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Abstract. We focus on hybrid solution methods for a large-scale real-
world multimodal homecare scheduling (MHS) problem, where the objec-
tive is to find an optimal roster for nurses who travel in tours from patient
to patient, using different modes of transport. In a first step, we generate
a valid initial solution using Constraint Programming (CP). In a second
step, we improve the solution using one of the following metaheuristic
approaches: (1) variable neighborhood descent, (2) variable neighbor-
hood search, (3) an evolutionary algorithm, (4) scatter search and (5) a
simulated annealing hyper heuristic. Our evaluation, based on computa-
tional experiments, demonstrates how hybrid approaches are particularly
strong in finding promising solutions for large real-world MHS problem
instances.

1 Introduction

The demand for care of the elderly is constantly increasing, in particular in to-
day’s western world, thus efficient health care services are of great significance.
The idea behind home health care is to nurse patients at home instead of at re-
tirement homes: patients can book different kinds of jobs (e.g. cleaning, cooking,
medical services) and nurses of adequate qualification visit patients in a tour,
using specific transport modes. The goal is to find a nurse roster where all jobs
are assigned to adequate nurses and employer, nurse and customer satisfaction
is maximized.

Finding a good nurse roster is challenging, since the problem is a combination
of two NP-hard problems: vehicle routing with time windows (VRPTW) [5,6] and
nurse rostering (NRP) [8]. Moreover, we consider a large-scale real-world setup
from a Viennese public health care company. Therefore, we apply a heuristic
approach since exact methods are typically too expensive for large instances. The
idea is to start with an initial valid solution that is then systematically improved
by different metaheuristic approaches that we evaluate in this work. Another
aim is to construct a flexible framework that can be applied in other homecare
scenarios with similar side constraints. Therefore, our approach is as generic
as possible, where side constraints can be relatively easily altered. We start by
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defining the problem (Section 2), then present the initial solution generation
(Section 3) and the metaheuristics (Section 4), discuss computational results
(Section 5) and conclude our work in Section 6.

2 The Multimodal Homecare Scheduling Problem

The Multimodal Homecare Scheduling (MHS) problem deals with finding a ros-
ter for nurses who perform nursing services at patients’ homes. Therefore, the
problem contains a rostering component (assigning nurses to jobs, w.r.t. various
shift/working hour restrictions), as well as a vehicle routing component (nurses
travel in tours from patient to patient, starting at their home). The multimodal
aspect arises from the transport mode each nurse chooses for traveling.

Basically, we have a set of customers, the patients, who book one or more
jobs, daywise summarized in the set of jobs J = {1, . . . , J}. Each job has an
associated location, given as GPS coordinates, a start time window in which
the job should start, and a duration. Furthermore, each job requires a minimal
qualification (level) q ∈ Q from whoever performs the job (e.g. taking blood
samples requires a medical qualification). In our problem setup, |Q| = 5, i.e.
there are 5 different qualifications.

Each job has to be assigned to one of the N nurses given by set N =
{1, . . . , N}. Since nurses travel to patients starting from their home, we store
the home location of each nurse as GPS coordinates. Each nurse has a qualifica-
tion (level) q ∈ Q and may only perform jobs that require a qualification that is
less or equal the nurse’s maximal qualification. Hence, we have an ordering rela-
tion defined on the qualifications, and nurses of higher qualification may perform
lower-qualified jobs, but not vice versa. Nurses can only work within specified
time windows that vary from day to day, and have a minimal and maximal
number of working hours per day.

In addition to nursing jobs, we also consider pre-allocated jobs that nurses
perform in addition to nursing (e.g. team meetings). These jobs are assigned to
a fixed location and nurse and make up at most 5% of all jobs. Furthermore,
patients and nurses may state negative preferences against each other; for in-
stance, a nurse might refuse to work for a patient who owns a dog if she has
a dog allergy, or a female patient might refuse a male nurse. In such cases, the
nurse may not be assigned to the respective job in the roster.

