
A Hybrid Heuristic for Multimodal Homecare
Scheduling

Andrea Rendl1, Matthias Prandtstetter1 Gerhard Hiermann2, Jakob
Puchinger1, and Günther Raidl2

1 AIT Austrian Institute of Technology
Mobility Department, Dynamic Transportation Systems

2 Vienna University of Technology, Austria

Abstract. In this work we consider solving a large-scale real-world mul-
timodal homecare scheduling problem (MHS), where the objective is to
find a roster for homecare nurses that travel from patient to patient in
a tour, using different modes of transport, respecting a set of side con-
straints, and maximising customer, nurse and employer satisfaction. We
tackle the problem using a metaheuristical approach, where in a first step,
we generate a valid initial solution and in a second step we use different
metaheuristics to improve the solution. The initial solution generation
is particularly challenging since (1) the instances are huge, (2) many
side constraints need to be considered and (3) we may only invest little
time. Therefore, we employ a Constraint Programming (CP) -based ap-
proach to generate initial solutions. First, we present a novel and efficient
constraint model for the MHS. Second, we introduce different clustering
techniques to decompose the problem into simpler subproblems. Third,
our experimental results show how the metaheuristics’ performance is
considerably improved by using valid initial solutions and produce use-
ful rosters for the MHS Problem.

1 Introduction

The demand for care of the elderly is growing due to a constant age increase
of the population, in particular in today’s western world. Thus, efficient health
care services are of great significance. In home health care, patients are nursed at
home instead of at retirement homes: patients can book different kinds of jobs
(e.g. cleaning, cooking, medical services) and nurses of adequate qualification
visit patients in a tour. Nurses use different modes of transport, mainly car
and public transport, to travel from patient to patient. The objective of the
Multimodal Homecare Scheduling problem (MHS) is hence to find a nurse roster
where all jobs are assigned to adequate nurses wrt their transport mode, and
employer, nurse and customer satisfaction is maximized.

Solving the MHS, i.e. finding an optimal roster, is challenging, since the
problem is a combination of two NP-hard problems: vehicle routing with time
windows (VRPTW) [4, 5] and nurse rostering (NRP) [7]. Furthermore, since
we consider a large-scale real-world setup from a Viennese public health care

2 Rendl, Prandtstetter, Hiermann, Puchinger, Raidl

company, the instances are particularly large (especially compared to instances
from the literature, e.g. [18]). We therefore apply a heuristic approach since
exact methods are typically too expensive for large instances: in a first step,
we generate an initial valid solution that in a second step is improved using a
metaheuristic.

Our goal is to construct a general, flexible framework for solving multimodal
homecare scheduling problems from different healthcare companies: while the
main problem components are the same in every healthcare company (rostering
and tour planning), the side constraints, concerning for instance contractual
issues or service regulations, typically vary substantially. Therefore, we build
a framework with a flexible architecture, where side constraints can be easily
interchanged.

In this paper we mainly focus on the initial solution generation, one of the
main difficulties: first, the problem has many side constraints and is excessively
large (5 times larger than typical instances from the litterature), therefore greedy
or random construction heuristics have difficulties in finding valid solutions.
Second, since we aim at constructing a flexible framework, we want to use an
approach that can be easily altered and is not tailored to a specific problem setup.
Therefore, we choose Constraint Programming (CP) [19] as main technique to
generate initial solutions. CP has a successful history of solving decision problems
(i.e. finding initial solutions) [10, 19], and constraints can be easily interchanged
which provides the necessary flexibility for the general framework.

We present our CP model and search strategies and give an overview of
various clustering approches that we have considered to decompose the problem.
Furthermore, we show how valid initial solutions can improve the performance
of the metaheuristics, yielding promising rosters for homecare companies.

This paper is structured as follows. First, we specify the Multimodal Home-
care Scheduling problem in Section 2 and outline our general solving approach in
Section 3. Then we proceed with a detailled discussion of our constraint model
for the MHS in Section 4 and introduce problem clustering techniques in Sec-
tion 5. Finally, we present the results of our empirical evaluation in Section 6
and conclude in Section 7.

2 The Multimodal Homecare Problem

The Multimodal Homecare Scheduling (MHS) problem is concerned with finding
a roster for nurses who perform homecare services at patients’ homes. Therefore,
the problem consists of two components that represent NP-hard problems: (1)
a rostering component (assigning nurses to jobs, w.r.t. various shift/working
hour restrictions) and (2) a vehicle routing component (nurses travel in tours
from patient to patient, starting at their home). We also integrate a multimodal
aspect into the problem, since each nurse chooses a specific mode of transport
for traveling.

Homecare Jobs. A set of customers C = {1, . . . , C} book one or more jobs,
daywise summarized in the set of jobs J = {1, . . . , J}. Each job j ∈ J has

Multimodal Homecare Scheduling 3

an associated location locJj (given as GPS coordinates), a start time window
twj in which the job should start, and a duration durj . Furthermore, each job
j requires a minimal qualification qJj ∈ Q by whoever performs the job (e.g.
taking blood samples requires a medical qualification). In our problem setup,
the set of qualifications Q is ordered starting with the lowest qualification: Q =
{zivi, bd, hh, ph, dgkp}. These qualifications represent the different kinds of nurses
qualification-wise: community service worker (zivi), visiting nurse (bd), homecare
nurse (hh), advanced homecare nurse (ph) and medical nurse (dkgs).

Nurses. Each job has to be assigned to one of the N nurses given by set N =
{1, . . . , N}. Since nurses travel to patients starting from their home, we store
the home location locNi of each nurse i ∈ N as GPS coordinates. Moreover, each
nurse i has a qualification qNi ∈ Q and may only perform jobs that require a
qualification that is less or equal the nurse’s maximal qualification (i.e. a medical
nurse may perform a lower-qualified homecare job, but a homecare nurse may
not perform a medical job). Nurses can only work within specified time windows,
given in the set of time windows TWi for nurse i, that vary from day to day.
Furthermore, there exists a general minimal and maximal number of working
hours, hmin and hmax, per day.

