30 3 720 b6-72 72 6 45 6 720
a7-56 56 7 30 3 480 b7-56 56 7 45 6 480
a7-70 70 7 30 3 600 b7-70 70 7 45 6 600
a7-84 84 7 30 3 720 b7-84 84 7 45 6 720
a8-64 64 8 30 3 480 b8-64 64 8 45 6 480
a8-80 80 8 30 3 600 b8-80 80 8 45 6 600
a8-96 96 8 30 3 720 b8-96 96 8 45 6 720

Table 4.1: Properties of the instances by Ropke et al. [152]. Per instance vehicle
capacities as well as the maximum route durations are the same for all vehicles. The
maximum route durations are the same as the time horizon. In group “a” all requests
have a load of qi = 1 and a service time of di = 3. For group “b” the loads are chosen
uniformly at random from {1, . . . , 6} with proportional service times di = qi.
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The new instance are generated according to the procedure mentioned in [41]. We first
place nodes randomly on a 20× 20 grid; the depot is located in the center of this grid
at coordinates (0, 0). Travel times between the nodes are set to the Euclidean distances
between the corresponding points. For each instance with n requests the first n/2 requests
are considered to be outbound requests and the remaining ones are inbound requests. For
the former we fix the time window at the drop-off location and derive the time window at
the pick-up location and for the inbound requests we fix the time window at the pick-up
location and derive the time window at the drop-off location.

We consider a time horizon of T = 240 which corresponds to a half working day
(assuming minutes as unit of time). For outbound requests we set the time window
at the drop-off location (n + i) by first choosing en+i uniformly at random from the
interval [t0i + di + ti,n+i, T − tn+i,2n+1 − dn+i − 15] and then set ln+i = en+i + 15. This
guarantees that the time window has a fixed length of 15. Furthermore, it ensures
that we can always return feasibly to the depot. Similarly, we choose for inbound
requests ei of pick-up node i from the interval [t0i, T − tn+i,2n+1− dn+i− ti,n+i− di− 15]
and set li = ei + 15. The remaining time windows are then tightened as described
in Section 4.3.1. For each request we assume a unit load of qi = −qn+i = 1 and
the service duration is di = dn+i = 3 for i ∈ P . The maximum user ride time is
set to L = 30. We consider different numbers of homogeneous vehicles with capacity
Qk = 3 and maximum route duration T k = T . Table 4.2 provides an overview of
the properties of the generated test instances. In the following we are going to refer
to this instance set as “SDARP” instances. The SDARP instances are available at
https://www.ac.tuwien.ac.at/research/problem-instances/#Dial-a-Ride_Problem.

To deal consistently with the Euclidean distances in the MILP and CP algorithms we
restrict the precision to two fractional digits for both instance sets.

4.4.2 Computational Experiments

In this section we are going to present the computational results of our algorithms
obtained on the introduced benchmark instances. The test runs have been executed
on an Intel Xeon E5540 with 2.53GHz. The execution time limit has been set to 7200
seconds and the memory limit up to 8GB RAM. Test runs have been executed using
CPLEX 12.7.1 with a single thread using dual simplex and traditional B&C. The CP
part has been implemented using Gecode 5.1.0 [69], also utilizing only a single thread for
each test run. For the Bron-Kerbosch algorithm we used the implementation from Boost
1.63.0. Since objective values are known to be integral, runs terminate once the absolute
optimality gap falls below a threshold of 1− n · ε, where ε is the reduced-cost optimality
tolerance of the MILP solver.

We start by investigating the different approaches for solving the subproblems and
generating Benders cuts. Then, we evaluate the heuristic boosting techniques before
providing further insights regarding specific properties of our algorithms. For these parts
we rely on our newly generated SDARP instances. Afterwards, we test our algorithms on
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Instance n |K| L Q T Instance n |K| L Q T

30N_4K_A 30 4 30 3 240 44N_5K_A 44 5 30 3 239
30N_4K_B 30 4 30 3 240 44N_5K_B 44 5 30 3 240
30N_4K_C 30 4 30 3 240 44N_5K_C 44 5 30 3 240
30N_5K_A 30 5 30 3 240 50N_4K_A 50 4 30 3 240
30N_5K_B 30 5 30 3 240 50N_4K_B 50 4 30 3 240
30N_5K_C 30 5 30 3 240 50N_4K_C 50 4 30 3 240
40N_4K_A 40 4 30 3 240 50N_5K_A 50 5 30 3 240
40N_4K_B 40 4 30 3 240 50N_5K_B 50 5 30 3 240
40N_4K_C 40 4 30 3 232 50N_5K_C 50 5 30 3 240
40N_5K_A 40 5 30 3 240 60N_4K_A 60 4 30 3 240
40N_5K_B 40 5 30 3 240 60N_4K_B 60 4 30 3 240
40N_5K_C 40 5 30 3 240 60N_4K_C 60 4 30 3 240
44N_4K_A 44 4 30 3 240 60N_5K_A 60 5 30 3 240
44N_4K_B 44 4 30 3 240 60N_5K_B 60 5 30 3 240
44N_4K_C 44 4 30 3 240 60N_5K_C 60 5 30 3 240

Table 4.2: Properties of the newly generated SDARP instance set. Per instance vehicle
capacities as well as the maximum route durations are the same for all vehicles. The
maximum route durations are the same as the time horizon. All requests have a load of
qi = 1 and a service time of di = 3.

the instances used in the previous literature and provide a comparison to the compact
MILP reference model.

We try to condense the presented results as much as possible to highlight the core results.
For more details we provide additional tables in Appendix A. Table 4.3 summarizes the
abbreviations used to identify the algorithm variants.

Evaluation of Subproblem Algorithms and Cut Generation Strategies

In several of the upcoming figures we provide sums of the total number of served requests
per algorithm. Due to the integrality of the objective function value, it is sometimes
difficult to distinguish the marks when the time limit is reached. To resolve this issue we
provide the respective numbers in Table 4.4. In addition, this table also provides results
for algorithms that have been omitted from the figures to improve readability.

Figure 4.2 gives an overview of the computation times and lower bounds of the algorithms
without the use of heuristic boosting techniques. The subproblems are solved using the
MILP model.

A first observation is that the relative performance of the variants for computing Benders
cuts is quite similar for both decomposition approaches. As expected, the naïve strategy
performs quite poorly. It solves the fewest instances to optimality and also takes much

90



4.4. Computational Study

Abbreviation Description

BaC Branch-and-Check
LBBD logic-based Benders decomposition
simple unrefined Benders cuts
aIIS Benders cut per IIS
mIIS Benders cut per minimum cardinality IIS
gIIS Benders cuts for up to two greedily computed IISs
MIP MILP subproblems
CPMIP combined CP-MILP subproblems
Hgaprel_it heuristic boosting with thresholds for the relative optimality gap (iterative)
Hgaprel_ud heuristic boosting with thresholds for the relative optimality gap (up-and-down)
Htime_it heuristic boosting with time limits (iterative)
Htime_ud heuristic boosting with time limits (up-and-down)
Compact compact MILP model

Table 4.3: Summary of the abbreviations used to identify the tested algorithms.

Algorithm
∑

LB # Algorithm
∑

LB #

Compact 773 24 BD-gIIS-CP 1189 30
BaC-simple-CP 808 30 BD-mIIS-CP 1192 30
BD-aIIS-CP 938 27 BD-gIIS-MIP 1193 30
BD-aIIS-CPMIP-Htime_ud 947 26 BD-gIIS-CPMIP 1193 30
BD-aIIS-CPMIP-Htime_it 952 26 BD-mIIS-MIP 1200 30
BD-aIIS-CPMIP-Hgaprel_ud 953 26 BD-mIIS-CPMIP 1201 30
BD-aIIS-CPMIP-Hgaprel_it 954 26 BD-mIIS-CPMIP-Hgaprel_it 1209 30
BD-aIIS-CPMIP 972 27 BD-mIIS-CPMIP-Hgaprel_ud 1209 30
BaC-simple-CPMIP 978 30 BaC-gIIS-CP 1212 30
BaC-simple-MIP 983 30 BaC-mIIS-CP 1212 30
BD-aIIS-MIP 1011 29 BD-gIIS-CPMIP-Hgaprel_it 1213 30
BaC-aIIS-MIP 1092 28 BD-gIIS-CPMIP-Hgaprel_ud 1213 30
BaC-aIIS-CPMIP 1096 28 BaC-mIIS-MIP 1221 30
BaC-aIIS-CP 1097 28 BaC-gIIS-MIP 1223 30
BD-simple-CP 1150 30 BaC-gIIS-CPMIP 1224 30
BD-simple-CPMIP-Htime_it 1155 30 BD-gIIS-CPMIP-Htime_it 1224 30
BD-simple-CPMIP-Htime_ud 1155 30 BaC-mIIS-CPMIP 1225 30
BD-simple-MIP 1156 30 BD-gIIS-CPMIP-Htime_ud 1226 30
BD-simple-CPMIP 1157 30 BD-mIIS-CPMIP-Htime_it 1232 30
BD-simple-CPMIP-Hgaprel_it 1170 30 BD-mIIS-CPMIP-Htime_ud 1233 30
BD-simple-CPMIP-Hgaprel_ud 1170 30

Table 4.4: Summary of the total number of served requests (
∑

LB) across all tested
algorithms for the SDARP instances. Column # denotes the number of instances for
which the respective algorithm computed a feasible solution. Algorithms that could not
solve all 30 instances terminated prematurely due to the memory limit.
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(a) Logic-based Benders decomposition
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(b) Branch-and-Check
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Figure 4.2: Comparison of LBBD and BaC with different types of MILP subproblems
in terms of served requests on the SDARP instances. Marks are placed whenever an
algorithm terminated, i.e., due to solving an instance to optimality or due the time limit
of two hours. Both charts use a logarithmic x-axis.
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longer to find results comparable to the other variants. Also, the strategy adding all IISs
does not work well. Regarding the final number of served requests, it is even dominated
by the simple approach for the LBBD. This is primarily due to several instances hitting
the memory limit resulting in missing lower bounds (cf. Table 4.4). The bad performance
of strategy aIIS compared to the more successful variants has two reasons: First, it takes
a large amount of time to compute all the IISs. Second, the number of added cuts is
typically rather large which increases the size of the master problem quite fast. Strategies
gIIS and mIIS work much better in this respect. Of these two, the greedy variant exhibits
slightly better results since the cuts it provides turned out to perform reasonably well
but can be computed much faster than the minimum cardinality IISs. Nevertheless, our
results show that the mIIS variant has large potential. Given the computational overhead
for computing the minimum cardinality IISs, it is quite impressive that the approach
is still competitive. This shows that the stronger cuts provide indeed a considerable
improvement on the cuts obtained from the greedy approach. Having identified gIIS and
mIIS as superior strategies for computing Benders cuts we focus on those two in the
following.

Comparing the decomposition approaches we observe a slight advantage for BaC. It turned
out that solutions are found faster by evaluating all integral solution candidates—instead
of only optimal ones like LBBD does. For both algorithms finding good or even optimal
solutions becomes harder the scarcer the available resources become compared to the
demand. This relation can be expected as the number of combinatorial possibilities from
which the algorithm needs to find an optimal one increases. In particular, the Benders
algorithms are required to exclude a much larger number of infeasible assignments until
only feasible options remain. Relaxations that bound the tour size (see Section 4.3.2)
help to reduce this effect.

In addition to solving the subproblems via an MILP solver we also investigated the
CP approach from Section 4.2.3. In general, computation times are superior but for
some instances severe outliers occurred, including situations in which single subproblems
required more time than half an hour. Some of these difficult subproblems appear at the
very beginning of the solution process due to unbalanced assignments. However, they
also continue to occur later on for request subsets with cardinalities similar to those in
optimal solutions. To still profit from the mostly faster CP variant we further investigated
a combination working as follows. We start with the CP solver using a time limit of
half a second. If no result is obtained, we apply the MILP approach which is in general
slightly slower but much more consistent featuring no practically noticeable outliers. Of
course, we do not want to waste the work done by the CP solver. Therefore, we build the
MILP model using the variable domains of the CP model. Thus, we can take advantage
of the outcome of constraint propagation at the root node of CP search, which possibly
yields a smaller model. The results for the combined CP-MILP subproblems are shown
in Figure 4.3.

It can be seen that adding CP for solving the subproblems helps to find solutions
faster than when using the pure MILP approach. In general the relation among the
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decomposition approaches and the cut generation techniques stays the same. However,
the mIIS algorithms profit more since they spend more time on solving subproblems, see
also Figure 4.4. As the addition of CP provides a clear improvement we selected the
combined variant as subproblem algorithm for the remaining experiments.

Evaluation of the Heuristic Boosting Techniques

In the following we compare the heuristically boosted LBBD algorithms to their basic
counterparts. We consider the adaptive boosting in the pure iterative variant (it) and also
the variant with adjustments in both directions (ud). As criteria for early termination
we use a set of thresholds with respect to the relative optimality gap and a set of time
limits, see Section 4.3.4. For the time limit variant we consider time limits of 5, 10, and
30 seconds in ascending order. As final value we use the total remaining time according
to the overall time limit. The gap variant uses relative optimality gaps of 0.1, 0.05, 0.025,
and 0 in descending order.

Table 4.5 shows the comparison for the heuristic boosting techniques. With both boosting
techniques our algorithms could solve additional instances to optimality and also serve
more requests in total. In general, we can observe that the time limit boosting technique
works better than the gap boosting. It is mostly faster and also serves more requests
overall. Compared to the un-boosted algorithms the time limit boosting is always at
least as good in terms of the number of served requests. Except for one instance it
provides improvements in all cases where the basic algorithm does not prove optimality.
The highest improvements could be achieved by the up-and-down variants for which 33
(gIIS) and 32 (mIIS) additional requests could be served in total. In several cases also
the computation times decreased, however, if already the basic variant works well, we
sometimes observe a slowdown. To some extent this is related to the potentially worse
cuts. The other reason are the required re-solves for proving optimality, which are not
needed for the un-boosted algorithms. The gap boosting approaches feature a few outliers
at which they serve fewer requests than the reference algorithm. Since the boosting is
only a heuristic technique, such outliers are not unexpected: In certain cases it pays off
to solve the master problem to optimality to obtain better cuts. However, considering
the number of served requests in total, we still observe a reasonable improvement for the
gap boosting technique.

In addition to the adaptive approaches presented above, we conducted preliminary tests
using a single value as gap threshold or time limit. However, these variants turned out
to be much less robust. For some instances they work exceptionally well but this is paid
for exceedingly on the remaining ones.

Discussion of the Algorithm Properties

In Figure 4.4 we illustrate the amount of time spent in the master problem, the subprob-
lems, and the repair algorithm for the different decomposition approaches. The first thing
to note is that the time spent in the subproblems decreases significantly when switching
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(a) Logic-based Benders decomposition
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Figure 4.3: Comparison of LBBD and BaC with different types of MILP and combined
CP-MILP subproblems in terms of served requests on the SDARP instances. Marks are
placed whenever an algorithm terminated, i.e., due to solving an instance to optimality
or due the time limit of two hours. Both charts use a logarithmic x-axis.
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∆LB ∆computation time [s]

mIIS gIIS mIIS gIIS

gap time gap time gap time gap time

LB∗ it ud it ud it ud it ud it ud it ud it ud it ud

30N_4K_A 30 - - - - - - - - -3 -3 - - - - - -
30N_4K_B 29 - - - - - - - - - - - - - - - -
30N_4K_C 30 - - - - - - - - 11 17 - - 9 12 - -
30N_5K_A 30 - - - - - - - - - - - - - - - -
30N_5K_B 30 - - - - - - - - - - - - - - - -
30N_5K_C 30 - - - - - - - - -3 3 - - 3 1 - -
40N_4K_A 38 - - - - - - - - 34 122 2 2 18 44 6 2
40N_4K_B 38 - - - - - - - - 18 18 1 2 -139 -131 -64 -75
40N_4K_C 37 - - - - - - - - -379 -341 -237 -237 -587 -495 -89 -301
40N_5K_A 40 - - - - - - - - 17 17 - - - - - -
40N_5K_B 40 - - - - - - - - 28 228 4 3 26 242 1 2
40N_5K_C 40 - - - - - - - - -1 -1 - - -1 -1 - -
44N_4K_A 40 1 1 1 1 2 2 2 2 - - - - - - - -
44N_4K_B 42 - - - - - - - - 923 2099 504 452 -95 1075 199 639
44N_4K_C 41 - 1 1 1 1 2 2 2 - -2772 -2761 -666 - -4261 -4479 -3640
44N_5K_A 44 - - - - - - - - 169 897 -2 1 124 431 1 3
44N_5K_B 44 - - - - - -1 - - -151 -59 -2 2 -2 208 1 2
44N_5K_C 44 - - - - - - - - 190 1136 -4 6 121 1297 1 2
50N_4K_A 41 1 1 3 3 - - 1 2 - - - - - - - -
50N_4K_B 43 1 1 4 4 1 1 3 3 - - - - - - - -
50N_4K_C 44 1 1 3 3 3 3 4 4 - - - - - - - -
50N_5K_A 48 3 2 2 3 1 2 1 1 - - - - - - - -
50N_5K_B 49 - - - - - - - - 95 2007 302 104 86 1442 127 345
50N_5K_C 50 - - - - - -1 - - 212 135 -492 -471 -240 6267 517 -288
60N_4K_A 44 1 1 5 5 3 3 4 4 - - - - - - - -
60N_4K_B 45 -2 -2 1 1 3 3 3 3 - - - - - - - -
60N_4K_C 44 - - 3 3 -1 -1 2 2 - - - - - - - -
60N_5K_A 56 -1 -1 - - - - - 1 - - - - - - - -
60N_5K_B 50 2 2 4 4 3 3 4 4 - - - - - - - -
60N_5K_C 53 1 1 4 4 4 4 5 5 - - - - - - - -
Total 8 8 31 32 20 20 31 33 1161 3504 -2685 -799 -677 6132 -3779 -3310

Table 4.5: Results of the heuristic boosting techniques. Column LB∗ denotes the best lower
bound, provably optimal values marked bold. Columns ∆LB and “∆column computation
time” report the difference of the lower bounds and computation times, respectively, to
the un-boosted algorithm variants. For the lower bound, positive values indicate that
additional requests could be served and negative values indicate the contrary. Negative
values for the computation times indicate a speedup and positive values a slowdown.
Cells that contain “-” indicate that the respective value did not change. The largest
improvements per column and instance are marked bold.
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Figure 4.4: Average computation time spent in the master problem, the subproblem, and
the repair algorithm for different LBBD and BaC approaches on the SDARP instances.

from the pure MILP algorithm to the combination with CP. This is most notable for
the mIIS algorithms where the reduction is the largest due to the high number of solved
subproblems.

The idea of the heuristic boosting techniques is to reduce the time spent in the master
problem. Most of this time is really saved. However, part of it also shifts into the
subproblems or the repair algorithm. In particular for the time limit boosting we observe
a significant increase regarding the time spent for repairing solutions. The advantage of
the time limit boosting is that it consistently reduces the time spent per master iteration.
However, for more challenging master iterations this might lead to worse solutions that
leave more work for the repair algorithm.

Figure 4.5 provides details on the gaps with respect to the best known bounds. We
compute lower bound gaps by 100 · (LB∗ − LB)/LB∗ and upper bound gaps by 100 ·
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(UB − UB∗)/UB∗ where LB and UB are the lower and upper bound obtained by the
considered algorithm and LB∗ and UB∗ are the respective best bounds known.

Observe that the heuristically boosted LBBD as well as the BaC algorithms perform
particularly well with respect to the lower bound gaps. However, they mostly do not
perform so well when it comes to finding good upper bounds. In general, the heuristically
boosted LBBD provides the better balance, featuring an acceptable performance for both
parts. The un-boosted LBBD works not so well for the lower bounds but in general
provides the best upper bounds. According to the design of the algorithms this is exactly
what one would expect. BaC as well as the heuristically boosted LBBD both derive cuts
from potentially suboptimal master solutions. On the one hand, this helps to reduce the
time spent for solving the master problem and to derive feasible solutions earlier. On
the other hand, this typically slows down progress with respect to the upper bound. In
contrast, the un-boosted LBBD solves the master problem always to optimality which
helps to find tight upper bounds and strong Benders cuts while taking longer to find
good feasible solutions—even with the repair heuristic.

Comparison to the Literature

In the following we test our algorithms on the instances by Ropke et al. [152] including
the modified variants by Berbeglia et al. [15] to establish a connection to the existing
literature. Different from the SDARP instances, the instances by Ropke et al. [152]
feature a significantly larger time horizon relative to the number of available requests.
The unmodified instances are guaranteed to be feasible, i.e., all requests can be served.
For most of the modified instances it is also possible to serve all requests. In case not all
requests can be served, only few have to be rejected. This means that the master problem
is much easier to solve than for the SDARP instances. We illustrate this behavior in
Figure 4.6. To improve readability we omitted the mIIS variants of BaC with quite
excessive computation times of 218 (CP-MILP subproblems) and 793 (MILP subproblems)
seconds on average since their relative time distribution is similar to the BaC algorithms
included in the figure.

Observe that the Benders algorithms spend almost no time on solving the master problem,
little time in the repair routine, and most of the time in the subproblems. The behavior
on the modified instances is quite similar, except that the overall computation times
increase and that a little more time is spent in the repair routine. Due to this distribution
the heuristic boosting techniques do not have a noticeable effect. Moreover, solving the
subproblems is more challenging since they typically involve a higher number of requests.
This leads to advantages for the gIIS approach that still provides a reasonable guidance
for the master problem but solves considerably fewer subproblems than the mIIS variant.
Therefore, we focus on the gIIS algorithms without heuristic boosting for the upcoming
comparison.

Figures 4.7 and 4.8 provide an overview regarding the results of the obtained lower bounds
and computation times. The investigated algorithms solve all instances to optimality.
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Figure 4.5: Lower and upper bound gaps for different LBBD and BaC algorithms on the
SDARP instances. For each algorithm the length of the bar at coordinate yi corresponds
to the largest gap among the yi instances with the smallest gaps.
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Figure 4.6: Average computation time spent in the master problem, the subproblem,
and the repair algorithm for different LBBD and BaC algorithms on the instances by
Ropke et al. [152].

The performance with respect to the original instances and those with restricted ride
time is quite similar, which is not unexpected because half of the instances (group “a”)
is not affected by the modification. In contrast, the instances with a reduced number of
vehicles are significantly more challenging due to the higher number of requests that have
to be rejected. The success of LBBD on the unmodified and the L = 30 instances has two
reasons. First, the master problem is much easier to solve than for the SDARP instances.
Therefore, it is more affordable to always solve it to optimality allowing the LBBD
algorithm to converge faster. Second, the repair heuristic turned out to be particularly
successful: For the unmodified instances it is often possible to prove optimality after the
repair operation in the very first iteration, i.e., without adding any Benders cuts and
resolving the master problem. For the instances with only 75% of the original vehicles
this is usually not possible which makes BaC the superior algorithm here.
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Figure 4.7: Comparison of LBBD and BaC with different types of MILP and combined
CP-MILP subproblems in terms of served requests on the instances by Ropke et al. [152].
Marks are placed whenever an algorithm terminated, i.e., due to solving an instance to
optimality.
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(a) L=30
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Figure 4.8: Comparison of LBBD and BaC with different types of MILP and combined
CP-MILP subproblems in terms of served requests on the instances by Berbeglia et al.
[15]. Marks are placed whenever an algorithm terminated, i.e., due to solving an instance
to optimality.
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Instance Opt.

b2-16_L30 15
b2-20_L30 19
b3-24_L30 23

Table 4.6: Summary of the number of served requests for the instances by Ropke et al.
[152] with L = 30. We only list the instances for which not all requests can be served.
Column “opt.” provides the maximal number of requests that can be served.

Another interesting observation is that using pure MILP subproblems turned out to work
better here when using the greedy approach for computing Benders cuts. The reason
is that the subproblems are typically less constrained than for the SDARP instances.
Moreover, the initial subproblems tend to be larger due to the higher number of requests.
However, the mIIS algorithm in general works better with the combined CP-MILP
approach due to the bottom-up construction of the IISs, which involves solving many
small subproblems.

In Tables 4.6 and 4.7 we provide the results for the modified instances by Berbeglia et al.
[15], restricted to those cases in which not all requests can be served. The feasibility
checking algorithm by Häme and Hakula [86] also provides a partial solution in case
not all requests can be served. We compare our results to theirs showing that further
requests can be served in an optimal solution for some instances. Considering the pure
feasibility checking task, our algorithms are not as fast in terms of computation times.
The maximum cluster algorithm by Häme and Hakula [86] computes the feasibility status
in less than a second for most instances, except for a few outliers for the modification
with the reduced fleet size taking up to 47 seconds. Our algorithms are able to solve all
instances in up to 35 seconds (BaC-gIIS-MIP). Given that our main goal is to determine
the maximum number of requests that can be served—the feasibility status is only
obtained as a side result—the computational performance appears to be reasonable.

Comparison to the Compact MILP Model

In the following we compare our decomposition approaches to the compact MILP model
provided in Section 4.2.2. Since ease of implementation is often a major concern, we
selected algorithm variants as competitors that are most comparable in this respect.
Therefore, we choose BaC with unrefined Benders cuts and Benders cuts computed
by the greedy approach. Note that, using, e.g., CPLEX, BaC can be implemented in
terms of a model with a lazy constraint-callback that solves a compact MILP model as
subproblem. The subproblem is solved exactly once for the naïve approach and multiple
times according to Algorithm 4.1 when using the greedy strategy.

Figures 4.9 and 4.10 compare the BaC algorithms and the compact MILP model. Already
the naïve strategy for generating Benders cuts turns out to perform better in terms of
optimally solved instances. However, considering the finally obtained lower bounds it is
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Instance Opt. Prev. best Instance Opt. Prev. best

a2-16_K75 12 - b4-24_K75 22 -
a2-20_K75 18 - b4-40_K75 39 38
a2-24_K75 21 - b4-48_K75 47 47
a3-36_K75 32 - b5-40_K75 39 39
b2-16_K75 12 - b5-50_K75 47 44
b2-20_K75 14 - b5-60_K75 58 56
b2-24_K75 20 - b6-48_K75 46 46
b3-24_K75 23 - b7-84_K75 83 82
b3-36_K75 32 -

Table 4.7: Summary of the number of served requests for the instances by Ropke et al.
[152] with only 75% of the original vehicles. We only list the instances for which not all
requests can be served. Column “opt.” provides the maximal number of requests that
can be served according to our experiments. Column “prev. best” reports the results by
Häme and Hakula [86]; instances not considered by them are marked with “-”. Provably
optimal solution values are marked bold.

only superior on the SDARP instances. The greedy Benders cut generation approach, on
the other hand, dominates the compact model in all aspects. It is not only much faster
but its final solutions in general also serve significantly more requests. Across all instances
BaC-gIIS-MIP solves 45 more instances to optimality than the compact model: 14 of the
SDARP instances, 11 of the original Cordeau instances, 7 of the Cordeau instances with
reduced user ride time, and 13 of the Cordeau instances with reduced fleet size.

4.5 Conclusion

In this chapter we considered a variant of the DARP that aims at serving a maximal
number of requests rather than minimizing routing costs. We proposed a simple compact
reference model and a decomposition approach. The master problem was formulated as
MILP model and the subproblems were stated as MILP model and also as CP model.
We reviewed preprocessing techniques from the literature and suggested improvements.
The master problem of the decomposition approach is supplemented by inequalities
representing subproblem relaxations.

In the computational study we solved the decomposition model using LBBD and BaC.
Subproblems have been solved using MILP and a combination with CP. The latter
hybrid turned out to be most successful. We considered four strategies to construct
Benders feasibility cuts. Experiments have shown that a fast greedy approach and the
enumeration of all minimum cardinality IISs work best. It is most crucial to base the
Benders cuts on IISs to avoid unnecessarily weak cuts. Interestingly, it turned out that
the rather time-consuming approach for constructing the minimum cardinality IISs is
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Figure 4.9: Comparison of BaC with the compact reference MILP model in terms
of served requests on the SDARP instances and the instances by Ropke et al. [152].
Marks are placed whenever an algorithm terminated, i.e., due to solving an instance to
optimality or reaching the time limit. Both charts use a logarithmic x-axis.
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(a) Ropke et al. (L=30)
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(b) Ropke et al. (75% vehicles)
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Figure 4.10: Comparison of BaC with the compact reference MILP model in terms of
served requests on the instances by Ropke et al. [152] with the modifications by Berbeglia
et al. [15]. Marks are placed whenever an algorithm terminated, i.e., due to solving an
instance to optimality or reaching the time limit. Both charts use a logarithmic x-axis.
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still competitive. This shows that the mIIS approach has significant potential. The
Benders cuts obtained this way are non-dominated within the considered class and our
experiments show that computing them is worthwhile. We think that using them might
also be interesting for other applications of LBBD.

To speed up solving the Benders master problems we considered heuristic boosting
techniques: Instead of always solving the master problem to optimality, we stop once a
certain time limit or threshold with respect to the relative optimality gap has been reached.
In particular the time limit boosting helped to improve the Benders algorithm, making
it possible to find better solutions and to reduce computation times. The suggested
boosting techniques are conceptually simple and more generally promising also in the
context of LBBD approaches for other applications.

Comparing LBBD and BaC we observed that in general the former excels at computing
good dual bounds whereas the latter is superior for computing primal bounds. This
effect can be reduced by including an algorithm for repairing infeasible master solutions
obtained by LBBD. In situations where solving the master problem is time-consuming the
boosting techniques may provide a middle way. For the SDARP instances, they slightly
decrease progress with respect to the dual bound but provide a significant speedup for
finding good primal bounds.

In general, we can draw the conclusion that the decomposition approach works best if
the proportion of requests that can be accepted is not too low.

4.5.1 Future work

In practical applications not all requests might be equally important. Thus, a natural
extension of the considered DARP variant would be to consider weights for the requests.
Due to the focus on request selection we do not consider routing costs in the objective.
The easiest extension would be to consider cost-optimal routing for each vehicle separately,
keeping the problem complexity more or less the same. However, this may lead to globally
suboptimal solutions since selecting different requests might reduce the routing costs
while retaining the number of served requests. Considering globally optimal routing
costs makes the problem much more challenging since the objectives of the subproblems
now influence the master problem and thus also Benders optimality cuts are needed.
Moreover, also other second-level objectives might be worth considering like additional
user-inconvenience considerations, e.g., limiting the direct route to actual route ratio.
Additionally, investigating further strategies and testing with heterogeneous vehicles
would be interesting.

In our experiments heuristic boosting techniques turned out to be beneficial for solving
the master problem. Applying a similar strategy for the subproblems did not work that
well. However, by replacing the basic heuristic we considered with a more sophisticated
approach it might be possible to also speed up solving the subproblems.

We considered four strategies for constructing Benders feasibility cuts. Our algorithms are
based on enumeration and a greedy approach. In this respect it would be interesting to
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design problem specific approaches that are able to find structures close to the minimum
cardinality IISs requiring less time than enumeration. The work by Häme and Hakula
[86] could serve as a starting point for research in this direction.
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CHAPTER 5
An Iterative Time-Bucket

Refinement Algorithm for a
High-Resolution

Resource-Constrained Project
Scheduling Problem

In the previous two chapters we considered decomposition approaches that pursued
the principle of disregarding an aspect of the problem and reintroducing the necessary
information incrementally. For the column generation approach in Chapter 3 this helped
to avoid many variables. In terms of the logic-based Benders decomposition (LBBD)
approach from Chapter 4 we managed to defer computational effort to the subproblem
and also achieved a structural decomposition leading to problems that could be tackled
with specialized techniques. In this chapter we consider a different decomposition strategy.
Instead of disregarding part of the problem we design an individual relaxation. This
relaxation is then successively refined until it becomes feasible or provides a tight dual
bound that can prove optimality of a heuristically obtained solution. We present our
approach in terms of a matheuristic that computes converging sequences of primal and
dual bounds. The dual bounds are directly obtained from the aforementioned relaxations
and give rise to primal bounds that are derived from the relaxed solutions by heuristics.

We designed this algorithm to deal with a specific problem scenario arising from patient
scheduling in cancer treatment. This approach was developed in terms of a coopera-
tion with cancer treatment center Medaustron1, whose support is greatly appreciated.
MedAustron provides modern particle therapy via a particularly precious particle beam.

1https://www.medaustron.at
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The goal is to exploit this resource as efficiently as possible to maximize the number of
patients who can be treated. Observe that the resulting scheduling scenario is quite com-
plex and involves a rather long planning horizon. Here we concentrate on the operations
within a day with a special focus on a fine-grained time discretization. For further details
on the full problem we refer to a number of co-authored publications ([122, 123, 124, 125])
that describe the practical context more extensively.

With the proposed matheuristic we aim at overcoming limitations of classical mixed
integer linear programming (MILP) techniques such as time-indexed formulations (TIFs)
or discrete-event formulations (DEFs) that are known to struggle under the investigated
scenario due to the large resulting time horizon. The considered relaxation is based on
aggregating time into so-called time-buckets. Depending on the degree of aggregation
this significantly reduces the problem size but requires an iterative refinement step to
preserve feasibility. Our experiments indicate that the matheuristic performs significantly
better than the classical MILP approaches.

This chapter has been accepted for publication in International Transactions in Opera-
tional Research:

M. Riedler, T. Jatschka, J. Maschler, and G. R. Raidl. An iterative time-
bucket refinement algorithm for a high-resolution resource-constrained project
scheduling problem. International Transactions in Operational Research, 2017.
doi: 10.1111/itor.12445. available online

5.1 Introduction
Scheduling problems arise in a variety of practical applications. Prominent examples are
job shop or project scheduling problems that require a set of activities to be scheduled
over time. The execution of the activities typically depends on certain resources of limited
availability and diverse other restrictions such as precedence constraints. The goal is to
find a feasible schedule that minimizes some objective function like the makespan. In
certain cases, scheduling has to be done in a very fine grained way, i.e., in high resolution,
using, e.g., seconds or even milliseconds as unit of time.

Classical MILP formulations are known to struggle under these conditions. On the one
hand, time discretized models provide strong linear programming (LP) bounds but grow
too quickly with the instance size due to the fine time discretization. Event-based and
sequencing-based models on the other hand typically have trouble as a result of their
weak LP bounds.

In the following, we focus on problems with a large, very fine-grained scheduling horizon
and consider a simplified scheduling problem arising in the context of modern particle
therapy used for cancer treatment. The problem is motivated by a real world patient
scheduling scenario at the cancer treatment center MedAustron located in Wiener
Neustadt, Austria. The tasks involved in providing a given set of patients with their
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individual particle treatments shall be scheduled in such a way that given precedence
constraints with minimum and maximum time lags are respected. Each task needs certain
resources for its execution. One of the resources is the particle beam, which is particularly
scarce as it is required by every treatment and shared between several treatment rooms.
The motivation therefore is to exploit in particular the availability of the beam as good
as possible by suitably scheduling all activities in high time resolution. Ideally, the beam
is switched immediately after an irradiation has taken place in one room to another room
where the next irradiation session starts without delay.

Our goal is to minimize the makespan. This objective emerges from the practical scenario
as tasks need to be executed as densely as possible to avoid idle time within the day as
well as to allow treating as many patients as possible within the operating hours. However,
makespan minimization is clearly an abstraction from the real world scenario where more
specific considerations need to be taken into account (see, e.g., [122]). In the terminology
of the scientific literature in scheduling, the considered problem corresponds to a resource-
constrained project scheduling problem (RCPSP) with minimum and maximum time
lags.