A novel aspect in this work is the consideration of multimodality: each nurse
states her preferred mode of transport (public transport or car) that we consider
in creating the roster. To obtain meaningful results, it is crucial to have accurate
travel time estimates for each transport mode. Therefore, we obtain travel times
according to the GPS coordinates of nurses and jobs based on data from (1)
the Viennese public transport system, for public transport and (2) a large set of
historical data from Viennese floating car data for transport by car.
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2.1 Objective Function

When computing MHS rosters the overall goal is to find valid solutions, i.e.
solutions satisfying all hard constraints like legal issues (e.g. maximum working
times). Among all valid solutions it is then desired to select that one which is
closest to optimality for employer, employees and customers and therefore

1. minimizes the costs for the employer (e.g. minimizes travel and working
times),

2. maximizes customer satisfaction (e.g. by minimizing deviations from cus-
tomer preferences, such as time window violations or preferences for nurses)

3. maximizes nurse satisfaction (e.g. minimizes deviations from contractual
constraints and other nurse preferences)

Therefore, we designed an objective function ob which assigns each solution a
real number such that valid solutions evaluate to values between 0 and 1, whereas
invalid solutions evaluate to values greater than 1. For this purpose, we build a
weighted sum of all influencing quantities, like soft constraint violations. Hard
constraint violations are respected by increasing the objective value by 1 for each
violation. As a side-effect, it is easy to determine how many (hard) constraint
violations occurred for a given solution. The following determinants are hard
constraints and lead therefore to invalid solution when not properly satisfied:

– All jobs have to be assigned to a well-qualified nurse. Either a missing as-
signment of a job to a nurse or an insufficient qualification of a nurse are
both a hard constraint violation on its own.

– Availabilities of nurses have to be regarded, i.e. jobs can only be assigned to
nurses whenever they are available.

– Pre-allocated jobs must not be shifted to other times or nurses.

On the other hand, the following requirements are only soft, i.e. violations of
them are not welcome but tolerated (with corresponding penalization in the
objective function):

– Each customer states a time window in which the job shall be started. Vi-
olations of these time windows are penalized using a quadratic function.
However, deviations of three hours and above are considered equally bad.

– Each customer states a desired start time for each job, i.e. a concrete point
in time at which the job should be started. Deviations from the start time
are linearly penalized, where, similar to time window violations, deviations
of one hour and above are assumed to be equally bad.

– Preferences stated by nurses and customers are handled as soft constraints,
since all jobs have to be accomplished (even if preferences are violated).

– Working times should not exceed the daily maximal working time since all
additional hours of work are counted as overtime and therefore higher paid
(resulting in higher costs for employer).
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– Travel times should be kept as small as possible. On the one hand, journeys
between jobs are directly counted as working time (see above). On the other
hand, journeys between nurse homes and the first/last job on a day shall
be kept as short as possible since they are not paid and therefore lead to
(un)satisfied nurses. It is therefore crucial to correctly estimate travel times.

2.2 Related Work

The home health care problem has been considered using different approaches:
Eveborn et al. [9] choose a set-partitioning formulation for the problem, and
primarily focus on the application of repeated matching. Bertels and Fahle [4]
combine linear programming (LP) for computing optimal start times, constraint
programming (CP) for generating initial solutions, and simulated annealing (SA)
and tabu search (TS) based heuristic for subsequent solution improvement. Steeg
and Schröder [20] use CP to construct an initial solution that is improved by
a combination of Adaptive Large Neighborhood Search (ALNS) and SA. Ras-
mussen et al [18] use a set partitioning formulation of the problem and apply a
specialized branch-and-price solution algorithm.

The main difference of our work to other approaches lies within (1) the novel
consideration of multimodality, (2) our objective to provide a flexible framework
to tackle real-world MHS problems with varying side constraints (3) a novel,
broad selection of metaheuristics for the MHS problem and (4) the excessively
large size of instances that we tackle.

3 Initial Solutions with Constraint Programming

First, we determine a valid initial solution, i.e. a solution where all jobs are as-
signed and none of side constraints presented in Section 2 (where we consider all
soft constraints as hard constraints) are violated. This is particularly challenging
for three reasons: first, we cannot apply a simple construction heuristic, such as a
random job-nurse assignment, since many side constraints have to be considered.
Second, the instances are large (about 700 jobs/500 available nurses). And third,
not too much time should be invested into the initial solution generation, since
this step is just the first of several steps in the whole optimization approach.