Pre-allocated Jobs. In addition to nursing jobs, we also consider pre-allocated jobs
that nurses perform in addition to nursing (e.g. team meetings, administrative
work). These jobs are assigned to a fixed location and a fixed nurse and make
up about 5% of all jobs.

Negative Preferences. Patients and nurses may state negative preferences against
each other; for instance, a nurse might refuse to work for a patient who owns
a dog if she has a dog allergy, or a female patient might refuse a male nurse.
In such cases, the nurse may not be assigned to the respective job in the ros-
ter. We summarize the reasons for refusing a nurse/customer in the set R =
{dog, cat, smoker,male, female}. Each customer gives ‘customer aspects’ based on
the set of refusal reasons: ACk = {a | a ∈ R is an aspect for customer k ∈ C}. For
instance, if customer k has the aspect set ACk = {cat,male}, then the customer
has a cat and does not want to be treated by a male nurse. On the other hand,
nurses specify their aspects ANi = {a | a ∈ R is an aspect for nurse i ∈ N}. If
nurse i has the aspect set ANi = {cat,male}, then the nurse has a cat allergy and
is male. Therefore, customers and nurses who share one or more aspects may
not be assigned to another.

Multimodality. A novel aspect in this work is the consideration of multimodality:
each nurse i states her preferred mode of transport moti where moti ∈ {car, pt}
(pt represents public transport), that we consider in creating the roster. To ob-
tain meaningful results, it is crucial to have accurate travel time estimates for
each transport mode. Therefore, we obtain travel times according to the GPS
coordinates of nurses locNi and jobs locJj based on data from (1) the Viennese
public transport system, for public transport and (2) a large set of historical
data from Viennese floating car data for transport by car.

4 Rendl, Prandtstetter, Hiermann, Puchinger, Raidl

2.1 Objective Function

When computing MHS rosters the overall goal is to find valid solutions, i.e.
solutions satisfying all hard constraints like legal issues (e.g. maximum working
times). Among all valid solutions we want to select the one which is closest to
optimality for employer, employees and customers and therefore

1. minimizes the costs for the employer (e.g. minimizes travel and working
times),

2. maximizes customer satisfaction (e.g. by minimizing deviations from cus-
tomer preferences, such as time window violations)

3. maximizes nurse satisfaction (e.g. minimizes deviations from contractual
constraints and other nurse preferences)

Therefore, we designed an objective function ob which assigns each solution a
real number such that valid solutions evaluate to values between 0 and 1, whereas
invalid solutions evaluate to values greater than 1. For this purpose, we build a
weighted sum of all influencing quantities, like soft constraint violations. Hard
constraint violations are respected by increasing the objective value by 1 for each
violation. As a side-effect, it is easy to determine how many (hard) constraint
violations occurred for a given solution. The following determinants are hard
constraints and lead therefore to invalid solution when not properly satisfied:

1. All jobs have to be assigned to a well-qualified nurse. Either a missing as-
signment of a job to a nurse or an insufficient qualification of a nurse are
both a hard constraint violation on its own.

2. Availabilities of nurses have to be regarded, i.e. jobs can only be assigned to
nurses whenever they are available.

3. Pre-allocated jobs must not be shifted to other times or nurses.

On the other hand, the following requirements are soft constraints, whose
violation is tolerated but penalized in the objective function:

1. Each customer states a time window in which the job shall be started. Vi-
olations of these time windows are penalized using a quadratic function.
However, deviations of three hours and above are considered equally bad.

2. Each customer states a desired start time for each job, i.e. a concrete point
in time at which the job should be started. Deviations from the start time
are linearly penalized, where, similar to time window violations, deviations
of one hour and above are assumed to be equally bad.

3. Preferences stated by nurses and customers are handled as soft constraints,
since all jobs have to be accomplished (even if preferences are violated).

4. Working times should not exceed the daily maximal working time since all
additional hours of work are counted as overtime and therefore higher paid
(resulting in higher costs for employer).

5. Travel times should be kept as small as possible. On the one hand, journeys
between jobs are directly counted as working time (see above). On the other
hand, journeys between nurse homes and the first/last job on a day shall
be kept as short as possible since they are not paid and therefore lead to
(un)satisfied nurses. It is therefore crucial to correctly estimate travel times.

Multimodal Homecare Scheduling 5

2.2 Related Work

Bertels and Fahle [3] use a combination of Linear Programming, Constraint Pro-
gramming for initial solution construction and Simulated Annealing and Tabu
Search as metaheuristics. They consider problem instances for a single day with
20 to 50 nurses and from 111 to 326 jobs and focus on providing reasonable
solutions in relatively short time (600 to 840 seconds per instance). The main
difference to our problem formulation is that we additionally consider soft con-
straints (only preferred time windows are considered) and multimodality.

Eveborn et al. [9] use a set-partitioning formulation to provide a flexible
architecture and solve the problem using repeated matching. Starting from an
initial matching, this approach iteratively creates a new perfect matching by
local improvements and applies splitting until a predefined termination condition
is reached. Their problem definition contains many constraints of our work and
also considers multimodality. However, the instances they use are rather small
(up to 21 nurses and 123 jobs). Based on their results, Eveborn et al. reported
that the travelling time savings of their approach are about 20% (on a moderate
guess) compared to solutions made by the human counterpart.

Steeg and Schröder [20] use CP to construct an initial solution that is im-
proved by a combination of Adaptive Large Neighborhood Search (ALNS) and
Simulated Annealing. They consider the periodic variant of the problem.

Rasmussen et al. [17] formulate the problem as a set-partitioning problem
and describe a branch-and-price approach. Their model incorporate connected
visits (dependencies on the order of the tour) but allows to left some jobs to be
unassigned using a priority system. Their tests use real-world instances with up
to 15 nurses and 150 jobs.

3 Solving Approach

Our solving approach consists of two main components: (1) an initial solution
generation step and (2) an improvement step, where different metaheuristics are
applied to systematically enhance the initial solution.