In this work, we introduce the simplified intraday particle therapy patient scheduling
problem (SI-PTPSP) and present a DEF and a TIF for it as reference models. We propose
a time-bucket relaxation (TBR) and prove some theoretical properties. In the main
part, we deal with the iterative time-bucket refinement algorithm (ITBRA) that aims
at closing the gap between dual solutions obtained by solving TBR based on iteratively
refined bucket partitionings and heuristically determined primal solutions exploiting
dual solutions. Various strategies for refining the bucket partitioning are suggested.
Experimental results clearly indicate the superiority of the new matheuristic approach
over the reference MILP models as well as a basic greedy randomized adaptive search
procedure (GRASP).

The remainder of the chapter is organized as follows. In Section 5.2 we provide a formal
definition of the SI-PTPSP. Then, we review the related literature. In the following
section we provide two reference MILP formulations. The main part consists of the
description of TBR and its properties in Section 5.5 and the presentation of ITBRA
in Section 5.6. We provide the fundamental iterative framework with its specifically
used sub-algorithms, which are the gap closing heuristic (GCH), the activity block
construction heuristic (ABCH), a GRASP metaheuristic, and the investigated bucket
refinement strategies. Further implementation details such as preprocessing procedures
are covered in Section 5.7. Finally, we discuss computational experiments conducted on
two sets of benchmark instances in Section 5.8, before concluding and giving an outlook
on promising future research directions in Section 5.9.
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5.2 Simplified Intraday Particle Therapy Patient
Scheduling Problem

The SI-PTPSP is defined on a set of activities A = {1, . . . , α} and a set of unit-capacity
resources R = {1, . . . , ρ}. Each activity a ∈ A is associated with a processing time
pa ∈ N>0, a release time tra ∈ N≥0 and a deadline tda ∈ N≥0 with tra + pa ≤ tda. For its
execution an activity a ∈ A requires a subset Qa ⊆ R of the resources. Activities have to
be executed without preemption. The considered set of time slots T = {Tmin, . . . , Tmax}
is derived from the properties of the activities as follows: Tmin = mina∈A tra and Tmax =
maxa∈A tda − 1. We denote by Ya(t) the set of time points during which activity a ∈ A
executes when starting at time t, i.e., Ya(t) = {t, . . . , t+ pa − 1}. To model dependencies
among the activities, we consider a directed acyclic precedence graph G = (A,P ) with
P ⊂ A×A. Each arc (a, a′) ∈ P is associated with a minimum and a maximum time lag
Lmin
a,a′ , L

max
a,a′ ∈ N≥0 with Lmin

a,a′ ≤ Lmax
a,a′ . For each resource r ∈ R a set of availability time

windows Wr =
⋃
w=1,...,ωr Wr,w with Wr,w = {W start

r,w , . . . ,W end
r,w } ⊆ T is given. Resource

availability windows are non-overlapping and ordered according to starting time W start
r,w .

In accordance with the resource availabilities and the precedence relations among the
activities, we can deduce for each activity a set of feasible starting times, denoted by
Ta ⊆ {tra, . . . , tda − pa}; for details on the computation of this set see Section 5.7.1.

A feasible solution S (also called schedule) to SI-PTPSP is a vector of values Sa ∈ Ta
assigning each activity a ∈ A a starting time within its release time and deadline such
that the availabilities of the required resources and all precedence relations are respected.
The goal is to find a feasible solution having minimum makespan.

Using the notation introduced in Brucker et al. [29] our problem can be classified as
PSm, ·, 1|rj , dj , temp|Cmax.

Computational complexity. Lawler and Lenstra [106] have shown that finding a
solution for the non preemptive single machine scheduling problem with deadlines and
release times (1|rj |Cmax according to the notation by Graham et al. [83]) is NP-hard.
We can easily reduce an instance of 1|rj |Cmax to an instance of SI-PTPSP by assigning
the same resource to each activity of the 1|rj |Cmax instance. Processing times, release
times, and deadlines of the activities remain unchanged. Since there are no precedence
constraints in 1|rj |Cmax, the set of precedence arcs is empty. Consequently, SI-PTPSP is
NP-hard.

5.3 Related Work
In this section, we discuss the related work relevant for our contribution. We start with a
brief overview of RCPSPs. Afterwards, we review the derivation of dual bounds for such
scheduling problems. Then, we give a short introduction on matheuristics applied in this
domain. Finally, we review previous work that is important from the methodological
point of view, i.e., that deals with time-buckets or similar aggregation techniques.
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5.3.1 Resource-Constrained Project Scheduling

The RCPSP considers scheduling of a project subject to resource and precedence con-
straints, where a project is represented by a graph with each node being an activity of
the project. Precedence relations between activities are represented as directed edges
between the nodes. The RCPSP is a well-studied problem with many extensions and
variations. SI-PTPSP is a combination of multiple such extensions: We use minimum
and maximum time lags, release times and deadlines, and dedicated renewable resources.
For a detailed description of those terms and a broader overview of RCPSP variants we
refer to Hartmann and Briskorn [88].

There exists a wide range of exact and heuristic approaches for the RCPSP and its
extensions, for an overview see [4, 29, 131]. Here we specifically want to focus on exact
approaches. Branch-and-bound (B&B) algorithms [21, 51] and MILP techniques are
often used. However, also constraint programming (CP), SAT, and combinations thereof
gained importance, see, e.g., Berthold et al. [16]. For our work we are primarily interested
in MILP-based approaches and thus focus on them in the following.

A well-known technique are so-called time-indexed models, see Artigues [2]. The classical
variant uses binary variables for each time slot representing the start of an activity. In
addition, there are also so-called step-based formulations, in which variables indicate
whether an activity has started at or before a certain time instant. This might lead to a
more balanced B&B tree. Both variants typically provide strong LP bounds but struggle
with larger time horizons due to the related model growth.

Also quite well-known are event-based formulations. Koné et al. [101] and Artigues et al.
[5] provide an extensive overview. These models are based on a set of ordered events to
which activity starts and ends need to be assigned, which makes it possible to model
starting times as continuous variables. On/Off event-based formulations use the same
idea but require even fewer variables. These models are usually independent of any time
discretization and the time horizon but feature significantly weaker LP bounds compared
to time-indexed models.

There also exist formulations combining continuous-time and discrete-time formulations,
so-called mixed-time models, see [13, 169]. Further MILP techniques make use of
exponentially sized models and apply advanced techniques such as column generation,
Lagrangian decomposition, or Benders decomposition, see, e.g., [90].

5.3.2 Dual Bounds for Scheduling Problems

The most common method for deriving lower bounds is based on solving LP relaxations,
often strengthened by cutting plane methods. This approach is widely applicable but
often provides only weak bounds.

Also rather well-known are algorithms based on Lagrangian relaxation, see Fisher [62].
The basic idea is to relax a set of complex constraints by adding corresponding penalty
terms to the objective function to simplify the model. Its strong reliance on a suitable
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problem structure limits the applicability of this technique. For an application to the
RCPSP see Bianco and Caramia [20].

Other techniques to obtain dual bounds are less common. Li et al. [112] consider a dual
heuristic for MILP. For some nodes of the B&B tree, the heuristic attempts to improve
the current dual bound by computing relaxations based on simply dropping, dualizing,
or aggregating constraints. The heuristic uses dual variables and slack variables of the
LP solution in order to decide which constraints to relax.

Apart from such general approaches, there are some works that consider problem specific
methods. In the RCPSP context this includes, among others, Bianco and Caramia [19],
Carlier et al. [33], and Dupin and Talbi [57].

5.3.3 Matheuristics for Scheduling Problems

So far, Matheuristics have only been rarely considered for tackling the RCPSP. Palpant
et al. [132] present an approach based on large neighborhood search. Subproblems are
generated dynamically and solved using MILP, CP, or a heuristic approach.

Further matheuristic approaches can be found in terms of the multi-mode resource-
constrained multi-project scheduling problem (MRCMPSP). This is an extension of the
RCPSP in which each activity is associated with a set of modes that decide the processing
time and resource demand. Artigues and Hebrard [3] solve the MRCMPSP with an
algorithm consisting of four phases. In the first phase initial modes are assigned to each
activity using MILP. Phases 2 and 3 generate a schedule based on the modes assigned to
the activities using CP. The last phase uses a large neighborhood search procedure to
improve the schedule by changing the modes of some activities. CP is used to solve the
subproblems. Phases 2 to 4 are repeated until a termination criterion is met. Toffolo et al.
[162] solve the problem using a decomposition-based matheuristic. After fixing execution
modes, the problem is decomposed into time windows that are solved using MILP models.
Finally, a hybrid local search is employed to improve the obtained solutions.

Moreover, note that there are resemblances to Benders and Lagrangian-based techniques,
e.g., Maniezzo and Mingozzi [120], Möhring et al. [128].

5.3.4 Time Aggregation Models

Note that the contributions mentioned in this section stay in contrast to a more common
approach in which the time-discretization is coarsened in order to possibly obtain feasible
but also less precise solutions, which are in general not optimal for the original problem.
The approaches discussed here are characterized by iteratively refining a relaxation of
the original problem until a provably optimal solution is found.

Boland et al. [27] consider such an approach for the countinuous time service network
design problem (CTSNDP). The authors solve the problem using a time-expanded
network. Initially, only a partially time-expanded network is considered to avoid the
substantial size of the complete network. The MILP model associated with the reduced
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network constitutes a relaxation to the original problem. If the optimal solution to this
relaxation turns out to be feasible with respect to the original problem, the algorithm
terminates. Otherwise, the partially time-expanded network is extended based on the
current solution to obtain a more refined model. Iteratively applying this approach
converges to an optimal solution due to the finite size of the full time-expanded network.

A different type of relaxation is to partition the given time horizon into subsets. Ap-
proaches of this type are considered in Bigras et al. [22], Baptiste and Sadykov [10], and
Boland et al. [25] for single machine scheduling problems. Iterative approaches based
on these techniques have been primarily considered in terms of routing problems. Wang
and Regan [167, 168] consider such an algorithm for the traveling salesman problem
with time windows (TSPTW). First, the time windows of each node are partitioned into
subsets. Then, for a given time window partitioning a lower bound and an upper bound
are calculated, using an underconstrained MILP model and an overconstrained one. If
the gap between lower and upper bound is not sufficiently small, the scheduling horizon
gets further refined and the problem is solved anew.

Another algorithm of this type has been considered by Macedo et al. [118] for solving the
vehicle routing problem with time windows and multiple routes (MVRPTW). They solve
a relaxation which is modeled as a network flow such that nodes of the graph correspond
to time instants. The idea of the initial relaxation is to aggregate several time instants
into each node. If the solution to the relaxation turns out to be infeasible with respect
to the original problem, the current time discretization is locally refined by considering
further time instants individually, i.e., by disaggregating nodes.

Dash et al. [48] combine the ideas of Wang and Regan [167] and Bigras et al. [22] in
order to solve the TSPTW. The time windows of the nodes are partitioned into buckets
using an iterative refinement heuristic. Refinement decisions are based on the solution
to the current LP relaxation. Afterwards, the resulting formulation is turned into an
exact approach by adding valid inequalities and solved using branch-and-cut (B&C). In
each node of the B&B tree a primal heuristic is applied using the reduced costs of the
variables of the current LP relaxation.

Recently, Clautiaux et al. [39] introduced an approach that is more generally applicable
to problems that can be modeled as minimum-cost circulation problems with linking
bound constraints. The proposed algorithm projects the original problem onto an
aggregated approximate one. This aggregated model is iteratively refined until a provably
optimal solution is found. Experiments have been conducted on a routing problem and a
cutting-stock problem.

5.4 Reference MILP Models

In this section, we present two MILP models for SI-PTPSP following classical approaches:
a DEF and a TIF. Both serve as reference formulations to which we will compare our
ITBRA.
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5.4.1 Discrete Event Formulation

The DEF is based on the idea of considering certain events that need to be ordered and
for which respective times need to be found, see also model SEE in Artigues et al. [5].
Resource constraints then only have to be checked at the times associated with these
events.

In regard to our problem, the considered events are the start and the end of each activity
(activity events), and times at which the availability of a resource changes (resource
events). To simplify the model, we transform all resource events into activity events by
introducing a new artificial activity for each period during which a resource r ∈ R is
unavailable. To this end, we create a new activity for each maximal interval in T \Wr

requiring the resource. Start, end, and processing time of this activity are set to match the
unavailability period. Accordingly, we define a new set of activities A′ being the union of
A and the artificial activities; let α′ = |A′|. Consequently, we denote by K = {1, . . . , 2α′}
the set of chronologically ordered events.

To state the model we use binary variables xa,k that are one if event k ∈ K is the start of
activity a ∈ A and zero otherwise. Similarly, binary variables ya,k indicate whether event
k is the end of activity a. Variables Ek represent the time assigned to each event k. The
starting times of the activities a ∈ A′ are modeled using variables Sa. Finally, binary
variables Dr,k are one if resource r ∈ R is used by any activity immediately after event k
and zero otherwise, and variable MS denotes the makespan. The model reads as follows:

min MS (5.1)
subject to Sa + pa ≤ MS ∀a ∈ A (5.2)

Sa′ − Sa ≥ pa + Lmin
a,a′ ∀(a, a′) ∈ P, (5.3)

Sa′ − Sa ≤ pa + Lmax
a,a′ ∀(a, a′) ∈ P, (5.4)∑

k∈K
xa,k = 1 ∀a ∈ A′, (5.5)

∑
k∈K

ya,k = 1 ∀a ∈ A′, (5.6)

∑
a∈A′

(xa,k + ya,k) = 1 ∀k ∈ K (5.7)

Ek−1 ≤ Ek ∀k ∈ K \ {1}, (5.8)

Ek −M
(5.9)
a,k (1− xa,k) ≤ Sa ∀k ∈ K, a ∈ A′, (5.9)

Ek +M
(5.10)
a,k (1− xa,k) ≥ Sa ∀k ∈ K, a ∈ A′, (5.10)

Ek −M
(5.11)
a,k (1− ya,k) ≤ Sa + pa ∀k ∈ K, a ∈ A′, (5.11)

Ek +M
(5.12)
a,k (1− ya,k) ≥ Sa + pa ∀k ∈ K, a ∈ A′, (5.12)

Dr,0 =
∑

a∈A′:r∈Qa
xa,0 ∀r ∈ R, (5.13)
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Dr,k = Dr,k−1 +
∑

a∈A′:r∈Qa
xa,k −

∑
a∈A′:r∈Qa

ya,k ∀k ∈ K \ {1}, r ∈ R, (5.14)

Dr,k ≤ 1 ∀k ∈ K, r ∈ R, (5.15)
tra ≤ Sa ≤ tda − pa ∀a ∈ A′, (5.16)
MS , Ek, Dr,k ≥ 0 ∀k ∈ K, a ∈ A′, r ∈ R, (5.17)
xa,k, ya,k ∈ {0, 1} ∀k ∈ K, a ∈ A′. (5.18)

Inequalities (5.2) are used for determining the makespan. Precedence relations are
enforced by inequalities (5.3) and (5.4). According to equalities (5.5) and (5.6) each
activity starts and ends at precisely one event. Equalities (5.7) ensure that each event
is assigned to either exactly one starting time or exactly one ending time of an activity.
Events are ordered chronologically by inequalities (5.8). Starting times of activities
are linked to the corresponding start events by inequalities (5.9) and (5.10). Similarly,
inequalities (5.11) and (5.12) link the event at which an activity a ends to the time at
which the activity ends. Big-M constants used in these inequalities will be explained
below. Equalities (5.13) and (5.14) compute the total demand of a resource of all activities
running during an event. Finally, inequalities (5.15) ensure that all resource demands
are met at all events.

Choosing the smallest possible big-M constants for Inequalities (5.9)–(5.12) in DEF
is important for making its LP relaxation as tight as possible. An easy way to set
them is M (5.9)

a,k = Tmax − tra, M
(5.10)
a,k = tda − pa − Tmin, M (5.11)

a,k = Tmax − tra − pa, and
M

(5.12)
a,k = tda − Tmin. However by computing sets of activities that must precede or

succeed a certain event in any feasible schedule, respectively, it is possible to fix some of
the constants to zero. For details, we refer to [94].

The formulation has O(|A′|2) variables and O(|R| · |A′|2) constraints. Thus, DEF is a
compact model, but its LP relaxation typically yields rather weak LP bounds, primarily
due to the inequalities involving the big-M constants.

5.4.2 Time-indexed Formulation

In a classical MILP way, we can model SI-PTPSP by the following TIF using binary
variables xa,t for indicating whether an activity a ∈ A starts at time t ∈ Ta:

min MS (5.19)
subject to

∑
t∈Ta

xa,t = 1 ∀a ∈ A, (5.20)

∑
t∈Ta

t · xa,t + pa ≤ MS ∀a ∈ A, (5.21)

∑
a∈A:r∈Qa

∑
t′∈Ta:t∈Ya(t′)

xa,t′ ≤ 1 ∀r ∈ R, t ∈Wr, (5.22)

∑
t∈Ta′

txa′,t −
∑
t∈Ta

txa,t ≥ pa + Lmin
a,a′ ∀(a, a′) ∈ P, (5.23)
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∑
t∈Ta′

txa′,t −
∑
t∈Ta

txa,t ≤ pa + Lmax
a,a′ ∀(a, a′) ∈ P, (5.24)

xa,t ∈ {0, 1} ∀a ∈ A, t ∈ Ta, (5.25)
MS ≥ 0. (5.26)

Equations (5.20) ensure that exactly one starting time is chosen for each activity. Inequal-
ities (5.21) are used to determine the makespan MS . Resource restrictions are enforced
by inequalities (5.22). Last but not least, constraints (5.23) and (5.24) guarantee that
the precedence relations with their minimum and maximum time lags are respected.

The model has O(|A| · |T |) variables and O(|T | · (|A|+ |R|+ |P |)) constraints. Typically,
the LP relaxation of TIF yields substantially tighter dual bounds than the LP relaxation
of DEF but its size and solvability strongly depend on the used time discretization.

5.5 Time-Bucket Relaxation
As the number of variables and constraints of TIF becomes fairly large when considering a
fine-grained time discretization, directly solving the model may not be a viable approach
in practice. We therefore consider a relaxation of it, in which we combine subsequent
time slots into so-called time-buckets. This model, which we call TBR, yields a dual
bound to the optimal value of the original problem but in general not directly a valid
solution. Based on TBR we will build our iterative refinement approach in Section 5.6.

Let B = {B1, . . . , Bβ} be a partitioning of T into subsequent time-buckets. Note that
the individual buckets do not need to have the same size. We denote by I(B) =
{1, . . . , β} the index set of B. For all b ∈ I(B) we define the set of consecutive time
slots Bb = {Bstart

b , . . . , Bend
b } contained in the bucket. Since B is a chronologically

ordered partitioning of T , we have Bstart
1 = Tmin, Bend

β = Tmax, and Bend
b + 1 = Bstart

b+1 ,
∀b ∈ I(B) \ {β}. Additionally, let WB

r (b) = |Bb ∩Wr| denote the aggregated amount of
resource r ∈ R available over the whole bucket b ∈ I(B). For an illustration of a bucket
partitioning see Figure 5.1.

B1 B2 B3 B4 B5 B6 · · · Bβ

Tmin Tmax

Figure 5.1: Bucket partitioning of T .

Considering a bucket partitioning we now derive for each activity a ∈ A all subsets
of buckets in which the activity can be completely performed such that it executes
at least partially in every bucket. We call these subsets bucket sequences of activity
a and denote them by Ca = {Ca,1, . . . , Ca,γa} ⊆ 2I(B). Let functions bfirst(a, c) and
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blast(a, c) for a ∈ A and c = 1, . . . , γa provide the index of the first and the last bucket
of bucket sequence Ca,c, respectively. The bucket sequences in Ca are assumed to
be ordered according to increasing starting time, or, more precisely, lexicographically
ordered according to (bfirst(a, c),blast(a, c)). We can determine all bucket sequences for
an activity in time O(|B| log |B|), for details see Section 5.7.2. Analogous to set Ta we
omit bucket sequences that involve only infeasible starting times.

For each bucket sequence Ca,c ∈ Ca of activity a ∈ A, let Smin
a,c ∈ T be the earliest

time slot at which the activity can feasibly start when it is assigned to the bucket
sequence. Similarly, let Smax

a,c ∈ T be the latest possible starting point. Moreover,
values zmin

a,b,c and zmax
a,b,c provide bounds on the number of utilized time slots within bucket

b ∈ Ca,c when activity a uses bucket-sequence Ca,c. Note that for inner buckets b with
bfirst(a, c) < b < blast(a, c) we always have zmin

a,b,c = zmax
a,b,c = |Bb|.

Figure 5.2 shows a set of bucket sequences for a given activity. Observe that for bucket
sequence Ca,2 we need to shift the execution window such that the activity executes at
least for one time slot in bucket B3, i.e., we require zmin

a,3,2 > 0 to avoid an overlap with
bucket sequence Ca,1.

Our relaxation of TIF uses binary variables ya,c indicating whether activity a ∈ A is
performed in bucket sequence Ca,c for c ∈ {1, . . . , γa}. Model TBR is stated as follows:

min MS (5.27)

subject to
γa∑
c=1

ya,c = 1 ∀a ∈ A, (5.28)

γa∑
c=1

Smin
a,c · ya,c + pa ≤ MS ∀a ∈ A, (5.29)∑

a∈A:r∈Qa

∑
Ca,c∈Ca:b∈Ca,c

zmin
a,b,c · ya,c ≤WB

r (b) ∀r ∈ R, b ∈ I(B), (5.30)

γa′∑
c′=1

Smax
a′,c′ · ya′,c′ −

γa∑
c=1

Smin
a,c · ya,c ≥ pa + Lmin

a,a′ ∀(a, a′) ∈ P, (5.31)

γa′∑
c′=1

Smin
a′,c′ · ya′,c′ −

γa∑
c=1

Smax
a,c · ya,c ≤ pa + Lmax

a,a′ ∀(a, a′) ∈ P, (5.32)

ya,c ∈ {0, 1} ∀a ∈ A, c = 1, . . . , γa, (5.33)
MS ≥ 0. (5.34)

Equations (5.28) ensure that exactly one bucket sequence is chosen for each activity. The
makespan MS is determined using inequalities (5.29). Constraints (5.30) consider the
resource availabilities individually for each bucket in an accumulated fashion. Determined
resource consumptions of activities are precise for all used inner buckets of a sequence but
might underestimate the actually required amount in the first and last bucket. Finally,
inequalities (5.31) and (5.32) realize the precedence constraints with their minimum and
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B1 B2 B3 B4 B5 Ca,1 = {B1, B2}

tra tdapa

zmin
a,2,1zmax

a,1,1

pa

zmin
a,1,1

zmax
a,2,1

B1 B2 B3 B4 B5 Ca,2 = {B1, B2, B3}

pa

zmin
a,3,2zmax

a,1,2

pa

zmin
a,1,2

zmax
a,3,2

B1 B2 B3 B4 B5 Ca,3 = {B2, B3, B4}

pa

zmin
a,4,3zmax

a,2,3

pa

zmin
a,2,3 zmin

a,4,3

B1 B2 B3 B4 B5 Ca,4 = {B3, B4, B5}

pa

zmin
a,5,4zmax

a,3,4

pa

zmin
a,3,4

zmax
a,5,4

B1 B2 B3 B4 B5
Ca,5 = {B4, B5}

pa

zmin
a,5,5zmax

a,4,5

pa

zmin
a,4,5

zmax
a,5,5

Figure 5.2: Bucket sequences Ca of an activity a with processing time pa. Descriptions
of inner buckets of a sequence are omitted since zmin

a,b,c = zmax
a,b,c = |Bb| holds for them.
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maximum time lags, respectively. These restrictions also constitute a relaxation of the
corresponding ones in TIF since the precise starting times within the buckets are not
known (unless dealing with buckets of unit size).

The model has O(|A| · |B|) variables and O(|A|+ |R| · |B|+ |P |) constraints, and thus its
size does not depend on |T |.

5.5.1 Polyhedral Comparison of TIF and TBR

We start by considering a specific variant of TBR in which all buckets have unit size,
i.e., B = {{Tmin}, {Tmin + 1}, . . . , {Tmax}}. Let us denote this special case by TBR1.
This leads to several simplifications. All buckets b belonging to some sequence Ca,c are
fully used, i.e., zmin

a,b,c = zmax
a,b,c = |Bb| = 1. Moreover, minimum and maximum starting

times are equal and equivalent to the first time slot of the initial bucket of the sequence:
Smin
a,c = Smax

a,c = Bstart
bfirst(a,c). Essentially, this means that Ta = {Smin

a,c | Ca,c ∈ Ca} =
{Smax

a,c | Ca,c ∈ Ca} and |Ta| = |Ca| for all a ∈ A. Furthermore, since buckets correspond
to original time slots in this scenario, resource availabilities become binary for each
bucket.

For TIF and TBR1 we consider function ϕa : {1, . . . γa} → Ta for each activity a ∈ A
with ϕa(c) := Smin

a,c .

Proposition 5.1. Function ϕ is bijective.

Proof. Each bucket sequence with respect to TBR1 corresponds to a specific starting
time. For each activity, Ca considers all feasible bucket sequences and Ta all feasible
starting times. Thus, there exists a unique mapping between these sets.

Proposition 5.2. The polyhedra of TBR1 and TIF are isomorphic.

Proof. We establish an isomorphism between the variables of the models using function
ϕa and its inverse: xa,t = ya,ϕ−1

a (t) and ya,c = xa,ϕa(c). Moreover, we can use these
functions to immediately transform (5.20) into (5.28), (5.21) into (5.29), (5.23) into
(5.31), and (5.24) into (5.32) and vice versa. To provide the isomorphism between (5.22)
and (5.30) we need a few further considerations. First, recall that all zmin

a,b,c constants
are equal to 1. Secondly, using t↔ {t} as isomorphism between T and the set of unit
buckets we obtain WB

r (b) = 1 if the corresponding time point t ∈ Wr, and WB
r (b) = 0

otherwise. Finally, the correspondence between time points and unit buckets guarantees
that Ya(t) and Ca,c are isomorphic for ϕ−1

a (t) = c. Putting things together also the
resource constraints can be transformed into one another.

Corollary 5.1. The LP relaxations of TBR1 and TIF are equally strong.

Definition 5.1. Let TBRB and TBRB′ be two TBR models with bucket partitionings
B and B′, respectively. TBRB′ is called a refined model of TBRB iff ∀b′ ∈ I(B′) ∃b ∈
I(B) (B′b′ ⊆ Bb).
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In the following we show that TBRB is a relaxation of TBRB′ and thus of TIF.

Definition 5.2. Let TBRB be a TBR model and let TBRB′ be a refined model of TBRB.
Then, σ : C ′a → Ca defines a (surjective) mapping from bucket sequences C ′a with respect
to TBRB′ to bucket sequences Ca with respect to TBRB satisfying for all C ′a,c′ ∈ C ′a:

⋃
b′∈C′

a,c′

b′ ⊆
⋃

b∈σ(C′
a,c′ )

b ∧ ∀Ca,ĉ ∈ Ca

 ⋃
b′∈C′

a,c′

b′ *
⋃

b∈Ca,ĉ

b ∨ σ(C ′a,c′) ⊆ Ca,ĉ

 .
This means σ provides the inclusion minimal bucket sequence from TBRB that contains
at least the time slots that the bucket sequence from TBRB′ contains.

Lemma 5.1. Function σ can be implemented by:

σ(C ′a,c′) = Ca,c such that Ca,c ∈ Ca ∧ Smin
a,c′ ∈ bfirst(a, c) ∧ (Smin

a,c′ + pa) ∈ blast(a, c)

Proof. Feasibility of C ′a,c′ together with the fact that buckets in TBRB′ are subsets of
those in TBRB implies that there exists a sequence Ca,c ∈ Ca satisfying Smin

a,c′ ∈ bfirst(a, c)
and (Smin

a,c′ + pa) ∈ blast(a, c). Buckets of sequences C ′a,c′ are a subset of those from Ca,c,
i.e.,

⋃
b′∈C′

a,c′
b′ ⊆

⋃
b∈Ca,c b. Moreover, Ca,c is uniquely determined since by definition two

different bucket sequences cannot have the same first and last buckets. Therefore, every
other sequence covering the buckets from C ′a,c′ must be strictly larger than Ca,c.

Theorem 5.1. Let TBRB be a TBR model and let TBRB′ be a refined model of TBRB.
Then, TBRB is a relaxation of TBRB′.

Proof. Using function σ according to Lemma 5.1, we create a solution y to TBRB from
an optimal solution y∗ to TBRB′ as follows:

ya,c =
∑

C′
a,c′∈C

′
a:σ(C′

a,c′ )=Ca,c

y∗a,c′ ∀a ∈ A, c ∈ {1, . . . , γa}

We first show that y is a feasible solution to TBRB . Constraints (5.28) are satisfied since
y∗a,c′ is feasible and σ is surjective. As bfirst(a, c′) ⊆ bfirst(a, c) for all Ca,c = σ(C ′a,c′), it
holds that Smin

a,c ≤ Smin
a,c′ and Smax

a,c′ ≤ Smax
a,c . Hence, constraints (5.29), (5.31), and (5.32)

must hold. If inequalities (5.30) are satisfied for y∗, then the resource constraints are
also satisfied for y since the refined resource allocation entails the coarser one. Therefore,
y is a feasible solution to TBRB.

Since Smin
a,c ≤ Smin

a,c′ , the objective can only decline due to the transformation. Thus, the
optimal solution value to TBRB can be at most as large as the value of the optimal
solution to TBRB′ . Thus, TBRB is a relaxation of TBRB′ .

Corollary 5.2. TBR is a relaxation of TIF.
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5.5.2 Strengthening TBR by Valid Inequalities

In the following we introduce two types of valid inequalities to compensate for the loss of
accuracy in TBR due to the bucket aggregation. Note that these inequalities strengthen
the relaxation in general but might become redundant for more fine-grained bucket
partitionings.

Clique Inequalities

Observe that two activities, represented by non-unit bucket sequences, cannot feasibly
start in the same bucket if both require a certain resource. The same holds for two or
more bucket sequences with these properties ending in the same bucket. This can be
used to derive sets of incompatible bucket sequences that give rise to clique inequalities,
see Demassey et al. [50], Hardin et al. [87].

To formulate respective constraints we determine for each b ∈ I(B) sets Sb = {(a, c) |
a ∈ A, c ∈ Ca, z

min
a,b,c < |Bb|, |Ca,c| > 1,bfirst(a, c) = b} and Fb = {(a, c) | a ∈ A, c ∈

Ca, z
min
a,b,c < |Bb|, |Ca,c| > 1,blast(a, c) = b} of non-unit bucket sequences starting and

ending in bucket Bb, respectively. From each of these sets we derive a graph having
the respective set as vertices and an edge between two vertices if the activities of the
corresponding bucket sequences share a resource. Let CSb and CFb be the sets of all
maximal cliques with a minimum size of two within these graphs. This leads to the
following inequalities:∑

(a,c)∈κ
ya,c ≤ 1 ∀b ∈ I(B),∀κ ∈ CSb , (5.35)

∑
(a,c)∈κ

ya,c ≤ 1 ∀b ∈ I(B), ∀κ ∈ CFb . (5.36)

Some of these constraints might be redundant if the sum of zmin
a,b,c of the smallest two

sequences is already large enough to prohibit them from being in the same bucket by
means of inequalities (5.30). The most trivial form of this case is excluded in the above
sets by the condition zmin

a,b,c < |Bb|.

The considered cliques can be computed using the algorithm by Bron and Kerbosch [28].
Cazals and Karande [34]) show that this algorithm is worst-case optimal, i.e., it runs in
O(3

n
3 ) which is the largest possible number of maximal cliques in a graph on n vertices.

Although problematic in general, this might still be reasonable considering the rather
small expected size of the conflict graphs.

Nevertheless, in our implementation we decided to avoid clique computations and resort
to a simpler variant. We do so by considering a separate graph per resource to obtain a
set of not necessarily maximal cliques. This leads to conceptually weaker inequalities
but requires almost no computational overhead. More specifically, we consider subsets
Sb,r = Sb ∩ {(a, c) | a ∈ A, c ∈ Ca, r ∈ Qa} of Sb and subsets Fb,r = Fb ∩ {(a, c) | a ∈
A, c ∈ Ca, r ∈ Qa} of Fb, respectively, for b ∈ I(B) and r ∈ R, such that within these
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subsets all activities require a common resource. Using these sets we formulate the
following constraints:∑

(a,c)∈Sb,r

ya,c ≤ 1 ∀b ∈ I(B),∀r ∈ R : |Sb,r| ≥ 2, (5.37)

∑
(a,c)∈Fb,r

ya,c ≤ 1 ∀b ∈ I(B),∀r ∈ R : |Fb,r| ≥ 2. (5.38)

If mutual overlap of the resources required by the activities is rare, the simpler inequalities
are often almost as powerful as the full clique inequalities.

Path Inequalities

The idea of this kind of inequalities is to extend the precedence constraints (5.31) and
(5.32), and the makespan constraints (5.29) from pairs of adjacent activities or single
activities, respectively, to paths within the precedence graph.

We consider the acyclic directed precedence graph G = (A,P ). Let πa0,am = (a0, a1, . . . ,
am) be a directed path from activity a0 to activity am in G. Moreover, let dLmin(πa0,am) =∑m−1
i=0 pai + Lmin

ai,ai+1 and dLmax(πa0,am) =
∑m−1
i=0 pai + Lmax

ai,ai+1 be the minimum and
maximum makespan of the activities within the path, respectively. Let Πa,a′ denote the
set of all distinct paths from node a to node a′. Since G is acyclic, Πa,a′ is finite (but in
general exponential in the number of edges) for all pairs of nodes (a, a′) ∈ A×A : a 6= a′.
Let Π =

⋃
a,a′∈A:a6=a Πa,a′ denote the union of all these paths between any two different

nodes.

Let S be a feasible solution to SI-PTPSP. Then, for each path πa,a′ in G it must hold
that Sa + dLmin(πa,a′) ≤ Sa′ and Sa + dLmax(πa,a′) ≥ Sa′ . Hence, adding the following
inequalities to TBR yields a strengthened relaxation of TIF:

γa−1∑
c=0

Smin
a,c · ya,c + dLmin(πa,a′) ≤

γa′−1∑
c′=0

Smax
a′,c′ · ya′,c′ ∀πa,a′ ∈ Π, (5.39)

γa−1∑
c=0

Smax
a,c · ya,c + dLmax(πa,a′) ≥

γa′−1∑
c′=0

Smin
a′,c′ · ya′,c′ ∀πa,a′ ∈ Π, (5.40)

γa−1∑
c=0

Smin
a,c · ya,c + dLmin(πa,a′) + pa′ ≤ MS ∀πa,a′ ∈ Π. (5.41)

Due to the exponential number of these inequalities we only consider a reasonable subset
of them in our implementation, for details see Section 5.7.3.