Constraint Programming (CP) is a particularly attractive candidate for ini-
tial solution generation: first, CP is strong in solving discrete decision prob-
lems (i.e. finding first solutions) [10,19]. Second, CP search strategies—if set up
correctly—can yield fairly good initial solutions (e.g. favoring low values for job
time variables during search produces tight schedules since job times are set as
early as possible). Third, the CP model can be easily altered to similar problem
setups (of other health care companies) by simply editing side constraints, and
hence satisfies our requirement of a flexible, expendable system.

The instances we consider are far too large to be solved within a single CP
model, therefore we simplify the problem by solving each instance qualification-
wise: we create a subinstance Iq from instance I for each qualification q ∈ Q,
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such that only jobs requiring qualification q and adequately qualified nurses are
contained in Iq. This means we first start solving the instance for the highest
qualification, “medical nursing”, that includes all medical nurses and all jobs that
require a medical nurse. Then we continue with the second-highest qualification,
and so on. Note, that in case we cannot solve a subinstance of qualification q,
we iteratively add not yet used nurses of higher qualification to the instance.

3.1 The CP Model and CP Search Setup

We formulate the MHS problem as an extension of the Vehicle Routing Problem
with Time Windows (VRPTW) model from [19] that contains three kinds of
variables: (1) predecessor and successor variables, predi and succi of visit i that
capture the sequence of tours, (2) nurse variables ni, stating which nurse per-
forms visit i, and (3) variables ti for the start time of each visit i. The model is
extended with binary variables xij—a value of 1 indicates that nurse i performs
job j—for channeling and add constraints to represent multimodality, nurse and
patient preferences, shift length as well as redundant constraints to increase
propagation.

We apply a static search heuristic, where we first set half of the successor and
predecessor variables (i.e. we start with fixing the job sequence), then set half
of the nurse variables (nurse to job assignments), followed by the remaining half
of predecessor/successor variables and remaining nurses. Finally, we search for
job start times. Nurses are ordered by their start time (i.e., nurses available in
the morning come first), and jobs by their desired start time. This way, search
is extremely effective with an ascending value selection (smallest value first):
typically no more than 10% of the decisions made during search are wrong.

3.2 Iterative Clustering

Decomposing the problem qualification-wise does not yield equally-sized sub-
problems. For instance, jobs of qualification ‘basic homecare’ typically make up
80% of all jobs, yielding again a far too large subproblem. We therefore introduce
another decomposition step that is triggered for particular qualifications or if a
time-limit is reached: decomposition into spatial clusters.

A cluster consists of a set of jobs and nurses from the overall problem instance.
Finding a feasible cluster, where the underlying instance is solvable (in reasonable
time) is not straightforward, since both vicinity and temporal availability are
crucial. In other words, for all jobs within a cluster, we need to find a set of
nurses who can reach the jobs within time (vicinity) and who are available in
the jobs’ time slots (temporal availability). In our approach, we create and solve
clusters one by one, and iteratively alter those clusters that we cannot solve
straight away.

Creating Clusters Using a Quadtree. We reflect the spatial distribution
of jobs by inserting them into a quadtree, where each node represents a job.
A quadtree is a tree datastructure, whose nodes have up to four children that,
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for our purpose, are labeled north-east, south-east, south-west and north-west
and are the roots of subtrees containing all nodes (jobs) whose GPS locations
are north-east, south-east, south-west and north-west in relation to their parent
node. Jobs are then recursively added (with random order) starting with an
“one-node” tree whose root is located at a center location of Vienna, to assure
that the quadtree is reasonably balanced.

Now we can initiate the selection. First, we select k jobs by k times removing
the first leaf that we find using a simple depth-first search. In this way, the k
selected jobs are reasonably closely located. Second, we select m nurses with
m = min(k,NIq ) where NIq represents the number of available nurses for the
subinstance. As we want to find nurses that are reasonably close to the jobs, we
pick one of the selected jobs at random and choose the m nurses closest to it.
This way, we retrieve a cluster with k jobs and m nurses.

Iteratively Altering Clusters. We now invest a certain amount of time τk
trying to solve the obtained cluster. If we cannot find a solution within this time,
we iteratively simplify the instance until we find a solution or reach an overall
time-limit τ :

1. Given jobs M, nurses N , cluster-timeout τk and overall timeout τ
2. If |M| ≥ 1 and timeout τ has not yet been reached:

create cluster C = (M′,N ′), where N ′ ⊆ N , |N ′| = m and M′ ⊆ M,
|M′| = k, otherwise stop.