3.1 Initial Solution Generation

First, we determine a valid initial solution, i.e. a solution where all jobs are as-
signed and none of side constraints presented in Section 2 (where we consider all
soft constraints as hard constraints) are violated. This is particularly challenging
for three reasons: first, we cannot apply a simple construction heuristic, such as a
random job-nurse assignment, since many side constraints have to be considered.
Second, the instances are large (about 700 jobs/500 available nurses). And third,
not too much time should be invested into the initial solution generation, since
this step is just the first of several steps in the whole optimization approach.

Constraint Programming (CP) is a particularly attractive candidate for ini-
tial solution generation: first, CP is strong in solving discrete decision prob-
lems (i.e. finding first solutions) [10, 19]. Second, CP search strategies—if set up

6 Rendl, Prandtstetter, Hiermann, Puchinger, Raidl

correctly—can yield fairly good initial solutions (e.g. favoring low values for job
time variables during search produces tight schedules since job times are set as
early as possible). Third, the CP model can be easily altered to similar prob-
lem setups (of other health care companies) by simply editing side constraints,
and hence satisfies our requirement of a flexible system. We further outline our
CP-based approach in Section 4 and 5.

As an alternative approach to the CP-based construction heuristic, we em-
ploy a simple solution generation heuristic that produces a random nurse-job
assignment. The generated solution only guarantees that all jobs are executed
by a nurse of adequate qualification and that all pre-allocated jobs are assigned
to the right nurse. No side constraints, such as time window restrictions are con-
sidered. We use this technique as a backup to the CP approach and to evaluate
the influence of the initial solution during the later improvement phase.

3.2 Metaheuristical Optimization

The initial (valid) solutions we receive from the construction heuristics are typ-
ically of rather low quality as some aspects of the objective function (such as
short travel times) are not considered. Consequently, those solutions cannot be
used for real-world rosters. We therefore improve initial solutions using different
metaheuristics that we briefly present in this section.

Variable Neighborhood Descent (VND) [12] tries to systematically exam-
ine a predefined set of neighborhood structures Ni, with 1 ≤ i ≤ lmax where lmax
denotes the number of defined structures. To speed up the search, the neighbor-
hood structures are ordered such that potentially smaller neighborhoods for a
given solution are examined first. As soon as a local optimum is reached (within
the i-th neighborhood of solution x), the search is continued with neighborhood
Ni+1(x). If, however, an improvement is found in the current neighborhood,
search is continued with neighborhood structure N1 again.

We define three neighborhood structures implicitly via three different move
types: (1) shift job moves one job from one tour to another tour by searching the
best matching position in that other tour, (2) reposition job repositions a job to
the best matching position within its tour (without reordering the other jobs)
and (3) swap nurses swaps the tours of two nurses. We apply ‘first improvement’
as step function such that improvements can be gathered rather fast. Although
the initial neighborhood order (shift jobs, swap nurses, reposition job) leads to
rapid improvements during the starting phase of VND, preliminary tests revealed
that dynamic neighborhood reordering [16] leads to more promising results.

General Variable Neighborhood Search (VNS) Since search might get
stuck in local optima, VND is typically embedded as local search phase in a gen-
eral variable neighborhood search scheme [12]. Here, the basic idea is to provide
diversification in order to escape from local optima by applying random moves
in a set of larger neighborhoods (referred to as shaking). To broaden search,

Multimodal Homecare Scheduling 7

the randomness introduced during shaking is enlarged each time the local search
phase (e.g. VND) did not improve the current best solution. In our case, shaking
is performed by applying i+1 random shift job moves within the i-th consecutive
iteration of VNS without improvement.

Simulated Annealing Hyper-Heuristic (SAHH) utilizes Simulated An-
nealing [15] as master, and other local search techniques (low-level heuristics) as
slaves. Each low-level heuristic has a probability to be selected for the current
iteration. These probabilities are changed during the search using an adaptive
learning approach, where the selection probability depends on an accept/tested
ratio in a predefined learning period.

Our approach is based on Bai et al.’s SAHH algorithm [2] for the Nurse Ros-
tering Problem (NRP), where we replace the low-level heuristics by six low-level
heuristics: we apply (1) a classical next improvement strategy and a (2) random-
improvement strategy that are adapted according to three the step functions
and move types (those described in the previous subsection on the VND), thus,
yielding a total number of six low-level heuristics.

Scatter Search uses a small population of diverse solutions and creates subsets
of small size from this pool. These subsets are then combined using a solution
combination method to create new solutions which are then improved using a
local search algorithm. This metaheuristic has shown good results for similar
problems, such as the NRP [6].

The initial population is based on the solution retrieved from the CP-based
or random construction heuristic. We generate subsets using a classical subset
generation approach [11]. For the combination of solutions for each subset we ap-
plied a path-relinking algorithm similar to [11] after some preliminary tests with
a ’construction by voting’ [6] did not deliver promising results on our problem.

4 A Constraint Model for the MHS

In this section we present our CP model for the MHS. Note, that we simplify the
problem by solving each instance qualification-wise, since the instances are far
too large to be solved within a single CP model. Thus, we create a subinstance
Iq from instance I for each qualification q ∈ Q, such that only jobs requiring
qualification q and adequately qualified nurses are contained in Iq. We first start
solving the instance for the highest qualification, “medical nursing”, that includes
all medical nurses and all jobs that require a medical nurse. Then we continue
with the second-highest qualification, and so on. Note, that in case we cannot
solve a subinstance of qualification q, we iteratively add not yet used nurses of
higher qualification to the instance.

We formulate the MHS problem as an extension of the Vehicle Routing Prob-
lem with Time Windows (VRPTW) model from [19] and give further details in
the following subsections.