5.6 Iterative Time-Bucket Refinement Algorithm
For the original SI-PTPSP, TBR on its own is a method yielding a lower bound but no
concrete feasible solution. The basic idea of ITBRA is to solve TBR repeatedly and to
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Algorithm 5.1: Iterative time-bucket refinement algorithm
Input: SI-PTPSP instance
Output: solution to SI-PTPSP and lower bound

1 compute initial bucket partitioning
2 compute initial primal solution
3 do
4 solve TBR for the current bucket partitioning
5 apply GCH: try to find an SI-PTPSP solution in accordance with the TBR

solution
6 if unscheduled activities remain then
7 apply follow-up heuristic to find feasible SI-PTPSP solution
8 end
9 if gap closed then

10 return optimal solution
11 end
12 derive refined bucket partitioning for the next iteration
13 while termination criteria not met
14 return best heuristic solution and lower bound from TBR

refine the bucket partitioning in each iteration until a proven optimal solution can be
derived via primal heuristics or some other termination criterion is met. We will show
that, given enough time, our algorithm converges to an optimal SI-PTPSP solution.

More specifically, we start by solving TBR with an initial bucket partitioning. Then,
we try to heuristically derive an SI-PTPSP solution that matches the objective value of
TBR with a so-called GCH. This heuristic fixes times for the activities in accordance
with the TBR solution and guarantees to never violate resource or precedence constraints.
If all activities can be scheduled in this way, we have found an optimal solution and
the algorithm terminates. Otherwise, some activities remain unscheduled and we apply
a follow-up heuristic to augment and repair the partial solution, possibly obtaining a
feasible approximate solution and a primal bound. Here it can again be the case that
we are able to close the optimality gap. If no provably optimal solution has been found
thus far, we refine the bucket partitioning by splitting buckets and solve TBR again.
For selecting the buckets to be refined and doing the splitting, we exploit information
obtained from the TBR solution and the applied primal heuristics. This process is iterated
until specified termination criteria are met or an optimal solution is found. The whole
procedure is outlined in Algorithm 5.1. The individual components of this approach will
be explained in detail in the upcoming sections.

5.6.1 Initial Bucket Partitioning

We create the initial bucket partitioning B in such a way that buckets start/end at any
time where a resource availability interval starts or ends and at any release time and
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5. ITBRA for High-Resolution RCPSP

Algorithm 5.2: Computing an initial bucket partitioning
Output: the initial bucket partitioning

1 B ← ∅ // bucket partitioning
2 T ← {Tmin} ∪ {Tmax + 1} // bucket starting times
3 T ← T ∪ {W start

r,w ,W end
r,w + 1 | r ∈ R, w = 1, . . . , ωr}

4 T ← T ∪ {tra, tda | a ∈ A}
5 sort T
6 for i← 1 to |T | − 1 do
7 B ← B ∪ {{T [i], . . . , T [i+ 1]− 1}} // add bucket
8 end
9 return B

deadline of the activities. The first restriction ensures that resources are either available
for the whole duration of a bucket or not at all. For details see Algorithm 5.2.

5.6.2 Primal Heuristics

We consider heuristics that attempt to derive feasible SI-PTPSP solutions and corre-
sponding primal bounds based on TBR solutions. If ITBRA is terminated early, the best
solution found in this way is returned. Note, however, that depending on the instance
properties, these heuristics might also fail and yield no feasible solution.

Gap Closing Heuristic

This is the first heuristic applied during an iteration of ITBRA. It attempts to construct
an optimal solution according to TBR’s result to close the optimality gap. Thus, it
may only fully succeed when the relaxation’s objective value does not underestimate the
optimal SI-PTPSP solution value, i.e., provides a tight dual bound. If the gap cannot
be closed, GCH provides only a partial solution and no primal bound. Information
on the unscheduled activities then forms an important basis for the subsequent bucket
refinement.

Let (y∗,MS∗) be the current optimal TBR solution. Initially, GCH receives for each
activity a ∈ A the interval STBR

a = {STBR,min
a , . . . , STBR,max

a } of potential starting times,
where STBR,min

a =
∑γa−1
c=0 Smin

a,c · y∗a,c and STBR,max
a =

∑γa−1
c=0 Smax

a,c · y∗a,c. These intervals
can in general be further reduced by removing for each a ∈ A all time slots t ∈ STBR

a

violating at least one of the following conditions in relation to the precedence constraints
and the calculation of the makespan:

∃t′ ∈ STBR
a′ (t+ pa + Lmin

a,a′ ≤ t′ ≤ t+ pa + Lmax
a,a′ ) ∀(a, a′) ∈ P, (5.42)

∃t′ ∈ STBR
a′ (t′ + pa′ + Lmin

a′,a ≤ t ≤ t′ + pa′ + Lmax
a′,a ) ∀(a′, a) ∈ P, (5.43)

t+ pa ≤ MS∗. (5.44)
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We prune the set of intervals of potential activity starting times for all activities STBR =
{STBR

a | a ∈ A} so that arc consistency is achieved with respect to conditions (5.42)–
(5.44). This is done by constraint propagation with a method like the well-known AC3
algorithm, see Mackworth [119]. Note that constraint propagation may yield empty
intervals for some activities, indicating that there remains no feasible starting time
assignment respecting all constraints. In this case GCH gives up on this activity and
continues with the remaining ones, deviating from the usual arc consistency concept, to
allow further activities to be scheduled.

The pseudocode of GCH is shown in Algorithm 5.3. After the initial pruning of starting
time intervals, GCH constructs the (partial) schedule S by iteratively scheduling the
activities while respecting all constraints. If this is not possible for some activities,
they remain unscheduled. Using a greedy strategy, the activities are considered in
non-decreasing order of STBR,max

a + pa, i.e., according to their earliest possible finishing
times. Activities are always scheduled at the earliest feasible time from STBR

a . Note
that any explicit enumeration of time slots from an interval can be efficiently avoided
by using basic interval arithmetic. Whenever an activity starting time is set, constraint
propagation is repeated to ensure arc consistency according to conditions (5.42)–(5.44).

If GCH fails to close the gap, we attempt to compute a feasible solution instead that
might have a larger objective value than the current TBR bound.

Activity Block Construction Heuristic

This algorithm is based on the idea of first constructing so-called activity blocks, which
correspond to the weakly connected components of the precedence graph. All the activities
belonging to one such weakly connected component are statically linked considering the
precedence constraints and minimum time lags between them. ABCH then greedily
schedules the activity blocks that have not been scheduled completely by GCH instead of
the individual activities. The activity blocks are considered in order of their release times
and are scheduled at the first time slot where no resource constraint is violated with
respect to the activity block’s individual activities and resource requirements. Details
are provided in Algorithm 5.4.

Greedy Randomized Adaptive Search Procedure

We consider GRASP as an advanced alternative to ABCH within ITBRA. The approach
provides a reasonable balance between being still relatively simple but providing con-
siderably better results than ABCH. There are clearly other options but our aim here
is to keep standard metaheuristic aspects simple in order to put more emphasis on the
fundamentals of TBR and ITBRA.

Both, GCH and ABCH can be randomized. We do so by allowing the order in which the
activities or activity blocks are considered to deviate from the strict greedy criterion. In
particular, we choose uniformly at random from the kgrand

GCH (kgrand
ABCH) candidates with the

highest priority. Parameters kgrand
GCH and kgrand

ABCH control the strength of the randomization.
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Algorithm 5.3: Gap closing heuristic
Input: intervals of potential starting times STBR = {STBR

a | a ∈ A} with
STBR
a = {STBR,min

a , . . . , STBR,max
a }

Output: (partial) schedule S and all activities that cannot be scheduled with
respect to STBR grouped by violation type

1 AP ← ∅ // activities with violated precedence constraints
2 AR ← ∅ // activities with violated resource constraints
3 AU ← A // unscheduled activities
4 W ′r ←Wr // resource availabilities
5 prune potential starting time intervals STBR

6 while AU 6= ∅ do
7 select and remove an activity a ∈ AU with minimal STBR,max

a + pa
8 if STBR

a = ∅ then // precedence constraints violated
9 AP ← AP ∪ {a}

10 continue
11 end
12 STBR

a ← {t ∈ STBR
a | {t, . . . , t+ pa − 1} ⊆W ′r,∀r ∈ Qa}

13 if STBR
a = ∅ then // resource constraints violated

14 AR ← AR ∪ {a}
15 continue
16 end
17 Sa ← min STBR

a

18 STBR
a ← {Sa}

19 W ′r ←W ′r \ {t, . . . , t+ pa − 1}, ∀r ∈ Qa
20 prune potential starting time intervals STBR

21 end
22 return S,AP , AR;

Note that the success of ABCH and hence also of the GRASP strongly depends on the
partial solution provided by GCH. Therefore, we primarily choose to randomize GCH.
Within ITBRA we also try to compute a primal solution at the very beginning before
solving TBR for the first time. Hence, there is no GCH solution available at this point.
In this case we randomize ABCH instead.

To get a strong guidance for the bucket refinement process we prefer GCH solutions that
schedule as many activities as possible. However, these solutions might not necessarily
work best in conjunction with ABCH. Therefore, we track the best complete solution
and the best partial GCH solution separately. This means that our GRASP returns a
feasible SI-PTPSP solution as well as a partial GCH solution (which might be unrelated).
Since GRASP combines the functionalities of GCH and ABCH, it effectively replaces
Lines 5–8 in Algorithm 5.1.
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Algorithm 5.4: Activity block construction heuristic
Input: a partial schedule SGCH computed by GCH
Output: a feasible schedule S or no solution if SGCH cannot be completed

1 C ← set of subsets of A corresponding to the weakly connected components of the
precedence graph which are not completely scheduled in SGCH

2 AC ← ∅ // the set of activity blocks
3 forall weakly connected components c ∈ C do
4 Sc ← ∅ // a schedule representing the activity block of c
5 forall activities a ∈ c in topological order do
6 schedule a in Sc at the earliest possible time with respect to the precedence

constraints and resource consumptions of activities in c but ignoring all
other activities as well as release times and deadlines, and resource
availabilities

7 end
8 the release time of the activity block is mina∈c tra
9 AC ← AC ∪ {Sc}

10 end
11 forall activity blocks Sc ∈ AC ordered according to release time do
12 try to schedule the activity block at the earliest feasible time in S such that

activity release times and deadlines as well as resource constraints are satisfied
13 if no feasible time found then
14 return no solution
15 end
16 end
17 return S

We consider a local search component using a classical 2-exchange neighborhood on the
order of the activity blocks scheduled by ABCH. The local search is always performed
until a local optimum is reached.

As termination criterion for the GRASP a combination of a time limit and a maximal
number of iterations without improvement is used, details will be given in Section 5.8.
Moreover, in the first iteration of the GRASP the deterministic versions of GCH and
ABCH are used. This guarantees, especially for short executions, that the final result of
the GRASP is never worse than the one of the pure heuristics.

5.6.3 Bucket Refinement Strategies

In general, the bucket refinement is done by selecting one or more existing buckets and
splitting each of them at selected points into two or more new buckets. If a bucket consists
of only a single time slot, it cannot be subdivided further and becomes irrelevant for
subsequent splitting decisions. Buckets are never merged or extended in our approach, i.e.,
the number of buckets always strictly increases due to the refinement. This guarantees
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B1 B2 B3 B4 B5 B6 · · · Bβ

Tmin Tmaxτ2
1 τ4

1 τ4
2

B′
1 B′

2 B′
3 B′

4 B′
5 B′

6 B′
7 B′

8 B′
9 · · · B′

β

Figure 5.3: An example of a bucket refinement for τ2 = {τ2
1 }, τ4 = {τ4

1 , τ
4
2 }, and τ b = ∅

for b ∈ I(B) \ {2, 4}.

that ITBRA eventually terminates if at least one bucket is subdivided in each iteration
(cf. Theorem 5.1).

More formally, a refinement of some bucket Bb ∈ B is specified by an ordered set of
splitting points τ b = {τ b1 , . . . , τ bm} ⊆ {Bstart

b + 1, . . . , Bend
b } with τ b1 < . . . < τ bm. Based on

τ b we get |τ b|+1 new buckets replacing the original one: {Bstart
b , . . . , τ b1−1}, {τ b1 , . . . , τ b2−

1}, . . . , {τ bm, . . . , Bend
b }. For an example see Figure 5.3.

In general, the decisions to be made in the bucket refinement process are (1) which
buckets are to be refined, (2) at which positions, and (3) how many splits to apply. To
address these tasks we need criteria that identify promising bucket refinements. Most
importantly, a bucket refinement should affect the current optimal TBR solution in order
to guarantee that not the same bucket sequences as before comprise an optimal solution
again. In this way, it is ensured that we obtain a more refined solution in each iteration.
Furthermore, bucket splitting should be done in such a way that it is beneficial for the
heuristics, helping them to find good feasible solutions. Therefore, constraints that were
responsible for leaving activities unscheduled in the heuristics should be exploited to
prevent these situations from occurring again. Last but not least, we want to obtain a
dual bound for the SI-PTPSP that is as tight as possible. Hence, a bucket refinement
that likely has implications on TBR’s objective value is desirable.

Selecting Buckets to Refine

Observe that refining inner buckets of selected bucket sequences does not directly affect
the current TBR solution. Refining first and last buckets (if they are non-unit buckets),
however, ensures that the bucket sequence that contained them is not present in the
refined TBR and therefore cannot be used again. Furthermore, some of the newly
introduced buckets might not be part of feasible bucket sequences, resulting in a more
restricted scenario. Hence, we want to either split only first or last buckets of selected
sequences or both. If we use just one of these options, we need to resort to the other
whenever no progress can be made otherwise. During preliminary tests it turned out
that always using both boundary buckets for refinement is superior. Another question is
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for which bucket sequences the bounding buckets shall be refined. In the following we
propose different strategies that will be experimentally compared in Section 5.8.2.

All selected (ASEL). Using this strategy we refine all first and last buckets of all
bucket sequences selected in the current optimal TBR solution. This can, however, be
inefficient as it may increase the total number of buckets in each iteration substantially.
The following strategies will therefore only consider certain subsets.

All in GCH schedule (AIGS). We refine all first and last buckets of only those
bucket sequences whose corresponding activities could be feasibly scheduled by GCH.
The idea is to improve accuracy for the scheduled activities in order to reveal sources of
infeasibility with respect to the activities that could not be scheduled.

Violated due (VDUE). If GCH fails to schedule all activities, it provides a set of
activities AP that cannot be scheduled due to the precedence constraints and a set of
activities AR that cannot be scheduled due to the resource constraints. The basic idea
is to refine buckets related to activities in the schedule that immediately prevent the
activities in AP and AR from being scheduled. To identify these activities we consider
the partial schedule S generated by GCH.

Let AGCH = A \ (AR ∪ AP ) be the set of feasibly scheduled activities. Refinements
based on resource infeasibilities are derived from sets NR(a) = {a′ ∈ AGCH | Qa ∩Qa′ 6=
∅ ∧ {Sa′ , . . . , Sa′ + pa′ − 1} ∩ {STBR,min

a , . . . , STBR,max
a + pa − 1} 6= ∅} for a ∈ AR. For

each activity a′ ∈ NR(a) we refine the first and last bucket of the bucket sequence Ca′,c
in the TBR solution.

The activities potentially responsible for a ∈ AP having no valid starting time are the
activities a′ in AGCH such that (a, a′) ∈ P or (a′, a) ∈ P . However, we do not have
to consider all activities adjacent to a for the refinement. Let N−P (a) = {a′ | (a′, a) ∈
P ∧ a′ ∈ AGCH} and N+

P (a) = {a′ | (a, a′) ∈ P ∧ a′ ∈ AGCH} for all a ∈ AP . Then,
calculate:

NP (a) = arg max
a′∈N−P (a)

{Sa′ + pa′ + Lmin
a′,a} ∪ arg min

a′∈N−P (a)
{Sa′ + pa′ + Lmax

a′,a } ∪

arg min
a′∈N+

P (a)
{Sa′ − Lmax

a,a′ } ∪ arg max
a′∈N+

P (a)
{Sa′ − Lmin

a,a′}. (5.45)

We refine the first and last buckets of all bucket sequences of activities a′ ∈ NP (a) that
are selected in the current TBR solution. If no refinement is possible for bucket sequences
corresponding to a′ ∈ NR(a) ∪NP (a), we refine the first and last bucket of Ca,c instead.

Identifying Splitting Positions

Once a bucket has been selected for refinement, we have to decide at which position(s) it
shall be subdivided. Again, we consider different strategies. The challenge is to identify
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candidate positions that usually have a large impact on the subsequent TBR and its
solution while resulting in well-balanced sub-buckets.

Binary (B). Let Ca,c be the bucket sequence causing its first and last buckets to be
selected for refinement. We split the associated buckets in such a way that the interval of
potential starting and finishing times of the respective activity is bisected. In particular,
for bfirst(a, c) and blast(a, c), we consider the splitting positions d(Smin

a,c + Smax
a,c )/2e and

d(Smax
a,c + Smin

a,c )/2e + pa, respectively. We have to round up in case of non integral
refinement positions since it is not feasible to refine with respect to the bucket start.
Although this approach typically leads to well-balanced sub-buckets, it might often have
a rather weak impact on the subsequent TBR solution because the resulting buckets
might still be too large to reveal certain sources of infeasibility.

Start and end time (SET). Let a be an activity that could be scheduled by GCH
and Ca,c the corresponding bucket sequence in TBR whose first and last buckets shall be
refined. We split bfirst(a, c) at the activity’s starting time Sa and blast(a, c) at Sa + pa,
i.e., after activity a has ended according to GCH’s schedule. Thus, the specifically chosen
time assignment of GCH gets an individual bucket sequence in the next iteration.

Because this method is defined only for activities that could be scheduled by GCH, it is
applicable only in direct combination with AIGS. To overcome this limitation we resort
to B if SET is not applicable. The obtained strategy is denoted by SET+B.

Selecting Splitting Positions

The strategies introduced above may yield several splitting positions for a single bucket,
especially since the same bucket may be selected multiple times for refinement for different
activities. In principle, we want to generate as few new buckets as possible while ensuring
strong progress with respect to the dual bound and narrowing down the activities’ possible
starting time intervals. Splitting at all identified positions might therefore not be the best
option. In the following we propose different strategies to determine for each selected
bucket the splitting positions to be actually used from all positions collected in the
previous step. Let set τ b be this union of identified splitting positions for bucket b.

Union refinement (UR). We simply use all identified splitting positions. As already
mentioned, however, this approach may lead to a high increase in the number of buckets
and may therefore not be justified.

Binary refinement (BR). We use the splitting position τ ′ ∈ τ b closest to the center
of the bucket, i.e., τ ′ = arg mint∈τb

∣∣∣(Bstart
b +Bend

b )/2− t
∣∣∣; ties are broken according to

the order in which the splitting positions have been obtained. This approach clearly
tends to keep the number of buckets low but may increase the total number iterations
required by ITBRA to prove optimality.
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Figure 5.4: Overview of the proposed strategies to perform a bucket refinement and how
they can be combined.

Centered partition refinement (CPR). We first partition τ b into two sets at t =
(Bstart

b + Bend
b )/2. Let τ b,l = {t ∈ τ b | t ≤ t} and τ b,r = {t ∈ τ b | t > t}. To obtain up

to three new buckets we choose as splitting points the two “innermost” elements, i.e.,
we apply the refinement {max τ b,l,min τ b,r}. If one of the sets is empty, we apply only a
single split.

The idea of this partitioning is to give candidate positions close to either boundary of
the bucket equal chances of being selected. Splitting a bucket close to its end usually has
a strong influence on (non-unit) bucket sequences starting in the bucket while choosing a
splitting position close to the start typically has a higher impact on (non-unit) bucket
sequences ending in this bucket. Prioritizing splitting positions close to the center of the
bucket results in a more balanced subdivision.

Further Considerations

We also investigated bucket selection techniques based on critical paths, see Guerriero
and Talarico [84]. This means that we consider sequences of activities that directly define
the makespan. However, our experiments indicate that bucket refinements based on
this strategy do not work well. We therefore omit them, as well as a few other inferior
techniques, here and refer the interested reader to Jatschka [94] for further details.

Figure 5.4 provides an overview of the discussed bucket selection, splitting position
identification, and splitting position selection strategies.

5.7 Implementation Details

In this section, we discuss further algorithmic details that are important for an efficient
implementation of ITBRA and the associated heuristics.
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5.7.1 Preprocessing Activity Starting Times

To obtain the restricted set of possible activity starting times Ta we start by discarding
the starting times leading to resource infeasibilities:

Ta = {t ∈ T | tra ≤ t ≤ tda − pa,∀r ∈ Qa ∀t′ ∈ Ya(t) (t′ ∈Wr)}

The obtained set is then further reduced by taking also precedence relations into account.
In particular, only starting times respecting the following conditions are feasible:

∀(a, a′) ∈ P ∃t′ ∈ Ta′ (t+ pa + Lmin
a,a′ ≤ t′ ≤ t+ pa + Lmax

a,a′ )
∀(a′, a) ∈ P ∃t′ ∈ Ta′ (t′ + pa′ + Lmin

a′,a ≤ t ≤ t′ + pa′ + Lmax
a′,a ).

To achieve arc consistency with respect to them we can use constraint propagation similar
as in GCH. All these calculations can be performed based on interval arithmetic without
enumerating individual time slots, and thus in time independent of |T |.

Finally, the originally given release times and deadlines can be tightened according to
the pruned sets Ta, i.e., we set

tra ← minTa ∀a ∈ A,
tda ← pa + max Ta ∀a ∈ A.

5.7.2 Computing Bucket Sequences

Algorithm 5.5 calculates the bucket sequences Ca for an activity a ∈ A using the fact
that bucket sequences are uniquely determined by their earliest possible starting times
Smin
a,c . In particular, we can efficiently compute the next such time point that needs to be

considered from the previous one.

If the current bucket sequence consists of a single bucket, we proceed with the time point
ensuring that only pa− 1 time can be spent in the current bucket, see Line 12. Otherwise,
we try to find the earliest time point that guarantees that we start in bfirst and finish in
bucket blast + 1. If no such time point exists, we proceed with the earliest time slot in
bucket bfirst + 1 instead or stop if the activity’s deadline has already been reached. The
offset, denoted by δ, to the sought time point can be computed according to Line 16.

Iterating over the earliest starting times is linear in the number of buckets. The bucket
to which a certain time slot belongs can be determined in logarithmic time with respect
to the number of buckets. Hence, the overall time required by the algorithm is in
O(|B| log |B|). Note that the zmin

a,b,c and zmax
a,b,c values are only set for the first and last

buckets of the computed sequences since these values are always equal to the bucket size
for all inner buckets.

For Ca,c ∈ Ca let T s
a,c = {Smin

a,c , . . . , S
max
a,c } ∩ Ta. We can discard all bucket sequences for

which T s
a,c = ∅. Moreover, Smin

a,c and Smax
a,c can be tightened by setting Smin

a,c to min(T s
a,c)

and Smax
a,c to max(T s

a,c).
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Algorithm 5.5: Computing all bucket sequences for an activity
Input: activity a ∈ A
Output: set of bucket sequences Ca, associated values Smin

a,c , Smax
a,c , zmin

a,b,c, zmax
a,b,c

1 Ca ← ∅
2 t← tra
3 c← 1
4 while t ≤ tda − pa do
5 bfirst ← b : t ∈ Bb
6 blast ← b : (t+ pa − 1) ∈ Bb
7 Ca,c ← {Bbfirst , . . . , Bblast}
8 Smin

a,c ← t

9 if bfirst = blast then
10 zmin

a,blast,c ← pa

11 zmax
a,blast,c ← pa

12 t← Bend
blast − pa + 2

13 else
14 zmax

a,bfirst,c ← Bend
bfirst − t+ 1

15 zmin
a,blast,c ← Smin

a,c + pa −Bstart
blast

16 δ ← min
{
zmax
a,bfirst,c − 1,min

{
Bend
blast , t

d
a − 1

}
−
(
Smin
a,c + pa − 1

)}
17 zmin

a,bfirst,c ← zmax
a,bfirst,c − δ

18 zmax
a,blast,c ← zmin

a,blast,c + δ

19 t← Smin
a,c + δ + 1

20 end
21 Smax

a,c = Bend
bfirst − zmin

a,bfirst,c + 1
22 Ca ← Ca ∪ {Ca,c}
23 c← c+ 1
24 end
25 return Ca;
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5.7.3 Valid Inequalities

As already mentioned, we only consider the simplified version of the clique inequalities
(5.37) and (5.38) to avoid the overhead for computing maximal cliques. The number of
these inequalities grows significantly as the buckets get more fine-grained. Fortunately,
the final bucket partitionings turned out to be sufficiently coarse to add all inequalities
of this type to the initial formulation.

Recall that the number of path inequalities (5.39)–(5.41) is in general exponential. In
favor of keeping the model compact we avoided dynamic separation and consider only a
reasonable subset of these inequalities that is added in the beginning. Clearly, we want
to use a subset of the paths Π still having a strong influence on the relaxation. The idea
is to use all paths targeting vertices of the precedence graph with an out-degree of zero.
This guarantees that precedence relations are enforced more strictly between all sinks
and their predecessors. Since the sinks in the precedence graph are the nodes that will
define the makespan, this appears to be particularly important.

To this end, we consider the following subsets of Π with deg+(·) denoting the out-degree
of a node:

ΠLmin =
⋃

a,a′∈A:a6=a′
{ arg max
πa,a′∈Πa,a′

dLmin(πa,a′) | Πa,a′ 6= ∅,deg+(a′) = 0},

ΠLmax =
⋃

a,a′∈A:a6=a′
{ arg min
πa,a′∈Πa,a′

dLmax(πa,a′) | Πa,a′ 6= ∅,deg+(a′) = 0}.

We then add inequalities (5.39) and (5.41) only for paths πa,a′ ∈ ΠLmin and inequali-
ties (5.40) only for paths πa,a′ ∈ ΠLmax .

5.8 Computational Study

In this section we are going to present the computational results for the considered
algorithms with their variants. We start by giving details on the used test instances
and the motivation for their selection. Then, we provide details on the actually used
configurations. Finally, we present the obtained results.

5.8.1 Test Instances

The benchmark instances are motivated by the real world patient scheduling scenario
at cancer treatment center MedAustron that requires scheduling of particle therapies.
In general, each treatment session consists of five activities that have to be performed
sequentially. The modeled resources are the particle beam, the irradiation rooms, the
radio oncologists, and the anesthetist. In principle, resources are assumed to be available
for the whole time horizon except for short periods of time. The most critical resource is
the particle beam, which is required by exactly one activity of each treatment. The particle
beam is shared between three irradiation rooms, in which also additional preparation
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and follow-up tasks have to be performed. A radio oncologist is required for the first and
the last activity, respectively. In addition, some patients require sedation, which means
that the anesthetist is involved in all activities.

The main characteristic of our benchmark instances is the number of activities. We have
generated two groups of benchmark instances, each consisting of 15 instances per number
of activities α ∈ {20, 30, . . . , 100}. These two groups differ in the size of the interval
between release time and deadline of the activities and with it their difficulty.

Activities are generated treatment-wise, i.e., by considering sequences of five activities at
a time. The particle beam resource is required by the middle (third) activity. Activities
two to four demand one of the room resources selected uniformly at random. We assume
that dα/10e radio oncologists are available and select one of them for the first and last
activity. Moreover, 25 % of the treatments are assumed to require sedation and are
therefore associated with the anesthetist resource. We add for each consecutive activity
in the treatment sequence a minimum and maximum time lag. Hence, the resulting
precedence graph consists of connected components, each being a path of length five. In
the following we refer to these paths, which are essentially equivalent to the treatments,
also as chains. The processing times of the activities are randomly chosen from the set
{100, . . . , 10000}. Minimum lags are always 100 and maximum lags are always 10000.

It remains to set the release times and deadlines of the activities and the resources’
availability windows in such a way that the resulting benchmark instances are feasible
with high probability but not trivial. For this reason a preliminary naïve schedule is
generated from which release times and deadlines are derived. To this end, the activities
are placed treatment-wise in the tentative time horizon {0, . . . ,

∑
a∈A(pa + 10000)} by

randomly selecting a starting time for the first activity of each connected component.
For the subsequent activities a random time lag in {Lmin

a,a′ , . . . , L
max
a,a′ } is enforced. If a

determined starting time of an activity conflicts with an already scheduled one, the
connected component is reconsidered. From this preliminary schedule we derive tentative
release times and deadlines which are then scaled to receive a challenging instance. We
consider two variants to generate a group of “easy” and a group of “hard” instances. The
latter features larger release time deadline windows that make the respective instances
more challenging. For details on the used scaling factors see Jatschka [94].

Finally, the availability of the resources is restricted. Each resource has five to seven time
windows during which it is unavailable. The duration of these time windows is randomly
chosen from the set {700, . . . , 1500}. The positions of these unavailability windows are
chosen uniformly at random from the set {0, . . . , Tmax}.

To our best knowledge benchmark instances considering a comparable scenario do not
exist. Our newly introduced test instances are made available at http://www.ac.tuwien.
ac.at/research/problem-instances. An overview of the basic characteristics of the test
instances is provided in Table 5.1. Instance sets are named according to [e|h]α for the
“easy” (e) and “hard” (h) instances with α indicating the considered number of activities.
Each instance set consists of 15 instances.
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Set Tmax ρ Chains

e20 104 649 7 4
e30 138 808 8 6
e40 169 642 9 8
e50 198 386 10 10
e60 220 792 11 12
e70 244 279 12 14
e80 271 461 13 16
e90 293 110 14 18
e100 316 316 15 20

Set Tmax ρ Chains

h20 104 575 7 4
h30 137 745 8 6
h40 167 003 9 8
h50 201 269 10 10
h60 220 606 11 12
h70 244 788 12 14
h80 271 327 13 16
h90 289 278 14 18
h100 317 324 15 20

Table 5.1: Characteristics of the test instances grouped by difficulty and number of
activities. The subscripts indicate the number of activities per instance. Tmax denotes
the average scheduling horizon. The number of resources ρ and the number of chains is
the same for all instance of a set.

5.8.2 Computational Experiments

The test runs have been executed on an Intel Xeon E5540 with 2.53GHz using a time
limit of 7200 seconds and a memory limit of 4GB RAM. MILP models have been solved
using Gurobi 7 with a single thread. We used irace in version 2.1 for parameter tuning,
see [116].

The results of the test instances are grouped by difficulty and number of activities.
Unless otherwise indicated, computation times are stated using the median, for all other
properties we use the mean. Let pb denote the primal bound and db the dual bound
of the investigated algorithm. The starred versions denote the respective best bounds
obtained across all algorithms. Optimality gaps are computed by 100 · (pb − db∗)db∗.
Primal bounds are compared using 100 · (pb − pb∗)pb∗ and dual bounds are compared
using 100 · (db∗ − db)db∗.

We first deal with the parametrization of the primal heuristics used within ITBRA. Then,
we compare different combinations of refinement strategies for use within the matheuristic.
Finally, we compare ITBRA to a simple metaheuristic and the reference MILP models.

Parametrization of the Primal Heuristics

The GRASP from Section 5.6.2 can also be applied outside the context of the matheuristic,
thus, as standalone algorithm for SI-PTPSP, based on an empty initial schedule. We
start by explaining how the involved parameters are set since they serve as basis for
deriving appropriate values for use within the matheuristic.

The standalone GRASP terminates if a time limit of two hours is reached. We chose this
criterion primarily to match the time limit of the other approaches, a reasonable degree
of convergence is usually reached much earlier. Parameter kgrand

ABCH has been set to 8 for
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all benchmark instances. We applied irace to determine this value. However, it turned
out that the performance of our GRASP is very robust against changes to kgrand

ABCH.

For the GRASP embedded in ITBRA we imposed a time limit of 300 seconds and a
maximal number of 10000 iterations without improvement as termination criteria. The
latter is set high enough to be non-restrictive in most cases but avoid wasting time if
the algorithm already converged sufficiently. The values of the parameters kgrand

GCH and
kgrand

ABCH of the embedded GRASP have been determined experimentally starting with
the values from the standalone variant. For the parameter kgrand

GCH we first assumed a
value of kgrand

GCH = 5 · kgrand
ABCH as all activity chains in the test instances consist of five

activities. Afterwards, we fine-tuned these parameters by iterative adjustment. The
parameter kgrand

ABCH is set to 6 and kgrand
GCH is set to 35. The randomization itself is based

on a fixed seed. Tests showed that the chosen termination criteria provide a reasonable
balance between result quality and execution speed. Objective values obtained from
the embedded GRASP are on average only 0.21 % larger tan those obtained from the
standalone variant. The embedded GRASP provides on average solutions with 16.7 %
smaller objective value than ABCH.

The local search uses a best improvement strategy. Preliminary experiments confirmed
that this strategy works slightly better than a first improvement strategy since the aggre-
gation in terms of activity blocks typically results in only few moves with improvement
potential. For the same reason the local optimum is usually reached after a few iterations.
Thus, the overhead of the best improvement strategy is not that large. The solutions
obtained by the best improvement strategy, however, turned out to pay off in terms
of a better average quality. Tests with irace confirmed this observation, although the
differences are quite small. However, for instances with different properties this might
not be the case. For a larger number of activity blocks a first improvement strategy
might be superior.

Comparison of Bucket Refinement Strategies

Due to the large number of possible combinations of refinement techniques (including fur-
ther ones not presented in this work) we did not test every variant. Instead, we employed
a local search strategy to identify good options. Experiments with the matheuristic
terminate if optimality is proven or the time limit of two hours is reached.

We started with variant ASEL,B,UR and then step by step investigated the impact
of exchanging each of the three components, making use of statistical tests. It turned
out that the best refinement strategies are VDUE,B,CPR and VDUE,SET+B,CPR. In
addition to the these variants we also consider ASEL,B,UR and the best strategy based
on AIGS (AIGS,SET,CPR) in the following. The former mainly serves as naïve reference
strategy. The latter is used to discuss certain particularities of the bucket refinement
process. We shortly summarize the made observations here and refer to [94] for a more
detailed discussion.
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ASEL AIGS VDUE VDUE
B SET B SET+B
UR CPR CPR CPR

Set Gap [%] Opt t[s] Gap [%] Opt t[s] Gap [%] Opt t[s] Gap [%] Opt t[s]

e20 0.0 15 12 0.0 15 13 0.0 15 27 0.0 15 13
e30 0.6 14 219 0.6 14 36 0.0 15 91 0.6 14 66
e40 5.3 10 836 4.3 10 268 4.9 10 200 5.6 10 160
e50 1.1 14 189 1.1 14 220 0.0 15 183 0.0 15 105
e60 1.2 14 82 1.2 14 54 1.2 14 100 1.2 14 78
e70 2.1 8 6957 1.2 11 2664 0.4 13 742 0.3 14 528
e80 2.0 7 TL 1.7 9 1687 0.8 10 1197 0.4 13 266
e90 1.7 6 TL 1.6 8 4090 1.6 6 TL 1.5 9 1908
e100 0.9 5 TL 1.3 6 TL 0.7 7 TL 1.2 8 4740
summary 1.7 93 836 1.4 101 268 1.1 105 200 1.2 112 160
h20 0.0 15 17 0.0 15 10 0.0 15 22 0.0 15 20
h30 11.4 9 4341 8.0 10 1726 6.4 12 1860 6.4 12 985
h40 14.4 4 TL 10.7 6 TL 9.5 6 TL 8.9 7 TL
h50 18.3 2 TL 18.7 3 TL 17.0 4 TL 18.2 4 TL
h60 18.0 1 TL 17.5 3 TL 17.6 3 TL 16.4 4 TL
h70 21.9 0 TL 21.0 0 TL 21.2 0 TL 20.8 3 TL
h80 13.0 1 TL 12.9 1 TL 13.0 1 TL 12.6 2 TL
h90 11.1 1 TL 10.9 1 TL 10.4 1 TL 10.6 1 TL
h100 10.6 0 TL 10.6 0 TL 10.6 0 TL 10.6 0 TL
summary 13.2 33 TL 12.3 39 TL 11.7 42 TL 11.6 48 TL

Table 5.2: Comparison of selected bucket refinement strategies. We consider the average
optimality gaps (gap), the number of solved instances (opt) and the median computation
times (t). Entries marked with “TL” indicate that the experiment terminated due to the
time limit. The summary is obtained by aggregating over the preceding rows using the
same function as for the respective column.