3. If timeout τ has not yet been reached: attempt to solve cluster C in τk secs
(a) If solving was successful, update the set of overall jobs M to M−M′

and the set of overall nurses N to N −N ′ and go to 2.
(b) Otherwise, if |M′| ≥ 1, remove f(M) jobs from M′, yielding a new,

smaller cluster C = (M′′,N ′) and go to 3.
(c) Otherwise, if |N | ≥ 1 add l nurses to N ′, yielding a new cluster C =

(M′,N ′′) and go to 3.
(d) Otherwise, increase τk by δ time units

In our current setup, we use k=25, τk=1s, τ=300s, δ=10s, f(M)=|M|-10 if
|M| ≥ 10 and |M|-1 otherwise, l=1. This setup typically produces a valid solu-
tion for a 700 jobs/500 nurses instance within 15–20 seconds; more details and
experimental results can be found in Section 5. In case we cannot find an overall
solution within τ seconds, the CP approach has failed and we use an alternative
approach, as outlined in Section 3.3.

3.3 Random Solution Generation

As an alternative approach, we employ a simple solution generation heuristic that
produces a random nurse-job assignment. The generated solution only guaran-
tees that all jobs are executed by a nurse of adequate qualification and that all
pre-allocated jobs (such as appraisal interviews) are assigned to the right nurse.
No side constraints, such as time window restrictions are considered. We use this
technique as a backup to the CP approach and to evaluate the influence of the
initial solution during the later improvement phase.
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4 Solution Improvement by Metaheuristics

A solution to the MHS problem consists of a list of tours—one for each nurse—
where a tour contains a sequence of jobs, or is empty in case the nurse is not
scheduled for that particular day. We receive such a (valid) initial solution from
the solution generation heuristics discussed in the previous section. However,
such a solution is typically of rather poor quality as some aspects of the soft
constraints in the objective function (such as short travel times) have not yet
been considered appropriately, and therefore cannot be used for real-world ros-
ters. We improve the solution using different metaheuristics that we discuss in
this section.

4.1 Variable Neighborhood Descent

Based on the idea that global optima are locally optimal w.r.t. all (possible)
neighborhoods, variable neighborhood descent (VND) [13] tries to systematically
examine a predefined set of neighborhood structures Ni, with 1 ≤ i ≤ lmax

whereupon lmax denotes the number of defined structures. To speed up the
search, the neighborhood structures are ordered such that potentially smaller
neighborhoods N(x) for a given solution x are examined first. As soon as a local
optimum is reached (within the i-th neighborhood of x), the search is continued
with neighborhood Ni+1(x). If, however, an improvement is found in the current
neighborhood, search is continued with neighborhood structure N1 again.

Within this work, we define three neighborhood structures implicitly via three
different move types:

Shift Mission. A shift mission move shifts one mission from one tour to another
tour by searching the best matching position in that other tour.

Reposition Mission. When applying a move of that type, one mission is repo-
sitioned within its tour, i.e. the best matching position (without reordering
the other missions) is determined.

Swap Nurses. By this move, two nurses are swapped with each other, i.e. the
tour of the first nurse is then handled by the second nurse and vice versa.

Due to the extensive size of the neighborhoods, first improvement is applied as
step function such that improvements can be gathered rather fast. Although
the initial neighborhood order (shift missions, swap nurses, reposition mission)
leads to rapid improvements during the starting phase of VND, preliminary tests
revealed that dynamic neighborhood reordering as applied in [17] leads to more
promising results.

4.2 General Variable Neighborhood Search

One of the major drawbacks of VND is the fact that the search might get stuck
in local optima. To overcome this, VND is typically embedded as local search
phase in a general variable neighborhood search (VNS) scheme [13]. Here, the
basic idea is to provide diversification in order to escape from local optima
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Table 1. Operator setup for the hybrid Evolutionary Algorithm (MA)

EA Operator Settings

selection binary tournament
recombination list crossover
mutation move all unfixed missions to best other nurse
replacement replace the worst similar solution in the population pool
improvement cyclic search of neighborhoods

- reorder mission neighborhood (best of improvement)
- shift mission neighborhood (best of improvement)
- swap nurse neighborhood (best of improvement)

by applying random moves in a set of larger neighborhoods. Performing these
diversification moves also is referred to as shaking. To broaden search, the ran-
domness introduced during shaking is enlarged each time the local search phase
(e.g. VND) did not improve the current best solution.