8 Rendl, Prandtstetter, Hiermann, Puchinger, Raidl

Parameter Description

N number of nurses
Mu number of unfixed jobs
Mf number of fixed jobs
M = Mu + Mf number of jobs

N = {0..M−1} nurses
Ju = {0, ..,Mu−1} unfixed jobs
Jf = {Mu, ..,Mf−1} fixed jobs
J = {0..M−1} jobs
V = {0..M+2N−1} visits/trips
T = {0..T} timeintervals per day
Q = {zivi, bd, hh, ph, dgkp}, qualifications
R = {dog, cat, smoker,male, female} refusal reasons
AJ

k = {a | a ∈ R is aspect for job j ∈ J } aspects of jobs j
AN

i = {a | a ∈ R is aspect for nurse i ∈ N}. aspects of nurse i
S = {M..M+N−1} nurse leaves home
E = {M+N..M+2N−1} nurse comes home
P = {car, pt} transport modes

twN
i : N → T 2 timeslots of nurse i ∈ N

twJ
j : J → T 2 timeslots of job j ∈ J

durj : J → T duration of job j
qNi : N → Q max. qualification of nurse i
qMj : J → Q min. qualification for job j
fixtj : Jf → T time of fixed job j
fixnj : Jf → N nurse of fixed job j
ttij : V × V → T traveltime from i to j
moti : N → P transport mode for nurse i

Table 1. Parameters of the CP model for the MHS problem

4.1 Problem Parameters

The problem parameters are given as specified in Section 2 and are summarized
in Table 1. We denote Mu the number of unfixed jobs (where nurse and time slot
are not yet set) and Mf the number of fixed jobs (where nurse and timeslot are
fixed, e.g. appraisal interviews), such that the number of jobs M = Mu + Mk.
Note that the set of jobs is ordered and contains all unfixed jobs first, followed
by fixed jobs.

For our constraint model, we additionally introduce the set of visits V, i.e.
all stops that are part of a tour. The visits contain all jobs, as well as the trips
from the nurses’ home to the first job, denoted start-visit, and the trips from the
last job to the nurses’ home, denoted end-visit, hence yielding a total of M+2N
visits. We summarise the start-visits in the set S = {M . . .M+N−1} and the
end-visits in E = {M+N . . .M+2N−1}. Those visits mark the start and end
point of each tour. Hence, the set of visits is composed of V = J ∪ S ∪ E and
ordered in that sense (first the jobs, then start-visits, followed by end-visits):
V = {0, . . . ,M, . . . ,M+N, . . . ,M+2N−1}.

Multimodal Homecare Scheduling 9

We represent time by a set of discrete points in time, defined by T = {0..T}
where 0 represents 00:00 and T the last point of time of the day. The time points
are given in τ -minute intervals, where τ = 5. In other words, T = {0, 1, 2, . . . , T}
represents the following points in time: {00:00, 00:05, 00:10,. . . ,23:55}.

The travel time from visit i to visit j using transport mode p ∈ P is computed
and collected in the distance matrix ttPij ∈ T . This means, for instance, that an
entry ttcarij = 5 states that the travel time from i to j by car takes 5 points in
time, thus 5∗τ=25 minutes. Note that we round the actual travel times up to
the next point in time, e.g. 23 minutes travel time are rounded up to 25 minutes.

4.2 Variables

The variables in a constraint model capture the decisions that have to be made.
We formulate the problem as a discrete model where the number of decisions
has to be finite and is represented by the domain of the decision variable that
contains all possible choices for the respective variable. We use the notation

vark ∈ Dom where k ∈ {1..K}

to define K variables labelled var that can take values specified in the domain
Dom. Typically, Dom is a finite set of integer values. Note that the values rep-
resenting the transport mode, aspects and qualification are integral values.

The first important set of variables represents the decision of which nurse
performs visit j and hence

nursej ∈ N where j ∈ V (1)

defines a variable for each visit capturing which nurse performs visit j. In other
words, the assignment nursej = i states that nurse i performs visit j. Secondly,
we represent the tours by introducing predecessor and successor variables
that state which visit preceeds and succeeds another visit j:

succj ∈ V where j ∈ V (2)

predj ∈ V where j ∈ V (3)

Hence, the assignment succj = i states that the successor of visit j is visit i.
Third, we introduce variables tj for each visit j to represent the time at which
j is performed:

tj ∈ T where j ∈ V (4)

Therefore, the assignment tj = k states that visit j takes place at time k ∈ T .
Furthermore, we use redundant 0/1 helper variables xji that state if job j is
performed by nurse i.

xji ∈ {0, 1} where j ∈ J and i ∈ N (5)

These variables are used for so-called ‘channeling constraints’ [8] that improve
the model quality. Finally, we introduce variables that represent the mode of
transport chosen for visit j:

tmj ∈ P where j ∈ V (6)

10 Rendl, Prandtstetter, Hiermann, Puchinger, Raidl

4.3 Constraints

In this section we scetch the most important constraints in the CP model.

Initializing Constraints are the constraints that set up the initial state of the
problem. For instance, the start and end visits of nurse i are performed by i:

∀i ∈ N . nursei+M = i
nursei+M+N = i

Similarly, we initialize the predecessor/successor variables by setting the start
and end of each tour: the nurse’s home. In other words, the predecessor of ‘leaving
home’ is ‘coming home’ and the successor of ‘coming home’ is ‘leaving home’:

∀j ∈ S. predj = j +N
∀j ∈ E . succj = j −N

Furthermore, we initialize the x-variables by a simple channeling constraint:

∀j ∈ J . ∀i ∈ N . xji = 1⇔ nursej = i

Similarly, we channel between successor and predecessor variables: the predeces-
sor of the successor of visit j is j and vice versa. Channeling constraints reduce
the search space and hence improve the problem model.

∀j ∈ V. predsuccj = j
∀j ∈ V. succpredj = j

Note, that in the expression predsuccj the variable pred is indexed by another
variable, namely succj . Such expressions are represented by a specific (non-
linear) constraint, the so-called ‘element constraint’ element(x,y) = z corre-
sponding to xy = z where x, y and z are variables. Such expressions often
appear in our constraint model and often need to be further decomposed into
subconstraints (element constraints) and introduce auxiliary variables. However,
for readabilty, we will use the notation xy though the expression is actually rep-
resented by a more complex set of subexpressions.