We compared the four strategies in a pairwise fashion checking the assumption that one
strategy yields smaller gaps than the other by a one-tailed Wilcoxon signed-rank test with
a significance level of 0.05 per difficulty setting and in total. All considered algorithms
perform significantly better than the reference strategy on both instance groups and also
in total. The VDUE algorithms outperform AIGS on the easy set of instances and in
total. However, VDUE,B,CPR is not significantly better than the AIGS variant on the
hard set of instances. The VDUE variants perform quite similar and none can be shown
to work significantly better than the other.

Table 5.2 provides the results of the selected matheuristic variants. VDUE,SET+B,CPR
is clearly the dominant strategy when taking computation times into account but is
closely followed by VDUE,B,CPR. To discuss the results in depth we present more specific
characteristics of the matheuristic variants in Table 5.3. In particular, we consider the
increase in the number of buckets and the average computation time spent per iteration.
The former is considered as ratio between the final and the initial number of buckets.
Thereby a higher ratio indicates that more buckets were needed to solve the instance.

Reference strategy ASEL,B,UR generates significantly more buckets than the remaining
approaches. This typically keeps the number of iterations low. However, this is paid for
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ASEL AIGS VDUE VDUE
B SET B SET+B
UR CPR CPR CPR

Set |Binit| RatioB nit tit[s] RatioB nit tit[s] RatioB nit tit[s] RatioB nit tit[s]

e20 43 4.73 9 5 2.73 5 2 1.93 16 2 1.69 9 2
e30 44 7.30 9 85 5.77 9 62 2.89 24 17 2.91 16 22
e40 47 7.14 7 454 5.75 7 330 2.99 19 158 2.91 13 191
e50 45 8.53 7 152 10.13 9 147 2.83 15 25 2.87 12 33
e60 49 5.30 4 218 5.09 5 189 2.50 11 72 2.30 6 81
e70 49 10.18 6 573 8.25 7 395 3.59 18 89 3.52 12 103
e80 52 7.45 4 629 7.01 5 380 3.35 13 131 3.23 9 118
e90 52 6.94 3 809 6.08 4 565 3.54 11 270 3.53 8 235
e100 58 7.69 3 951 6.62 4 708 3.99 13 266 3.75 9 312
summary 48 7.25 6 431 6.38 6 309 3.07 16 114 2.97 10 122
h20 43 4.25 8 8 3.73 8 6 1.93 17 3 2.00 13 3
h30 44 6.84 9 418 6.13 9 295 3.08 23 121 3.37 19 109
h40 43 6.98 6 924 6.63 8 621 3.39 17 276 3.29 12 313
h50 48 5.27 3 1812 4.90 5 1160 2.93 11 743 3.06 9 820
h60 44 5.49 2 1926 6.22 5 1166 3.50 11 803 3.59 9 855
h70 48 4.86 1 2629 3.96 3 2611 3.08 7 1280 3.17 6 1332
h80 49 4.94 1 2362 4.97 3 1489 3.01 7 1043 3.15 5 1112
h90 54 4.97 1 2239 4.61 3 1538 3.04 6 1017 3.22 5 1161
h100 55 4.96 1 2617 4.79 3 1648 2.86 4 1287 3.02 4 1430
summary 48 5.40 4 1659 5.10 5 1170 2.98 11 730 3.10 9 793

Table 5.3: Comparison of the characteristics of selected bucket refinement strategies.
We consider the ratio between the number of buckets at the start and at the end of the
algorithm (ratioB), the average number of iterations (nit), and the average computation
time spent per iteration (tit). Column |Binit| provides the average number of buckets
contained in the initial bucket partitioning. The summary is obtained by aggregating
over the preceding rows using the same function as for the respective column.

excessively in terms of higher computation times per iteration due to the fast increase in
model size. In general, the number of buckets grows too fast and unguided to obtain a
successful approach.

One could expect AIGS to require the fewest buckets among the introduced strategies
due to the potentially small number of refinement candidates. However, using only
buckets related to activities scheduled by GCH turned out to be too restrictive. This
strategy causes some important splits to be delayed until the bucket partitioning is rather
fine-grained.

VDUE is again a strategy that can be expected to generate only few new buckets per
iteration. However, compared to AIGS their choice appears to be much more meaningful.
Nevertheless, splitting only few buckets leads to a high number of iterations. Fortunately,
this is not too problematic due to the small computation times per iteration. Identifying
splitting positions with the pure binary strategy leads to only few bucket splits which
proves to be beneficial. As SET+B typically selects more candidates, one could expect
this strategy to be inferior. However, this is compensated for by incorporating more
information obtained from the TBR solution.
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(a) VDUE,SET+B,CPR
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(b) VDUE,B,CPR
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(c) ASEL,B,UR

Figure 5.5: Comparison of the relation between computation time and increase in the
number of buckets for the same e40 instance when using different bucket refinement
strategies.

In general, it can be observed that the number of applied splits has a strong influence
on performance. However, the quality of the bucket refinement is also very important.
For an illustration see Figure 5.5. As mentioned before, the large number of buckets
generated by ASEL raises the computation time within a few iterations to a problematic
level, causing an overall bad performance. VDUE,B,CPR features the smallest increase
in buckets but requires more iterations to converge. Here it becomes clearly visible that
SET+B excels by incorporating more knowledge for making its decision.

Finally, we also want to discuss the properties of the remaining variants in excerpts.
Figure 5.6 shows a comparison of the average number of iterations and the average
final number of buckets for a broad selection of refinement strategies on the set of easy
instances with 30 activities. A successful approach is typically characterized by being
able to solve an instance by refining only relatively few buckets. Variants that generate
many buckets within few iterations usually do not work well. Observe that ASEL and
the AIGS variants are all located in the upper half of the figure. The superior strategies
are situated near the bottom. It is also clearly visible that SET+B allows to solve an
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Figure 5.6: Comparison of the average number of iterations and the average final number
of buckets on the set of e30 instances.

instance in fewer iterations than the pure binary variant. UR and BR are able to solve
an instance using fewer buckets and iterations than CPR. This is a peculiarity of the
small instances considered here that does not generalize to the larger ones.

Comparing ITBRA to Other Algorithms

We start by comparing the matheuristic to the standalone GRASP, see Table 5.4. ITBRA
is in general able to provide better results. However, when dealing with the most difficult
instances, it is sometimes the case that the matheuristic only completes very few iterations
and GRASP is able to compute a slightly better solution. As the number of activities
increases, ITBRA struggles more and more to improve upon the initially obtained primal
bound. This is caused by the originally high computation times per iteration that prevent
the algorithm from reaching a sufficient degree of convergence. Remember, however, that
ITBRA also puts much effort in determining good lower bounds which GRASP cannot
provide at all. In the following we investigate the quality of the dual bounds provided by
ITBRA in comparison to those obtained by DEF.

DEF was not able to find a primal solution for any instance but at least always computed
a dual bound. Table 5.5 provides the comparison with the matheuristic. The bounds
obtained from DEF are always worse than those found by ITBRA and turned out to be
particularly weak for the group of hard instances, which is a consequence of the looser
restrictions featured in this instance group.
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VDUE VDUE
B SET+B

CPR CPR GRASP

Set Gap [%] σ [%] t[s] Gap [%] σ [%] t[s] Gap [%] σ [%] Feas

e20 0.0 0.0 27 0.0 0.0 13 38.6 17.3 12
e30 0.0 0.0 91 0.6 2.1 66 28.0 16.0 14
e40 3.5 7.4 200 4.2 7.4 160 12.6 7.7 15
e50 0.0 0.0 183 0.0 0.0 105 7.8 8.0 15
e60 0.8 2.9 100 0.8 2.9 78 3.4 4.6 15
e70 0.4 1.6 742 0.3 1.0 528 3.8 3.9 15
e80 0.5 1.1 1197 0.1 0.4 266 2.2 3.7 15
e90 0.8 1.0 TL 0.7 1.0 1908 0.9 1.0 15
e100 0.2 0.5 TL 0.7 1.5 4740 1.3 2.1 15
summary 0.7 1.6 200 0.8 1.8 160 11.0 7.1 131
h20 0.0 0.0 22 0.0 0.0 20 23.3 12.7 12
h30 5.9 13.1 1860 5.9 13.1 985 34.9 11.9 15
h40 6.5 8.2 TL 5.9 8.1 TL 21.6 11.6 15
h50 6.6 7.5 TL 7.6 7.9 TL 10.6 7.1 15
h60 6.9 5.8 TL 5.6 5.5 TL 8.4 5.6 15
h70 2.7 3.2 TL 2.2 3.3 TL 4.5 5.9 15
h80 1.3 2.9 TL 0.9 2.0 TL 1.1 2.9 15
h90 2.0 3.4 TL 2.2 4.1 TL 2.6 6.0 15
h100 1.0 0.9 TL 1.0 0.9 TL 0.1 0.5 15
summary 3.7 5.0 TL 3.5 5.0 TL 11.9 7.1 132

Table 5.4: Comparison of the best found refinement strategies with GRASP. For each
algorithm the average gaps to the best primal bound (gap), the standard deviation of the
gaps (σ), and the median computation times (t) are presented. Entries marked with “TL”
indicate the termination of the experiment due to the time limit. For GRASP, we also
provide the number of instances for which a feasible solution could be computed (feas).
For the calculation of the gaps we considered only instances for which all algorithms
were able to compute a primal bound. The summary is obtained by aggregating over the
preceding rows using the same function as for the respective column.

The second MILP-based approach to which we compare ITBRA is TIF. As a result of
the extremely large time horizons and the memory restriction of 4GB RAM, none of
the TIF models even fit into the RAM. Therefore, we consider coarsened TIF models
by only taking a subset of the original time horizon into account. Let κ ∈ N>1 be the
coarsening measure and TIFκ the associated model. Then, the new time horizon T κ of
TIFκ is defined as T κ = {t ∈ T | t ≡ 0 (mod κ)}. Consequently, we obtain reduced sets
of feasible starting times T κa = Ta ∩ T κ for the activities a ∈ A. Reducing the number of
considered time slots decreases the size of the model, which leads to faster computation
times. However, an optimal solution to TIFκ is in general not optimal with respect to
the original problem due to the disregarded time slots, making it a heuristic approach. A
coarsened model might even become infeasible when discarding too many time slots.

Table 5.6 provides the results of the differently coarsened TIF models. We increase the
value of κ stepwise until all instances can either be solved within the time limit or do
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VDUE VDUE
B SET+B

CPR CPR DEF

Set Gap [%] σ [%] t[s] Gap [%] σ [%] t[s] Gap [%] σ [%] t[s]

e20 0.0 0.0 27 0.0 0.0 13 15.3 10.6 TL
e30 0.0 0.0 91 0.0 0.1 66 7.6 6.5 TL
e40 0.2 0.4 200 0.2 0.5 160 4.5 7.8 TL
e50 0.0 0.0 183 0.0 0.0 105 3.0 6.4 TL
e60 0.0 0.0 100 0.0 0.0 78 1.8 3.2 TL
e70 0.0 0.0 742 0.0 0.0 528 1.6 2.4 TL
e80 0.0 0.0 1197 0.0 0.1 266 1.0 1.7 TL
e90 0.0 0.1 TL 0.1 0.2 1908 1.5 2.8 TL
e100 0.0 0.1 TL 0.1 0.1 4740 2.0 1.8 TL
summary 0.0 0.1 200 0.0 0.1 160 4.3 4.8 TL
h20 0.0 0.0 22 0.0 0.0 20 19.6 11.4 TL
h30 0.3 1.1 1860 0.4 1.1 985 31.3 12.2 TL
h40 0.2 0.4 TL 0.1 0.2 TL 18.6 13.3 TL
h50 2.0 3.3 TL 1.6 1.5 TL 15.4 9.0 TL
h60 0.9 1.7 TL 1.3 2.1 TL 4.3 4.8 TL
h70 2.8 4.0 TL 2.9 3.9 TL 6.7 7.4 TL
h80 1.5 4.8 TL 1.4 4.9 TL 2.3 4.9 TL
h90 0.3 0.7 TL 0.3 0.6 TL 3.8 5.9 TL
h100 0.3 0.4 TL 0.3 0.4 TL 1.0 1.3 TL
summary 0.9 1.8 TL 0.9 1.6 TL 11.4 7.8 TL

Table 5.5: Comparison between ITBRA and DEF. For each algorithm we provide the
average gaps to the best dual bound (gap), the standard deviation of the gaps (σ) and
the median computation times (t). Entries marked with “TL” indicate the termination
of the experiment due to the time limit. The summary is obtained by aggregating over
the preceding rows using the same function as for the respective column.

not permit feasible solutions anymore. For κ < 100 the models fail to generate a primal
bound for almost all instances due to the memory or time limitations. Missing table
entries (marked with “-”) indicate that the coarsened model is not able to find a primal
bound for any instance of the corresponding set. For smaller instances the TIFκ models
are able to produce reasonable primal solutions. However, the quality of the solutions
deteriorates drastically as more time slots are disregarded. No TIFκ variant is able to
find a primal solution for all instances. When using a small value for κ, many instances
cannot be solved due to the time limit. For larger κ-values we can solve more instances
but at the expense of considerably larger gaps. Moreover, as we reduce the precision
even further, the models start to become infeasible. The number of infeasible instances
strongly increases for κ ≥ 10000 and the few instances that still permit feasible solutions
feature gaps of over 120 %. Therefore, further increasing the value of κ does not seem
meaningful. We draw the conclusion that there does not exist an appropriate value for κ
allowing a reasonable balance between computation time and result quality. Due to the
many missing entries we decided to use median instead of average gaps in the summary
table.
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According to our experiments the best variants are those with κ = 1000 and κ = 2000,
respectively. The former provides better solutions but the latter is able to find more
feasible solutions. For some instances the coarsened TIF variants even find better primal
solutions than the matheuristic. Especially for instance sets h40, h50, and h60 we obtain
a high number of good solutions such that also the median gaps are smaller here. Overall,
however, ITBRA still provides the better results. Moreover, recall that the TIFκ models
can only provide heuristic solutions and no dual bounds.

Last but not least, we also investigated the use of disaggregated precedence constraints
(see Artigues [2]) but this did not lead to significant improvements.

5.9 Conclusion

In this chapter we considered a matheuristic, referred to as ITBRA, intended to solve
an RCPSP that requires scheduling in high resolution. We proposed a relaxation for
the original problem based on aggregating consecutive integral time points into so-
called time-buckets. Exploiting this relaxation we constructed a matheuristic that
solves this relaxation based on iteratively refined bucket partitionings. Moreover, we
heuristically derive primal bounds incorporating information from the relaxed solution.
The matheuristic then attempts to close the gap between dual bounds obtained from
the relaxation and primal bounds determined by (meta-)heuristics. The crucial part of
this approach is how to determine the (more refined) bucket partitioning for the next
iteration. We considered a variety of strategies and compared them on a novel benchmark
set motivated by an application arising in particle therapy for cancer treatment.

Our experiments indicate that it is most critical to limit the increase in the number of
buckets. However, the quality of the applied bucket splits has a substantial impact on
the convergence speed. Strategy VDUE,SET+B,CPR turned out to work best in this
respect.

The matheuristic works better than a simple GRASP on all instance sets except for the
most difficult one. There it fails to complete a sufficient number of iterations to make
reasonable improvements to the primal bound.

ITBRA clearly outperforms the compact MILP formulations. The considered DEF
provides dual bounds for all investigated benchmark instances but no primal solutions.
In case of the considered TIF, on the other hand, not even the LP relaxation can be
solved due to its excessive model size. Variants of TIF based on a coarsened time horizon
are manageable but become infeasible once too many time points are disregarded. For
some instances good primal solutions could be obtained but there exists no coarsening
factor that works well in general by providing a good balance between model size and
result quality.

We primarily focused on MILP-based algorithms here. Another well-known exact tech-
nique often used to deal with scheduling problems is CP. In a more comprehensive study
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VDUE VDUE
B SET+B

TIF100 TIF200 TIF1000 TIF2000 TIF10000 CPR CPR

Set Gapmed [%] t[s] Gapmed [%] t[s] Gapmed [%] t[s] Gapmed [%] t[s] Gapmed [%] t[s] Gapmed [%] t[s] Gapmed [%] t[s]

e20 0.3 15 0.6 4 21.7 <1 24.0 <1 - - 0.0 27 0.0 13
e30 0.1 310 0.4 58 4.0 4 18.3 2 - - 0.0 91 0.0 66
e40 0.3 2940 0.5 698 3.8 40 12.3 6 - - 0.0 200 0.0 160
e50 0.2 409 0.4 113 1.9 17 6.4 5 - <1 0.0 183 0.0 105
e60 0.3 5569 0.4 839 2.4 52 4.7 21 - <1 0.0 100 0.0 78
e70 14.3 TL 0.3 2713 1.9 165 4.7 77 - <1 0.0 742 0.0 528
e80 - TL 0.3 5630 1.7 292 3.4 108 - <1 0.0 1197 0.0 266
e90 - TL - TL 0.9 555 3.0 327 - 1 0.0 TL 0.0 1908
e100 - TL - TL 1.8 652 4.0 263 - 6 0.0 TL 0.0 4740
summary 0.3 5569 0.4 839 1.9 52 4.7 21 - <1 0.0 200 0.0 160
h20 0.4 39 0.5 8 6.4 1 19.8 <1 - <1 0.0 22 0.0 20
h30 11.8 6106 1.0 1129 11.1 42 24.6 13 - - 0.0 1860 0.0 985
h40 35.4 TL 0.6 TL 5.5 227 13.7 65 - <1 3.9 TL 3.2 TL
h50 - TL - TL 0.0 2815 9.5 381 - <1 3.5 TL 3.9 TL
h60 - TL 8.9 TL 2.3 1532 7.0 940 - <1 9.2 TL 6.5 TL
h70 - TL - TL 14.3 TL 10.4 3052 82.5 <1 1.6 TL 0.0 TL
h80 - TL - TL 5.0 TL 12.1 TL 77.0 3 0.0 TL 0.0 TL
h90 - TL - TL 9.0 TL 14.2 TL 93.8 8 0.3 TL 0.3 TL
h100 - TL - TL 39.6 TL 22.7 TL - 16 1.2 TL 1.2 TL
summary - TL - TL 6.4 2815 13.7 940 - <1 1.2 TL 0.3 TL

TIF100 TIF200 TIF1000 TIF2000 TIF10000

Set Optc Feas Infeas TL ML Optc Feas Infeas TL Optc Feas Infeas TL Optc Feas Infeas TL Optc Feas Infeas TL

e20 15 15 0 0 0 15 15 0 0 15 15 0 0 13 13 2 0 0 0 15 0
e30 15 15 0 0 0 15 15 0 0 15 15 0 0 15 15 0 0 0 0 15 0
e40 9 12 0 6 0 12 14 0 3 15 15 0 0 15 15 0 0 0 0 15 0
e50 13 14 0 2 0 14 14 0 1 15 15 0 0 15 15 0 0 2 2 13 0
e60 9 9 0 6 0 14 15 0 1 15 15 0 0 15 15 0 0 6 6 9 0
e70 6 9 0 9 0 12 14 0 3 15 15 0 0 15 15 0 0 2 2 13 0
e80 3 3 0 12 0 9 11 0 6 15 15 0 0 15 15 0 0 7 7 8 0
e90 0 0 0 13 2 6 7 0 9 14 14 0 1 14 15 0 1 4 4 11 0
e100 1 1 0 8 6 4 5 0 11 13 15 0 2 15 15 0 0 2 2 13 0
summary 71 78 0 56 8 101 110 0 34 132 134 0 3 132 133 2 1 23 23 112 0
h20 15 15 0 0 0 15 15 0 0 15 15 0 0 15 15 0 0 2 2 13 0
h30 8 12 0 7 0 14 15 0 1 15 15 0 0 14 14 1 0 0 0 15 0
h40 4 9 0 11 0 8 12 0 7 15 15 0 0 15 15 0 0 5 5 10 0
h50 1 4 0 14 0 4 7 0 11 12 15 0 3 15 15 0 0 6 6 9 0
h60 0 0 0 15 0 2 9 0 13 9 15 0 6 14 15 0 1 6 6 9 0
h70 0 0 0 15 0 0 1 0 15 4 10 0 11 10 15 0 5 8 8 7 0
h80 0 0 0 11 4 1 4 0 14 5 11 0 10 4 15 0 11 9 9 6 0
h90 0 0 0 12 3 1 1 0 14 4 12 0 11 6 12 0 9 8 8 7 0
h100 0 0 0 1 14 0 0 0 15 1 8 0 14 0 11 0 15 5 5 10 0
summary 28 40 0 86 21 45 64 0 90 80 116 0 55 93 127 1 41 49 49 86 0

Table 5.6: Comparison of differently coarsened TIF models with ITBRA. We provide
the median gaps to the best primal bound of the original problem (gap) and the median
computation times (t). Missing entries (“-”) indicate that the coarsened model is not
able to find a primal bound for any instance of the corresponding set. Moreover, for
each instance set we indicate the number of optimally (optc) and feasibly (feas) solved
instances with respect to the coarsened model. Column infeas denotes the number of
instances with proven infeasible model. Finally, we indicate the number of instances
that terminated due to the time limit (TL) or the memory limit (ML), respectively. The
summary is obtained by aggregating over the preceding rows using the same function as
for the respective column.
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it appears to be interesting to compare ITBRA to a suitable CP approach. Moreover, it
might also be relevant to consider CP techniques within our matheuristic to improve its
performance. In general the (meta-)heuristics currently used within ITBRA are rather
simple. In particular, they suffer from the effects of fixing the time lags which prevents
them from considering a large variety of possible solutions. This is a crucial part of the
matheuristic for which more elaborated techniques should be identified and tested.

In the computational study we investigated the power of our algorithm on a rather specific
set of benchmark instances. The fundamental approach, however, is in principle much
more generally applicable to problems that require scheduling in high resolution. To verify
this a more diversified set of benchmark instances, originating from different application
areas, has to be considered. Of course this requires adjusted MILP formulations and
adapted as well as novel bucket refinement strategies.
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CHAPTER 6
Exact Approaches for the
Directed Network Design

Problem with Relays

In Chapter 3 we considered a column generation approach in conjunction with a preceding
graph transformation for the network design problem with relays (NDPR). Here we
consider its directed counterpart, the directed network design problem with relays
(DNDPR). Similar to the NDPR, the DNDPR seeks to enable communication of a given
set of commodity pairs within a network. To react to signal degradation, relays have to
be placed before exceeding a certain distance limit. Apart from being based on a directed
network, the main difference to the NDPR lies in the fact that commodities now have
to be connected by simple paths instead of walks. The necessity of preventing repeated
node visits makes the approach from Chapter 3 less appealing since detecting overlaps in
the priced paths incurs substantial overhead. Therefore, we pursue a different modeling
approach based on so-called layered graphs (LGs).

The idea of LGs is to extend a base graph along one or multiple dimension to make it
easier to formulate certain constraints. In terms of the DNDPR this is done by creating
for each node copies with respect to the distances at which it might be feasibly reached.
Node copies beyond the distance limit are omitted. The placement of relays is modeled
through additional arcs that connect a node copy at a higher layer to its copy at layer
zero. Therefore, a path in such an LG implicitly meets the distance restrictions and
specifies the nodes at which relays have to be placed. Visiting nodes more than once
can be prevented by restricting the total in-degree of all copies of each node. Through
the introduced node copies and the associated arcs, the LG is often substantially larger
than the input graph. Whether such an approach may succeed, strongly depends on the
number of node copies and the density of the input graph. Fractional distances impose
an additional difficulty in this respect. To handle this case more efficiently we first round
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6. Exact Approaches for the DNDPR

down the fractional values to restrict the problem to the integers. Potential infeasibilities
with respect to the original problem that might be present in the resulting relaxation
are addressed by cutting planes. In the following we investigate the effectiveness of our
approach on diverse sets of benchmark instances.

This chapter is currently submitted to Omega: The International Journal of Management
Science1:

M. Leitner, I. Ljubić, M. Riedler, and M. Ruthmair. Exact approaches for
the directed network design problem with relays. Omega, submitted

A preliminary version was presented at the 21st Conference of the International Federation
of Operational Research Societies2 in Québec, Canada.

6.1 Introduction

The DNDPR was introduced by Li et al. [110] for modeling the design of networks when
the maximum distance a commodity (i.e., signal) can travel is bounded from above by
some threshold. This distance limit can be surpassed by locating special, commodity
regenerating equipment (relays) at intermediate network nodes. Applications of this
problem arise in the design of transportation and telecommunication networks [110]. In
the latter, signals deteriorate after traveling a certain distance and thus there is the need
to regenerate them before a predefined maximum distance is exceeded. Thus, comparably
expensive regenerating devices (e.g., repeaters) need to be installed, see, e.g., Cabral
et al. [30], Chen et al. [35], Yıldız and Karaşan [175], in order to avoid signal loss or
falsification of the transmitted information.

In the design of optical telecommunication networks, for example, commodities correspond
to node pairs that need to communicate with each other, but the quality of the optical
signal degrades with the distance, so that after a certain distance the signal has to be
amplified, which is done by deploying regenerator devices at some nodes of the network
[36]. Edge costs are directly proportional to edge lengths (multiplied by some factor
that corresponds to cable costs per unit of distance) whereas relay costs correspond to
the installation and purchasing costs of regenerator devices. Such devices are usually
very expensive (see, e.g., [126] for further details). In the design of fiber optic networks,
wavelength division multiplexing (WDM) is used to divide the bandwidth of a single fiber
into different wavelength channels so that there is no interference between transmissions
on different wavelengths. A signal from a source node to its destination is sent using
the wavelength routing through a lightpath which is an end-to-end connection over a
dedicated communication channel (circuit) that traverses one or more links and uses one
WDM channel per link. The circuit guarantees the full bandwidth of the channel and

1https://www.journals.elsevier.com/omega
2http://ifors2017.ca
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allows for a data rate of 10 or even 40 gigabits per second, see, e.g., [129] for further
details. When deploying regenerators in such a network, the signal is converted from
optical to electric and back to optical, each time a regenerator is used in the routing
path from a source to its destination (such paths are commonly referred to as translucent
lightpaths). When translucent lightpaths are not allowed to contain cycles (which can be
due to the signal interference, or due to the fact that each lightpath has to be uniquely
defined per source-destination pair), one has to explicitly impose simple paths for the
wavelength routing.

The DNDPR is defined on a digraph G = (V,A, c, w, d) with relay costs c : V → Q≥0, arc
costs w : A → Q≥0, and arc distances d : A → Q≥0. Moreover, a distance bound λmax
and a set of commodity pairs K are given. For each commodity (u, v) ∈ K, nodes u and
v are called its source and target, respectively. The goal of the DNDPR is to place relays
on a subset of the nodes V ′ ⊆ V and to select a subset of arcs A′ ⊆ A such that:

1. The subgraph induced by A′ contains for each (u, v) ∈ K a directed (simple) path
from u to v not exceeding the distance limit between u and the first relay, any two
consecutive relays, and the last relay and v, and

2. the cost induced by installing relays and arcs, defined as∑
v∈V ′

cv +
∑
a∈A′

wa

is minimized.

A problem instance and its optimal solution are given in Figure 6.1.

The DNDPR is closely related to the previously introduced and well-studied NDPR, see
Chapter 3. The major difference between the two problems is the way how routing paths
are defined: whereas only simple paths are allowed in case of the DNDPR, solutions of the
NDPR may contain cycles. This latter property renders NDPR solutions infeasible when
it comes to the design of translucent optical networks. For an example see Figure 6.2.

To simplify notation, we will in the following use S = {u | (u, v) ∈ K} to denote the
set of commodity sources and T u = {v | (u, v) ∈ K} to denote all targets that need to
be reached from source u ∈ S. Additionally, δ−(W ) = {(j, i) | i ∈ W, (j, i) ∈ A} and
δ+(W ) = {(i, j) | i ∈ W, (i, j) ∈ A} will be used to denote the sets of incoming and
outgoing arcs for node sets W ⊂ V . By slightly abusing notation, we write δ−(i) and
δ+(i) instead of δ−({i}) or δ+({i}) for singletons W = {i}.

Related work. The DNDPR has been introduced in Li et al. [110] where a compact
node-arc formulation and an arc-path formulation with an exponential number of variables
have been proposed. Two branch-and-price (B&P) algorithms based on the latter
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Figure 6.1: Example instance with two commodities K = {(0, 3), (0, 4)} and λmax = 7.
Arc distances are provided next to the arcs, relay and arc costs are given in parentheses.
Relays and arcs used in the optimal solution are marked bold and blue.

formulation have been developed that differ in the way the pricing subproblem is solved.
A metaheuristic based on tabu search has been recently proposed in Li et al. [111].

Several related studies consider the undirected variant of the problem, i.e., the NDPR.
The NDPR has been introduced in Cabral et al. [30] where the proposed B&P approach
turned out to be quite inefficient (even for small instances) due to the high complexity
of the associated pricing subproblem. Therefore, Cabral et al. [30] have focused on
construction heuristics that were able to tackle larger problem instances in comparably
short time. More efficient B&P approaches for the NDPR have been given in in Chapter 3
and Yıldız et al. [177]. In addition to these exact approaches, several metaheuristics have
been developed for approximately solving larger problem instances: genetic algorithms
(Kulturel-Konak and Konak [102], Konak [100]), tabu search (Lin et al. [113]), and
variable neighborhood search (Xiao and Konak [173]).

Existing methods for the NDPR cannot by applied in a straightforward way to the
DNDPR, since NDPR solutions may contain cycles (or even traverse a single edge in
both directions for one commodity). Besides, asymmetric arc costs and arcs existing in a
single direction only would require some adaptations.

Node-arc formulation. The node-arc formulation (6.1) introduced in Li et al. [110]
is used for comparison purposes in our computational study. Therefore, we briefly
summarize it in the following. Its basic idea is to keep track of the distance from the last
relay (or the source of the respective commodity) in order to forbid subpaths exceeding
the distance bound. Four sets of variables are used. Binary arc and node variables
xa, ∀a ∈ A, and yi, ∀i ∈ V , mark the selected arcs and relays, respectively. For each
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Optimal acyclic solution (cost=11) Optimal cyclic solution (cost=9)

Figure 6.2: Symmetric instance together with an acyclic and a general solution for
λmax = 4 and K = {(0, 3)}. Arc distances are provided next to the arcs, relay and arc
costs are given in parentheses. Relays and arcs used in the optimal solution are marked
bold and blue. Note that in the acyclic solution we place a relay at node 1, while in the
cheaper cyclic solution we place a relay at node 2.

commodity k = (u, v) ∈ K and node i ∈ V , continuous variable vki tracks the distance
of node i to the preceding relay or the source u of that commodity (in case the path
from u to i does not contain relays). Finally, multi-commodity flow variables fka , ∀k ∈ K,
∀a ∈ A, are used to enforce connectivity of each commodity pair. Formulation (NA)
reads as follows:

min
∑
i∈V

ciyi +
∑
a∈A

waxa (6.1a)

s.t.
∑

a∈δ+(i)
fka −

∑
a∈δ−(i)

fka =


1 if k = (i, j)
−1 if k = (j, i)
0 otherwise

∀k ∈ K,∀i ∈ V, (6.1b)

fkij ≤ xij ∀k ∈ K, ∀(i, j) ∈ A, (6.1c)
vki + dijf

k
ij − λmax(1− fkij + yj) ≤ vkj ∀k ∈ K, ∀(i, j) ∈ A, (6.1d)
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vki + dijf
k
ij ≤ λmax ∀k ∈ K, ∀(i, j) ∈ A, (6.1e)

0 ≤ vki ≤ λmax(1− yi) ∀k ∈ K,∀i ∈ V, (6.1f)
vu,vu = 0 ∀(u, v) ∈ K, (6.1g)
fkij ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A, (6.1h)
yi ∈ {0, 1} ∀i ∈ V, (6.1i)
0 ≤ xij ≤ 1 ∀(i, j) ∈ A. (6.1j)

Flow conservation constraints (6.1b) together with linking constraints (6.1c) ensure the
existence of a directed path from u to v for each commodity pair (u, v) ∈ K. Constraints
(6.1d) ensure that the value of variable vkj is at least the distance from the last relay
or from the source, respectively, along the path connecting commodity k ∈ K. The
distance limit is enforced using inequalities (6.1e) and (6.1f). The latter inequalities
also link distance and relay variables. Observe that binary (rather than continuous)
flow variables are needed to prevent flow splittings which would yield incorrect values
of distance variables v. The main weakness of this model is its relatively weak linear
programming (LP) relaxation bound, resulting from the (potentially) large coefficient
λmax required in constraints (6.1d).

Overview and contributions. Two mixed integer linear programming (MILP) for-
mulations that are based on considering one LG per source are introduced in Section 6.2.
The first one is a flow-based formulation with a pseudo-polynomial number of variables
and constraints, whereas the second one uses an exponential number of connectivity
constraints. Fractional distance values are handled efficiently by augmenting both models
with an exponentially-sized set of infeasible path constraints. Subsequently, different
families of symmetry breaking constraints and valid inequalities are introduced. Sec-
tion 6.3 describes components and variants of a branch-and-cut (B&C) algorithm based
on the second formulation, introduces preprocessing routines, and details a heuristic
used to obtain initial solutions. Benchmark instances used in our study are described in
Section 6.4 where we also verify the effectiveness of our algorithms by extensive compu-
tational experiments. Finally, implications of our study to the practice of management
are highlighted in Section 6.4.6.

6.2 Formulations
Properties of feasible solutions. In the DNDPR, the routing of each individual
commodity is done following a simple path, see [110]. Hence, the in-degree of each node
in the routing path is at most one. An optimal solution is a union of all routing paths
over all commodity pairs, and hence, the in-degree of a node in this solution can be
as large as the number of commodities. On the other hand, if all commodities share a
common source node, then it is not difficult to see that there always exists an optimal
solution in which the in-degree of each node is at most one, i.e., such that the set A′ of
selected arcs forms an arborescence.
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Theorem 6.1. If S = {u}, there exists an optimal DNDPR solution which corresponds
to a Steiner arborescence rooted at u, whose leaves are a subset of the nodes from T u.

Theorem 6.1 enables the interpretation of an optimal solution as a union of several
Steiner arborescences (one per source). It does not help, however, to handle the distance
constraints and the installation of relays to respect the threshold λmax. To deal with
these issues, we propose to exploit LGs introduced below.