In our case, shaking is performed by applying i+1 random shift mission moves
within the i-th consecutive iteration of VNS without improvement.

4.3 A Hybrid Evolutionary Algorithm

Evolutionary algorithms (EA) [12] imitate biological evolution by adopting basic
concepts of evolutionary mechanisms such as reproduction, selection, mutation
and recombination to iteratively derive better solutions. During initialization,
a pool of diverse parent solutions is generated, the so-called population. From
this population, a new generation of solutions is bred by selecting parental solu-
tions according to a selection procedure that typically prefers solutions of higher
quality and deriving offsprings with recombination and/or mutation operators,
depending on specified probabilities. Recombination combines features of par-
ents, while mutation typically performs small random alterations. Subsequently,
the resulting offsprings replace parents in the population according to a replace-
ment strategy. In this manner, the population is continuously evolving until a
termination criteria is reached (e.g. timeout or a generation limit).

In this work we apply a hybrid EA, or Memetic Algorithm (MA) [15], that
uses local search to improve the offspring before replacement. Since Burke et
al [3] presented promising results for the Nurse Rostering Problem (NRP) with
an MA, we expected similarly good results for our problem. In the following we
discuss details about recombination, mutation and local search of our approach.
The overall parameter settings are summarized in Table 1.

Initialization. The Random Diverse Constructor creates a solution similar to
the random constructor described in section 3.3: instead of assigning a job to
a nurse at total random, the constructor maintains a memory of already used
assignments to create a new solution most different from the already constructed
ones. For each job j, we select the nurse that has been least often assigned
to j in already generated solutions and add j to the nurse’s tour. If there is
more than one such nurse, we pick one randomly. The constructor memory is
initialized with the starting solution (CP or random) by increasing the count of
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the corresponding job to nurse assignments. This way, the initial population is
diverse, but is very likely to contain many invalid solutions.

Recombination Operator. Since solutions are lists of tours (one for each nurse),
we implement a special recombination operator: given two parent solutions (P1, P2),
the offspring is initially set to have the same tours as P2. Then one nurse of P1

is selected at random (ni). Each unfixed job of ni assigned in P1 is removed in
the offspring solution. Then every remaining job of ni in the offspring solution
is moved to the ‘best’ nurse nj , i.e. where nj �= ni and which yields the lowest
objective value. In the final step, the jobs of ni in P1 are assigned to ni in the
offspring solution.

Mutation. To provide higher diversity during the search of the MA, the offspring
is mutated by selecting a nurse ni at random and reassigning all unfixed tours
of this nurse to other nurses nj , where nj �= ni, maximizing the objective value.

Local Search. For a given probability, a local search heuristic tries to further
improve the offspring. To achieve a better balance between exploration and ex-
ploitation, the heuristic aborts after a certain time limit. We apply two local
search algorithms: variable neighborhood descent (VND), as described in Sec-
tion 4.1, and cyclic search of neighborhoods (CNS), which is similar to VND but
always turns to the next neighborhood structure in a cyclic manner when a local
optimum in one neighborhood structure or a time limit has been reached. In
most of our experiments, CNS yielded better results than standard VND. The
population is replaced using a slightly changed steady-state approach [21], where
an offspring always replaces the most similar solution in the current population
that is worse than the offspring. To calculate the similarity of two solutions, we
count matching job to nurse assignments.

