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Abstract We consider a transportation problem arising in public bicycle sharing systems:
To avoid rental stations to run entirely empty or full, a fleet of vehicles continuously per-
forms tours moving bikes among stations. In the static problem variant considered in this
paper, we are given initial and target fill levels for all stations, and the goal is primarily
to find vehicle tours including corresponding loading instructions in order to minimize the
deviations from the target fill levels. As secondary objectives we are further interested in
minimizing the tours’ total duration and the overall number of loading actions. For this pur-
pose we first propose a fast greedy construction heuristic and extend it to a PILOT method
that evaluates each candidate station considered for addition to the current partial tour in a
refined way by looking forward via a recursive call. Next we describe a Variable Neighbor-
hood Descent (VND) that exploits a set of specifically designed neighborhood structures in a
deterministic way to locally improve the solutions. While the VND is processing the search
space of candidate routes to determine the stops for vehicles at unbalanced rental stations,
the number of bikes to be loaded or unloaded at each stop is derived by an efficient method.
Four alternatives are considered for this embedded procedure based on a greedy heuristic,
two variants of maximum flow calculations, and linear programming. Last but not least, we
investigate a general Variable Neighborhood Search (VNS) and variants of a Greedy Ran-
domized Adaptive Search Procedure (GRASP) for further diversification and extended runs.
Rigorous experiments using benchmark instances derived from a real-world scenario in Vi-
enna with up to 700 stations document the performance of the suggested approaches and
individual pros and cons. While the VNS yields the best results on instances of moderate
size, a PILOT/GRASP hybrid turns out to be superior on very large instances. If solutions
are required in short time, the construction heuristic or PILOT method optionally followed
by VND still yield reasonable results.
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1 Introduction

In many cities around the world public Bicycle Sharing Systems (BSSs) have been intro-
duced in the last decade. Such systems augment public transport very well and frequently
present themselves as an attractive “green” alternative to individual motorized traffic. In
addition, by providing an incentive for doing sports they are a significant contribution to
improving public health [7].

Modern bicycle sharing systems consist of a collection of rental stations that are strate-
gically distributed over the service area. At each station there is a self-service computer ter-
minal and several bike parking positions. Registered users can easily rent a bike and return
it at any other station and any time they want. This freedom of the users poses an important
challenge for operators of BSSs. Over time, different factors cause an uneven distribution of
bikes in the system because the numbers of bikes rented and returned, respectively, can dif-
fer significantly among the stations. Such conditions might be temporary, e.g., commuting
patterns across a working day, or persistent, e.g., due to topographical factors [21]. The situ-
ation becomes critical when stations run completely empty or full and user demands cannot
be fulfilled anymore. In the first case a prospective customer is turned away from using the
system at all because no bikes are available to rent. In the second case, which might be even
worse for the customer, he is forced to take a detour to find another station that still has free
parking positions.

To avoid or at least reduce the probability for such unpleasant occurrences that greatly
impact user satisfaction, the BSS operator needs to actively rebalance the system by redis-
tributing bicycles between stations by a fleet of vehicles. Typically, operators use cars with
trailers to pick up bicycles at stations that tend to become full and to move them to stations
that run empty. In the Balancing Bicycle Sharing System (BBSS) problem we aim at finding
efficient vehicle routes with corresponding loading instructions for bicycles at each visited
station. The main goal is to put the system into a state that is as balanced as possible under
consideration of a time limit for the rebalancing operation.

In this work we improve and extend our previous preliminary study [20] where we al-
ready addressed this problem by a Variable Neighborhood Search (VNS) with an embedded
Variable Neighborhood Descent (VND) [15]. Now we additionally consider a new, more
sophisticated construction heuristic based on the PILOT method [27] for obtaining initial
solutions. For the VNS/VND, we present a more detailed analysis of four different strate-
gies to derive loading instructions for routes. Furthermore, we randomize the construction
heuristics and iteratively apply them in combination with the VND, yielding two variants
of a Greedy Randomized Adaptive Search Procedure (GRASP) [22]. A new benchmark suit
including very large instances with up to 700 stations is used for testing. These instances
are derived from real data provided by Citybike Wien, the major public BSS in Vienna,
Austria. It turns out that in comparison the VNS performs particularly well on medium-
sized instances while the PILOT/GRASP combination yields the best results especially on
larger instances. If only short run times are possible, the construction heuristics optionally
followed by VND also provide very reasonable results.