The new formulations presented in this chapter use extended, so-called LGs. The basic
idea of LGs is to introduce multiple copies for each node and arc of an original graph
along one or multiple dimensions (e.g., time or distance) to implicitly model certain
constraints and to obtain stronger mathematical models. In our case, LGs are used
to encode the distances. If all distance values are integral, only feasible paths with
respect to the distance bound λmax are generated. On the contrary, paths (slightly)
violating the distance bound may be contained in our LGs in the more general case of
fractional distance values. These paths will be excluded from solutions via additional
inequalities. Picard and Queyranne [137] were among the first to consider LGs and
used them for solving the time-dependent traveling salesman problem. More recent
successful applications of LGs are, e.g., given in Godinho et al. [75], Gouveia et al.
[79, 80, 81], Gouveia and Ruthmair [77], Ljubić and Gollowitzer [114], Ruthmair and
Raidl [155]; see Gouveia et al. [82] for a survey on this topic. Using a relaxed LG and
handling infeasible paths by cutting planes is similar to the approach used in Dash et al.
[48], however, we use a static relaxed LG instead of an iteratively derived one.

For the DNDPR, we construct layered digraph GL = (VL, AL) whose node set VL is
recursively defined by sets V l

L, l ∈ {0, 1, . . . , λmax}. Thereby, VL := V λmax
L and each subset

V l
L contains all nodes that can be reached with a total distance of at most l starting from

a node at layer zero, i.e.,

V 0
L = {i0 | i ∈ V }
V l

L = {jl | im ∈ V l−1
L , (i, j) ∈ δ+(i),m+ bd(i, j)c = l} ∪ V l−1

L .

Arc set AL connects layered node copies il, jm ∈ VL for which (i, j) ∈ A and the difference
of the layers corresponds to the arc distance rounded down to the nearest integer, i.e.,
m− l = bd(i, j)c. Furthermore, arcs (il, i0) are included for each node il ∈ VL that is not
at layer zero, i.e., when l > 0. As the latter arcs correspond to using a relay, we will call
them relay arcs. Formally, arc set AL = Aa

L ∪Ar
L where Ar

L is the set of relay arcs and
Aa

L is the set of arcs derived from the original graph:

Ar
L = {(il, i0) | il ∈ VL, l > 0}

Aa
L = {(il, jm) | il, jm ∈ VL, (i, j) ∈ A, bd(i, j)c = m− l}.

Figure 6.3 shows the LG corresponding to the instance given in Figure 6.1 as well as
the embedding of an optimal solution in the LG. Thereby, relay arcs Ar

L are depicted in
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dashed lines and the remaining arcs in solid lines. Bold blue arcs indicate those that are
included in the considered solution.

00 10 20 30 40 50

52

33 43 53

24 44

35 45 55

36 46 56

17 57

Figure 6.3: Layered graph GL = (VL, AL) for λmax = 7 corresponding to the instance in
Figure 6.1. The optimal solution is marked bold and blue. Dashed lines indicate relay
arcs.

6.2.1 Multi-commodity Flow Formulation

The layered multi-commodity flow formulation (LMCF) is based on flow variables fuva ≥ 0,
∀(u, v) ∈ K, ∀a ∈ AL. As in the node-arc formulation, variables yi ∈ {0, 1}, ∀i ∈ V ,
indicate whether a relay is placed at some node and variables xa, ∀a ∈ A, indicate
whether an arc is included in the solution. Observe that for (u, v) ∈ K, flow variables fuv
corresponding to arcs leaving any copy of target node v can be fixed to zero. Similarly,
arcs incident to a copy of source node u on a non-zero layer can be set to zero. Instead
of formulating the corresponding constraints we omit variables with respect to these arcs
by using the notation

ÂuvL =
⋃

ul∈VL:l>0
δ+(ul) ∪

⋃
ul∈VL

δ−(ul) ∪
⋃

vl∈VL

δ+(vl)

and deriving a formulation using flow variables fuva for arcs from AL \ ÂuvL only, given a
commodity (u, v) ∈ K. Formulation (LMCF) reads then as follows:

min
∑
i∈V

ciyi +
∑
a∈A

waxa (6.2a)

s.t.
∑

a∈δ+(u0)
fuva = 1 ∀(u, v) ∈ K, (6.2b)
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∑
a∈δ−(il)

fuva −
∑

a∈δ+(il)
fuva = 0 ∀(u, v) ∈ K,∀il ∈ VL : i /∈ {u, v}, (6.2c)

∑
vl∈VL

∑
a∈δ−(vl)\Ar

L

fuva = 1 ∀(u, v) ∈ K, (6.2d)

∑
il∈VL

∑
a∈δ−(il)\Ar

L

fuva ≤ 1 ∀(u, v) ∈ K,∀i ∈ V \ {u, v}, (6.2e)

∑
a=(il,i0)∈Ar

L

fuva ≤ yi ∀(u, v) ∈ K,∀i ∈ V, (6.2f)

∑
a=(il,jm)∈Aa

L

fuva ≤ xij ∀(u, v) ∈ K, ∀(i, j) ∈ A, (6.2g)

∑
a∈σ

fuva ≤ |σ| − 1 ∀(u, v) ∈ K,∀σ ∈ Pinf , (6.2h)

yi ∈ {0, 1} ∀i ∈ V, (6.2i)
xa ∈ {0, 1} ∀a ∈ A, (6.2j)
fuva ∈ {0, 1} ∀(u, v) ∈ K,∀a ∈ AL \ ÂuvL . (6.2k)

For each commodity, flow balance constraints (6.2b)–(6.2d) together with linking con-
straints (6.2g) ensure connectivity between the source and exactly one copy of the target
node. Inequalities (6.2e) ensure that this connection contains at most one copy of
each intermediate node, i.e., that the associated path in the original graph is simple.
Constraints (6.2f) link the relay arcs to the relay variables. Recall that all fractional
distances are rounded down in the construction of GL. As a consequence GL may contain
paths whose length exceeds the distance limit λmax. Such paths are clearly infeasible, as
they do not contain any relay arc. Let Pinf denote this set of infeasible paths that may
occur in the LG. To forbid the usage of paths from Pinf , we introduce infeasible path
constraints (6.2h), cf. Ascheuer et al. [6]. These constraints, which are only considered if
arcs with fractional distance values exist, are separated dynamically, see Section 6.3.3 for
details.

6.2.2 Cut Formulation

In contrast to formulation (LMCF) which considers one variable for each commodity pair
and LG arc, the layered cut formulation (LCUT) uses one LG variable zua ∈ {0, 1} for each
source u ∈ S and LG arc a ∈ AL. By means of an exponential number of connectivity
constraints, each set of variables zu will model an arborescence rooted at u ∈ S that
reaches all targets v ∈ T u, cf. Gouveia et al. [80] where a similar idea has been used in
the context of a Steiner tree problem with multiple root nodes.

Similar to formulation (LMCF), for u ∈ S, we can eliminate zu variables associated to
arcs incident to a copy of source node u on a non-zero layer. In other words, for a given
u ∈ S, we define

ÂuL =
⋃

ul∈VL:l>0
δ+(ul) ∪

⋃
ul∈VL

δ−(ul)
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and work only with zua variables from AL \ ÂuL. Notice that, in contrast to the formulation
(LMCF), the arcs leaving target nodes cannot be removed from this model. The (LCUT)
formulation reads as follows:

min
∑
i∈V

ciyi +
∑
a∈A

waxa (6.3a)

s.t.
∑

a∈δ−(W )
zua ≥ 1 ∀u ∈ S, ∀W ⊆ VL \ {u0}, ∃v ∈ T u : {vl ∈ VL} ⊆W, (6.3b)

∑
il∈VL

∑
a∈δ−(il)\Ar

L

zua = 1 ∀u ∈ S, ∀i ∈ T u, (6.3c)

∑
il∈VL

∑
a∈δ−(il)\Ar

L

zua ≤ 1 ∀u ∈ S, ∀i ∈ V \ (T u ∪ {u}), (6.3d)

∑
a=(il,i0)∈Ar

L

zua ≤ yi ∀u ∈ S,∀i ∈ V, (6.3e)

∑
a=(il,jm)∈Aa

L

zua ≤ xij ∀u ∈ S, ∀(i, j) ∈ A, (6.3f)

∑
a∈σ

zua ≤ |σ| − 1 ∀u ∈ S, ∀σ ∈ Pinf , (6.3g)

yi ∈ {0, 1} ∀i ∈ V, (6.3h)
xa ∈ {0, 1} ∀a ∈ A, (6.3i)
zua ∈ {0, 1} ∀u ∈ S, ∀a ∈ AL \ ÂuL. (6.3j)

Connectivity constraints (6.3b) state that every subset of nodes containing all copies
of some target node must be connected to the corresponding source. As there exist
exponentially many of these constraints, we will add them on the fly in a cutting plane
approach, see Section 6.3.3 for details. Constraints (6.3c) and (6.3d) prevent nodes from
being visited more than once, i.e., each target node is visited exactly once and each
non-target node is visited at most once. Thus, together with constraints (6.3b) they
ensure that, for every source u ∈ S, the subgraph induced by all arcs a ∈ AL such that
zua = 1 is an arborescence rooted at u0 that contains exactly one copy of each node
v ∈ T u. The LG variables are linked to the relay node and arc variables on the original
graph by inequalities (6.3e) and (6.3f), respectively. Infeasible path constraints (6.3g) are
considered in the case of fractional distances to ensure that paths violating the distance
constraint are not used, see Section 6.3.3 for their separation.

In the upcoming polyhedral comparison, we compare the strength of the two proposed
formulations, concerning the quality of their LP relaxation bounds. In doing so, we
ignore infeasible path constraints (6.2h) and (6.3g), as these valid inequalities are only
used for cutting off infeasible integer solutions in case of fractional distances and not
for strengthening the LP relaxation of our models. Additionally, since the two sets of
inequalities are defined in different variable spaces it is not obvious how they relate to
each other in this context.
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Theorem 6.2. Formulations (LMCF) and (LCUT) without infeasible path constraints
(6.2h) and (6.3g), respectively, are equally strong, i.e., the LP relaxation values of the
two models coincide.

Proof. Let (x∗,y∗, f∗) be an optimal LP solution of the (LMCF) model. We show how to
construct a feasible solution (x̃, ỹ, z̃) of the (LCUT) model with the same solution value.
We set x̃ = x∗, ỹ = y∗, and

z̃ua = max
(u,v)∈K

fuva ∀u ∈ S, ∀a ∈ AL.

Following this definition, it is not difficult to see that flow-based capacity constraints
(6.2f) and (6.2g) imply constraints (6.3e) and (6.3f), respectively. Consider a node u ∈ S.
The flow-balance constraints (6.2d) are slightly different from the classical ones, due to
the aggregation of the incoming flow at the target node v ∈ T u. In this constraint the
incoming flow is aggregated over all copies vl ∈ VL of the target node v ∈ T u. This can be
interpreted as a flow-balance constraint in a modified LG, say GuvL , in which a target node
tv is introduced for each node v ∈ T u, and arcs (vl, tv) with infinite capacity are added to
this graph. Hence, in such a modified graph, the flow-balance constraints (6.2b)–(6.2d)
guarantee existence of a path from u0 to tv, for each t ∈ T u. By the max-flow min-cut
theorem, this implies that cut-set inequalities (6.3b) are satisfied. Degree-constraints
(6.3c) and (6.3d) are not satisfied by an arbitrary flow f∗, but the flow can be rerouted
(without changing the capacities given by x∗ and y∗) so that these constraints are always
satisfied.

Consider now an optimal LP solution (x̃, ỹ, z̃) of the (LCUT) model. For each commodity
pair (u, v) ∈ K, we consider the graph GuvL described above, with arc capacities capa
defined as:

capa = z̃ua , ∀a ∈ AL capa =∞,∀a = (vl, tv), vl ∈ VL.

By the max-flow min-cut theorem applied to GuvL , it follows that for each (u, v) ∈ K,
one can send one unit of flow from u0 to tv in GuvL using z̃ (and hence ỹ and x̃) as
capacities. Since fuva ≤ z̃ua holds for each a ∈ AL and (u, v) ∈ K, constraints (6.2e)–(6.2g)
are implied by (6.3d)–(6.3f) which concludes the proof.

We also propose to extend the (LCUT) model by considering flow-balance constraints (6.4).
For each source u ∈ S, they ensure that an outgoing arc of LG node il, i /∈ T u ∪ {u},
has to be used in the arborescence associated to source u if at least one incoming arc is
chosen as well:∑

a∈δ−(il)
zua ≤

∑
a∈δ+(il)

zua ∀u ∈ S, ∀il ∈ VL : i /∈ T u ∪ {u}. (6.4)

While the flow-balance constraints are not necessary to ensure validity of (LCUT), there
exist cases in which they strengthen the associated LP relaxation. Figure 6.4 shows one
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of the rather typical situations in which this happens due to involved relay arcs. By
adding flow-balance inequalities, the LP solution becomes integral and corresponds to
the optimal solution shown in Figure 6.3. Observe that the two incoming arcs to node 57
belong to different variable sets in the corresponding LP solution to (LMCF) for which
reason similar constraints are not strengthening there. Besides strengthening the LP
relaxation of (LCUT), the flow-balance constraints also help to improve convergence by
reducing the number of violated connectivity cuts (6.3b).
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Figure 6.4: Optimal LP solution of (LCUT) on the LG for the input in Figure 6.1 without
flow-balance constraints. Only arcs with associated non-zero variables are shown, labeled
with the respective LP values. The violation of flow-balance constraints at node 57 is
marked bold and red.

6.2.3 Symmetry Breaking Constraints

By construction of the LG, it can sometimes happen that multiple feasible embeddings
of rooted arborescences, one for each u ∈ S, exist. Each such embedding results in the
same solution in the original graph, and hence, symmetries may be introduced in our
(LMCF) and (LCUT) models. Since these symmetries may deteriorate the performance of
branch-and-bound (B&B) based approaches, we next introduce two families of symmetry
breaking constraints. One typical situation arises if the routing paths of two different
commodities contain a common node that needs to be used as a relay by only one of
them. Let i ∈ V be a node at which a relay has to be installed and let (u, v) ∈ K be a
commodity that does not need to use i as a relay along its routing path. Assume that the
distance to the previous relay (or the commodity source) of i along the path connecting
u and v is equal to l. Furthermore, let (i, j) be the outgoing arc of node i on this path.
Then, two feasible routing paths in GL exist:
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1. If the relay at i is not used, then LG arc (il, jl+dij ) belongs to the arborescence
rooted at u, and is used to connect u0 to some copy of v in VL;

2. Alternatively, if the relay at i is used, the subpath given by {(il, i0), (i0, jdij )} is
used instead.

To get rid of symmetries implied by such ambiguities, we force that in every feasible
routing path installed relays are used whenever possible.

In case of (LCUT), this is enforced by constraints (6.5) that forbid the use of non-relay
arcs emanating from some node il, l > 0, if a relay is installed at node i:∑

a=(il,jm)∈AL\Ar
L:l>0

zua ≤Mu
i · (1− yi) ∀u ∈ S, ∀i ∈ V, i 6= u. (6.5)

Thereby, Mu
i is a (tight) upper bound on the out-degree of node i in the arborescence

rooted at u ∈ S which is defined as follows:

Mu
i =

{
min(|T u|, |δ+(i)|) if i /∈ T u

min(|T u| − 1, |δ+(i)|) otherwise.

For (LMCF) we use the stronger variant of the above symmetry breaking constraints∑
a=(il,jm)∈AL\Ar

L:l>0
fuva ≤ 1− yi ∀(u, v) ∈ K, ∀i ∈ V, i 6= u (6.6)

that exploit the fact that the binary flow variables are disaggregated per commodity.
Thus, the outflow of each node is at most one.

6.3 Algorithmic Framework
This section describes all implementation details that are relevant to ensure a good
performance of our approaches. These include: (1) preprocessing techniques that aim to
reduce the number of variables that have to be considered, (2) further valid inequalities,
(3) the separation routines of all families of inequalities that are added dynamically, (4)
customized branching priorities, and (5) a heuristic to obtain initial solutions.

6.3.1 Preprocessing

Reductions may be possible for nodes i ∈ V whose in-degree or out-degree is equal to
one at some layer. If δ−(il) = {(jp, il)} for a node il ∈ VL, i /∈ S, we can remove a
possibly existing outgoing arc (il, jm) and all associated variables since using it would
induce a cycle of length two in the original graph. Similarly, incoming arcs (jp, il) can
be eliminated if δ+(il) = {(il, jm)} in case i /∈ T . In case a non-source node becomes
unreachable (i.e., all incoming arcs are removed), this node and all its outgoing arcs
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can be removed as well (cf. simple path reductions introduced in De Boeck and Fortz
[49]). Similarly, a non-target node without outgoing arcs can be removed together with
all its incoming arcs. Additional reductions can be made if nodes are unreachable from
a particular target, or have no remaining flow or layered arc variables associated to
incoming (outgoing, respectively) arcs for a particular commodity or source node. In
these cases, we eliminate the flow variables associated with that commodity or the layered
arc variables associated with some source, respectively. These procedures are iteratively
applied in several elimination rounds until no further reductions occur.

6.3.2 Valid Inequalities

In this section, we describe two further families of valid inequalities for formulation
(LCUT). Though both are implied by the LG connectivity constraints (6.3b) considering
them before separating the latter inequalities typically turns out to be beneficial for the
performance of our B&C approaches.

Connectivity constraints on G. Connectivity constraints (6.7) on the original graph
are analogous to inequalities (6.3b) on the LG:∑

a∈δ−(W )
xa ≥ 1 ∀W ⊂ V : ∃(u, v) ∈ K, u /∈W, v ∈W. (6.7)

They ensure that each node set that separates source and target of a commodity must
have at least one incoming arc. From the max-flow min-cut theorem, one can easily
conclude that any solution satisfying constraints (6.7) contains a path from u to v for
every commodity (u, v) ∈ K. This path may, however, contain relay-free subpaths whose
distance exceeds λmax. Thus, they are not sufficient to guarantee a feasible solution. A
main advantage compared to the LG connectivity constraints (6.3b) is that they are
specified on the arc design variables of the original graph, thus each such cut influences
all commodities. Since the number of connectivity constraints (6.7) is exponential, we
separate them dynamically; see Section 6.3.3 for details.

Two-cycle inequalities. Constraints (6.8) ensure that an outgoing arc of some LG
node can only be used if at least one incoming arc whose source is different from the
outgoing arc’s target is used as well:∑

a′=(pr,il)∈δ−(il):p 6=j
zua′ ≥ zua ∀u ∈ S, ∀a = (il, jm) ∈ AL : i 6= u. (6.8)

Two-cycle inequalities (6.8) are implied by LG connectivity constraints (6.3b) and do
not strengthen the formulation [76]. Similar to cut constraints (6.7), they are, however,
beneficial for reducing the number of dynamically separated cut-set inequalities (6.3b).

Since the number of flow-balance constraints (6.4) and two-cycle inequalities (6.8) is
pseudo-polynomial, two implementation variants are considered in our computations: (1)
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adding them exhaustively to the initial formulation, and (2) separating them dynamically.
Details of the used separation procedures are given below in Section 6.3.3.

6.3.3 Separation

In this section we describe the separation procedure used in our B&C approach for
formulation (LCUT) that dynamically adds layered connectivity constraints (6.3b), flow
balance constraints (6.4), connectivity constraints on the original graph (6.7), and two-
cycle elimination constraints (6.8). Two variants of the separation are considered in this
chapter. In the following, the version to which we refer as LCUT-d is described in detail,
and minor modifications for the other variant, denoted by LCUT-s, are provided below.
The overall separation procedure for LCUT-d is outlined in Algorithm 6.1.

Algorithm 6.1: Separation procedure for LCUT-d.
1 separate cut-set inequalities (6.7) on the original graph
2 separate flow-balance constraints (6.4)
3 separate two-cycle inequalities (6.8)
4 if no flow-balance constraints and two-cycle inequalities added then
5 separate cut-set inequalities (6.3b) on the LG
6 end

First, possibly violated cut-set constraints on the original graph are identified using the
maximum flow algorithm by Cherkassy and Goldberg [37] (cf. Step 1 of Algorithm 6.1).
Thereby, so-called nested cuts (see, e.g., Ljubić et al. [115]) are considered which means
that the capacities of all arcs included in just added cuts are set to one and the flow
computation is subsequently repeated to possibly find further violated inequalities. This
procedure is applied for each commodity pair until no further violated inequalities are
found. Before proceeding with the next commodity pair, all arc capacities are reset (to
the original values induced by the current LP solution). Since this procedure may yield
identical cuts for different commodity pairs, we employ duplicate detection and stop
separating cuts for the current commodity as soon as a duplicate is identified. To keep
track of the already added cuts and check for duplicates we use hash sets. The order
in which the commodities are separated is perturbed in each separation call, i.e., we
consider the commodities in a random order based on a fixed seed value.

Once this first separation routine terminates, we add violated flow-balance (6.4) and
two-cycle inequalities (6.8) (cf. Steps 2 and 3 of Algorithm 6.1). Separation of these
constraints is performed by inspecting the LP values of relevant variables for all not yet
added inequalities. Complete separation of the two-cycles turned out to be too inefficient.
Therefore, we resort to a slightly simpler approach that adds those inequalities if the
following condition is violated:∑

a′∈δ−(il)
zua′ ≥ zua ∀u ∈ S, ∀a = (il, jm) ∈ AL : i 6= u.
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Finally, we separate LG connectivity cuts (6.3b) in case neither flow-balance nor two-cycle
inequalities have been added in the previous step (cf. Step 5 of Algorithm 6.1). Such a
conditional separation is beneficial for avoiding too many (possibly redundant) constraints
in the model. As before, violated cuts are identified by maximum flow computations
using the algorithm from [37]. To detect a violated inequality of type (6.3b), for each
(u, v) ∈ K, we construct the LG GuvL as described in the proof of Theorem 6.2, and
calculate the maximum flow between u0 and the target node tv, using zua values as arc
capacities for the arcs from AL and ∞ for the arcs adjacent to tv. If the obtained flow is
less than one, the violated cut is added to the model. Again, we consider nested cuts,
duplicate handling, and fixed-seed randomization for the order in which the commodity
pairs are processed.

In the second implementation variant of our B&C approach, denoted by LCUT-s, flow-
balance constraints and two-cycle inequalities are not separated. Instead, since there is
only a pseudo-polynomial number of them, these cuts are added a priori to the model.
In addition, the layered cut-set inequalities are separated unconditionally, i.e., the overall
separation procedure for LCUT-s consists of Steps 1 and 5 of Algorithm 6.1 performed
sequentially.

To avoid separating too many inequalities, we only add cut-set inequalities if they are
violated by a value of at least 0.5. Flow-balance constraints and two-cycle inequalities,
however, are separated without such a threshold.

Infeasible path cuts. Constraints (6.2h) and (6.3g) are only considered if the input
instance contains fractional distance values, and separated if the current candidate solution
vector is integral and satisfies all other types of dynamically separated inequalities. In
this case, violated constraints corresponding to (inclusion-wise) minimal infeasible paths
starting at source or relay nodes are identified by breadth-first search.

6.3.4 Branching

Several properties of feasible solutions are enforced on the LG. The objective function,
however, depends solely on the variables corresponding to the original graph. Moreover,
decisions concerning the arcs available in the original graph directly influence the LG
variables. Hence, it is reasonable to focus on the former for branching decisions. Regarding
the two types of variables for the original graph—edge and relay variables—it is natural
to prioritize the relay variables since placing a relay is usually much more expensive than
installing a connection along an arc. To stay consistent with the literature we do not use
custom branching priorities for the node-arc formulation.

6.3.5 Initial Heuristic

Before starting the B&C algorithm, we compute a feasible solution and hand it over to
the MILP solver as initial primal bound. The heuristic resembles Prim’s algorithm for
spanning trees: it computes optimal paths for one commodity at a time and sets the

164



6.4. Computational Study

costs of used arcs and relays to zero before it proceeds with the next source-target pair.
When only a single commodity pair is given, the DNDPR is known as the minimum cost
path problem with relays (MCPPR). This latter problem can be solved exactly using an
efficient dynamic programming (DP) algorithm proposed by Laporte and Pascoal [105].
However, different to the DNDPR, the MCPPR also allows connecting commodities by
non-simple paths. We therefore adjust the DP algorithm from Laporte and Pascoal [105]
by keeping track of already visited nodes in each state, in order to disallow extensions
that form cycles.

To improve the basic algorithm, we consider some extensions. Observe that the design
of the heuristic entails a strong influence of the order in which the commodities are
processed. We attempt to reduce this influence by considering ten different permutations
based on fixed-seed randomization and then keep the best solution.

Additionally, within the DP algorithm for the MCPPR we not only order the labels by
non-decreasing cost but also break ties by favoring paths that reach the considered node
at smaller distance. Once the best solution among the ten runs has been identified, we
run the DP algorithm once again with the costs of all used relays and arcs set to zero.
In certain cases this helps to avoid redundancies resulting in a smaller cost. Similar
heuristics based on sequential upgrades of a partial solution have been used in Chapter 3
and [110].

6.4 Computational Study

In this section we present computational results for the considered algorithms and variants.
We start by giving details on the computational environment as well as the used test
instances and the motivation for their selection. Finally, we present the obtained results.

Our algorithms are implemented in C++ using CPLEX 12.7.1 as a general-purpose MILP
solver. All experiments have been performed in single thread mode with default parameter
settings. Experiments have been executed on an Intel Xeon E5-2670v2 machine with
2.5GHz. The computation time limit has been set to 7200 seconds.

In the following we compare the four solution approaches described in Table 6.1. Note
that in both LCUT-s and LCUT-d, cut-set inequalities (6.3b) and (6.7) are separated
dynamically. In LCUT-s, flow-balance constraints (6.4) and two-cycle inequalities (6.8)
are added initially to the model while in LCUT-d these two sets are separated dynamically
as described in Section 6.3.3.

6.4.1 Instances

Benchmark instances used by the authors of [110] are no longer available (personal
communication with X. Li). Due to the lack of other existing benchmark instances for the
DNDPR we constructed new ones based on existing instances for the NDPR. We consider
three sets of benchmark instances: (1) asymmetric instances derived from Cabral et al.
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Table 6.1: Overview of the tested algorithms with their abbreviations. Column “base”
denotes the inequalities of the core model, column “static” provides valid inequalities that
are added to the initial formulation, and column “separation” provides valid inequalities
as well as inequalities of the base formulation that are separated dynamically.

Inequalities

Abbreviation Model Base Static Separation

NA (NA) from [110] (6.1b)–(6.1j) - -
LMCF (LMCF) (6.2b)–(6.2k) (6.6) (6.2h)
LCUT-s (LCUT) (6.3b)–(6.3j) (6.4), (6.5), (6.8) (6.3b), (6.3g), (6.7)
LCUT-d (LCUT) (6.3b)–(6.3j) (6.5) (6.3b), (6.3g), (6.4), (6.7), (6.8)

[30], (2) symmetric instances derived from Konak [100], and (3) a set of newly generated
symmetric instances. In the following we shortly outline the construction procedures for
the original instances which involve undirected graphs, and then discuss our adjustments
to obtain directed graphs.

Cabral instances. Cabral et al. [30] generated instances based on square grid graphs
(i.e., each node is connected to its direct vertical and horizontal neighbors). Integral edge
costs and distances are chosen uniformly at random from the interval [10, 30] and the
distance limit λmax is equal to 70. The relay costs are selected uniformly at random from
{λmax, λmax + 1, . . . , 2λmax}. All instances are based on grid graphs with a rows and b
columns (i.e., with |V | = ab nodes and |E| = 2ab−a−b edges). The small instance set con-
sists of nine such graphs with (a, b) ∈ {(4, 5), (5, 5), (6, 5), (7, 5), (8, 5), (9, 5), (10, 5), (11, 5),
(12, 5)}. For the large set (a, b) is chosen from {10, 20, 30, 40, 50} × {5, 10, 15, 20}. Each
set contains 10 instances for each graph and each considered number of commodities
|K| ∈ {5, 10} (by random sampling of the commodities). Observe that the graph with
(a, b) = (10, 5) is contained in both sets but the sampled instances are not identical. In
particular, all commodities of each instance have the same source node, i.e., |S| = 1. We
remark that duplicate commodities exist in some of the instances from Cabral et al. [30]
which can be removed in a preprocessing step.

We obtained directed instances by replacing each edge by two directed arcs. Distance
and cost of the first arc are equivalent to those of the edge. The values for the second
arc are chosen uniformly at random from the interval [10, 30]. Instances for which the
specified number of commodities does not match the actual number have been corrected
by inserting sufficiently many new commodities while preserving the property that |S| = 1.
Note that Li et al. [110] rely on the same approach to construct their instances although
they use new base graphs instead of those from [30]. Thus, our new instance set is
comparable in size and structure. The basic instance properties (|V |, |A|, |K|, and
λmax) are shown in Tables 6.3 and 6.4. We consider all of the 180 small instances and
all of the large instances except for those with b = 20 as those turned out to be too
challenging to provide meaningful insights. Instead, we included further instances with
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fifteen commodities whose base graphs were also generated by Cabral et al. [30] but
remained unpublished. Hence, the large set consists in total of 450 instances. In our
result tables we mark the subsets of large instances considered by Li et al. [110] with the
set indices used in their paper.

Konak instances. Konak [100] generated instances by first placing |V | ∈ {40, 50, 60,
80, 160} nodes at random integer coordinates (x, y) ∈ [0, 100]× [0, 100]. Initially all node
pairs i, j ∈ V are connected by arcs with lengths dij set to the Euclidean distance, while
the costs are either equal to the arc length (type I) or equal to λmax−dij (type II). Edges
with length beyond the distance limit are omitted. This leads to instance sizes ranging
from |V | = 40 and |E| = 198 up to |V | = 160 and |E| = 3624. Relay costs are selected
uniformly at random from {0, 1, . . . , 100}. Using λmax ∈ {30, 35} and |K| ∈ {5, 10}, 20
instances have been generated for each of the two types. Each of these instances typically
contains multiple sources and targets.

Directed instances are obtained by replacing each edge by two directed arcs. However,
this time both arcs have the cost and distance of the original edge. This is done to keep
the instance Euclidean and also to preserve the direct or indirect correlation of edge costs
and distances. See Table 6.5 for an overview.

The newly generated third instance group uses a similar construction principle as the
instances by Konak [100] and is specifically designed to reflect a practical application
from telecommunications. Further details are given in Section 6.4.6 below.

6.4.2 Comparison to the State of the Art

As indicated above, we could not obtain the instances used in the previous literature.
However, the Cabral instances are comparable in structure and size to those tested in
[110]. This allows us to obtain at least an intuition on how our exact algorithms compare
to those presented in [110]. As reference point we employ the node-arc formulation. We
compare speedups between NA and the best B&P approach from the literature as well
as the algorithms based on our LG formulations. The respective values are computed
by tNA/talg for alg ∈ {B&P,LMCF,LCUT-s,LCUT-d}. Since the Cabral instances feature
10 instances of each type, results have been aggregated by computing averages. The
results are shown in Table 6.2. Observe that we provide this comparison only for the
small Cabral instances because there are no NA results in Li et al. [110] for the large set.
The speedup values of our algorithms are slightly worse than those from the literature
for the smallest instances but they are considerably better for a ≥ 6. Also note that on
our instances the node-arc formulation sometimes terminated prematurely due to the
time limit. Allowing the algorithm to finish—as done in [110]—would have resulted in
even larger speedups.

Without the original benchmark set, a precise comparison is impossible. Yet these results
indicate that our algorithms are at least as fast as those from the existing literature and
most likely outperform them significantly.
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Table 6.2: Speedup ratio to the node-arc formulation. Values have been obtained by
dividing the computation time of the node-arc formulation through the computation
time of the respective algorithm. The first column has been obtained by extracting the
respective results from [110]. The highest speedup per column is marked bold.

Speedup ratio

Instance B&P2 (Li et al.) LMCF LCUT-s LCUT-d

04A05B70L05K 8.4 1.3 3.1 3.2
04A05B70L10K 55.9 9.6 35.7 19.8
05A05B70L05K 20.8 8.2 15.7 14.1
05A05B70L10K 107.3 14.4 53.6 44.9
06A05B70L05K 7.1 14.0 25.4 22.3
06A05B70L10K 61.1 67.8 164.4 98.7
07A05B70L05K 31.8 15.0 19.2 16.2
07A05B70L10K 34.6 224.1 476.3 289.8
08A05B70L05K 9.3 194.9 216.3 81.7
08A05B70L10K 92.0 286.1 543.7 218.6
09A05B70L05K 9.9 97.1 110.9 69.0
09A05B70L10K 40.5 217.8 391.6 237.8
10A05B70L05K 40.9 305.6 319.8 122.1
10A05B70L10K 33.6 467.7 1337.3 683.9
11A05B70L05K 25.1 266.0 306.5 123.0
11A05B70L10K 45.4 731.0 1500.4 555.7
12A05B70L05K 5.2 597.4 528.4 215.0
12A05B70L10K 110.1 538.7 1164.3 405.9

6.4.3 LP Relaxation Bounds

In the following, we compare the quality of lower bounds that can be obtained by the three
algorithms from Table 6.1: LMCF, LCUT (LCUT-s and LCUT-d provide the same lower
bounds), and NA. Note that we ignore infeasible path constraints in this comparison since
we only use them to cut off infeasible integer solutions in cases of fractional distances and
not to strengthen the LP bounds. When computing LP bounds we deactivate CPLEX
presolving, general purpose heuristics, and general purpose cuts. In addition, no threshold
value is set for the separation of cut-set inequalities (6.3b) and (6.7).

The presented LP gaps are computed as (UB∗ − LB)/UB∗ where UB∗ is the best known
upper bound and LB is the lower bound obtained by the LP relaxation. Tables 6.3 and
6.4 report results obtained on the Cabral instances, and Table 6.5 provides results for
the Konak instances.

Cabral Instances. We observe that the algorithms based on (LCUT) yield the strongest
bounds. LMCF follows closely behind but mostly delivers strictly weaker bounds. The
reason for this is the fact that the Cabral instances consider only a single source node.
This means that algorithms based on (LCUT) use precisely one set of variables with
respect to the LG on which they model an arborescence. The multi-commodity flow
formulation, on the other hand, uses one set of variables per commodity pair. In this
situation the cut model benefits from aggregating per source which enables it to obtain a
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Table 6.3: LP gaps for the small directed Cabral instances. Each line represents the
average across ten instances. The strongest bounds per row are marked bold.