4.4 Simulated Annealing Hyper-Heuristic (SAHH)

Simulated Annealing (SA) [16] is an extension of local search that is inspired
by the physical “annealing” process, a heat treatment of material in metallurgy,
where a controlled heating and cooling process allows atoms to find new posi-
tions yielding a configuration of (closely) minimal internal energy. In contrast
to basic local search, Simulated Annealing not only accepts better solutions for
continuing the search but sometimes also worse. This is done in a probabilistic
way considering the solution’s objective value and a temperature parameter T ,
which is reduced over time. At the beginning, when T is large, accepting worse
solutions is more likely, while later on when T has been decreased, almost only
improvements are accepted. A Simulated Annealing Hyper Heuristic (SAHH)
utilizes other local search techniques (low-level heuristics) as slaves to improve
newly-constructed solutions. Each low-level heuristic has a probability to be se-
lected for the current iteration. These probabilities are changed during the search
using an adaptive learning approach, where the selection probability depends on
an accept/tested ratio in a predefined learning period.
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Bai et al [2] describe this kind of algorithm for the Nurse Rostering Problem
(NRP). As the NRP is related to our problem, we considered this approach too.
Starting from Bai et al.’s SAHH, the only changes that had to be made are the
adequate replacement of the low-level heuristics and an appropriate selection
of the total number of iterations. As low-level heuristics we apply variants of a
simple local search procedure, whereupon the variants differ by the step functions
applied and move types utilized. Beside a classical next improvement strategy
we also incorporate a random-improvement strategy where we only guarantee
that the number of (hard) constraint violations is not increasing (i.e. the integral
part of the objective value must not increase). As move types we use the three
previously defined move types, cf. Section 4.1. Thus, leading to a total number
of six low-level heuristics.

Bai et al. suggest that around 10% of the solutions should be accepted at
the beginning and only 0.5% at the end of the search, and we calculated our
starting/ending temperatures also accordingly.

4.5 Scatter Search

Another population based approach that we evaluate is scatter search [11]. As
described by Burke et.al. [7], this metaheuristic creates also good solutions for
the NRP. Scatter Search uses a small population of diverse solutions and creates
subsets of small size from this pool. These subsets are then combined using a
solution combination method to create new solutions which are then improved
using a local search algorithm.

Initialization. We create the initial population the same way as in the hybrid
EA, where we use the solution found by the CP-Solver or random construction
heuristic and derive additional solutions thereof.

Subset Generation. To generate subsets out of the pool of solutions (also called
reference set or RefSet), a classical subset generation approach was used [11]:
We first create subsets of all pairs of solutions. Next subsets containing of 2-sets
plus the best solution not in the set are created (duplicate subsets are removed).
At last, subsets of size k = 4 to the size of the RefSet containing the k best
solutions are creates.

Subset Combination. For the combination of solutions for each subset we im-
plement a path-relinking algorithm. Path-relinking [11] moves from a solution
Si to Sj where a move is defined by a different assignment of a variable. Unlike
the classic path-relinking approach we do not perform a local search on a given
number of promising solutions but create one solution out of the subset which
will then be improved. To create a solution Snew out of a subset of size l we
move iteratively from the worst solution S1 to the best Sl. Snew = S′

l , where

S′
i = S′

i−1 →PR Si, i = 2, ..., l, S′
1 = S1

and the path-relinking operator Si →PR Sj moves Si difference(Si, Sj)/l steps
to Sj . To determine which moves are performed first, we calculate the change
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Fig. 1. Differences in initial objective values and solution times over varying cluster
sizes

in the objective per move and perform the move with the best change (which
can also be worse). In order to prevent high runtimes due to a possible large set
of moves to be tested, we restrict the number of moves to be calculated with a
parameter smax.

This path-relinking combination algorithm was introduced after some prelim-
inary tests with a ’construction by voting’ approach described by Burke et al [7]
that did not deliver promising results on our problem.

5 Computational Results

We assess our hybrid heuristics on a random selection of real-world instances
from our project partner SoGL (that we cannot publish due to data protection
regulations) with the same setup. All techniques are implemented within the
same framework in Java version 1.6; JaCoP [14] has been used as constraint
solver. The instances have the following dimensions (the number of nurses corre-
sponds to those that are available—only about 35% are employed in solutions):

day 1 day 2 day 3 day 4 day 5 day 6 day 7 day 8

# nurses 509 491 504 482 496 518 500 505
# jobs 711 700 679 682 708 699 717 679

5.1 Initial Solution Generation Using CP

We analyze the impact of cluster size for initial solutions on quality (Figure 1,
left) and construction time (Figure 1, right) using the heuristic setup as described
in Section 3. We compare our estimated travel times to fixed travel times, where
the distance between every location is set to 15 minutes (which is the travel
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Table 2. Final objective values for each metaheuristics, averaged over 10 runs. Note
that instance 3 is unsolvable due to a data error.