The article is organized as follows: The next section formalizes the problem, while Sec-
tion 3 reviews previous and related work. Section 4 describes the construction heuristic and
its extension to a PILOT method. Four alternative methods for deriving loading instructions
from candidate tours are discussed in Section 5. Sections 6, 7, and 8 describe the VND,
GRASP, and VNS approaches including the used neighborhood structures, respectively. In-
formation on the test instances and the results of diverse experiments are given in Section 9.
Finally, Section 10 draws conclusions and sketches promising future work.
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2 The Balancing Bicycle Sharing System Problem

We start by providing a formal definition of the BBSS problem. In this work we consider
the static problem variant that neglects any user activities during the rebalancing process
and where we strive to reach a target fill level of bikes that is pre-specified for each station.
Suitable target fill levels are obtained in practice from a statistical demand forecast model
that considers several aspects such as season, day, time, as well as the weather forecast [23].
This is another major research issue that exceeds the scope of the current article. By using
such models operators are able to estimate reoccurring demands quite well in order to derive
expected target values. Note that in most practical scenarios this static case of BBSS is
already a useful approximation, since stations are usually designed sufficiently large in order
to compensate short-term fluctuations. However, the balancing is still necessary because
imbalances arise over longer time horizons, such as one or several days.

The BSS is represented by a complete directed graph G0 = (V0,A0). Node set V0 =
V ∪{0} consists of nodes for the rental stations V and a node 0 for the depot (i.e., parking
place of the vehicles). Each arc (u,v)∈ A0 has associated a time tu,v > 0. This value not only
includes the time needed for traveling from u to v, but also an expected average time needed
for parking, handling the local computer terminal, and loading or unloading bikes at v. Let
the subgraph induced by the bike stations V only be G = (V,A), A⊂ A0.

Each station v ∈ V has associated three values: The capacity Cv ≥ 0, i.e., the number
of available bike parking positions, the number of available bikes at the beginning of the
rebalancing process pv, and the target number of bikes that should ideally be available after
rebalancing qv, with 0≤ pv,qv ≤Cv.

The BSS operator has a fleet of vehicles L = {1, . . . , |L|} that is available for moving
bikes between stations. Each vehicle l ∈ L has a capacity to transport Zl > 0 bikes simul-
taneously, a total time budget t̂l within which it has to finish a route, i.e., the worker’s shift
length. Each route has to start and end at the depot 0. We assume that all vehicles start and
finish their routes empty. A practical rationale behind this is that frequently vehicles are
publicly accessible at the depot and bikes cannot be locked at the vehicles’ trailers.

Solutions to the BBSS problem consist of two parts. The first one is the route for each
vehicle l ∈ L specified by an ordered sequence of visited stations rl = (r1

l , . . . ,r
ρl
l ) with

ri
l ∈V , i = 1, . . . ,ρl and ρl representing the number of stations traveled to. Note that stations

may be visited multiple times by the same or different vehicles. For reasonable solutions
these multiple visits are necessary as the station capacities Cv are sometimes much larger
than the vehicle capacities Zl .

The second part of a solution consists of loading instructions yi
l,v ∈ {−Zl , . . . ,Zl} with

l ∈ L, v ∈ V , and i = 1, . . . ,ρl , specifying how many bikes are to be picked up (yi
l,v > 0) or

delivered (yi
l,v < 0) at station v at the i-th stop of vehicle l. Of course loading actions may

only take place at visited stations, i.e., ∀v 6= ri
l : yi

l,v = 0, and thus, for simplicity we also
write yi

l for yi
l,ri

l
, i.e., if no station index is explicitly specified we assume the station to be

the visited one (ri
l).