Properties LP gap [%]

Instance |V | |A| λmax |K| LMCF LCUT NA

04A05B70L05K 20 62 70 5 0.2 0.0 27.6
04A05B70L10K 20 62 70 10 0.2 0.0 35.0
05A05B70L05K 25 80 70 5 0.8 0.0 31.4
05A05B70L10K 25 80 70 10 0.1 0.0 34.4
06A05B70L05K 30 98 70 5 0.5 0.0 36.8
06A05B70L10K 30 98 70 10 0.6 0.0 34.9
07A05B70L05K 35 116 70 5 0.1 0.0 40.5
07A05B70L10K 35 116 70 10 0.7 0.1 40.6
08A05B70L05K 40 134 70 5 0.1 0.0 45.1
08A05B70L10K 40 134 70 10 1.0 0.1 40.2
09A05B70L05K 45 152 70 5 0.1 0.0 42.9
09A05B70L10K 45 152 70 10 0.7 0.0 39.8
10A05B70L05K 50 170 70 5 0.1 0.0 46.2
10A05B70L10K 50 170 70 10 0.9 0.0 43.9
11A05B70L05K 55 188 70 5 0.5 0.0 46.2
11A05B70L10K 55 188 70 10 0.2 0.1 42.5
12A05B70L05K 60 206 70 5 0.5 0.1 43.3
12A05B70L10K 60 206 70 10 0.8 0.1 42.6

stronger bound by means of flow-balance constraints (6.4). Moreover, the cut formulation
yields a much smaller model here with respect to the number of variables. In general,
both algorithms based on LG models deliver excellent bounds well below 5 %. The
only exception are the larger instances with fifteen commodities where the bounds are
slightly larger or even missing due to hitting the time limit. For the reasons mentioned
above we observe that the performance of the multi-commodity flow formulation is much
more susceptible to an increasing number of commodities than the cut formulation. As
expected, the node-arc formulation is the weakest model with significantly worse bounds
than the LG models. On the other hand, we obtain lower bounds for all instances in
relatively short CPU times due to the small size of the model.

Konak instances. Compared to the Cabral instances we face much denser graphs
here. Moreover, we are now dealing with multiple source nodes instead of just a single
one. This means that now also the (LCUT) formulation requires multiple sets of LG
variables. Under these circumstances we still obtain strong LP bounds but not as strong
as on the Cabral instances, see Table 6.5. For the larger instances of type I it becomes
challenging to solve the LP relaxation to optimality indicated by dashes in the table.
The instances with indirectly correlated costs (type II) turned out to be much easier to
solve. Here LMCF as well as LCUT provide results for all instances before exceeding the
time limit. The results indicate that the bound strength is excellent if the computations
can be completed. As before, we observe that the bounds provided by LCUT are at least
as strong as those of LMCF. The node-arc formulation (NA) yields much weaker bounds
but also terminates significantly faster. Therefore, NA gives the only bounds for the

169



6. Exact Approaches for the DNDPR

Table 6.4: LP gaps for the large directed Cabral instances. Each line considers ten
instances. Averages for the gaps are computed only with respect to the instances for
which all algorithms terminated within the time limit. Column #tl denotes the number
of instances that terminated due to the time limit. The strongest bounds per row are
marked bold. Superscripts next to the instance names refer to the comparable instance
group in Li et al. [110].

Properties Gap [%] #tl

Instance |V | |A| λmax |K| LMCF LCUT NA LMCF LCUT NA

10A05B70L05K 50 170 70 5 0.4 0.0 47.5 0 0 0
10A05B70L10K 50 170 70 10 1.0 0.0 44.8 0 0 0
10A05B70L15K 50 170 70 15 1.3 0.0 42.2 0 0 0
10A10B70L05K19 100 360 70 5 1.6 0.0 48.4 0 0 0
10A10B70L10K25 100 360 70 10 0.8 0.0 45.1 0 0 0
10A10B70L15K 100 360 70 15 2.6 0.0 45.6 0 0 0
10A15B70L05K20 150 550 70 5 2.0 0.3 52.9 0 0 0
10A15B70L10K 150 550 70 10 3.3 0.0 50.1 0 0 0
10A15B70L15K 150 550 70 15 3.9 0.1 46.7 0 0 0
20A05B70L05K21 100 350 70 5 0.3 0.0 53.2 0 0 0
20A05B70L10K26 100 350 70 10 0.4 0.1 48.6 0 0 0
20A05B70L15K 100 350 70 15 0.1 0.0 48.7 0 0 0
20A10B70L05K 200 740 70 5 0.7 0.0 51.8 0 0 0
20A10B70L10K 200 740 70 10 2.0 0.0 50.6 0 0 0
20A10B70L15K 200 740 70 15 3.6 0.1 49.9 0 0 0
20A15B70L05K 300 1130 70 5 1.4 0.0 52.4 0 0 0
20A15B70L10K 300 1130 70 10 3.7 0.1 52.2 0 0 0
20A15B70L15K 300 1130 70 15 6.6 2.5 53.2 2 2 0
30A05B70L05K22 150 530 70 5 0.0 0.0 55.3 0 0 0
30A05B70L10K27 150 530 70 10 0.1 0.0 53.2 0 0 0
30A05B70L15K 150 530 70 15 0.3 0.0 51.3 0 0 0
30A10B70L05K 300 1120 70 5 1.0 0.1 54.2 0 0 0
30A10B70L10K 300 1120 70 10 1.4 0.0 54.2 0 0 0
30A10B70L15K 300 1120 70 15 1.9 0.1 53.1 4 0 0
30A15B70L05K 450 1710 70 5 0.7 0.0 56.0 0 0 0
30A15B70L10K 450 1710 70 10 1.6 0.5 53.6 5 0 0
30A15B70L15K 450 1710 70 15 - - - 10 3 0
40A05B70L05K23 200 710 70 5 0.1 0.0 56.6 0 0 0
40A05B70L10K28 200 710 70 10 0.3 0.0 55.7 0 0 0
40A05B70L15K 200 710 70 15 0.1 0.0 53.0 0 0 0
40A10B70L05K 400 1500 70 5 0.4 0.0 56.4 0 0 0
40A10B70L10K 400 1500 70 10 1.6 0.4 55.1 2 0 0
40A10B70L15K 400 1500 70 15 5.9 4.7 54.8 7 0 0
40A15B70L05K 600 2290 70 5 0.5 0.0 56.1 0 0 0
40A15B70L10K 600 2290 70 10 3.3 1.9 54.8 7 3 0
40A15B70L15K 600 2290 70 15 - - - 10 10 0
50A05B70L05K24 250 890 70 5 0.1 0.0 58.1 0 0 0
50A05B70L10K29 250 890 70 10 0.2 0.0 56.6 0 0 0
50A05B70L15K 250 890 70 15 0.1 0.0 54.9 0 0 0
50A10B70L05K 500 1880 70 5 0.2 0.0 56.6 0 0 0
50A10B70L10K 500 1880 70 10 1.0 0.3 55.2 3 0 0
50A10B70L15K 500 1880 70 15 - - - 10 0 0
50A15B70L05K 750 2870 70 5 0.5 0.0 56.4 0 1 0
50A15B70L10K 750 2870 70 10 0.0 0.0 54.4 9 7 0
50A15B70L15K 750 2870 70 15 - - - 10 10 0
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Table 6.5: LP gaps for the directed Konak instances. Missing gap values correspond
to runs that did not complete within the time limit. Bold values indicate the tightest
bounds per type and instance.

LP gap [%]

Properties Type I Type II

Instance |V | |A| λmax |K| LMCF LCUT NA LMCF LCUT NA

040N_05K_30L 40 396 30 5 21.2 21.2 39.2 37.9 37.9 77.3
040N_05K_35L 40 544 35 5 4.7 4.7 25.1 0.6 0.6 75.2
040N_10K_30L 40 396 30 10 22.9 21.4 41.3 31.3 31.3 76.6
040N_10K_35L 40 544 35 10 7.2 6.3 26.5 6.9 4.9 72.3
050N_05K_30L 50 558 30 5 0.8 0.8 31.6 0.0 0.0 76.5
050N_05K_35L 50 744 35 5 0.0 0.0 29.6 0.0 0.0 83.6
050N_10K_30L 50 558 30 10 20.1 16.1 48.8 0.4 0.4 79.6
050N_10K_35L 50 744 35 10 12.4 9.4 36.5 0.0 0.0 83.0
060N_05K_30L 60 610 30 5 8.8 8.8 51.7 5.4 5.4 84.9
060N_05K_35L 60 824 35 5 2.6 2.6 36.9 0.0 0.0 79.7
060N_10K_30L 60 610 30 10 13.4 13.4 51.1 7.2 7.2 82.1
060N_10K_35L 60 824 35 10 4.8 4.8 36.7 0.0 0.0 79.3
080N_05K_30L 80 1282 30 5 1.7 1.7 17.9 1.2 1.2 71.5
080N_05K_35L 80 1706 35 5 0.0 0.0 14.0 0.2 0.2 75.2
080N_10K_30L 80 1282 30 10 4.3 - 25.4 0.6 0.6 66.9
080N_10K_35L 80 1706 35 10 4.4 - 21.3 0.0 0.0 75.1
160N_05K_30L 160 5546 30 5 0.3 - 21.1 2.1 2.1 85.2
160N_05K_35L 160 7248 35 5 6.2 - 21.3 3.2 3.2 83.0
160N_10K_30L 160 5546 30 10 - - 32.1 2.4 2.4 81.1
160N_10K_35L 160 7248 35 10 - - 29.5 0.2 0.2 78.7

two largest instances of type I where the time limit is reached for the LG models. In
contrast to the LG models, the node-arc formulation seems to work much better on
type I instances than on type-II instances where the bounds are much worse, roughly by
a factor of two.

6.4.4 Overall Performance

We continue by evaluating the performance of the MILP runs on the instances by Cabral
et al. [30] and Konak [100].

Cabral instances. Our LG models are able to solve all 180 small instances to proven
optimality and 334 of the 450 large instances. The MILP runs are consistent with
the LP results, however, LMCF is now much closer to the cut model despite its worse
bounds—at least for the small instances, see Table 6.6. Optimality gaps are computed by
(UB∗ − LB)/UB∗ where UB∗ is the best known upper bound and LB is the lower bound
obtained by the investigated algorithm.

On the small instances we observe a clear difference between the static and the dynamic
variant of the cut formulation LCUT-s and LCUT-d, respectively. The reasons for the
advantage of the static approach are the sparseness and the size of the input graphs.
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Table 6.6: Results for the small directed Cabral instances. Each line represents the
average across ten instances. Column #opt provides the number of optimally solved
instances.

Gap [%] CPU time [s] #opt

Instance LMCF LCUT-s LCUT-d NA LMCF LCUT-s LCUT-d NA LMCF LCUT-s LCUT-d NA

04A05B70L05K 0.0 0.0 0.0 0.0 < 1 < 1 < 1 1 10 10 10 10
04A05B70L10K 0.0 0.0 0.0 0.0 1 < 1 < 1 8 10 10 10 10
05A05B70L05K 0.0 0.0 0.0 0.0 1 < 1 < 1 4 10 10 10 10
05A05B70L10K 0.0 0.0 0.0 0.0 1 < 1 < 1 16 10 10 10 10
06A05B70L05K 0.0 0.0 0.0 0.0 1 < 1 1 11 10 10 10 10
06A05B70L10K 0.0 0.0 0.0 0.0 2 1 1 111 10 10 10 10
07A05B70L05K 0.0 0.0 0.0 0.0 1 1 1 10 10 10 10 10
07A05B70L10K 0.0 0.0 0.0 0.0 3 1 2 639 10 10 10 10
08A05B70L05K 0.0 0.0 0.0 0.0 1 1 2 167 10 10 10 10
08A05B70L10K 0.0 0.0 0.0 0.0 3 2 5 991 10 10 10 10
09A05B70L05K 0.0 0.0 0.0 0.0 1 1 1 78 10 10 10 10
09A05B70L10K 0.0 0.0 0.0 0.0 4 2 4 891 10 10 10 10
10A05B70L05K 0.0 0.0 0.0 0.0 1 1 2 302 10 10 10 10
10A05B70L10K 0.0 0.0 0.0 3.2 9 3 6 4126 10 10 10 8
11A05B70L05K 0.0 0.0 0.0 0.0 1 1 3 382 10 10 10 10
11A05B70L10K 0.0 0.0 0.0 6.8 6 3 8 4168 10 10 10 6
12A05B70L05K 0.0 0.0 0.0 1.9 2 2 4 906 10 10 10 9
12A05B70L10K 0.0 0.0 0.0 6.6 9 4 11 4666 10 10 10 6

Both lead to rather small models and the overhead for adding the valid inequalities
in advance is manageable. Therefore, the slowdown for solving the LP relaxations is
negligible but we can reduce the number of cut iterations in each node of the B&C tree
significantly. Similarly, we also observe that much fewer B&B nodes—about 17 % on
average—are needed until optimality can be proven. LMCF, however, performs better in
this respect: It solves the majority of instances already at the root node and the two
“outliers” with 19 and 23 B&B nodes, respectively. The cut formulation, albeit being
stronger, solves 52 instances fewer at the root node and requires up to 67 B&B nodes
when adding flow-balance and two-cycle inequalities statically. The reasons for this seem
to be that the fractional solutions of LMCF are closer to being feasible and that LMCF
interacts better with the solver since no further inequalities are added in the solution
process. Although the computation times of LMCF and LCUT-s are quite similar, we
still observe that the former is considerably more sensitive to changes in the number of
commodities due to the resulting increase in model size, see also Table 6.2. The node-arc
formulation is significantly outperformed and cannot even solve all instances to optimality
within the time limit.

Most of the observations with respect to the small instance set directly transfer to the
large one, see Table 6.7. Considering the two algorithms based on (LCUT) we now observe
an advantage for the dynamic variant. Due to the larger graph sizes it is no longer
beneficial to add all the strengthening inequalities to the initial formulation. In total the
cut formulations solve the highest number of instances to optimality: 318 in the static
and 334 in the dynamic variant. The multi-commodity flow formulations follows closely
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behind with 303 instances solved to proven optimality. In general, we observe that the
flow formulation works quite well for instances with only five commodities, frequently even
outperforming the cut formulation. However, as the number of commodities increases
the performance starts to deteriorate. We observe significant advantages for the cut
formulations in these cases. In particular, for the largest instances the algorithm based on
(LMCF) often delivers no bounds while both algorithms based on (LCUT) still terminate
with comparatively tight gaps. This appears to be a natural consequence of the larger
model size of (LMCF) that depends to a higher degree on the number of commodities. We
omit results for NA for reasons of space and since the results are by far not competitive
to our LG approaches.

Konak instances. The results of solving the MILP formulations are provided in
Tables 6.8 and 6.9. In accordance with the experiments on the LP bounds, type II
instances are again easier to solve than type I instances. LMCF and LCUT-d solve all
instances of type II to optimality. LCUT-s, on the other hand, cannot solve the largest
two instances of this set to optimality. Similarly, LCUT-s solves fewer instances of type I
to optimality than the dynamic variant and leaves larger gaps whenever both terminate
prematurely due to the time limit. As the graphs are denser here than the 4-grid graphs
of the Cabral instances, it is no longer beneficial to add all valid inequalities in advance.
Thus, dynamic separation helps to reduce the size of the LP relaxations. While being
slightly slower on the largest type II instances, LMCF outperforms the LCUT approaches
on the type I instances. There it solves seven more instances to optimality and features
considerably smaller computation times on the remaining ones. However, for the largest
two instances it fails to provide any non-trivial bounds. LCUT-d terminates still in the
root note, but at least provides reasonable bounds. It is noticeable that LMCF proves
optimality for 17 out of 20 type II instances and 6 out of 20 type I instances already at
the root note, mostly with non-zero LP gap. LCUT-s performs quite similar in this respect
and solves 2 type I and 12 type II instances at the root node. LCUT-d, on the other hand,
achieves this only for a single type II instance. Again, we presume that LMCF interacts
better with the solver due to having most information available from the beginning.
Since these instances feature fractional distances, infeasible path constraints have to be
separated to ensure feasibility. The indirectly correlated instances of type II require such
cuts only in rare cases. LCUT-s and LMCF solve all but two instances without infeasible
path constraints and those two instances with just one cut each. LCUT-d requires cuts for
one additional instance and uses no more than three such cuts. The directly correlated
instances of type I require a higher number of infeasible path cuts. This can be explained
by the fact that cost reductions can be achieved by exhausting the distance limit. Among
the optimally solved instances LMCF requires no more than 27 infeasible path cuts while
five instances can be solved without them. LCUT-s solves only few of the type I instances
to optimality, three of them without infeasible path cuts and the remaining five with at
most 9. LCUT-d solves four instances without infeasible path cuts and the remaining
ones with at most 18. With respect to the instances that terminated due to the time
limit the maximum number of added infeasible path cuts is 34 for LCUT-d, the highest
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Table 6.7: Results for the large directed Cabral instances. Each line represents the
average across ten instances. Column #opt provides the number of optimally solved
instances. Superscripts next to the instance names refer to the comparable instance
group in Li et al. [110].

Gap [%] CPU time [s] #opt

Instance LMCF LCUT-s LCUT-d LMCF LCUT-s LCUT-d LMCF LCUT-s LCUT-d

10A05B70L05K 0.0 0.0 0.0 1 1 2 10 10 10
10A05B70L10K 0.0 0.0 0.0 8 3 8 10 10 10
10A05B70L15K 0.0 0.0 0.0 48 7 15 10 10 10
10A10B70L05K19 0.0 0.0 0.0 15 20 37 10 10 10
10A10B70L10K25 0.0 0.0 0.0 71 38 79 10 10 10
10A10B70L15K 0.0 0.0 0.0 1200 108 212 10 10 10
10A15B70L05K20 0.0 0.0 0.0 70 125 184 10 10 10
10A15B70L10K 1.0 0.0 0.0 2505 638 732 8 10 10
10A15B70L15K 2.9 0.0 0.0 4606 1961 2701 5 10 10
20A05B70L05K21 0.0 0.0 0.0 5 6 11 10 10 10
20A05B70L10K26 0.0 0.0 0.0 62 28 40 10 10 10
20A05B70L15K 0.0 0.0 0.0 88 32 74 10 10 10
20A10B70L05K 0.0 0.0 0.0 46 96 172 10 10 10
20A10B70L10K 1.1 0.0 0.0 4101 1332 1731 5 10 10
20A10B70L15K 2.8 2.1 1.7 4886 3170 3146 4 7 7
20A15B70L05K 0.0 0.0 0.0 423 1589 1179 10 10 10
20A15B70L10K 3.1 4.1 1.8 6159 6086 5231 2 2 7
20A15B70L15K 16.7 8.2 8.0 7200 6877 6937 0 1 1
30A05B70L05K22 0.0 0.0 0.0 13 14 32 10 10 10
30A05B70L10K27 0.0 0.0 0.0 149 77 155 10 10 10
30A05B70L15K 0.0 0.0 0.0 567 222 303 10 10 10
30A10B70L05K 0.0 0.0 0.0 398 380 512 10 10 10
30A10B70L10K 0.5 0.6 0.4 4574 3444 2506 6 8 9
30A10B70L15K 31.4 2.7 1.8 7200 5811 5548 0 4 5
30A15B70L05K 0.1 2.1 0.8 1192 2829 2092 9 7 9
30A15B70L10K 21.6 5.5 4.4 6028 6414 6008 3 2 3
30A15B70L15K 90.1 9.9 9.7 7200 7200 7200 0 0 0
40A05B70L05K23 0.0 0.0 0.0 32 26 45 10 10 10
40A05B70L10K28 0.0 0.0 0.0 468 195 221 10 10 10
40A05B70L15K 0.0 0.0 0.0 841 271 374 10 10 10
40A10B70L05K 0.0 0.5 0.0 407 2184 1474 10 8 10
40A10B70L10K 11.2 3.6 2.7 6079 5982 5455 3 4 5
40A10B70L15K 90.0 8.0 7.2 6736 6254 6329 1 2 2
40A15B70L05K 0.1 1.8 1.1 2061 4232 4063 9 6 6
40A15B70L10K 80.5 10.0 9.1 6949 7200 7200 1 0 0
40A15B70L15K 100.0 10.6 11.9 7200 7200 7200 0 0 0
50A05B70L05K24 0.0 0.0 0.0 57 51 86 10 10 10
50A05B70L10K29 0.0 0.0 0.0 525 254 359 10 10 10
50A05B70L15K 0.0 0.0 0.0 1583 884 939 10 10 10
50A10B70L05K 0.0 1.2 0.5 628 2453 2379 10 8 8
50A10B70L10K 40.4 4.2 3.1 6496 6241 5799 3 2 3
50A10B70L15K 100.0 8.9 8.3 7200 7025 6958 0 1 1
50A15B70L05K 0.3 2.3 1.5 2971 4108 3820 9 6 7
50A15B70L10K 90.0 8.1 12.1 6690 7200 7115 1 0 1
50A15B70L15K 100.0 13.9 16.1 7200 7200 7200 0 0 0
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Table 6.8: Results for the directed Konak instances of type I.

Gap [%] CPU time [s]

Instance LMCF LCUT-s LCUT-d NA LMCF LCUT-s LCUT-d NA

040N_05K_30L 0.0 0.0 0.0 0.0 6 103 120 1204
040N_05K_35L 0.0 0.0 0.0 3.4 23 575 329 7200
040N_10K_30L 0.0 0.0 0.0 11.3 45 1217 1357 7200
040N_10K_35L 0.0 5.2 0.0 16.3 153 7200 4202 7200
050N_05K_30L 0.0 0.0 0.0 7.3 1 23 15 7200
050N_05K_35L 0.0 0.0 0.0 0.0 3 234 71 5417
050N_10K_30L 0.0 7.7 1.9 42.6 690 7200 7200 7200
050N_10K_35L 0.0 13.5 7.4 31.3 638 7200 7200 7200
060N_05K_30L 0.0 0.0 0.0 38.0 25 282 213 7200
060N_05K_35L 0.0 0.0 0.0 23.1 3 211 280 7200
060N_10K_30L 0.0 8.3 7.8 46.7 392 7200 7200 7200
060N_10K_35L 0.0 7.8 7.9 31.3 469 7200 7200 7200
080N_05K_30L 0.0 0.0 0.0 10.9 12 2664 1040 7200
080N_05K_35L 0.0 5.4 0.0 6.3 24 7200 5500 7200
080N_10K_30L 0.6 6.9 4.9 19.3 7200 7200 7200 7200
080N_10K_35L 3.4 65.4 32.5 17.5 7200 7200 7200 7200
160N_05K_30L 0.0 76.4 7.7 18.5 1123 7200 7200 7200
160N_05K_35L 6.0 76.7 10.4 19.8 7200 7200 7200 7200
160N_10K_30L 100.0 78.1 26.8 31.7 7200 7200 7200 7200
160N_10K_35L 100.0 77.7 26.6 29.0 7200 7200 7200 7200

among all algorithms. The node-arc formulation is not competitive and features large
gaps even on the smaller instances. In contrast to the results of the LP runs it provides
better results on the type II instances, like the LG algorithms.

6.4.5 Evaluation of Algorithm Properties

In the following we evaluate the impact of specific instance properties and algorithmic
components on the performance of the introduced approaches.

We start by evaluating the sensitivity of our LG algorithms to the distance limit. We
decided to use the small Cabral instances which could all be solved to optimality with the
original distance limit of λmax = 70. For our experiments we consider increased distance
limits of 140, 210, and 280, while leaving the remaining instance characteristics the same.
Increasing the limit further does seem relevant because with λmax ≥ 280 the solutions
no longer contain any relays. Figure 6.5 shows box plots for the respective computation
times. We observe a moderate slowdown, leveling off as we converge towards the relay-free
scenario. In general LCUT-d appears to be slightly more resilient to the parameter change
due to the smaller base model. The observed slowdown is to be expected since increasing
the distance limit allows connecting the commodities with more complex paths consisting
of a higher number of arcs. We conjecture that paths with a higher number of arcs
impact most kinds of algorithms alike. In our case the number of layers increases, which
leads to larger models. Column generation based approaches, on the other hand, suffer
from the additional computational effort for solving the subproblems and an increased
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Table 6.9: Results for the directed Konak instances of type II.

Gap [%] CPU time [s]

Instance LMCF LCUT-s LCUT-d NA LMCF LCUT-s LCUT-d NA

040N_05K_30L 0.0 0.0 0.0 0.0 < 1 2 13 7
040N_05K_35L 0.0 0.0 0.0 0.0 1 2 2 51
040N_10K_30L 0.0 0.0 0.0 0.0 1 16 36 352
040N_10K_35L 0.0 0.0 0.0 0.0 5 30 13 3420
050N_05K_30L 0.0 0.0 0.0 0.0 < 1 1 1 19
050N_05K_35L 0.0 0.0 0.0 0.0 1 3 2 4679
050N_10K_30L 0.0 0.0 0.0 49.9 1 8 42 7200
050N_10K_35L 0.0 0.0 0.0 62.5 4 27 18 7200
060N_05K_30L 0.0 0.0 0.0 44.1 3 73 88 7200
060N_05K_35L 0.0 0.0 0.0 0.0 1 3 3 1039
060N_10K_30L 0.0 0.0 0.0 70.7 57 1903 621 7200
060N_10K_35L 0.0 0.0 0.0 62.9 3 11 8 7200
080N_05K_30L 0.0 0.0 0.0 34.3 8 18 14 7200
080N_05K_35L 0.0 0.0 0.0 44.2 13 27 20 7200
080N_10K_30L 0.0 0.0 0.0 42.7 26 48 39 7200
080N_10K_35L 0.0 0.0 0.0 59.2 33 334 56 7200
160N_05K_30L 0.0 0.0 0.0 73.5 301 1428 246 7200
160N_05K_35L 0.0 0.0 0.0 73.4 661 1681 153 7200
160N_10K_30L 0.0 45.0 0.0 71.8 2616 7200 2041 7200
160N_10K_35L 0.0 50.8 0.0 69.3 2466 7200 620 7200
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Figure 6.5: Sensitivity of LMCF and LCUT-d to increasing values of λmax on the Cabral
instances. Both box plots use a logarithmic scale.

176



6.4. Computational Study

P+H P H N

1

10

100

1,000

10,000

C
P
U

ti
m
e
[s
]

P+H P H N

0.1

1

10

100

1,000

10,000

C
P
U

ti
m
e
[s
]

(a) Type I (b) Type II

Figure 6.6: Impact of preprocessing and initial heuristic for LMCF on the Konak instances.
Both box plots use a logarithmic scale. The four boxes are labeled as follows: “P+H”
uses both preprocessing and initial heuristic, “P” uses only preprocessing, “H” uses only
an initial heuristic, “N” uses neither preprocessing nor the initial heuristic.

number of pricing iterations (cf. Chapter 3, where we conduct a similar experiment for a
B&P algorithm for the NDPR).

In Figure 6.6 we evaluate the impact of the introduced preprocessing techniques and
the initial heuristic on the performance of LMCF. We omit the results for the algorithms
based on (LCUT) for brevity as they lead to similar conclusions. The box plots indicate
that both techniques are beneficial though preprocessing appears to be a little more
important due to providing larger speedups. However, when looking at the detailed
results we observe that the initial heuristic is significant for proving optimality. Compared
to LMCF with preprocessing and initial heuristic we can solve 5 fewer instances of type I
when not using the heuristic, 4 fewer instances of type I when not using preprocessing,
and 6 fewer instances of type I as well as 1 fewer instance of type II when using neither
preprocessing nor the initial heuristic.

6.4.6 Managerial Insights

In this section we provide more insights into managerial implications of our study. We
focus on the design of translucent optical WDM networks (cf. Section 6.1) and analyze
some of their major key performance indicators.

To this end, we consider a set of instances in which cost parameters are set to mimic a
realistic setting in which commodities correspond to node pairs that need to communicate
with each other, and arc costs are directly proportional to the arc lengths (multiplied by
some factor that corresponds to cable costs per unit of distance). The cost parameters
in our study are chosen so as to reflect this difference between arc and regenerator
costs, the latter ones being often significantly more expensive than the arc costs (cf., e.g.
[126]). The Konak instances of type I seem to be particularly relevant from this practical
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perspective due to their direct correlation between arc distances and arc costs. Because
of the limited size of the Konak data set, we have generated further instances using the
method proposed by Konak [100].

We sampled a set of five base instances for each |V | ∈ {20, 25, 30, 35, 40} and |K| ∈
{5, 7, 10} with λmax = 30. The relay costs were selected according to a normal distribution
with µ = 200 and a standard deviation of 25 to model a base cost for purchasing the
relay and a slightly varying construction cost. Then, we varied the distance limit
λmax ∈ {30, 35, 40, 45} with arc costs set to cij = dij · (1 + (λmax − 30)/100), i.e., a
cost increase of 1 % per unit increase in the distance limit. This is intended to model a
scenario in which transmission over increased distances is only possible when relying on
material of higher quality which is in turn more expensive. In total, we consider 300 new
instances ranging from 60 to 696 arcs.

In what follows, we provide a cost-effectiveness analysis by comparing the costs for
installing regenerators and arcs in the network. In addition, one of the major concerns
when designing WDM optical networks is the power consumption. The power consumption
is directly correlated with the number of deployed regenerators. We therefore analyze the
energy efficiency of obtained solutions in function of the size of the network, the input
demand, and the operating range of regenerators.

Cost-effectiveness analysis. The major goal of this analysis is to find out what are
the potential benefits of investing into regenerators with a higher operating range. We
measure these benefits in terms of the savings of the overall solution costs, when compared
to the nominal solution, in which the regenerators of the minimum range (λmax = 30 in
our setting) are purchased. Figure 6.7 provides a detailed overview of the overall costs of
optimal DNDPR solutions. The results are sorted according to increasing value of λmax
(starting with λmax = 30 and ranging up to λmax = 45). In addition, we separately show
the costs needed to install regenerators and those for installing the links in the network.
For each fixed value of λmax, the number of commodities grows from 5 to 10.

We observe that the overall solution cost significantly decreases when regenerators with
a higher range are deployed (i.e., increasing the value of λmax from 30 to 45 allows for
a reduction of the overall cost of up to 50 %). This can be explained by the fact that
a larger distance limit allows to reduce the number of relays. Through the increased
freedom in placing the relays they can be shared to a higher degree by using more direct
connections. Consequently, also fewer arcs have to be installed but the impact of savings
due to economizing regenerators dominates as a consequence of their higher cost. The
portion of the costs spent on the regenerators decreases between 20 (5K) and 23 % (10K)
when increasing the distance limit from 30 to 45. We also observe that the increase
of the total costs is less sensitive to the increase of the number of commodities when
regenerators with higher range are deployed. This can be particularly important in
realistic scenarios in which the future demand is uncertain but it is expected to increase.
In such a scenario, networks with regenerators of higher range are expected to be more
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resilient to the increasing demand, so that fewer upgrades might be needed in a later
stage, once the uncertain demand is revealed.

Hence, our analysis clearly indicates that the decision makers need to carefully explore the
cost structure of the underlying solutions and to consider different available technologies,
before deciding on the type of regenerators to be deployed in the network. Sometimes,
investing in more expensive hardware may result in an overall reduction of the capital
expenditures (CapEx), as is shown in Figure 6.7.

Energy efficiency analysis. From the environmental and operational perspective,
one of the major concerns when designing WDM networks is the power consumption
which is directly correlated with the number of deployed regenerator devices [178]. In the
following we study the dependency between the number of deployed regenerators and
their operational range.

Figure 6.8 reports the average number of arcs and regenerators in an optimal solution.
The results are grouped according to the values of λmax, ranging between 30 and 45, and
according to the number of commodities, ranging between 5 and 10.

The obtained results indicate that increasing the number of commodities has a stronger
effect on the total size of the network (in terms of the number of arcs) than on the
number of deployed regenerators. Furthermore, this effect does not depend on the range
of regenerators. For example, by increasing the number of commodities by 100 % (i.e.,
from 5 to 10), the number of links in the network raises by around 50 %. On the contrary,
the number of deployed regenerators remains relatively stable and raises only by a single
unit. A much stronger effect on the number of deployed regenerators comes from their
range. So, for example, the number of regenerators can be reduced by 50 %, by deploying
regenerators of range λmax = 45, when compared to the number of regenerators needed
with λmax = 30.

Overall, when it comes to operational expenditures (OpEx) associated to energy costs, our
result shows that significant savings in OpEx can be achieved by purchasing regenerators
of higher range. Hence, there is a clear trade-off between CapEx and potential savings in
OpEx that has to be carefully examined before final decisions are made.

6.5 Conclusion

We introduced two exact solution approaches for the DNDPR based on LGs. The
first approach relies on a multi-commodity flow formulation (LMCF) which is pseudo-
polynomial in size, and the second is a B&C approach based on the (LCUT) model with
an exponential number of constraints. Both models provide extremely tight LP bounds
on the considered benchmark instances. We proposed additional valid inequalities for
strengthening the (LCUT) formulation and also for breaking symmetries induced by the
LG structure. We investigated two approaches for adding the strengthening inequalities
to the (LCUT) formulation: a static and a dynamic one. For small instances from Cabral
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et al. [30], representing sparse 4-grid graphs with very few commodities, it turns out
that the overhead of adding more inequalities a priori to the model is negligible. On
the contrary, for larger and denser instances from Cabral et al. [30] and Konak [100],
this overhead does not pay off, and dynamic separation of strengthening inequalities is
recommended.

The overall performance of the proposed LG approaches based on (LMCF) and (LCUT) is
comparable. In general, we observed that the former performs slightly better on sparse
graphs with very few commodities, whereas the latter can be used as an alternative for
larger and denser graphs and when dealing with a larger number of commodities.

Using the existing node-arc formulation as base line for a comparison with the existing
approaches, we showed that our exact approaches are significantly faster than the state
of the art from [110].

Our managerial study sends a strong signal to decision makers that, even though the
capital expenditures might be higher when acquiring regenerators of a higher range, there
are significant long term savings in terms of operating expenditures that need to be taken
into account. These savings are notably related to the energy consumption, network
maintenance, and the network upgrade costs caused by an increasing future demand.
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CHAPTER 7
Strategies for Iteratively Refining

Layered Graph Models

In the previous chapter we already considered an application of layered graphs (LGs).
Their basic idea is to extend a graph along one or multiple dimensions to facilitate
improved mixed integer linear programming (MILP) models, e.g., through enforcing
certain constraints implicitly. Formulations on such extended graphs are known to
frequently provide excellent linear programming (LP) bounds, but are often difficult
to solve due to their excessive size. In Chapter 6 we avoided expensive scaling in case
of fractional distances by a combination of rounding and cutting planes. Separation
turned out to work well due to the small number of remaining infeasibilities. This allowed
us keeping the graph size sufficiently small to obtain an effective approach. However,
in many cases the size of LGs already becomes prohibitive when considering integral
input data. Coarser rounding, e.g., considering only every ith integer value, might be an
option but often leads to many infeasibilities and therefore makes separation ineffective
in practice.

In the following we investigate a framework that attempts to avoid the full size of LGs
by approximating them. This is done by means of an iteratively refined relaxation
that gives rise to a sequence of converging primal and dual bounds. A similar principle
was investigated in Chapter 5 for a scheduling problem. The network design problems
considered here differ in the fact that LGs based on graph problems convey more structural
information. We use this knowledge to develop specialized methods for implementing
the refinement step, i.e., the strategy according to which the LG is expanded in each
step to obtain a more precise relaxation. In particular, we develop algorithms based on
path computations with respect to potentially infeasible solutions obtained from MILP
models formulated on intermediate LGs. Moreover, we investigate the impact of a strong
heuristic component within the algorithm, both for improving convergence speed and for
improving the potential of an employed reduced cost fixing step. The effectiveness of
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our novel refinement strategies is evaluated on two benchmark problems: the traveling
salesman problem with time windows (TSPTW) and the rooted distance-constrained
minimum spanning tree problem (DCMST).