Finally, we impose the constraints for the fixed jobs (those jobs that are
already pre-allocated to a specific nurse and time slot):

∀j ∈ Jf . nursej = fixnj
∀j ∈ Jf . tj = fixtj

Job Time Window Constraints restrict the starting time of job j to the respective
starting time window twJj where twJj (1) represents the start time of the time

window, and twJj (2) represents the end.

∀j ∈ Ju. tj ≥ tmj(1)
∀j ∈ Ju. tj ≤ tmj(2)

Multimodal Homecare Scheduling 11

Job Tour-Constraints assure that each job is performed exactly once and hence
does not appear in different tours. This means there may not exist two dis-
tinct visits i and j that preceed or succeed the same visit k, i.e. all predeces-
sors/successors variables must take different values. For this we use the alldiffer-
ent constraint where alldifferent(x) on k variables xi with i ∈ {1..k} states that
the values assigned to the variables x must be different.

alldifferent(succ)
alldifferent(pred)

Nurse Tour Constraints state that all jobs in a nurse’s tour must be performed
by the same nurse. These constraints are separately imposed over the predecessor
and successor variables: the nurse performing visit j must be the same performing
the preceeding/succeeding visit of j.

∀j ∈ V. nursej = nursepredj
∀j ∈ V. nursej = nursesuccj

Nurse Time Constraints assure that the jobs assigned to nurse i respect the
nurse’s working time windows twNi . First, we state that the time at which visit
j starts has to be greater or equal to the starting time of the nurse assigned to
j’s shift, plus the travel time from the nurse to j. Second, we state that the end
of the nurse’s shift has to be greater or equal to (before or at) the time visit j is
scheduled, plus j’s duration and the traveltime from j to nurse performing j.

∀j ∈ V. tj ≥ twNnursej (1) + ttnursej ,j
∀j ∈ V. twNnursej (2) ≥ tj + durj + ttj,nursej

Aspect Constraints For each job j, if j has a non-empty list of aspects, then for
all nurses i that share an aspect a with job j, nurse i may not perform j.

∀j ∈ Ju. (ACj 6= ∅)⇒
∀i ∈ N . (∃a ∈ ANi . a ∈ ACj)⇒ nursej 6= i

Transport Mode Constraints The transport mode for job j is the same as the
transport mode of the nurse performing j.

∀j ∈ V. tmj = motnursej

Typically, motnursej is represented by an element constraint (as mentioned
above), however, since mot is a parameter and not a variable, we can also rep-
resent the constraint as an extensional constraint (also called ‘table constraint’)
that is simply a list of feasible value tuples for a given set of variables. This
representation is more efficient in our model when using the table constraint
representation from Lecoutre [14] as implemented in JaCoP [13].

12 Rendl, Prandtstetter, Hiermann, Puchinger, Raidl

4.4 Search Strategy

The solving procedure in Constraint Programming has two core components:
propagation and search [19]. While propagation filters the variables’ domains
according to the constraints (and their consistency level), search systematically
assigns values to variables in an attempt to find a solution. Two main features
characterize the search strategy: variable ordering and value ordering. The vari-
able ordering states in which order decision variables are assigned a value during
search (e.g. which variables to search upon first). On the other hand, the value
ordering determines in which order values are assigned to a variable that has
been chosen for search (e.g. which value should be assigned to a variable first).

Below we outline the search settings we have applied for the MHS. Using
these settings, search is extremely effective: typically no more than 10% of the
decisions made during search are wrong.

Variable Order. We apply a static variable order, where first, we fix half of the
successor and predecessor variables, choosing every odd predecessor/successor.
This means, we start with fixing parts of the job sequence (parts of the tours).
Second, we set half of the nurse variables (every odd nurse), i.e. we assign nurses
to jobs. Third, we set the remaining half of predecessor/successor variables,
followed by the remaining half of nurses. Finally, we search for job start times t
and transport mode for each job (the channeling variables x are redundant and
hence not included into search).

Value Order. The value order for all variables is a simple smallest-value-first se-
lection heuristic (i.e. the smallest values in the variable’s domains are tried out
first). For this purpose, we order the nurses by their start time (i.e. nurses avail-
able in the morning come first), and jobs by their desired start time. This way,
we try to assign ‘early’ nurses and ‘early’ jobs first, followed by later jobs/nurses.
This heuristic also assures that the job start times are as early as possible which
omits unnecessary waiting times between jobs.

5 Problem Clustering

Decomposing the problem qualification-wise does not yield equally-sized sub-
problems. For instance, jobs of qualification ‘basic homecare’ typically make up
80% of all jobs, yielding again a far too large subproblem. We therefore introduce
another decomposition step that is triggered for particular qualifications or if a
time-limit is reached: decomposition into spatial clusters.

A cluster consists of a set of jobs and nurses from the overall problem instance.
Finding a feasible cluster, where the underlying instance is solvable (in reasonable
time) is not straightforward, since both vicinity and temporal availability are
crucial. In other words, for all jobs within a cluster, we need to find a set of
nurses who can reach the jobs within time (vicinity) and who are available in
the jobs’ time slots (temporal availability). In our approach, we create and solve
clusters one by one, and iteratively alter those clusters that we cannot solve
straight away.

Multimodal Homecare Scheduling 13

5.1 Creating Clusters using a Quadtree

We reflect the spatial distribution of jobs by inserting them into a quadtree,
where each node represents a job. A quadtree is a tree datastructure, whose
nodes have up to four children that, for our purpose, are labeled north-east,
south-east, south-west and north-west and are the roots of subtrees containing
all nodes (jobs) whose GPS locations are north-east, south-east, south-west and
north-west in relation to their parent node. Jobs are then recursively added (with
random order) starting with an “one-node” tree whose root is located at a center
location of Vienna, to assure that the quadtree is reasonably balanced.