Note that an option would be to further limit the domains of these loading instructions by
the station capacities, i.e., yi

l,v ∈ {−min(Zl ,Cv), . . . ,min(Zl ,Cv)}. We, however, stay more
general and potentially allow vehicles meeting at a station to exchange bikes directly. Im-
posing a limit based on station capacities would be too restrictive in this case.

Several conditions must hold for a solution to be feasible: The number of bikes available
at each station v∈V always needs to be within {0, . . . ,Cv}. For any vehicle l ∈ L the number
of simultaneously transported bikes may never exceed the capacity Zl , and the total tour
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length tl

tl =

t0,r1
l
+

ρl
∑

i=2
tri−1

l ,ri
l
+ trρl

l ,0 for ρl > 0

0 for ρl = 0,
(1)

is restricted by the time budget t̂l , ∀l ∈ L.
Let av be the final number of bikes at each station v ∈V after the rebalancing operation

av = pv−∑
l∈L

ρl

∑
i=1

yi
l,v. (2)

The objective is to find a feasible solution that primarily minimizes the deviation from
the target number of bikes δv = |av− qv| at each station v ∈ V and secondarily the number
of loading activities including the overall time required for traveling all routes. Therefore,
our objective function is given by

min ω
bal

∑
v∈V

δv +ω
load

∑
l∈L

ρl

∑
i=1
|yi

l |+ω
work

∑
l∈L

tl , (3)

where ωbal,ω load,ωwork ≥ 0 are scaling factors controlling the relative importance of the
respective terms. Following the advice from experts at Citybike Wien, we assume that any
improvement in balance is always preferred over decreasing the number of loading actions
or reducing the work time, and to ensure this preference we use appropriate scaling factors.
In all our tests we use the setting ωbal = 1 and ω load = ωwork = 1/100000.

2.1 Monotonicity for Fill Levels of Stations

A natural simplification for the BBSS problem is the restriction to monotonicity regarding
the fill levels of stations. By exploiting it we will see that algorithms for deriving good or
optimal loading instructions for given tours become simpler while in general solutions are
not substantially worse in comparison to the general case.

Let Vpic = {v ∈ V | pv > qv} denote pickup stations, i.e., the set of stations from which
ultimately bikes should be removed, and Vdel = {v ∈V | pv < qv} denote the set of delivery
stations. The remaining stations V \Vpic \Vdel are initially already in balance.

In the monotonic case, vehicles are only allowed to load bicycles at pickup stations
and unload them at delivery stations. In this way a station’s fill level only decreases or
increases monotonically, and consequently the order in which different vehicles visit a single
station does not matter. Stations that are already balanced at the beginning do not need to be
considered at all as no pickups or deliveries are allowed there.

While monotonicity appears to be a very intuitive simplification, enforcing it may ex-
clude better solutions that, e.g., use stations as buffers to temporarily store bikes or by ex-
changing bikes between vehicles when they meet at some stations. An example of such a
situation is shown in Figure 1.

Experiments in Section 9 will show that the impact of monotonicity on the objective
values of solutions is recognizable but small. We assume that this trend also depends on
the scaling factors in the objective function which put a substantially lower weight on the
traveling time than on the imbalance. In practice, excellent solutions can be found even
under the assumption of monotonicity.
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a b e

c d

pa = 19
qa = 4

pb = 4
qb = 3

pe = 1
qe = 16

pc = 18
qc = 3

pd = 2
qd = 18

delivery stations:

pickup stations: a b c

d e

vehicle tour: (a, b, c, d, b, e)

station and vehicle capacities: 20

Fig. 1 Example where the restriction to monotonicity yields a worse solution. With monotonicity, the best
possible loading instructions are y1 = (+15,+1,+4,−16,0,−4) resulting in a total imbalance of 22. In the
general case, node b can be used as buffer and loading instructions y1 = (+15,−14,+15,−16,+15,−15)
yield perfect balance.