This chapter has been accepted for presentation at the 11th International Workshop
on Hybrid Metaheuristics1 in Concepción, Chile. The accompanying paper has been
accepted for publication in the workshop proceedings as a full paper in the Springer
Lecture Notes in Computer Science:

M. Riedler, M. Ruthmair, and G. R. Raidl. Strategies for iteratively refining
layered graph models. In Hybrid Metaheuristics: 11th International Work-
shop, HM 2019, Lecture Notes in Computer Science. Springer International
Publishing, to appear

7.1 Introduction

In mathematical programming LGs are a well-known technique to deal with specific
constraints and restrictions in problems expressed on graphs. The basic idea is to
construct an extended model that considers some problem dimension explicitly to make
it easier to express certain constraints or even impose them implicitly. Picard and
Queyranne [137] were among the first to consider such an approach. They modeled the
time-dependent traveling salesman problem by means of an extended graph that contains
for each original node copies for all sequence positions at which it might be feasibly
reached. Another typical application is related to distance restrictions in graphs. In
such cases one can create node copies with respect to the feasible distances at which the
original nodes can be reached. By omitting copies beyond the distance limit it is implicitly
ensured that all paths in the extended graph adhere to the limit. If the dimension among
which the original graph is extended corresponds to time, resulting LGs are sometimes
called time-expanded networks. Such approaches are frequently considered for scheduling
problems in which time is discretized to obtain so-called time-indexed models. For further
details on LGs and associated MILP formulations see the extensive survey by Gouveia et
al. [82].

The main advantage of LG formulations is that they provide a convenient modeling option
while usually leading to strong LP bounds. In many cases the LG is even acyclic and allows
pseudo-polynomial formulations. However, there is also an important drawback involved:
LGs and the associated models are typically much larger than simpler formulations on the
original input. Frequently, this leads to models which are computationally impractical for
reasonable problem sizes. However, often it is the case that already a subgraph of the full
LG would suffice to encode an optimal solution. Several researchers used this observation
to construct iterative algorithms that successively approximate the full LG until an
optimal solution is found. This is usually done by omitting node copies and redirecting

1http://hm2019.ing.udec.cl
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arcs. Among the first were Wand and Regan [167] who consider LG formulations for a
pickup and delivery problem with time windows. In particular, they propose a relaxed
formulation and a heuristic component that considers a subset of the feasible solutions.
Those two formulations are successively extended until their bounds match, proving
optimality. Ruthmair and Raidl [155] suggested such an iterative approach for the rooted
DCMST. Another successful application of a similar algorithm was proposed by Dash
et al. [48] for solving the TSPTW. Their approach differs slightly from the former two
as it refines the reduced LG only based on solving LP relaxations in a first stage. The
final reduced LG is then used for solving an MILP in which the remaining infeasibilities
are tackled by cutting planes. Further iterative refinement approaches in the network
design area were considered by Macedo et al. [118], Boland et al. [27, 26], and Clautiaux
et al. [39].

Algorithms of this type that contain a component for obtaining heuristic solutions
provide an eventually converging sequence of primal and dual bounds. Therefore, such
an algorithm can also be terminated prematurely to obtain a high-quality primal solution
together with a dual bound.

All previous works in this area have in common that they consider only a single strategy
for extending the reduced LG in each iteration without evaluating alternatives. The
employed techniques reach from rather simple approaches to more complex algorithms.
In Chapter 5 we presented an extensive evaluation of different refinement techniques for a
resource-constrained project scheduling problem (RCPSP). However, scheduling problems
are somewhat special when it comes to the refinement step. In an aggregated set of
time instants it is usually not clear what is the best/most promising option to reveal
infeasibilities. Network design problems appear to be more accessible in this respect. An
LG relaxation is typically obtained by redirecting arcs due to omitted layers which causes
the arcs to no longer represent correct lengths. This makes it straightforward how an arc
can be corrected to the full extent. Moreover, we can use the knowledge regarding the
true length of the arcs to get further insight from intermediate solutions. This is a crucial
part of the algorithm and evaluating promising alternatives seems to be worthwhile.

In the following we start by introducing the necessary terminology of LGs in terms of an
example problem: the TSPTW. In particular, we discuss how reduced LGs can be obtained
whose associated MILP models provide either primal or dual bounds. Then, we propose
a generic refinement algorithm including several enhancements. Afterwards, we explain
the specific refinement strategies and evaluate them in our computational experiments.
In addition to existing strategies from the literature, we suggest new ones that aim at
extracting more information from intermediate solutions. In the computational study we
evaluate the discussed refinement strategies on several benchmark sets for the TSPTW.
To show how the strategies behave on a structurally different problem we also conduct
experiments for the rooted DCMST.
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7.2 Mathematical Formalization
In the following we describe the construction of an LG and an associated MILP model.
The process is exemplified in terms of the TSPTW. Afterwards, we characterize reduced
LGs that serve as basis for the refinement algorithm introduced in the next section.

Notational remarks. For graph G = (V,A) and node subset S ⊆ V let δ+(S) =
{(i, j) ∈ A | i ∈ S, j /∈ S} be the set of outgoing and δ−(S) = {(j, i) ∈ A | i ∈ S, j /∈ S}
be the set of incoming arcs. To simplify notation we omit the set braces for singletons S.
Solution vectors are indicated by a superscript “∗”.

7.2.1 Traveling Salesman Problem with Time Windows

The TSPTW is defined on a directed graph G = (V,A) with node set V = {α, 1, . . . ,
n, ω}, associated arc costs c : A → Z≥0, and travel times t : A → Z>0. As in [48], we
represent the depot by two distinct nodes α and ω in order to model a tour starting and
ending at the depot as path. Each node i ∈ V is associated with a time window [ri, di]
with ri ≤ di. Service times for the nodes can be incorporated into the arc distances and
are therefore not considered separately. The goal is to find a least cost Hamiltonian path
through V starting at α and ending at ω such that all nodes are visited within their time
windows. Waiting at nodes is allowed in case of early arrival.

7.2.2 Layered Graph Model

We consider the layered digraph GL = (VL, AL). Initially, node set VL = {il | i ∈ V, l ∈
[ri, di]} contains all node copies that are feasible with respect to the time windows.
Thereby, node copy il ∈ VL represents a copy of node i ∈ V reached at distance l. To
get an abstraction for connecting the layered node copies we introduce distance function
θ(il, j) := max(rj , l + t(i,j)) that provides the layer at which node j is reached when
starting at node i at layer (distance) l. The obtained arc set is AL = {(il, jm) | il, jm ∈
VL, (i, j) ∈ A, θ(il, j) = m}. To obtain a smaller graph we remove all unnecessary node
copies—and their incident arcs—that cannot be reached from depot copy αrα

2. An
example in which node 31 is not reachable from α0 is given in Figure 7.1.

We model the TSPTW in terms of binary arc variables xa, for a ∈ A, indicating which
arcs of the original graph are part of the tour, and non-negative arc variables za for
the LG. Observe that this problem could also be modeled without the original graph
variables. However, these variables are convenient for imposing certain strengthening
inequalities and beneficial for the reduced cost fixing explained in Section 7.3.

(TSPTW-L) min
∑
a∈A

caxa (7.1)

subject to
∑
il∈VL

∑
a∈δ−(il)

za = 1 ∀i ∈ V \ {α}, (7.2)

2In the following we assume this step to be completed when referring to the full LG GL.
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Figure 7.1: Example of a layered graph for a TSPTW instance with d = c.

∑
a∈δ+(il)

za =
∑

a∈δ−(il)
za ∀il ∈ VL, (7.3)

∑
(il,jm)∈AL

z(il,jm) = x(i,j) ∀(i, j) ∈ A, (7.4)

x ∈ {0, 1}|A|, z ∈ R|AL|
≥0 . (7.5)

The model presented above can be strengthened3 by well-known cut-set inequalities of
the following form: ∑

a∈δ−(W )
xa ≥ 1 ∀W ⊆ V \ {α}, W 6= ∅. (7.6)

Stronger cut-set inequalities can be specified with respect to the z variables (see [82]):∑
a∈δ−(W )

za ≥ 1 ∀W ⊆ VL \ {αrα}, W 6= ∅, ∃v ∈ V : {vl ∈ VL} ⊆W. (7.7)

Both sets of cut-set inequalities are of exponential size and require dynamic separation in
practice. Although the original graph cut-set inequalities are known to be weaker than
their LG counterpart, they are still worth considering due to faster convergence as a
result of the smaller size of the original graph.

7.2.3 Reduced Layered Graphs

The full LG defined above guarantees that the associated MILP model, denoted by
TSPTW-L(GL), contains all feasible solutions that can be realized in the original graph.

3In case of zero-distance cycles, these inequalities become mandatory.
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Figure 7.2: Example of a dual layered graph with respect to the TSPTW instance
provided in Figure 7.1.

However, depending on the number of layers and the density of the original graph we
often end up with a problematic model size. Smaller graphs can be extracted from the
full LG by either giving up optimality or feasibility. For pragmatic reasons we require
each reduced LG G′L = (V ′L, A′L) to contain at least one copy for each node of the original
graph, i.e., V = {i | il ∈ V ′L}.

Due to the omitted node copies, arcs are redirected. We say that an arc (il, jm) is
shortened (lengthened) if there exists an arc (il, jk) in the full LG with m < k (m > k),
otherwise it has the correct length.

Dual Layered Graphs

A dual LG GdL = (VdL, AdL) is obtained by considering only a subset of the layered node
copies VdL ⊆ VL inducing the reduced arc set

AdL = {(il, jm) | il, jm ∈ VdL, (i, j) ∈ A, m ≤ θ(il, j),
@m′ (m < m′ ≤ θ(il, j) ∧ jm′ ∈ VdL)}.

In short, this means that if a layered node is present in VdL but the target of its outgoing
arc according to VL is not, then we use the copy of the target node at the maximum
layer no larger than the originally used copy and omit the arc if such a copy does not
exist. An example is provided in Figure 7.2.

In order to guarantee that the associated MILP model is a relaxation we only consider node
subsets VdL ⊆ VL such that il ∈ VdL ∧ (il, jm) ∈ AL =⇒ ∃m′ (m′ ≤ m ∧ (il, jm′) ∈ AdL).
This ensures that we loose no connections that were present in the original graph. By using
only shortened and correct arcs we never arrive at a node on a higher layer than in the
full LG. As a result TSPTW-L(GdL) is a relaxation with respect to the original problem.
Consequently, the LP relaxation of TSPTW-L(GdL) yields a dual bound. Moreover, if an
optimal integral solution to TSPTW-L(GdL) is feasible (on the x variables) with respect
to the original problem, then it is guaranteed to be optimal. Observe that the dual LG
is—opposed to the full LG—usually not acyclic. Therefore, separating cut-set inequalities
is necessary to obtain a connected solution.
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Primal Layered Graphs

A primal LG GpL = (VpL, ApL) is obtained by considering only a subset of the layered
node copies VpL ⊆ VL and an associated induced arc set

ApL = {(il, jm) | il, jm ∈ VpL, (i, j) ∈ A, m ≥ θ(il, j),
@m′ (θ(il, j) ≤ m′ < m ∧ jm′ ∈ VpL)}.

This time we redirect arcs to the node copy at the minimum layer at least as large as the
original one. Therefore, the primal LG turns its associated MILP model into a heuristic
as it may exclude feasible solutions—possibly to the extent that no solutions remain. A
feasible solution to TSPTW-L(GpL) provides a primal bound but cannot be shown to be
optimal on its own—not even if all layered arcs associated with the selected z variables
have the correct length.

7.2.4 Other Problems

The definitions provided above can be easily adjusted to other problems. To cover
the rooted DCMST (see [78])—for which we also perform experiments in Section 7.4—
it suffices to redefine the distance function to θ(il, j) := l + d(i,j), i.e., waiting is not
permitted/necessary. The problem’s distance restriction can be imagined as time window
for each node with a lower bound of zero and an upper bound equal to the global distance
limit. A suitable MILP model can then be obtained by taking the model for the TSPTW
and replacing constraints (7.3) by

z(il,jm) ≤
∑

(kh,il)∈δ−(il):k 6=j
z(kh,il) ∀il ∈ VL, ∀(il, jm) ∈ δ+(il). (7.8)

7.3 Algorithmic Framework
In this section we describe our iterative refinement algorithm. In particular, we consider
different refinement strategies that are used to iteratively extend an initially small dual
LG.

To simplify the description in what follows, we make some assumptions on the considered
input problem. We focus on problems for which each node must be connected to
a designated source node. This guarantees that we can perform the necessary path
computations in the LG for some of the refinement strategies presented in Section 7.3.2.
Consequently, suitable connectivity inequalities must be available (e.g., cut-set inequalities
(7.7) for the TSPTW). This assumption might seem restrictive at first but actually covers
a large variety of problems. Depot-based routing problems as well as most network design
problems are compatible with this restriction. In addition, we assume that the model is
specified as minimization problem and includes at least design variables x for the original
graph arcs and design variables z for the LG variables—further auxiliary variables are
of course possible. Note that these conditions are more strict than necessary but being
more general would go beyond the scope of this work.
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Algorithm 7.1: Iterative refinement algorithm (IRA)
1 while termination condition not met do
2 solve LP; stop if gap closed
3 refine LG
4 if solution is integer and feasible then terminate // optimal solution
5 apply primal heuristic; stop if gap closed
6 apply reduced cost fixing
7 if graph could be refined then continue with next iteration
8 solve IP
9 refine LG

10 if solution is feasible then terminate // optimal solution
11 apply primal heuristic; stop if gap closed
12 end

7.3.1 Iterative Refinement Algorithm

The main idea of our iterative refinement algorithm (IRA) is to start with a small
dual graph and solve the associated MILP model or its corresponding LP relaxation,
respectively. The result is then used to either prove optimality or—if this cannot be
done—to obtain a larger dual graph (closer to the full LG) for repeating the procedure.
This step of adding not-yet-present node copies of the full LG to the dual LG is called
refinement. If the refinement adds at least one new node copy in each iteration, then it
is guaranteed that the algorithm terminates with an optimal solution in finitely many
iterations since the dual graph eventually converges to the full LG.

Algorithm 7.1 provides the detailed procedure. The mentioned gap refers to the absolute
difference between the current dual (db) and primal (pb) bounds and is considered to be
closed if db ≥ pb. In the beginning we need an initial dual LG. This step depends on the
problem at hand. For the TSPTW—and many other problems—a minimal starting graph
that satisfies the restrictions imposed above can be obtained by considering for each
original graph node the copy at the smallest feasible layer. Based on this initial dual LG
we solve the LP relaxation of the associated MILP model. The obtained solution value is
a dual bound and can be used to prove optimality if a primal bound is available. In order
to get a more meaningful solution for the subsequent refinement process, we assume the
LP to be extended by connectivity inequalities. If optimality could not be proven yet,
we use a refinement algorithm to identify possible infeasibilities in the relaxed solution.
If infeasibilities could be detected, we add further nodes to the graph to reveal them.
Otherwise, we test whether the obtained LP solution is integral. An integral solution that
is feasible must be optimal according to the construction of the dual LG. A fractional
solution, on the other hand, might prevent the refinement algorithm from detecting
remaining infeasibilities. Therefore, we solve the MILP model in the following. However,
before doing this, we can apply a heuristic (guided by the current fractional solution) to
obtain a primal bound to possibly close the gap and prove optimality. Furthermore, we
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can use the obtained primal bound to attempt reduced cost fixing with respect to the
x variables of the MILP model. To this end let db be the current solution value of the
LP relaxation, pb the current primal bound, x∗ the solution vector of the original graph
variables, and xr the vector of reduced costs of the x variables. For each arc a ∈ A we
consider two cases. If x∗a = 0 ∧ db+ xr

a ≥ pb, we can remove arc a from the input graph
and consequently all its copies in any LG. On the other hand, if x∗a = 1 ∧ db− xr

a ≥ pb,
we know that arc a must be part of an optimal solution and its associated variable can
therefore be fixed to one in subsequent iterations. When the algorithm is already close
to convergence, reduced cost fixing might fix a sufficient number of variables to zero such
that the model becomes infeasible, proving optimality of the solution that provided the
current primal bound.

Unless one of the previous considerations allowed proving optimality, we are now in
the situation that the (fractional) LP solution does not allow the refinement algorithm
to identify the remaining infeasibilities. In this unfortunate case we have to take the
additional computational burden and solve the MILP to optimality. If the integral
solution is feasible, we proved optimality. Otherwise, we apply the primal heuristic once
more before solving the LP relaxation according to the refined dual LG.

Primal graph heuristic. Steps 5 and 11 of Algorithm 7.1 can in principle be realized
by any suitable heuristic. Problem-dependent algorithms typically provide better solution
quality but are sometimes tedious to implement and often have to be replaced completely if
a slightly different problem variant is considered. A more convenient problem-independent
way to obtain heuristic solutions is to use the MILP formulation on the primal LG. We
construct the primal LG by taking the node set of the dual LG and add for each node
a copy at the maximum feasible layer. This enables us to benefit from the iterations
made so far while reducing the risk of obtaining a graph that encodes no feasible solution.
Primal graph heuristics of this type were considered in [39, 154, 155, 167].

7.3.2 Refinement Procedures

The perhaps most crucial part of IRA is the refinement step. Solutions with respect
to the current dual LG typically contain multiple infeasibilities and it is usually not
clear how they can be handled most efficiently. In this context one has to deal (among
others) with the following important questions: (1) for which nodes should we add further
copies, (2) how many copies should be added, and (3) on which layers should the copies
be inserted. Answering those questions typically involves keeping a suitable balance
between the growth of the dual LG and the number of iterations IRA has to complete
before proving optimality. The latter is quite important as it determines how often the
MILP solver has to be invoked which is usually the most time-consuming part of the
algorithm. On the other hand, the time each invocation takes increases with the size of
the associated dual LG.

191



7. Strategies for Iteratively Refining Layered Graph Models

Full Infeasible Arc Refinement (FAR)

The probably most straightforward refinement strategy simply refines all nodes that are
part of the current solution. To this end, we take all layered arcs whose associated solution
value is non-zero. All shortened arcs are fully corrected by adding the appropriate target
node to the dual LG. To avoid refining already feasible solutions, we check if the solution
with respect to the x variables is feasible before starting the refinement process. This
refinement procedure was employed in [26, 118, 154, 155].

Infeasible Path Refinement (PR)

Instead of considering all arcs, we only consider those that are most relevant from the
structural perspective. We start by constructing an auxiliary LG that is obtained by
taking all arcs of the dual LG with associated non-zero z variable value in the current
solution. Based on this graph we compute a shortest path, using distances weighted by
1− z∗a, to each node and determine the effective distance at which the node would be
reached. If this distance is incompatible with the node’s time window, we compute a
refinement. This is done by traversing the path backwards and refining each arc as done
for FAR stopping once we reach a node for which the effective distance is equivalent to
its layer.

Repeated Infeasible Path Refinement (RPR)

We start by performing PR. In a subsequent step, we check for each formerly infeasible
path if it is still contained in the adjusted dual LG—traversing different node copies
but still reaching the target node after its time window when considering the effective
distance of the path—and repeat the refinement step until the path is no longer present.

Single-Copy Infeasible Path Refinement (SPR)

Especially in later iterations the dual LG contains multiple layered copies with respect to
each node of the original graph. We perform the same approach as done in PR, however,
for each node of the original graph we only compute a refinement for the path reaching
the node at the highest effective distance, i.e., the most infeasible path.

Minimum Sum of Negative Waiting Times (DASH)

This strategy was developed by Dash et al. [48]. Similar to the other techniques they
consider the subgraph G′dL induced by non-zero z variable values. If a node copy vl
is reached by shortened arcs, a new node copy is added that minimizes the sum of
negative waiting times. The negative waiting time of an arc is essentially the amount
by which it was shortened, i.e., if (il, jm) ∈ G′dL and (il, jk) ∈ GL, then the negative
waiting time is k − m. A new layered copy of node v is added at the layer λ that
achieves the minimum when computing the sum of negative waiting times weighted
by the associated arcs’ solution values. Let z∗ be the current solution vector and let
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Ivl = {((jm, vl), l′) | (jm, vl) ∈ AdL, (jm, vl′) ∈ AL}. Then we seek the layer λ that
minimizes µ(vl, λ) =

∑
(a,l′)∈Ivl :l′<λ

(l′ − l)z∗a +
∑

(a,l′)∈Ivl :l′≥λ
(l′ − λ)z∗a. Dash et al. do

not indicate which value is used if there are multiple options for λ that achieve the
minimum. Function µ is piece-wise linear for a fixed vl and changes slope only at points
at which at least one arc arrives at the correct distance. Therefore, it makes sense to
restrict the procedure to such values, i.e., l′ − λ is zero for at least one element from
Ivl , as this guarantees to reduce the number of shortened arcs. However, this still might
leave several options. In preliminary experiments we tested using either the smallest or
the largest value of λ that achieves the minimum. The performance was roughly the
same with a slight advantage for the latter.

Again we check feasibility with respect to the original graph variables to avoid superfluous
refinements.

7.4 Computational Study

Our algorithms are implemented in C++ using CPLEX 12.8.0 as general-purpose MILP
solver. All experiments have been performed in single thread mode with default parameter
settings. For performance reasons the implicitly integral LG variables z are implemented
as binary variables together with a cost-based branching priority to focus on the original
graph variables. Experiments have been executed on an Intel Xeon E5540 machine with
2.53GHz. The computation time limit has been set to 7200 seconds and the memory limit
to 8GB RAM. To test our framework we consider two benchmark sets for the TSPTW
from http://lopez-ibanez.eu/tsptw-instances. The first set is from Ascheuer et al. [6]
and contains 50 instances while the second one was proposed in Dumas et al. [56] and
contains 135 instances. In addition, we also tested on instances for the rooted DCMST
by Gouveia et al. [78]. Experiments were limited to the subset of 60 “TE” instances with
distances ranging to 10, 100, and 1000 as the other instances turned out to be too easy.
The TSPTW instances were preprocessed as described in [6] and the DCMST instances
as described in [154].

We want to emphasize that our aim is to compare the different refinement strategies on
a common basis and not to beat the state of the art. Achieving the latter would require
further problem-specific tuning and incorporation of additional strengthening inequalities
which is not the focus of this work.

7.4.1 Experiments

In the upcoming tables we present averages for gaps, computation times, the number of
iterations in which the LP relaxation was solved (itr), the number of iterations in which
the MILP was solved (itr-ip) as well as the number of nodes and arcs in the final LGs.
Instances that terminated due to the memory limit are omitted when computing averages
and those that ran into the time limit are considered with a value of 7200 seconds. Gaps
are computed by (pb∗ − db)/pb∗ where db is the dual bound of the respective run and
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Table 7.1: Results on the TSPTW instances by Ascheuer at al. [6].

Algorithm Gap [%] t [s] #itr #itr-ip |V | |A| #tl #ml #opt

MIP 20.24 3800 - - 78437 1339490 21 5 24
IRA_FAR 0.09 2230 17.9 0.0 547 9820 14 0 36
IRA_DASH 0.08 2114 18.8 0.0 531 9546 13 0 37
IRA_PR 0.08 2090 31.4 3.5 398 7663 13 0 37
IRA_RPR 0.08 2007 22.1 2.5 417 8010 12 0 38
IRA_SPR 0.08 2080 32.6 3.6 399 7761 12 0 38
IRA_FAR_HS 0.08 2215 15.1 0.0 503 9248 14 0 36
IRA_DASH_HS 0.08 2064 15.5 0.0 480 8872 13 0 37
IRA_PR_HS 0.08 2038 27.9 3.2 376 7379 12 0 38
IRA_RPR_HS 0.08 1937 19.1 1.9 394 7710 12 0 38
IRA_SPR_HS 0.08 2068 29.2 3.1 377 7398 12 0 38
IRA_FAR_HS_RCF 0.08 2047 15.3 0.0 492 8340 13 0 37
IRA_DASH_HS_RCF 0.08 1935 15.4 0.0 475 7985 13 0 37
IRA_PR_HS_RCF 0.08 2096 29.2 3.6 384 6876 13 0 37
IRA_RPR_HS_RCF 0.08 1933 19.2 2.0 399 7190 12 0 38
IRA_SPR_HS_RCF 0.08 2001 30.6 3.3 384 6948 12 0 38

pb∗ is the best primal bound known for the respective instance. The remaining columns
report the number of runs that ran into the time limit (tl) or the memory limit (ml),
respectively, and the number of instances solved to proven optimality (opt).

For the TSPTW we consider each refinement strategy in three variants: without a primal
component, with an initially provided primal solution (“HS”), and with an initially
provided primal solution and reduced cost fixing activated (“HS_RCF”). We do this
in order to show two things: (1) the benefits of a strong primal component and (2)
the potential of reduced cost fixing if a high-quality solution is available. High-quality
heuristic solutions for the Ascheuer instances were obtained from http://lopez-ibanez.eu/
tsptw-instances and optimal solutions for the instances by Dumas et al. were obtained
from http://homepages.dcc.ufmg.br/~rfsilva/tsptw.

Table 7.1 reports our results on the instances by Ascheuer et al. [6]. The first observation
is that directly solving the MILP on the full LG (MIP) is not effective. The size of the
associated model leads either to problems with the memory limit or to long runs that
can frequently not be completed within the time limit. Consequently, the remaining gap
is quite large with more than 10 % on average. All variants of our refinement algorithm
perform much better. The most striking difference is that we deal with considerably
smaller graphs that help to avoid any memory issues. This enables us to solve significantly
more instances to optimality. Among the various refinement strategies we observe that
the naive approach (FAR) solves the fewest instances to optimality while leading to
the largest graph sizes. The approach by Dash et al. [48] works noticeably better and
solves one more instance to optimality but requires comparatively large graphs. Our new
path-based strategies solve the largest number of instances to optimality. The drawback
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Table 7.2: Results on the TSPTW instances by Dumas et al. [56].

Algorithm Gap [%] t [s] #itr #itr-ip |V | |A| #tl #ml #opt

MIP 0.42 2000 - - 3276 37069 29 0 106
IRA_FAR 0.00 250 10.5 0.2 285 3597 1 0 134
IRA_DASH 0.00 240 10.7 0.1 282 3549 1 0 134
IRA_PR 0.00 80 13.1 4.0 142 1719 0 0 135
IRA_RPR 0.00 55 9.2 3.0 145 1773 0 0 135
IRA_SPR 0.00 93 13.2 4.1 141 1711 0 0 135
IRA_FAR_HS 0.00 110 8.2 0.1 256 3207 0 0 135
IRA_DASH_HS 0.00 123 8.3 0.1 251 3135 0 0 135
IRA_PR_HS 0.00 65 12.3 3.5 139 1681 0 0 135
IRA_RPR_HS 0.00 45 8.4 2.5 139 1691 0 0 135
IRA_SPR_HS 0.00 73 12.4 3.5 138 1674 0 0 135
IRA_FAR_HS_RCF 0.00 44 8.0 0.1 255 2247 0 0 135
IRA_DASH_HS_RCF 0.00 45 8.3 0.1 250 2187 0 0 135
IRA_PR_HS_RCF 0.00 56 12.4 3.5 138 1395 0 0 135
IRA_RPR_HS_RCF 0.00 42 8.3 2.5 138 1401 0 0 135
IRA_SPR_HS_RCF 0.00 55 12.4 3.5 138 1387 0 0 135

of these rather careful and minimalist approaches is that they require a higher number of
iterations to converge, even including some iterations where the MILP has to be solved,
which is not necessary for FAR and DASH. Nevertheless, we observe the smallest average
computation times for these strategies. The more slowly growing graphs outweigh the
higher number of iterations through the smaller associated models. Among the three
path-based approaches, we see that RPR performs best.

Providing high-quality initial solutions improves all variants of IRA alike. We observe
a decrease in the number of iterations as well as the final graph sizes. This shows that
a tight dual bound is sometimes obtained before feasibility can be established through
further refinement steps. Enabling reduced cost fixing helps to improve the results further.
For strategy PR we observe a minor slowdown compared to the variant in which only the
initial solution is provided. The reason is that solution quality and refinement quality are
not directly correlated. A weaker solution might lead to a very successful refinement in a
subsequent iteration that is not reached by a better solution. The slowdown, however, is
not dramatic and we achieve the smallest final graph size with this approach.

In Table 7.2 we provide the results on the instances by Dumas et al. [56]. Compared
to the Ascheuer instances this set features much narrower time windows (100 at most).
Therefore, the MILP on the full LG performs considerably better. Although it no longer
faces problems with the memory limit, it is still not able to solve all instances to optimality
within the time limit. The remaining gap is rather small but could also not be closed
completely. In terms of computation times we again observe a clear advantage for IRA.
The performance of the different refinement strategies is comparable to what we observed
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Table 7.3: Results on the hard DCMST instances (TE) by Gouveia et al. [78].

Algorithm Gap [%] t [s] #itr #itr-ip |V | |A| #tl #ml #opt

MIP 0.72 3063 - - 23833 529314 13 13 34
IRA_FAR 0.08 2481 21.9 0.0 474 10827 9 0 51
IRA_DASH 0.05 2118 22.4 0.1 473 10816 6 0 54
IRA_PR 0.05 2555 23.6 0.2 418 9703 7 0 53
IRA_RPR 0.04 1913 18.0 0.1 481 10767 4 0 56
IRA_SPR 0.06 2601 24.3 0.2 415 9640 10 0 50
IRA_FAR_PHeu 0.07 2211 21.5 0.0 471 10769 6 0 54
IRA_DASH_PHeu 0.05 2058 21.9 0.0 472 10793 5 0 55
IRA_PR_PHeu 0.04 2256 23.0 0.1 417 9678 6 0 54
IRA_RPR_PHeu 0.04 1680 17.8 0.1 482 10781 4 0 56
IRA_SPR_PHeu 0.04 1987 23.6 0.2 414 9632 4 0 56
IRA_FAR_PG 0.08 2453 21.2 0.0 469 10709 9 0 51
IRA_DASH_PG 0.05 2185 21.5 0.0 467 10675 5 0 55
IRA_PR_PG 0.04 2269 23.3 0.2 416 9659 6 0 54
IRA_RPR_PG 0.04 1816 17.6 0.1 479 10702 4 0 56
IRA_SPR_PG 0.07 2553 23.9 0.2 413 9606 9 0 51

for the Ascheuer instances. Strategies FAR and DASH require larger graphs but converge
within fewer iterations. The path-based approaches, on the other hand, lead to much
smaller final graphs but also have to complete some iterations in which the MILP is
solved. Providing an initial primal solution again improves the results significantly. This
time reduced cost fixing provides a consistent improvement and does not suffer from side
effects. It is even effective enough to almost improve the slower refinement strategies to
the level of the better ones through variable fixes that significantly reduce the LG size.

Finding feasible solutions to the TSPTW is NP-hard (see Ascheuer et al. [6]) but can be
done in (pseudo-)polynomial time for the rooted DCMST. Therefore, we use this problem
to show the performance of a simple problem-specific heuristic (“PHeu”) in comparison
to the general purpose heuristic based on the primal LG (“PG”). The considered problem-
specific heuristic iteratively computes a resource constrained shortest path to a still
unreached node farthest from the source. The costs of the thereby added arcs are set to
0 for the next iteration and the procedure is stopped once all nodes are connected to
the source. We use the solution on the x variables as guidance by operating on adjusted
costs weighted by 1− x∗a. We do not use reduced cost fixing here to avoid side effects
that could influence the results.

The MILP model on the full LG once more solves the fewest instances to optimality while
being the slowest algorithm on average. The reason why the MILP is not that far off this
time is that the considered instance set considers also small distance limits. For small
and medium distance limits the MILP is competitive while it is clearly outperformed
for the larger ones or cannot be solved due to the memory limit. Again, all variants
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of the iterative approach outperform the pure MILP approach for the larger distance
restrictions. Strategies FAR and SPR do not work as well as the other strategies. The
former appears to refine too unstructured while the latter does not make enough progress
resulting in a comparatively high number of iterations. Among the remaining three
variants we observe that RPR works best. Although it leads to larger graphs than the
other path-based strategies, it turned out to be quite fast. Apparently, the repeated
refinement helps to significantly reduce the number of iterations which compensates for
the larger graph size.

Adding heuristics significantly decreases computation times and allows solving further
instances to proven optimality. The primal LG heuristic turns out to be a valuable
alternative to the problem-specific one. Nevertheless, we want to point out that it
strongly depends on the problem whether the generic approach works well. Preliminary
experiments for the TSPTW showed that it can be difficult to obtain feasible solutions if
the underlying problem is challenging in this respect. Node copies corresponding to an
initial heuristic solution might be inserted into the LG to resolve these issues.

Finally, we applied the one-tailed Wilcoxon signed-rank test for RPR and each other
refinement strategy (without heuristics or reduced cost fixing). The alternative hypothesis
that RPR is faster was assumed with a significance level of 0.05, except for the instances
by Ascheuer where PR, SPR, and DASH performed too similar, mainly due to the
comparatively high number of unsolved instances.

7.5 Conclusion and Future Work

In this chapter we considered a general framework for iteratively refining a reduced
LG. Based on solutions to an associated MILP formulation and heuristically obtained
primal bounds the approach converges towards proven optimality if given enough time.
In particular, we focused on one of the crucial points of such algorithms which did
not receive much attention in previous works: the refinement step that extends the
LG in each iteration. We investigated strategies from the literature and suggested new
path-based alternatives. Through our experiments on two benchmark problems—the
TSPTW and the rooted DCMST—we could show that the previous approaches work
reasonably well but still leave room for improvement. The path-based approaches are
able to solve a higher number of instances to optimality while leading to smaller LGs in
the final iteration. We also showed that a strong heuristic component is important for
the algorithm to converge faster and to provide high-quality (intermediate) solutions. In
addition, these solutions can be used to apply reduced cost fixing.

A problem-independent heuristic was shown to be competitive with a simple problem-
specific one. Future work could put more effort into this component to improve the
obtained results. In this work we focused on refinement strategies for the reduced LG
that is used to compute dual bounds. However, one may also consider refinements based
on the LG that is used to obtain heuristic solutions.
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For brevity, we restricted the discussion to problems with a designated source node
to which all other nodes must be connected. However, the method can in principle
be applied to any network design problem for which feasibility of the relaxation may
be checked through path computations. Interesting problems are those whose resource
dependencies can be naturally modeled through LGs. This especially includes problems
with resource-dependent (non-linear) costs, e.g., time-dependent travel times. If many
layers are present of which only few are assumed to be traversed, the iterative algorithm is
expected to work particularly well. In general, the approach does not work for applications
represented by a cyclic LG because the described dual LGs not necessarily represent a
relaxation for them. Typical examples are pickup and delivery problems with increasing
and decreasing load along the route as well as the energy state in electric vehicle routing.

To be comparable to the state of the art further tuning would be necessary for both
benchmark problems. In terms of the TSPTW our algorithms struggle in particular with
some of the harder Ascheuer instances. A promising solution appears to be the inclusion
of information related to node precedences as done, e.g., in [9, 48]. Concerning the rooted
DCMST our results are already quite close to the state-of-the-art column generation
approach in [107] with only four instances that could not be solved to optimality.