Now we can initiate the selection. First, we select k jobs by k times removing
the first leaf that we find using a simple depth-first search. In this way, the k
selected jobs are reasonably closely located. Second, we select m nurses with
m = min(k,NIq) where NIq represents the number of available nurses for the
subinstance. As we want to find nurses that are reasonably close to the jobs, we
pick one of the selected jobs at random and choose the m nurses closest to it.
This way, we retrieve a cluster with k jobs and m nurses.

5.2 Iteratively Altering Clusters

We now invest a certain amount of time τk trying to solve the obtained cluster.
If we cannot find a solution within this time, we iteratively simplify the instance
until we find a solution or reach an overall time-limit τ :

1. Given jobs J , nurses N , cluster-timeout τk and overall timeout τ
2. If |J | ≥ 1 and timeout τ has not yet been reached:

create cluster C = (J ′,N ′), where N ′ ⊆ N , |N ′| = m and J ′ ⊆ J , |J ′| = k,
otherwise stop.

3. If timeout τ has not yet been reached: attempt to solve cluster C in τk secs
(a) If solving was successful, update the set of overall jobs J to J −J ′ and

the set of overall nurses N to N −N ′ and go to 2.
(b) Otherwise, if |J ′| ≥ 1, remove f(J) jobs from J ′, yielding a new, smaller

cluster C = (J ′′,N ′) and go to 3.
(c) Otherwise, if |N | ≥ 1 add l nurses to N ′, yielding a new cluster C =

(J ′,N ′′) and go to 3.
(d) Otherwise, increase τk by δ time units

In our current setup, we use k=25, τk=1s, τ=300s, δ=10s, f(J)=|J |-10 if
|J | ≥ 10 and |J |-1 otherwise, l=1. This setup typically produces a valid so-
lution for a 700 jobs/500 nurses instance within 15–20 seconds; more details and
experimental results can be found in Section 6. In case we cannot find an overall
solution within τ seconds, the CP approach has failed and we use an alternative
approach, as outlined in Section 3.1.

6 Experimental Results

In our empirical evaluation we assess two main aspects: (1) the initial solution
generation and (2) the effects of valid initial solutions on the performance of the
metaheuristics.

14 Rendl, Prandtstetter, Hiermann, Puchinger, Raidl

6.1 Problem Instances and Experimental Setup

We use a random selection of real-world instances from our project partner
SoGL, one of the biggest homecare services in Vienna. Please note, that we
cannot publish the instances due to data protection regulations. The instances
have the following dimensions (the number of nurses corresponds to those that
are available—only some of them (30-40%) are employed in final solutions):

day 1 day 2 day 3 day 4 day 5 day 6 day 7 day 8

nurses 509 491 504 482 496 518 500 505
jobs 711 700 679 682 708 699 717 679

Our framework has been implemented within the same framework in Java version
1.6 and JaCoP [13] has been used as constraint solver.

6.2 Initial Solution Generation

We start by evaluating the performance of the initial solution generation. All
tests were run on a single core of a Intel(R) Core(TM)2 Quad CPU Q9300
2.50GHz with (at most) 4GB RAM assigned. The heuristic setup is the same as
described in Section 5.

Fig. 1. Spatial (solved) clusters for the ‘homecare’ qualification for cluster-size 15

Multimodal Homecare Scheduling 15

Figure 1 shows the spatial distribution of ‘basic homecare’-jobs for cluster
size 15, where each cluster is represented by a colour. We can see that the jobs
within a cluster are fairly close together, but clusters overlap a lot (recall that
the cluster size corresponds to the number of jobs in a cluster).

The cluster size has a strong impact on both the solving process and the
generated solutions. We summarize the main aspects in Figure 2 where we com-
pare instances with a distance matrix of estimated travel times to instances with
fixed travel times, where the distance between every location is set to 15 minutes
(which is the measure that is currently used in the health care company).

●

●

●

●

●
●

● ● ● ● ● ●

10 20 30 40 50 60

50
10

0
15

0

Number of subinstances per cluster size

Cluster Size

N
um

be
r

of
 s

ol
ve

d
S

ub
in

st
an

ce
s

20
50

10
0

15
0

18
0

●

●

●

●

●

●
● ●

●

●
●

●

Day1 (estim. travel times)
Day1 (fixed travel times)

●

●

●

●

●

●

●

●

●

●
●

●

10 20 30 40 50 60

20
0

22
0

24
0

26
0

28
0

30
0

32
0

Number of Tours in initial solution per cluster size

Cluster Size

N
um

be
r

of
 T

ou
rs

 (
N

ur
se

s)
●

●

●

●
●

●

●

●

● ●

●

●

Day1 (estim. travel times)
Day1 (fixed travel times)

●

●

●

●

●

●

●

●

● ●
●

●

10 20 30 40 50 60

0.
08

6
0.

08
8

0.
09

0
0.

09
2

0.
09

4
0.

09
6

0.
09

8

Objective value for initial solution per cluster size

Cluster Size

O
bj

ec
tiv

e
V

al
ue

●

●

●
●

●

●
● ●

●

●

●

●

Day1 (estim. travel times)
Day1 (fixed travel times)

● ● ● ● ● ● ● ●
●

●
●

●

10 20 30 40 50 60

0
20

0
40

0
60

0
80

0
10

00

Time for initial solution per cluster size

Cluster Size

T
im

e
(s

ec
)

●

●

●

●

●

●
●

●

●

●

●

●

Day1 (estim. travel times)
Day1 (fixed travel times)

Fig. 2. Initial solutions depending on cluster size: the number of subinstances, i.e. gen-
erated clusters (top left) the number of tours in a solution (top right), initial objective
value (bottom left) and solving times (bottom right)

16 Rendl, Prandtstetter, Hiermann, Puchinger, Raidl

Clustering Performance First, we consider the degree of decomposition, re-
flected by the number of subinstances into which the problem is decomposed to.
A high number of subinstances results from many iterations during the cluster-
ing approach: if a cluster of a given size n is not solvable within a time-limit, n is
iteratively reduced until a solution can be found. Hence, many iterations result
in many small clusters.