3 Related Work

Only in recent years the BBSS problem has been recognized as a combinatorial optimiza-
tion problem and a few systematic solution approaches have been described by the opera-
tions research community. However, each concept addresses significantly different problem
variants, making a direct comparison between existing approaches difficult. The majority
of existing works use Mixed Integer Programming (MIP) techniques which in principle are
sometimes able to find proven optimal solutions but in practice they are restricted to small
instances regarding the number of stations and vehicles.

Chemla et al. [2] address the static case by using only one vehicle and exactly reach-
ing the given target fill levels is defined as a hard constraint. No restriction is placed on
the time needed for the rebalancing operation. The authors formulate an exact MIP model
that appears to be intractable for realistic instances. Therefore, they modify the model by
proposing a relaxation that is solved by a branch-and-cut approach, yielding a lower bound
to the original problem. For obtaining a feasible solution and a corresponding upper bound,
they employ a tabu search. To the best of our knowledge and with the exception of our pre-
vious work, this tabu search is the only metaheuristic approach applied to a variant of BBSS
until now. A key concept in this work is the solution representation: Only the order in which
the vehicle visits the various stations is considered. Loading instructions for each visit are
obtained by an auxiliary algorithm based on a maximum flow computation, resulting in a
greatly reduced search space. We adopt this principle but need to significantly extend it to
suit our more general problem definition.

Raviv et al. [21] study two MIP-approaches for the static multiple-vehicle variant
based on arc-indexed and time-indexed models, respectively. As objective function a non-
traditional convex penalty function is used that is claimed to reflect user dissatisfaction by
modeling a bounded birth and death process as well as calculating the expected number of
shortage events in the system. This function is approximated in the MIP-formulations in a
piecewise linear way. While the arc-indexed formulation is more compact it has some re-
strictions w.r.t. monotonicity. The time-indexed formulation is more flexible but requires a
discretization of time and typically yields a substantially larger model. Tour lengths are also
considered in the objective function, but the number of loading operations is ignored. Tests
were performed on instances with up to 104 stations, one or two vehicles, and a time horizon
of up to five hours. Solutions with practically reasonable optimality gaps could be obtained,
especially with the arc-indexed approach.

Benchimol et al. [1] again assume balancing as hard constraint and only consider the
total tour length as objective. They focus on approximation algorithms for selected spe-
cial situations, for example by using the Christofides heuristic for the traveling salesman
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problem. Their model comprises only a single vehicle and allows bikes to be temporarily
dropped along the route before being moved to their final destination. Moreover, they give
some complexity results for the cases when the graph representing the BSS is a tree or a
line. The work focuses on theoretical aspects, so there is no experimental evaluation of the
proposed approaches.

Contardo et al. [5] investigate the more complex dynamic scenario where rebalancing
is done while activities in the bike sharing system cannot be neglected, e.g., during peak
hours. They propose an arc-flow formulation and a pattern-based formulation for a space-
time network model. The latter is solved heuristically by a hybrid MIP-approach that utilizes
Dantzig-Wolfe as well as Benders decomposition. This approach is able to handle randomly
created instances with up to 100 stations and 60 time periods reasonably well. Upper and
lower bounds can be derived relatively quickly, however significant gaps in the magnitude
of 20–50% remain. Additionally applying branch-and-price only yields a small gain.

Chemla et al. [3] investigate concepts for the dynamic case of the BBSS problem. They
describe a theoretical framework in order to study the dynamic problem and the vehicles’
impacts on the system. Moreover, they prove that the dynamic BBSS problem is NP-hard
and propose some heuristic approaches to solve the problem with a single vehicle. It is as-
sumed that the city is already divided into sub-areas which are managed by only one vehicle,
respectively. Finally, they describe a pricing technique, i.e., decreasing the bike’s rent if the
user returns the rented bike to a station which tends to run empty soon. Consequently, by
applying this strategy it might be theoretically possible to omit vehicle tours completely.