constr. init. VND VNS EA SAHH SS

day 1 cp 0.0885 0.03080 0.03038 0.02744 0.03156 0.03097±0.00067 ±0.00034 ±0.00057 ±0.00064 ±0.00034
rand. 162.1513 0.33083 0.33064 0.02707 0.03200 4.03197±0.48339 ±0.48340 ±0.00031 ±0.00080 ±0.00065

day 2 cp 0.0894 0.03090 0.03038 0.02794 0.03281 0.03120±0.00039 ±0.00028 ±0.00037 ±0.00122 ±0.00050
rand. 152.1521 0.53162 0.43109 0.02767 0.03276 3.03098±0.52725 ±0.51647 ±0.00037 ±0.00094 ±0.00055

day 3 cp 1.0860 1.02879 1.02837 1.02600 1.03012 1.02931±0.00055 ±0.00044 ±0.00051 ±0.00095 ±0.00051
rand. 148.1494 1.02895 1.02851 1.02553 1.03027 2.02875±0.00043 ±0.00040 ±0.00036 ±0.00078 ±0.00048

day 4 cp 0.0896 0.03132 0.03083 0.02874 0.03313 0.03220±0.00044 ±0.00048 ±0.00042 ±0.00062 ±0.00051
rand. 155.1532 0.03232 0.03188 0.02784 0.03295 0.03069±0.00083 ±0.00087 ±0.00056 ±0.00082 ±0.00040

day 5 cp 0.0885 0.03117 0.03076 0.02850 0.03291 0.03202±0.00052 ±0.00050 ±0.00044 ±0.00091 ±0.00077
rand. 168.1506 0.03167 0.03131 0.02805 0.03310 0.03106±0.00057 ±0.00068 ±0.00047 ±0.00081 ±0.00048

day 6 cp 0.0867 0.03028 0.02964 0.02665 0.03142 0.03057±0.00055 ±0.00060 ±0.00048 ±0.00120 ±0.00068
rand. 145.1523 0.03040 0.02992 0.02646 0.03168 0.02947±0.00051 ±0.00056 ±0.00025 ±0.00153 ±0.00043

day 7 cp 0.0904 0.03209 0.03165 0.02947 0.03420 0.03300±0.00049 ±0.00054 ±0.00035 ±0.00104 ±0.00050
rand. 149.1516 0.03270 0.03218 0.02900 0.03358 1.03271±0.00085 ±0.00080 ±0.00042 ±0.00093 ±0.00049

day 8 cp 0.0872 0.02914 0.02846 0.02576 0.02994 0.02995±0.00071 ±0.00056 ±0.00038 ±0.00061 ±0.00046
rand. 158.1446 0.22922 0.22893 0.02520 0.02969 4.46026±0.63228 ±0.63227 ±0.00041 ±0.00064 ±0.53455

time measure that is currently used in the health care company). All tests for
this comparison where run on a single core of a Intel(R) Core(TM)2 Quad CPU
Q9300 2.50GHz with (at most) 4GB RAM assigned.

First, we notice a large performance gap between the estimated and fixed
travel time setup. One reason for this is that estimated travel times can “guide”
CP search towards a solution since short travel times are preferred through the
search settings. Furthermore, there is also a difference in solution quality, in
particular for small cluster sizes. For estimated travel times, the solution quality
is fairly similar, where smaller cluster sizes yield slightly better results. Finally,
we also observe that construction time increases with cluster size, in case of fixed
travel times, even quite drastically. In summary, we see that we greatly benefit
from using estimated travel times and that using a fairly small cluster size yields
relatively good initial solutions in short computation times (approx. 20 seconds).

5.2 Evaluating Metaheuristics

For evaluating the proposed metaheuristics we performed experimental tests
whereupon each one is limited to a maximum of 75 minutes to improve the
initial solution, which is either generated via CP or via the random construction
heuristic. The concrete parameter settings of each metaheuristic are summarized
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Objective value for Scatter Search

O
b

je
c
ti

v
e
 V

a
lu

e

0.
00

1
0.

01
0.