The number of subinstances per clustersize is given in Figure 2(top, left),
where the dotted blue line represents the results for fixed travel times and the
yellow line the results for estimated travel times. First, we see that the number of
subinstances (slightly) decreases with increasing cluster size, as expected. More-
over, with fixed travel times, the clustering approach yields far more subinstances
(>100 on average) than for estimated travel times (25 on average). Hence, the
CP model obviously struggles to find a valid solution within the time-limit. One
reason for this is probably that estimated travel times can ‘guide’ CP search to-
wards a solution, (short travel times are preferred through the search settings),
while fixed travel times do not eliminate options, since all options (trips) have
the same length.

We also observe another phenomenon as a result of a high number of subin-
stances: since the resulting clusters are particularly small (e.g. 10 jobs and 7
nurses), the resulting solutions of the clusters only assign very few jobs to each
nurse, especially since the time windows of the jobs are not taken into account
during spatial clustering. Therefore, the generated tours are particularly short
and far too many nurses are employed. This is reflected in the number of tours
that states how many nurses are employed in the solution (one nurse per tour)
and which is depicted in Fig. 2 (top right). There we see that for fixed travel
times, the number of tours is much higher (between 250-320) than that for esti-
mated travel times (mainly 200-220).

Solution Quality The solution quality is analyzed in Fig. 2 (bottom, left):
the solutions using estimated travel times have a substantially higher quality
(≈0.88) than those using fixed travel times (≈ 0.94). One main reason is the
high number of tours in the fixed travel times solutions: A high number of
tours in the solution represents a roster with a low nurse workload and is hence
penalized by the objective function. Using estimated travel times, we generate
tours with much higher workload, where nurses are assigned to far more jobs per
tour. Furthermore, we see that for the estimated travel times case, the cluster
size only mildly impacts the solution quality .

Solving Time Figure 2 illustrates the solving time depending on the cluster
size. We observe that construction time increases with cluster size, in case of fixed
travel times, even quite dramatically. This mainly results from the computatinal
overhead that results when a cluster of a given size cannot be solved straight
away and additional iterations to reduce the cluster are required.

In summary, we see that we greatly benefit from using estimated travel times
and that using a fairly small cluster size yields relatively good initial solutions in

Multimodal Homecare Scheduling 17

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8

Objective value for VND

O
bj

ec
tiv

e
V

al
ue

0.
00

1
0.

01
0.

1
1

10
10

0
10

00

R−Init
R−Final
CP−Init
CP−Final

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8

Objective value for VNS

O
bj

ec
tiv

e
V

al
ue

0.
00

1
0.

01
0.

1
1

10
10

0
10

00

R−Init
R−Final
CP−Init
CP−Final

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8

Objective value for Scatter Search

O
bj

ec
tiv

e
V

al
ue

0.
00

1
0.

01
0.

1
1

10
10

0
10

00

R−Init
R−Final
CP−Init
CP−Final

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Day8

Objective value for the Simulated Annealing Hyper Heuristic

O
bj

ec
tiv

e
V

al
ue

0.
00

1
0.

01
0.

1
1

10
10

0
10

00

R−Init
R−Final
CP−Init
CP−Final

Fig. 3. Initial and final objective values using CP and random construction. Note that
day3 is not solvable due to a data error.

short computation times (approx. 20 seconds). Therefore, for our experimental
evaluation in combination with metaheuristics we choose a default cluster size
of 20 with estimated travel times.

6.3 Optimizing with valid initial solutions

For evaluating the impact of valid initial solutions on the proposed metaheuris-
tics, we performed experimental tests where each one is limited to a maximum of
75 minutes to improve the initial solution. The initial solution is either generated
via CP or via the random construction heuristic. Note that in this paper we only
consider metaheuristics that make proper use of a valid initial solution. Therefore
other approaches, such as evolutionary algorithms that take a large population
of initial solutions (of which most are typically invalid) and for which therefore
a valid initial solution has little effect, are not taken under consideration.

The parameter settings of each metaheuristic are summarized in Table 6.3.
We perform 10 runs, each on a single core of a 8xDualcore AMD Opteron 870

18 Rendl, Prandtstetter, Hiermann, Puchinger, Raidl

SAHH Parameters Settings
K (# iterations) 10000
acceptance prob. (start) 0.05
acceptance prob. (end) 0.005
learn period K/500
nrep (#iter/temp) #neighborhoods
min weight 0.1
change of temperature t Lundy and Meers’ nonlinear function t = t/(1 + βt),

β = ((tstart − tend) · nrep/K · tstart · tend)

SS Parameters Settings

RefSet size 5
combination operator path-relinking
smax 100
time-limit LS 10sec
termination time limit or no improvement after an iteration

Table 2. Parameter settings for the SAHH and SS

2GHz with a maximum of 4GB RAM (per run). All techniques are implemented
within the same framework in Java. In Fig. 3. shows results for the final objective
values, depending on the construction heuristics, averaged over 10 runs. Further-
more, Fig. 4 illustrates how the solution quality is improved in each metaheuristic
over time: Fig. 4(left) using a randomly constructed, invalid initial solution and
Fig. 4(right) using the initial solution from the CP-based heuristic. We observe
a considerable benefit from using valid initial solutions, since all metaheuristics
converge far quicker towards the final result and often yield considerably better
results than when using a random initial solution.

Objective value development over time on Day1 (Random)

Time (secs)

O
bj

ec
tiv

e
V

al
ue

1 1000 2000 3000 4000 5000

0.
02

0.
05

0.
2

1
10

10
0

Metaheuristics

VNS (VND)
SS
SAHH

Objective value development over time on Day1 (CP)

Time (secs)

O
bj

ec
tiv

e
V

al
ue

1 1000 2000 3000 4000 5000

0.
02

0.
05

0.
2

1
10

10
0

Metaheuristics

VNS (VND)
SS
SAHH

Fig. 4. Objective value development over time per metaheuristic, using either the ran-
dom (left) or CP-based (right) construction heuristic. The objective values represent
means over 10 runs (and hence sometimes overlap) and have not been sampled over
time, but over particular stages in the approach (e.g. particular number of iterations).