Pfrommer et al. [17] also investigate the repositioning of bikes in an online scenario.
They propose a heuristic for planning tours with multiple vehicles and test it in a simula-
tion based on historic data. In addition, they also present a dynamic pricing strategy which
encourages users to return bikes to empty stations. The truck tours and dynamic prices are
periodically recomputed while the system is active.

In [20], we describe a greedy construction heuristic followed by a Variable Neighbor-
hood Search/Variable Neighborhood Descent (VNS/VND) metaheuristic for efficiently find-
ing vehicle routes. While the VNS searches the space of vehicle routes, corresponding load-
ing instructions are efficiently derived by either a greedy method, maximum flow computa-
tions, or linear programming. We improved this work in [19], where a fourth alternative for
deriving loading instructions is presented. Additionally, an effective combination of the four
methods is considered. The current work extends our approaches by applying the PILOT
method [27] in the construction heuristic and GRASP as an alternative to the VNS, as well
as by performing extensive experiments on larger instances of up to 700 stations.

Di Gaspero et al. [9] describe a combination of Constraint Programming (CP) and Ant
Colony Optimization to tackle the same BBSS variant as we do. Furthermore, in [8] the
same authors suggest another CP approach utilizing a smart branching strategy and Large
Neighborhood Search. In both works they tested with the benchmark suite we proposed in
[20] and conclude that our VNS performs in almost all cases clearly better than their CP-
based approaches. In particular, they show that it is quite difficult to deal effectively with the
determination of loading instructions and the possibility of multiple visits in CP.

Finally, Schuijbroek et al. [25] decompose the problem into separate single-vehicle rout-
ing problems by solving a polynomial-size clustering problem. They apply a clustered MIP
heuristic in two versions, with and without additional cuts. In addition, they present a CP
model that represents the problem as a scheduling issue. Results on instances with up to
135 stations and five vehicles show that the approaches outperform a MIP model operating
on the full unclustered problem. However, their model defines the target values as intervals
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which must be fulfilled for every station. Consequently, they only minimize the total tour
lengths of the vehicles.

There are further related works which focus on strategic planning aspects of BSSs such
as location and network design depending on demands or on determining path distances
between stations (e.g., [13,14]). Others study the system characteristics and usage patterns
(e.g., [16]). However, these aspects are not within the scope of this work.

More generally, BBSS is related to diverse variants of the classical capacitated vehicle
routing problem (VRP), see e.g., [10]. However, it differs in substantial ways: Most impor-
tantly, there are pickups and deliveries, and stations may be visited multiple times, even by
different vehicles. Consequently, BBSS may be referred to as a capacitated single commod-
ity split pickup and delivery VRP with multiple visits. BBSS is also related to the pickup and
delivery traveling salesman problem (PDTSP) [11] where the goal is to find a cost-minimal
route where goods are transported from pickup to delivery nodes. The PDTSP in turn is
an extension of the selective traveling salesman problem or orienteering problem [6,12,26]
where the objective is to find a route of limited length through a graph that maximizes the
profits of the contained vertices.

Concerning the computational complexity of BBSS, it is trivial to show that the traveling
salesman problem can be modeled as a special case of BBSS. Consequently, BBSS is also
NP-hard in the strong sense and no polynomial-time constant-factor approximation can exist
unless P=NP.

4 Construction Heuristics

We present two construction heuristics aimed at generating meaningful initial solutions
within short time. The first basic heuristic, presented in the following subsection, has al-
ready been used in [20] and follows a classic greedy principle, but utilizes a greedy function
specifically designed for BBSS. While fast, local greedy decisions can be far from optimal
with regard to the whole solution. This is especially true for BBSS as the greedy function
is a compromise that combines multiple objectives. To mitigate this problem, we extend the
basic heuristic by evaluating each candidate station considered for addition to a partial tour
in a deeper way by also considering its potential successors via recursive calls. This second
approach follows the PILOT method [27] and is described in Section 4.2. Both methods
assume monotonicity regarding fill levels of stations as defined in Section 2.1.