1
1

10
10

0
10

00

R−Init
R−Final
CP−Init
CP−Final

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8

Objective value for the Simulated Annealing Hyper Heuristic
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Fig. 2. Initial and final objective values using CP and random construction

in Table 3. We perform 10 runs, each on a single core of a 8xDualcore AMD
Opteron 870 2GHz with a maximum of 4GB RAM (per run). All techniques
are implemented within the same framework in Java. In Table 2 we give results
for the final objective values, depending on the construction heuristics, averaged
over 10 runs, also illustrated in Fig. 2. Furthermore, Fig. 3 illustrates how the
solution quality is improved in each metaheuristic over time: Fig. 3(left) using a
randomly constructed, invalid initial solution and Fig. 3(right) using the initial
solution from the CP-based heuristic.

First, we observe that the Evolutionary Algorithm produces the best results
and is the quickest in converging. The initial CP-based solution has little effect,
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Objective value development over time on Day1 (Random)
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Objective value development over time on Day1 (CP)
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Fig. 3. Objective value development over time per metaheuristic, using either the ran-
dom (left) or CP-based (right) construction heuristic. The objective values represent
means over 10 runs (and hence sometimes overlap) and have not been sampled over
time, but over particular stages in the approach (e.g. particular number of iterations).

since the initial population consists of 99% randomly generated solutions. There-
fore, the final results with the random construction heuristic are slightly better,
since the EA had slightly more time to perform further iterations (instead of
spending it on the CP construction heuristic).

The second best approach is the VNS approach that produces similarly good
results as the EA, but takes more time to converge. We observe a considerable
benefit from the combination with the CP construction heuristic: using the valid
initial solution, the VNS converges far quicker towards the final result, saving
almost 50% in time. Third comes the VND approach, that, though particularly
simple, yields fairly good results in little time. Similar to the VND, it performs
better with a valid initial solution. Note, that the results of the VND approach
correspond to the results of the first iteration of the VNS approach in Fig. 3.

The Simulated Annealing Hyper Heuristic converges quickly towards a better
solution but does not manage to further improve it. Similar to the EA, the initial
solution has little effect on the performance of the SAHH, probably since the
SAHH is designed to accept bad solutions during its early iteration stages.

The Scatter Search approach benefits greatly from the hybrid setup: if ini-
tiated on valid solutions from the CP-heuristic, it produces solutions of better
quality than the SAHH. However, if initiated with an invalid solution, it often
fails to even produce valid solutions after the improvement phase.

In summary, we have seen that all metaheuristics produce satisfactory results
in combination with the CP-based construction heuristic. Furthermore, VNS,
VND and SS benefit from the hybrid setup, since the valid initial solution from
the CP-based construction heuristic improves their performance. Moreover, since
the CP-based construction is rather quick, none of the approaches suffers con-
siderably from investing time in it.
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Table 3. Parameter settings for EA, SAHH and SS

EA Parameter Settings

population size 100
selection size 2
operator probabilities
- recombination 1.0
- mutation 1.0
- improvement 0.01
termination time limit or 2000 iterations without an improvement

SAHH Parameters Settings
K (# iterations) 10000
acceptance prob. (start) 0.05
acceptance prob. (end) 0.005
learn period K/500
nrep (#iter/temp) #neighborhoods
min weight 0.1
change of temperature t Lundy and Meers’ nonlinear function t = t/(1 + βt),

β = ((tstart − tend) · nrep/K · tstart · tend)

SS Parameters Settings

RefSet size 5
combination operator path-relinking
smax 100
time-limit LS 10sec
termination time limit or no improvement after an iteration

6 Conclusions

In this work, we tackle a large-scale real-world Multimodal Homecare Scheduling
(MHS) problem using a CP-based construction heuristic combined with one of
five alternative metaheuristic approaches. Our contributions are threefold: first,
we showed how we can generate valid initial solutions for the MHS in little time
using a Constraint Programming-based clustering heuristic. Second, we studied
the impact of different metaheuristics on a novel problem setup. Third, this
work demonstrates the potential of hybrid approaches for effectively tackling
large-scale real-world MHS problems.

In future work, we plan to extend our current one-day approach to generate
multi-day solutions, where we also consider shift and working hour constraints
that hold over a longer period of time. Furthermore, we want to explore very large
neighborhood search [1] as another local search procedure to further improve the
results obtained so far for the MHS problem.
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