Multimodal Homecare Scheduling 19

The VNS approach produces the best results but does not converge as quickly
as the SAHH or Scatter Search in the early search stages. It particulary ben-
efits from the valid initial solution, where it converges far quicker towards the
final result, saving almost 50% in time. The VND approach, though particularly
simple, yields fairly good results in little time. Similar to the VND, it performs
better with a valid initial solution. Note, that the results of the VND approach
correspond to the results of the first iteration of the VNS approach in Fig. 4.

The Simulated Annealing Hyper Heuristic converges quickly towards a better
solution but does not manage to further improve it. The valid initial solution
has little effect on the performance of the SAHH, probably since the SAHH is
designed to accept bad solutions during its early iteration stages.

The Scatter Search approach benefits greatly from the hybrid setup: if ini-
tiated on valid solutions from the CP-heuristic, it produces solutions of better
quality than the SAHH. However, if initiated with an invalid solution, it often
fails to even produce valid solutions after the improvement phase.

7 Conclusions

In this work, we tackle a large-scale real-world Multimodal Homecare Scheduling
(MHS) problem using a CP-based construction heuristic combined with one of
five alternative metaheuristic approaches. First, we show how to generate a valid
initial solution using a Constraint-Programming-based clustering heuristic that
produces results in very little time. Second, we demonstrate the positive impact
of valid initial solutions on the performance of different metaheuristics in our
empirical study. In summary, this work demonstrates the potential of hybrid
approaches for tackling large-scale real-world MHS problems.

In future work, we plan to extend our current one-day approach to generate
multi-day solutions, where we also consider shift and working hour constraints
that hold over a longer period of time. Furthermore, we want to explore very large
neighborhood search [1] as another local search procedure to further improve the
results obtained so far for the MHS problem.

References

1. Ahuja, R., Orlin, J., Sharma, D.: Very large-scale neighborhood search. Interna-
tional Transactions in Operational Research 7(4-5), 301–317 (2000)

2. Bai, R., Blazewicz, J., Burke, E.K., Kendall, G., Mccollum, B.: A simulated anneal-
ing hyper-heuristic methodology for flexible decision support. Tech. rep., School of
Computer Science, University of Nottingham, England (2006)

3. Bertels, S., Fahle, T.: A hybrid setup for a hybrid scenario: combining heuristics
for the home health care problem. Comput. Oper. Res. 33, 2866–2890 (October
2006)

4. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part i:
Route construction and local search algorithms. Transportation Science 39(1), 104–
118 (2005)

20 Rendl, Prandtstetter, Hiermann, Puchinger, Raidl

5. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part ii:
Metaheuristics. Transportation Science 39(1), 119–139 (2005)

6. Burke, E.K., Curtois, T., Qu, R., Berghe, G.V.: A scatter search approach to the
nurse rostering problem. Journal of the Operational Research Society 61(11), 1667
– 1679 (2010)

7. Burke, E.K., De Causmaecker, P., Berghe, G.V., Van Landeghem, H.: The state of
the art of nurse rostering. Journal of Scheduling 7, 441–499 (November 2004)

8. Cheng, B.M.W., Choi, K.M.F., Lee, J.H.M., Wu, J.C.K.: Increasing constraint
propagation by redundant modeling: an experience report. CONSTRAINTS 4,
167–192 (1999)

9. Eveborn, P., Flisberg, P., Ronnqvisb, M.: Laps care - an operational system for
staff planning. European Journal of Operational Research 171, 962–976 (2006)

10. Gent, I., Walsh, T.: Csplib: a benchmark library for constraints. Tech. rep., Tech-
nical report APES-09-1999 (1999), available from http://csplib.cs.strath.ac.uk/. A
shorter version appears in the Proceedings of the 5th International Conference on
Principles and Practices of Constraint Programming (CP-99).

11. Glover, F., Laguna, M., Mart, R.: Fundamentals of scatter search and path relink-
ing. Control and Cybernetics 39, 653–684 (2000)

12. Hansen, P., Mladenović, N.: Variable neighborhood search. In: Glover, F.W.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 145–184. Kluwer Aca-
demic Publisher, New York (2003)

13. Krzysztof, K., Szymanek, R.: Jacop java constraint solver (Dec 2011), http://

www.jacop.eu

14. Lecoutre, C.: Optimization of simple tabular reduction for table constraints. In:
CP. pp. 128–143 (2008)

15. Nikolaev, A.G., Jacobson, S.H.: Simulated annealing. In: Gendreau, M., Potvin,
J.Y., Hillier, F.S. (eds.) Handbook of Metaheuristics, International Series in Op-
erations Research & Management Science, vol. 146, pp. 1–39. Springer (2010)

16. Prandtstetter, M., Raidl, G.R., Misar, T.: A hybrid algorithm for computing tours
in a spare parts warehouse. In: Cotta, C., Cowling, P. (eds.) Evolutionary Compu-
tation in Combinatorial Optimization - EvoCOP 2009. LNCS, vol. 5482, pp. 25–36.
Springer (2009)

17. Rasmussen, M.S., Justesen, T., Dohn, A., Larsen, J.: The home care crew schedul-
ing problem: Preference-based visit clustering and temporal dependencies. Tech.
Rep. 11-2010, DTU Management Engineering (May 2010)

18. Rasmussen, M.S., Justesen, T., Dohn, A., Larsen, J.: The home care crew schedul-
ing problem: Preference-based visit clustering and temporal dependencies. Euro-
pean Journal of Operational Research 219(3), 598 – 610 (2012)

19. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA (2006)

20. Steeg, J., Schröder, M.: A hybrid approach to solve the periodic home health
care problem. In: Kalcsics, J., Nickel, S. (eds.) Operations Research Proceedings
2007, Operations Research Proceedings, vol. 2007, pp. 297–302. Springer Berlin
Heidelberg (2008)