4.1 Greedy Construction Heuristic (GCH)

This greedy method builds solutions by iteratively creating a tour for each vehicle following
a local best successor strategy. From the last station of a partial tour (or initially the depot),
we first determine the set F ⊆ V of feasible successor stations. Set F includes all stations
that are not yet balanced and additionally can be serviced by the current vehicle l without
exceeding the shift length t̂l , i.e., there is enough working time left to visit the station and to
go back to the depot.

For each such candidate station v ∈ F , we calculate the maximum number of bicycles
that can be picked up or delivered by

γv =

{
min(av−qv,Zl−bl) for v ∈ F ∩Vpic and
min(qv−av,bl) for v ∈ F ∩Vdel,

(4)
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where bl represents the final load of vehicle l so far and av the final number of bikes at
station v in the currently considered partial tour. For an empty tour (i.e., ρl = 0) they are
initialized with bl = 0 and av = pv, respectively. If routes for other vehicles have already
been constructed, av is modified to correctly reflect the number of available bikes under
consideration of the other vehicles’ actions.

We assume that no bikes are allowed to remain on a vehicle when returning to the de-
pot. Therefore, an additional correction is important for pickup stations. For this purpose,
we determine an estimation of the number of bicycles bdel which can still be delivered to
successive stations after visiting the last station within the remaining time. This is achieved
by a recursive call of the construction heuristic which only considers delivery stations and
assumes to have an unlimited amount of bicycles available at the vehicle.

Note that here we deviate in a detail from the greedy heuristic in [20]: In that work,
the estimation of deliverable bicycles is individually determined for each candidate station
v ∈ F ∩Vpic considering it as the starting point. Tests indicated that the higher precision
gained by these individual calculations is relatively small while the computational effort is
substantially higher by a factor of O(|V |). Especially when considering the extension to the
PILOT method in the next chapter and the larger instances with up to 700 stations used
here, the differences in running time become dramatical, and thus, we rely on the described
simpler approach.

Having determined bdel, we discard all remaining pickup stations from F if av ≥ bdel,
because in this case further pickups appear to be not possible anymore; i.e., the construction
of the route is finished with delivery stations only. Otherwise, e.g., if further pickups are
allowed, the number of bicycles to be collected at each candidate pickup station v ∈ F ∩Vpic
is corrected by considering the limit bdel:

γv←min(γv,bdel−bl) ∀v ∈ F ∩Vpic. (5)

Having calculated γv for all candidate stations v ∈ F , we finally evaluate them by the
ratio γv/tu,v, where tu,v is the time needed to travel from the vehicle’s last location u to
station v and service v. Thus, this greedy evaluation criterion considers the balance increase
per time unit. The node v ∈ F with the highest ratio is then appended to the tour rl ; ties are
broken randomly. Loading instructions are set as follows:

yρl
l,v =

{
γv if v ∈Vpic and
−γv if v ∈Vdel.

(6)

Furthermore, bl and av are updated accordingly and the procedure continues with the
next extension, evaluating stations in F from scratch, until no feasible extension remains,
i.e., F = /0.

As bdel is only an estimation, it may occasionally happen that a few bicycles remain in
the vehicle at the end of a route. As we do not allow this in feasible solutions, we repair the
situation by reducing the last pickup(s) correspondingly. If some yi

l , i = 1, . . . ,ρl , becomes
zero, then we remove visit i from the route.