In preliminary experiments we tested a cleanup algorithm that removes nodes from
the LG that were not used for a specified number of iterations. This approach showed
potential to decrease the final graph sizes further. Unfortunately, we ran into problems
with cycling that increased the number of iterations, negating the provided benefits.
Future research could address these issues by more complex cleanup or cycle-prevention
strategies. Having shown that even smaller final graph sizes can be achieved, we think
that a more theoretical investigation could prove useful. Computing minimal or even
minimum LGs that lead to tight dual bounds or even optimal solutions could serve as
starting point to design more elaborate refinement strategies.
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CHAPTER 8
Conclusions

In this thesis we considered several variants of decomposition approaches for mixed
integer linear programming (MILP). Our aim was twofold. First, we wanted to show how
decomposition approaches can be employed to tackle challenging optimization problems
that could not be handled effectively with standard MILP approaches. Second, we used
the insights gained from our experiments to improve the decomposition methods. To
this end we focused on individual subcomponents and thoroughly investigated different
alternatives, including novel strategies developed in this work. Some of the novel
extensions and methods are problem-specific, but several concepts are more generic and
therefore appear to be promising also for solving other problems.

In Chapter 3 we started by considering column generation for solving the network
design problem with relays (NDPR). We improved upon a previous application of
column generation by applying a graph transformation. Thereby we managed to reduce
the complexity of the pricing subproblem leading to a more balanced decomposition.
Through the incorporation of additional strengthening inequalities we obtained an effective
approach. While this strategy is rather problem-dependent, we think that at least the
idea can be generalized: Although some method might not be successful when applied in
a straightforward way, it can still succeed after exploiting insights into structural aspects
of the problem that can be used to develop a suitable problem transformation.

The next decomposition method we investigated was logic-based Benders decomposition
(LBBD), which is a recent extension of the well-established classical Benders decomposition
(BD). As benchmark problem we selected a request maximizing variant of the dial-a-
ride problem (DARP). By means of the decomposition approach we separated the
problem into an optimization and a feasibility component to facilitate the application of
specialized algorithms. In particular, we used a MILP model to deal with the optimization
aspect. To enhance performance we included additional valid inequalities derived from
subproblem relaxations. Further speedups could be achieved through heuristic techniques
applied in terms of the Benders algorithm. The feasibility component was tackled
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with a constraint programming (CP) approach. To compensate for significant outliers
in terms of computation time we resorted to a hybrid approach. This was done by
incorporating a MILP algorithm that was slower on average but much more consistent in
terms of computation time. Finally, we investigated different techniques for generating
Benders cuts. To this end we considered straightforward Benders cuts as reference
point and compared them to heuristically strengthened ones as well as two variants
of theoretically strongest Benders cuts. Our study showed that Benders cuts based
on infeasible substructures of minimum cardinality are particularly successful. This
result is quite interesting as our method incurred substantial overhead for deriving these
substructures and yet performed similar or even better than the much faster heuristic
approach. Developing algorithms to compute such substructures efficiently appears to be
an interesting starting point for future work. We believe that similar Benders cuts can
also be considered for other problems. Most contributions from the literature employ
straightforward Benders cuts—sometimes strengthened by simple heuristics—but do
not consider more elaborate techniques. Our result provides a lead on future research
directions to develop improvements in this respect.

The next method we considered was based on relaxations. Our goal was to tackle a
scheduling problem subject to a fine-grained time discretization. To reduce the impact of
the large resulting time horizon we aggregated consecutive time instants into so-called
time buckets. The resulting MILP formulation constitutes a relaxation with respect
to the original problem, potentially leading to solutions with remaining infeasibilities.
Accordingly, we developed an algorithm based on iteratively deriving relaxed solutions
and according dual bounds, originating from successively refined aggregations. Once the
solution to the relaxation becomes feasible for the original problem, we know that it must
be optimal. To improve convergence speed we also developed heuristics to derive primal
solutions guided by the relaxations. In our study we focused strongly one the refinement
process, i.e., the strategy according to which the buckets are subdivided in each iteration
to refine the relaxation. Our results indicate that it is most important to restrict the
growth of the model as well as the number of iterations. A reasonable balance among
this conflicting goals can only be achieved by applying just few of the most relevant
refinements. The most successful strategy was based on exploiting additional information
gained by observing the solution components that are responsible for the remaining
infeasibilities. Compared to classical MILP approaches from the literature our algorithm
performed much better. In this respect our technique constitutes a valuable alternative
that might also be applied to other scheduling problems with similar characteristics.
During our investigation we strongly focused on the refinement step, which is according
to our experience one of the most important parts of the algorithm. However, to improve
the performance of the approach further, we believe that additional efforts should be
devoted also to other aspects of the algorithm. Along these lines it might be promising
to explore more sophisticated algorithms for computing heuristic solutions. Suitable
techniques might be able to provide additional information that can be exploited in terms
of the refinement process. Another important observation is that although our relaxation
is considerably smaller than the original problem, solving its associated MILP model is
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still the main bottleneck of the approach. On the one hand, this seems to be justified as
tight dual bounds are necessary to prove optimality. On the other hand, we think that a
slightly different relaxation or another method of solving it could lead to improvements.
Considering CP techniques appears to be particularly promising.

For solving the directed network design problem with relays (DNDPR)—the directed
counterpart of the NDPR—we used layered graphs (LGs). We did so in order to deal
with a specific side constraint that could not be handled effectively in terms of the
communication graphs used for the NDPR. The idea of LGs is to extend a base graph
along one or multiple dimensions to facilitate MILP modeling options. In particular,
associated formulations are known to provide strong linear programming (LP) bounds.
The drawback, however, is that LGs are typically substantially larger than the underlying
base graph. In terms of the considered problem the graph size strongly depends on
an imposed distance restriction. This entails additional difficulties when dealing with
fractional input values. To restrict the size of the resulting LG we rounded down fractional
inputs to obtain a relaxation. Potential infeasibilities were then addressed by cutting
planes. We improved the considered model further by developing additional strengthening
inequalities and symmetry breaking constraints. With our approach we achieved new
state-of-the-art results for the DNDPR. The main downside of our algorithm is that it
struggles with larger instances that lead to prohibitive graph sizes despite our rounding
strategy. A potential remedy might be the iterative approach discussed in Chapter 7
that we are going to summarize in the following.

As mentioned above, LGs are in general an appealing modeling approach due to leading
to excellent LP bounds. However, often they are not applicable as a result of their
excessive size. The aforementioned combination of rounding and cutting planes was
beneficial to avoid issues with fractional input values, in particular, because only few
violations occurred. Unfortunately, often already integral inputs lead to prohibitive graph
sizes. A coarser aggregation could be an option but often leads to many infeasibilities,
making separation ineffective in practice. Instead, we considered an iterative approach
that avoids the full size of the LG based on the observation that typically only a (small)
subgraph is required to obtain a provably optimal solution. The resulting algorithm is
similar to the one we considered for high-resolution scheduling. Instead of aggregating
time instants we aggregate node copies and redirect arcs accordingly. Part of the node
copies that were omitted in this way is then reintroduced until optimality can be proven.
Different from the scheduling domain, comparable approaches have been considered in
the previous network design literature. A major shortcoming of these works is that
they focus rather strongly on specific applications. This leads to an overemphasis of
the (re-)development of the iterative algorithm while refraining to question the way in
which certain components are implemented. Taking into account the lessons learned from
our experiments on the scheduling problem we focused on developing alternatives for
the refinement step. We took advantage of the structural information provided by the
underlying graph problem to design path-based approaches. The conducted experiments
indicate that our novel strategies can prove optimality with considerably smaller LGs
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8. Conclusions

than the approaches from the literature. Consequently, further instances could be solved
to optimality within shorter computation times. Preliminary experiments indicated that
it might be possible to prove optimality with even smaller LGs. We therefore think that
a more theoretical investigation could be a starting point for future work. To this end
it appears to be promising to compute minimal LGs that provide tight dual bounds or
encode optimal solutions. The structure of these graphs might provide important insights
from which even more successful refinement strategies can be derived.

The variety of decomposition algorithms investigated in this thesis underlines the im-
portance of investing in the development of different strategies. While the considered
principles are very general, their success strongly depends on the problem at hand. Conse-
quently, one should always aim to explore a problems peculiarities and special structural
features to decide which approach fits best. Finally, the selected algorithm should be
adjusted according to the gained insights, possibly hybridizing several techniques to draw
upon their individual strengths.
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APPENDIX A
Additional Result Tables for the
Selective Dial-a-Ride Problem
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A. Additional Result Tables for the Selective DARP

Computation time [s] LB

Instance properties LBBD BaC LBBD BaC

Instance |K| n T Q L LB∗ CM simple aIIS mIIS gIIS simple aIIS mIIS gIIS CM simple aIIS mIIS gIIS simple aIIS mIIS gIIS

30N_4K_A 4 30 240 3 30 30 83 3 53 38 6 11 24 23 2 30 30 30 30 30 30 30 30 30
30N_4K_B 4 30 240 3 30 29 ML 595 15 12 4 11 12 3 1 ML 29 29 29 29 29 29 29 29
30N_4K_C 4 30 240 3 30 30 ML TL 355 202 47 1293 195 192 23 ML 29 30 30 30 30 30 30 30
30N_5K_A 5 30 240 3 30 30 79 < 1 112 4 1 21 30 34 2 30 30 30 30 30 30 30 30 30
30N_5K_B 5 30 240 3 30 30 23 3 13 4 1 < 1 13 11 1 30 30 30 30 30 30 30 30 30
30N_5K_C 5 30 240 3 30 30 6655 406 137 75 19 19 52 25 3 30 30 30 30 30 30 30 30 30
40N_4K_A 4 40 240 3 30 38 TL TL TL 343 71 TL 6053 496 101 36 36 38 38 38 36 38 38 38
40N_4K_B 4 40 240 3 30 38 ML TL 6798 375 282 TL 3132 540 144 ML 36 38 38 38 29 38 38 38
40N_4K_C 4 40 232 3 30 37 TL TL TL 798 802 TL TL 454 142 29 34 36 37 37 28 37 37 37
40N_5K_A 5 40 240 3 30 40 TL 35 2669 68 5 568 77 33 3 31 40 40 40 40 40 40 40 40
40N_5K_B 5 40 240 3 30 40 TL TL 1499 327 97 TL 430 172 27 39 38 40 40 40 39 40 40 40
40N_5K_C 5 40 240 3 30 40 1662 10 29 53 14 308 108 5 2 40 40 40 40 40 40 40 40 40
44N_4K_A 4 44 240 3 30 40 TL TL TL TL TL TL TL TL TL 38 36 36 39 38 24 38 40 40
44N_4K_B 4 44 240 3 30 42 TL TL TL 1959 1088 TL TL 4279 3191 30 38 40 42 42 34 41 42 42
44N_4K_C 4 44 240 3 30 41 TL TL TL TL TL TL TL 4740 5553 32 37 35 40 39 33 40 41 41
44N_5K_A 5 44 239 3 30 44 ML TL TL 323 131 TL 429 339 61 ML 42 43 44 44 30 44 44 44
44N_5K_B 5 44 240 3 30 44 TL TL 4173 1821 99 TL 872 155 27 42 43 44 44 44 38 44 44 44
44N_5K_C 5 44 240 3 30 44 ML TL 5491 938 106 TL 652 514 50 ML 42 44 44 44 40 44 44 44
50N_4K_A 4 50 240 3 30 41 TL TL TL TL TL TL TL TL TL 26 37 35 38 39 26 39 40 40
50N_4K_B 4 50 240 3 30 43 TL TL ML TL TL TL TL TL TL 35 38 ML 39 39 34 35 42 41
50N_4K_C 4 50 240 3 30 44 TL TL TL TL TL TL TL TL TL 30 39 35 41 40 31 41 43 43
50N_5K_A 5 50 240 3 30 48 TL TL TL TL TL TL TL TL TL 19 44 39 45 46 40 47 47 47
50N_5K_B 5 50 240 3 30 49 TL TL TL 1667 1008 TL TL 1856 621 36 44 42 49 49 30 48 49 49
50N_5K_C 5 50 240 3 30 50 TL TL TL 5480 1426 TL 6481 892 80 36 47 48 50 50 43 50 50 50
60N_4K_A 4 60 240 3 30 44 TL TL TL TL TL TL TL TL TL 29 40 34 39 39 26 39 42 43
60N_4K_B 4 60 240 3 30 45 TL TL TL TL TL TL TL TL TL - 42 0 44 41 25 - 45 44
60N_4K_C 4 60 240 3 30 44 TL TL TL TL TL TL TL TL TL 27 41 38 41 41 34 37 43 42
60N_5K_A 5 60 240 3 30 56 TL TL TL TL TL TL TL TL TL 37 52 0 54 54 35 - 52 56
60N_5K_B 5 60 240 3 30 50 TL TL TL TL TL TL TL TL TL 25 45 44 46 45 30 45 50 49
60N_5K_C 5 60 240 3 30 53 TL TL TL TL TL TL TL TL TL 36 47 43 49 47 39 48 51 52

Table A.1: Overview of the instance properties and the computation times of the un-
boosted algorithm variants. Column LB∗ shows the best known lower bounds. Bounds
corresponding to provably optimal solution values are marked bold. Columns CM, LBBD,
and BaC show the computation times and lower bounds for the compact model, the
LBBD decomposition algorithm and the BaC decomposition algorithm, respectively. For
the decomposition approaches four kinds of sets have been used to obtain Benders cuts:
simple uses unrefined cuts, aIIS uses all IISs, mIIS uses all IISs of minimum cardinality,
and gIIS uses two heuristically computed IISs. Instances that could not be solved within
the time limit of 2 hours are marked with “TL” and test runs that terminated due to the
memory limit are marked with “ML”. For each instance the computation times of the
fastest algorithm(s) and best bounds obtained are marked bold.
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Computation time [s] LB

LBBD BaC LBBD BaC

Instance LB∗ simple aIIS mIIS gIIS simple aIIS mIIS gIIS simple aIIS mIIS gIIS simple aIIS mIIS gIIS

30N_4K_A 30 2 10 4 1 5 4 3 < 1 30 30 30 30 30 30 30 30
30N_4K_B 29 467 2 2 1 7 2 < 1 < 1 29 29 29 29 29 29 29 29
30N_4K_C 30 TL 95 25 10 754 31 15 3 29 30 30 30 30 30 30 30
30N_5K_A 30 < 1 20 < 1 < 1 8 4 4 < 1 30 30 30 30 30 30 30 30
30N_5K_B 30 1 2 1 < 1 < 1 2 1 < 1 30 30 30 30 30 30 30 30
30N_5K_C 30 349 24 11 3 6 6 2 < 1 30 30 30 30 30 30 30 30
40N_4K_A 38 TL 5391 111 63 TL 5670 99 68 36 38 38 38 36 38 38 38
40N_4K_B 38 TL 6181 90 209 TL 2908 97 69 36 38 38 38 29 38 38 38
40N_4K_C 37 TL TL 589 760 TL TL 125 135 34 36 37 37 28 37 37 37
40N_5K_A 40 23 2747 16 1 747 14 4 < 1 40 40 40 40 40 40 40 40
40N_5K_B 40 TL 1015 84 57 TL 129 23 9 38 40 40 40 39 40 40 40
40N_5K_C 40 5 5 9 7 259 19 1 < 1 40 40 40 40 40 40 40 40
44N_4K_A 40 TL TL TL TL TL TL TL TL 36 36 39 38 24 39 40 40
44N_4K_B 42 TL TL 750 1025 TL TL 1550 2768 38 40 42 42 34 41 42 42
44N_4K_C 41 TL TL TL TL TL TL 3134 5552 37 35 40 39 35 40 41 41
44N_5K_A 44 TL 6252 97 104 TL 126 65 21 42 44 44 44 27 44 44 44
44N_5K_B 44 TL 3141 520 47 TL 263 18 12 43 44 44 44 38 44 44 44
44N_5K_C 44 TL 4576 199 57 TL 252 64 16 42 44 44 44 40 44 44 44
50N_4K_A 41 TL TL TL TL TL TL TL TL 37 35 38 39 22 39 41 41
50N_4K_B 43 TL ML TL TL TL TL TL TL 38 ML 39 39 34 34 42 41
50N_4K_C 44 TL TL TL TL TL TL TL TL 39 35 41 40 31 41 43 43
50N_5K_A 48 TL TL TL TL TL TL TL TL 45 39 45 46 40 47 48 48
50N_5K_B 49 TL ML 778 791 TL TL 484 447 44 ML 49 49 30 48 49 49
50N_5K_C 50 TL TL 1458 933 TL 4343 115 19 47 48 50 50 43 50 50 50
60N_4K_A 44 TL TL TL TL TL TL TL TL 40 34 39 39 26 40 42 43
60N_4K_B 45 TL TL TL TL TL TL TL TL 42 0 44 41 25 - 45 44
60N_4K_C 44 TL TL TL TL TL TL TL TL 41 38 41 41 34 39 43 42
60N_5K_A 56 TL TL TL TL TL ML TL TL 52 46 55 54 35 ML 54 56
60N_5K_B 50 TL ML TL TL TL TL TL TL 45 ML 46 45 30 46 50 48
60N_5K_C 53 TL TL TL TL TL TL TL TL 47 43 49 47 39 48 51 52

Table A.2: Overview of the computation times and lower bounds of the un-boosted
LBBD and BaC algorithm variants using a CP-MIP combination for the subproblems.
Column LB∗ shows the best known lower bounds (provably optimal solution values are
marked bold). For the decomposition approaches four kinds of sets have been used to
obtain Benders cuts: simple uses unrefined cuts, aIIS uses all IISs, mIIS uses all IISs
of minimum cardinality, and gIIS uses two heuristically computed IISs. Instances that
could not be solved within the time limit of 2 hours are marked with “TL” and test runs
that terminated due to the memory limit are marked with “ML”. For each instance the
computation times of the fastest algorithm(s) and best bounds obtained are marked bold.
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A. Additional Result Tables for the Selective DARP

Computation time [s] LB

standard gap (rel) - it gap (rel) - ud time - it time - ud standard gap (rel) - it gap (rel) - ud time - it time - ud

Instance LB∗ mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS

30N_4K_A 30 4 1 1 1 1 1 4 1 4 1 30 30 30 30 30 30 30 30 30 30
30N_4K_B 29 2 1 2 1 2 1 2 1 2 1 29 29 29 29 29 29 29 29 29 29
30N_4K_C 30 25 10 36 19 42 22 26 10 25 10 30 30 30 30 30 30 30 30 30 30
30N_5K_A 30 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 30 30 30 30 30 30 30 30 30 30
30N_5K_B 30 1 < 1 1 < 1 1 < 1 1 < 1 1 < 1 30 30 30 30 30 30 30 30 30 30
30N_5K_C 30 11 3 8 7 14 4 11 3 11 3 30 30 30 30 30 30 30 30 30 30
40N_4K_A 38 111 63 145 81 233 107 113 69 113 65 38 38 38 38 38 38 38 38 38 38
40N_4K_B 38 90 209 108 71 108 79 91 146 92 134 38 38 38 38 38 38 38 38 38 38
40N_4K_C 37 589 760 210 173 248 265 352 671 353 460 37 37 37 37 37 37 37 37 37 37
40N_5K_A 40 16 1 33 1 33 1 16 1 16 1 40 40 40 40 40 40 40 40 40 40
40N_5K_B 40 84 57 112 83 312 298 88 58 87 59 40 40 40 40 40 40 40 40 40 40
40N_5K_C 40 9 7 7 6 7 6 8 7 9 7 40 40 40 40 40 40 40 40 40 40
44N_4K_A 40 TL TL TL TL TL TL TL TL TL TL 39 38 40 40 40 40 40 40 40 40
44N_4K_B 42 750 1025 1674 930 2850 2100 1254 1224 1203 1664 42 42 42 42 42 42 42 42 42 42
44N_4K_C 41 TL TL TL TL 4428 2939 4439 2721 6534 3560 40 39 40 40 41 41 41 41 41 41
44N_5K_A 44 97 104 266 227 994 534 95 105 98 106 44 44 44 44 44 44 44 44 44 44
44N_5K_B 44 520 47 368 45 461 255 517 48 522 49 44 44 44 44 44 43 44 44 44 44
44N_5K_C 44 199 57 388 178 1335 1354 195 58 205 59 44 44 44 44 44 44 44 44 44 44
50N_4K_A 41 TL TL TL TL TL TL TL TL TL TL 38 39 39 39 39 39 41 40 41 41
50N_4K_B 43 TL TL TL TL TL TL TL TL TL TL 39 39 40 40 40 40 43 42 43 42
50N_4K_C 44 TL TL TL TL TL TL TL TL TL TL 41 40 42 43 42 43 44 44 44 44
50N_5K_A 48 TL TL TL TL TL TL TL TL TL TL 45 46 48 47 47 48 47 47 48 47
50N_5K_B 49 778 791 873 878 2785 2234 1079 918 882 1137 49 49 49 49 49 49 49 49 49 49
50N_5K_C 50 1458 933 1670 693 1593 TL 965 1449 987 644 50 50 50 50 50 49 50 50 50 50
60N_4K_A 44 TL TL TL TL TL TL TL TL TL TL 39 39 40 42 40 42 44 43 44 43
60N_4K_B 45 TL TL TL TL TL TL TL TL TL TL 44 41 42 44 42 44 45 44 45 44
60N_4K_C 44 TL TL TL TL TL TL TL TL TL TL 41 41 41 40 41 40 44 43 44 43
60N_5K_A 56 TL TL TL TL TL TL TL TL TL TL 55 54 54 54 54 54 55 54 55 55
60N_5K_B 50 TL TL TL TL TL TL TL TL TL TL 46 45 48 48 48 48 50 49 50 49
60N_5K_C 53 TL TL TL TL TL TL TL TL TL TL 49 47 50 51 50 51 53 52 53 52

Table A.3: Results of the heuristic boosting techniques. Column computation time reports
the time consumed and column LB provides the value of the lower bound. Column
standard shows results of the algorithms without boosting, “gap (rel) - it” shows results
for boosting with purely iterative adjustments whereas “gap (rel) - ud” adapts the
threshold in both directions. Similarly, “time - it” and “time - ud” report results for
boosting with reduced time limit. Smallest computation times and best bounds per
instance are marked bold.
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Iterations Master-Sub ratio Cuts

LBBD LBBD LBBD

un-boosted time - it time - ud BaC un-boosted time - it time - ud BaC un-boosted time - it time - ud BaC

Instance mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS

30N_4K_A 24 19 24 19 24 19 23 14 0.07 0.17 0.06 0.19 0.06 0.13 0.02 0.07 400 280 400 280 400 280 232 184
30N_4K_B 14 16 14 16 14 16 5 19 0.36 1.63 0.39 1.79 0.40 1.66 0.28 0.57 240 208 240 208 240 208 148 152
30N_4K_C 86 92 86 92 86 92 69 80 0.28 1.28 0.28 1.29 0.29 1.38 0.01 0.08 1624 1668 1624 1668 1624 1668 1036 1060
30N_5K_A 3 3 3 3 3 3 33 17 0.07 0.43 0.02 0.33 0.02 0.43 0.01 0.15 165 45 165 45 165 45 485 220
30N_5K_B 4 7 4 7 4 7 10 17 0.09 0.45 0.09 0.43 0.07 0.36 0.02 0.12 230 110 230 110 230 110 260 265
30N_5K_C 46 48 46 48 46 48 31 25 0.15 0.97 0.17 1.01 0.16 1.06 0.01 0.34 975 960 975 960 975 960 520 425
40N_4K_A 78 97 78 97 78 97 97 142 0.61 1.21 0.64 1.37 0.69 1.21 0.18 2.94 1832 2032 1832 2032 1832 2032 1888 2160
40N_4K_B 76 127 76 127 76 127 128 209 0.92 15.26 0.94 9.73 1.02 8.75 0.50 3.80 2096 2604 2096 2604 2096 2604 2408 3060
40N_4K_C 86 145 131 195 131 169 155 227 12.60 17.72 3.73 9.37 3.74 8.57 1.03 1.95 2260 3128 2860 3556 2860 3288 3012 3688
40N_5K_A 34 15 34 15 34 15 19 18 0.06 0.22 0.07 0.30 0.07 0.32 0.02 0.07 1075 385 1075 385 1075 385 260 240
40N_5K_B 124 135 124 135 124 135 100 95 0.54 0.78 0.59 0.85 0.58 0.83 0.03 0.06 3510 3710 3510 3710 3510 3710 2145 2045
40N_5K_C 27 37 27 37 27 37 8 11 0.07 0.17 0.08 0.20 0.07 0.20 0.08 0.07 985 1045 985 1045 985 1045 150 170
44N_4K_A 83 151 187 299 317 431 297 393 116.49 215.85 42.49 124.35 28.81 100.03 32.64 153.95 3616 4084 5440 6592 6716 8056 6544 7292
44N_4K_B 153 225 251 304 244 374 429 391 1.77 14.27 1.84 13.65 1.94 16.67 1.91 29.12 4016 5324 5280 6468 5248 7244 7184 7268
44N_4K_C 168 212 239 274 430 383 310 343 28.33 108.24 14.04 30.19 11.92 28.59 10.66 76.03 4988 5340 5632 6020 7216 7084 5716 6200
44N_5K_A 94 136 94 136 94 136 112 162 0.22 0.30 0.23 0.29 0.23 0.30 0.02 0.07 3515 4005 3515 4005 3515 4005 2655 3125
44N_5K_B 389 144 389 144 389 144 51 103 0.39 0.50 0.38 0.49 0.39 0.51 0.01 0.03 8645 3890 8645 3890 8645 3890 1175 1885
44N_5K_C 214 151 214 151 214 151 136 207 0.58 0.69 0.61 0.67 0.62 0.71 0.02 0.22 6905 4870 6905 4870 6905 4870 3045 4265
50N_4K_A 67 192 413 632 604 636 738 1183 64.76 38.11 6.45 13.69 4.29 13.87 4.48 13.09 4812 5992 12316 16392 14672 15752 16104 23948
50N_4K_B 52 144 407 483 598 433 570 812 87.73 155.20 4.36 32.39 2.74 36.75 4.28 25.16 3292 4416 10796 12548 13576 11364 12188 16860
50N_4K_C 46 96 196 288 309 383 499 609 112.90 130.09 16.46 53.28 10.35 43.14 6.65 36.94 2472 2920 5808 7332 7440 8764 9164 11632
50N_5K_A 192 298 683 774 959 1391 1221 1563 27.13 112.20 4.30 35.56 3.09 17.11 2.91 18.35 9865 11540 23755 25050 28520 37945 34120 42425
50N_5K_B 154 217 231 273 206 310 296 353 3.69 20.97 2.84 20.25 2.97 23.24 1.08 11.24 6085 7425 7895 8745 7335 9355 7820 9245
50N_5K_C 513 568 390 687 390 481 173 167 1.00 10.23 0.79 13.36 0.82 8.63 0.02 0.11 14380 16005 12040 18335 12040 14260 4260 4490
60N_4K_A 17 93 609 864 586 892 818 915 385.39 67.87 1.25 5.09 1.12 4.41 1.77 12.19 2504 2916 17976 23140 17336 23424 19428 20368
60N_4K_B 50 243 528 887 527 921 777 1650 45.90 16.46 0.83 2.73 0.84 3.00 1.14 3.18 5396 7708 21196 26776 21424 27680 24700 39880
60N_4K_C 36 123 790 1120 801 1159 908 1378 117.79 89.90 1.65 11.66 1.74 10.45 3.05 15.33 3644 3896 22648 28900 22572 29036 22684 31824
60N_5K_A 289 541 619 1183 778 1240 1148 1571 4.49 11.38 1.41 5.59 1.05 5.14 0.83 5.34 17390 24160 28320 45580 33010 46330 33125 50675
60N_5K_B 46 150 760 1196 1018 1346 813 1404 181.78 269.00 4.93 24.13 3.10 23.99 6.57 35.34 5820 7170 32975 43680 39225 45890 28525 43365
60N_5K_C 50 126 226 791 495 1260 776 742 120.93 320.61 17.22 43.90 6.58 30.95 4.94 59.57 5075 5870 12860 27230 19935 35905 25720 24320

Table A.4: Characteristics of the decomposition approaches. Column iterations states the
number of iterations the algorithm completed. For the LBBD approaches this corresponds
to the number of times the master problem has been solved. For the BaC approaches it is
equal to the number of times the separation routine has been called. Column master-sub
ratio provides the relative ratio of time spent in the master problem compared to those
spent in the subproblems (tmaster/tsub). The last column (cuts) shows the total number
of Benders cuts that have been added.
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A. Additional Result Tables for the Selective DARP

LB gap [%] UB gap [%]

LBBD LBBD

un-boosted time - it time - ud BaC un-boosted time - it time - ud BaC

Instance LB∗ UB∗ CM mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS CM mIIS gIIS mIIS gIIS mIIS gIIS mIIS gIIS

30N_4K_A 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30N_4K_B 29 29 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30N_4K_C 30 30 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30N_5K_A 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30N_5K_B 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
30N_5K_C 30 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40N_4K_A 38 38 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40N_4K_B 38 38 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40N_4K_C 37 37 21.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40N_5K_A 40 40 22.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40N_5K_B 40 40 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40N_5K_C 40 40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44N_4K_A 40 41 5.0 2.5 5.0 0.0 0.0 0.0 0.0 0.0 0.0 7.3 0.0 0.0 0.0 0.0 0.0 0.0 3.3 3.9
44N_4K_B 42 42 28.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44N_4K_C 41 41 22.0 2.4 4.9 0.0 0.0 0.0 0.0 0.0 0.0 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44N_5K_A 44 44 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44N_5K_B 44 44 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
44N_5K_C 44 44 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50N_4K_A 41 44 36.6 7.3 4.9 0.0 2.4 0.0 0.0 0.0 0.0 13.6 0.0 4.5 0.0 6.8 0.0 0.0 9.1 9.1
50N_4K_B 43 47 18.6 9.3 9.3 0.0 2.3 0.0 2.3 2.3 4.7 6.4 0.0 0.0 0.0 2.1 2.1 0.0 4.3 4.3
50N_4K_C 44 46 31.8 6.8 9.1 0.0 0.0 0.0 0.0 2.3 2.3 8.7 2.2 2.2 2.2 0.0 0.0 2.2 6.2 6.5
50N_5K_A 48 49 60.4 6.2 4.2 2.1 2.1 0.0 2.1 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 2.0
50N_5K_B 49 49 26.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50N_5K_C 50 50 28.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
60N_4K_A 44 56 34.1 11.4 11.4 0.0 2.3 0.0 2.3 4.5 2.3 7.1 0.0 3.6 3.6 5.4 3.6 5.4 5.7 5.4
60N_4K_B 45 56 - 2.2 8.9 0.0 2.2 0.0 2.2 0.0 2.2 7.1 0.0 1.8 5.4 5.4 5.4 5.4 6.9 6.5
60N_4K_C 44 53 38.6 6.8 6.8 0.0 2.3 0.0 2.3 2.3 4.5 13.2 0.0 1.9 7.5 7.5 7.5 7.5 8.5 9.4
60N_5K_A 56 60 33.9 1.8 3.6 1.8 3.6 1.8 1.8 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
60N_5K_B 50 59 50.0 8.0 10.0 0.0 2.0 0.0 2.0 0.0 4.0 1.7 0.0 0.0 0.0 1.7 0.0 1.7 1.7 1.7
60N_5K_C 53 58 32.1 7.5 11.3 0.0 1.9 0.0 1.9 3.8 1.9 3.4 0.0 0.0 0.0 1.7 0.0 1.7 3.4 3.4

Table A.5: Overview of relative gaps to the best known lower (column LB gap) and
upper (column UB gap) bounds, respectively. Columns LB∗ and UB∗ report the best
known lower and upper bounds obtained across all algorithms. Entries in column LB∗
are marked bold if the corresponding solution is provably optimal. Per instance smallest
gaps are marked bold.
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Acronyms

ABCH activity block construction heuristic.

B&B branch-and-bound.

B&C branch-and-cut.

B&P branch-and-price.

BaC Branch-and-Check.

BD Benders decomposition.

BP&C branch-price-and-cut.

CapEx capital expenditure.

CP constraint programming.

CSP constraint satisfaction problem.

CTSNDP countinuous time service network design problem.

DARP dial-a-ride problem.

DCMST distance-constrained minimum spanning tree problem.

DEF discrete-event formulation.

DNDPR directed network design problem with relays.

DP dynamic programming.

EV electric vehicle.

GCH gap closing heuristic.

GRASP greedy randomized adaptive search procedure.
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GRLP generalized regenerator location problem.

IIS irreducible infeasible set.

ILP integer linear programming.

IRA iterative refinement algorithm.

ITBRA iterative time-bucket refinement algorithm.

LBBD logic-based Benders decomposition.

LG layered graph.

LP linear programming.

MCDSP minimum connected dominating set problem.

MCPPR minimum cost path problem with relays.

MILP mixed integer linear programming.

MLSTP maximum leaf spanning tree problem.

MRCMPSP multi-mode resource-constrained multi-project scheduling problem.

MVRPTW vehicle routing problem with time windows and multiple routes.

NDPR network design problem with relays.

OpEx operational expenditure.

PDPTW pickup and delivery problem with time windows.

PHEV plug-in hybrid electric vehicle.

RCPSP resource-constrained project scheduling problem.

RLP regenerator location problem.

SI-PTPSP simplified intraday particle therapy patient scheduling problem.

TBR time-bucket relaxation.

TIF time-indexed formulation.

TSP traveling salesman problem.
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TSPTW traveling salesman problem with time windows.

VRP vehicle routing problem.

WCSPP weight constrained shortest path problem.

WDM wavelength division multiplexing.
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M. Leitner, I. Ljubić, M. Riedler, and M. Ruthmair. Exact approaches forINFORMS
Journal on

Computing
network design problems with relays. INFORMS Journal on Computing, to
appear

2019

M. Riedler, M. Ruthmair, and G. R. Raidl. Strategies for iteratively refiningLecture Notes in
Computer Science layered graph models. In Hybrid Metaheuristics: 11th International Workshop, HM

2019, Lecture Notes in Computer Science. Springer International Publishing,
2019. to appear

2018

M. Riedler and G. R. Raidl. Solving a selective dial-a-ride problem withComputers &
Operations

Research
logic-based Benders decomposition. Computers & Operations Research, 96:30–54,
2018

2017

M. Riedler, T. Jatschka, J. Maschler, and G. R. Raidl. An iterative time-bucketInternational
Transactions in

Operational
Research

refinement algorithm for a high-resolution resource-constrained project
scheduling problem. International Transactions in Operational Research, 2017. doi:
10.1111/itor.12445. available online


	Abstract
	Kurzfassung
	Contents
	Introduction
	Structure of the Thesis

	Methodology
	Basic Definitions
	Exact Methods
	Heuristic Methods
	Hybrid Methods

	Exact Approaches for Network Design Problems with Relays
	Introduction
	Solution Properties
	Mixed Integer Linear Programming Formulations
	Algorithmic Framework
	Computational Study
	Conclusion

	Solving a selective DARP with LBBD
	Introduction
	Formulations
	Algorithmic Framework
	Computational Study
	Conclusion

	ITBRA for High-Resolution RCPSP
	Introduction
	Simplified Intraday Particle Therapy Patient Scheduling Problem
	Related Work
	Reference MILP Models
	Time-Bucket Relaxation
	Iterative Time-Bucket Refinement Algorithm
	Implementation Details
	Computational Study
	Conclusion

	Exact Approaches for the DNDPR
	Introduction
	Formulations
	Algorithmic Framework
	Computational Study
	Conclusion

	Strategies for Iteratively Refining Layered Graph Models
	Introduction
	Mathematical Formalization
	Algorithmic Framework
	Computational Study
	Conclusion and Future Work

	Conclusions
	Additional Result Tables for the Selective DARP
	Acronyms
	Bibliography