4.2 PILOT Construction Heuristic

The PILOT construction heuristic extends the greedy construction heuristic using the PILOT
(Preferred Iterative LOok ahead Technique) method according to [27]. On several occasions,
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this metaheuristic has already shown to yield better solutions than its simple greedy counter-
part with only moderate and scalable computational overhead. In particular, we consider it
to be a promising alternative to the VNS/VND approach for large instances where the VND
might already take very long in execution. The basic idea of this method is to look ahead in
order to escape the greedy trap, i.e., to further evaluate every candidate successor in a greedy
way and thus avoid short-sighted results. The main issue of the greedy construction heuris-
tic is that it always chooses the single locally best successor as long as the solution remains
feasible. As a result, e.g., a dense cluster of stations which is in a greater distance from the
current station than an isolated single station might yield a larger balance gain altogether,
but the simple greedy algorithm does not recognize the cluster’s overall benefit and selects
the isolated station as successor. Contrarily, the PILOT construction heuristic evaluates each
candidate station not just by its own distance and balance gain, but instead also in possible
future gains by visiting further stations in corresponding recursive calls. To some degree, the
PILOT approach is also related to probing techniques in Mixed Integer Programming [24].

Figure 2 shows the basic idea of PILOT in the context of BBSS. The vehicle is currently
at station 1 and we evaluate all potential successors by greedily determining individual ex-
tensions with them. In this example we only show the evaluation for the stations {2,3,4}.
It is performed by trying to temporarily append each candidate station to the current route
and continuing the basic greedy construction process until no further station can be added.
Furthermore, the constructed extensions are evaluated on a defined criterion which is in our
case the total decrease of the objective function value (3). Finally, the candidate station with
the highest benefit (i.e., objective function decrease) is selected – in our example station 3 –
and appended to the route; all temporary solutions are discarded and PILOT continues with
the next round of successor evaluations until F becomes empty and the route is completed.

1

2

vehicle tour

current station

3

4

potential successor stations

objective value = 10

temporary solutions

objective value = 5

objective value = 15

→ chosen successor

Fig. 2 Basic principle of one iteration of the PILOT method for evaluating stations.

Note that the construction of the temporary extensions is done exactly the same way as in
the basic greedy construction heuristic, including the calculation of the number of bicycles
to be picked up or delivered, and taking into account the estimation of the number of bikes
that can still be delivered.

Figure 3 shows an example how the PILOT approach dominates the simple greedy vari-
ant where the shift length is assumed to be t̂1 = 30min. For simplicity we only show the most
lucrative connections and assume symmetric traveling times which are printed for each edge.
The objective function values only show the imbalance and omit the other factors (working
time and total number of loading instructions), in order to simplify the visualization. Fig-
ure 3a visualizes the solution of the greedy construction heuristic. Note that in particular the
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(a) Greedy construction heuristic.
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Fig. 3 Exemplary solutions of the greedy construction heuristic and the PILOT method with one vehicle and
and t̂1 = 30 min showing the benefits of the latter.

path from station 1 to 2 has a higher greedy value ( 5
3 = 1.67) than to station 8 ( 4

7 = 0.57),
and again the path from station 2 to 3 is preferred over station 8. After the visit of station 4
no further feasible station is left. On the contrary, the PILOT method will select station 8 as
second one because when considering it, the most lucrative extension with further stops at
the stations 6, 7, 8, 2, and 3 is identified.

Due to the recursive evaluation of candidates the time complexity of the PILOT approach
is higher than the time complexity of the basic greedy heuristic by a factor of O(|V |). One
possibility to improve the running time while still following the general idea is to apply
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(a) Objective values for instances with |V | = 90,
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(b) Objective values for instances with |V | = 700,
|L|= 14, and t̂l = 8 h, ∀l ∈ L.
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(c) CPU times for instances with |V | = 90, |L| = 2,
and t̂l = 8 h, ∀l ∈ L.
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(d) CPU times for instances with |V |= 700, |L|= 14,
and t̂l = 8 h, ∀l ∈ L.

Fig. 4 Finally best objective values and CPU times in seconds for different PILOT depths β .

a short-cut policy, i.e., to limit the recursive look-ahead to a certain number of successor
stations, which is referred to as the PILOT depth β . In such a limited-depth PILOT approach,
we do not evaluate each candidate extension by the overall gain in the objective function
since the required time becomes a crucial factor again. Instead, we follow the criterion of the
greedy heuristic, i.e., use the ratio of the balance gain and the time for the whole extension.

We tested our PILOT extension with various restricted depths and the unrestricted case
on our benchmark instances, which are introduced in more detail in Section 9. Figure 4
shows the objective values and computation times for varying β on benchmark instances
including 700 and 90 stations, where β = 0 represents the simple greedy approach and
β = ∞ the unrestricted depth. Since the unrestricted case still runs very fast compared to our
other metaheuristics and yields significantly better results than when imposing any depth
limit, we finally decided to only consider the unrestricted case in all further work.

5 Solution Representation and Deriving Loading Instructions

Our VND, GRASP, and VNS metaheuristics will be described in detail in Sections 6 to 8 and
use an incomplete solution representation inspired by [2]. They process the search space of
vehicle routes, while corresponding loading instructions yi

l,v, l ∈ L, v ∈V, i = 1, . . . ,ρl , are
derived for each candidate solution by an embedded procedure. We consider four alternative
methods for calculating loading instructions for a given set of routes r. The next sections
describe them and examine their individual assets and drawbacks.

5.1 Greedy Heuristic (GH)

This fast heuristic approach follows the strategy from the greedy construction heuristic for
a whole solution. It processes the routes vehicle by vehicle in a sequential way. Stations are
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considered in the order as they are visited and loading instructions are computed in a similar
way as described in Section 4.1. If the current station v = ri

l , l = 1, . . . , |L|, i = 1, . . . ,ρl , is a
delivery station, then

yi
l,v =−min(qv−av,bl) (v ∈Vdel), (7)

with av indicating the current number of bikes at station v and bl the number of currently
loaded bikes at vehicle l. In case of v being a pickup station, an estimation bdel of the number
of bikes which can still be delivered is calculated, but now on the basis of the already known
successive delivery stations in the route. Loading instructions are then set to

yi
l,v = min(av−qv,Zl−bl ,bdel−bl) (v ∈Vpic). (8)

GH is able to calculate loading instructions very quickly, but it is, as the construction
heuristic, restricted to the monotonic case of the BBSS problem, i.e., does not make use
of temporarily buffering bikes at stations or exchanging of bikes among vehicles. However,
also under the assumption of monotonicity, GH is not guaranteed to find optimal loading
instructions. For example, in a route where a station v is visited twice, it can be beneficial
to retain bikes in the vehicle at the first visit of v in order to be able to satisfy a following
delivery station. Station v may later be also satisfied on its second visit.

5.2 Maximum Flow Approach for the Monotonic Case (MF-MC)

The MF-MC approach assumes monotonicity like GH, but it is an exact method, i.e., it
always derives proven optimal loading instructions for a given set of routes. We apply a
maximum flow computation on a specifically defined flow network. The approach is similar
to [2], but we extend this method to our problem definition by considering multiple vehicles
and handling balance as a goal in the objective function instead of a hard constraint. The
design of the flow network implicitly enforces all constraints of the BBSS problem with
regard to the number of bikes present in the stations and vehicles.

We define the graph Gfm =(Vfm,Afm) with node set Vfm = {σ ,τ}∪Vpic∪Vdel∪VL, where
σ and τ are the source and target nodes of the flow network, respectively, and VL =

⋃
l∈L Vl

with Vl = {vi
l | l ∈ L, i = 1 . . . ,ρl} represents the stops of all routes. The arc set Afm =

Aσ ∪AL∪Apic∪Adel∪Aτ consists of:

– Aσ = {(σ ,v) | v∈Vpic} with capacities pv−qv representing the surplus number of bikes
at each pickup station.

– Aτ = {(v,τ) | v ∈Vdel} with capacities qv− pv representing the lacking number of bikes
at each delivery station.

– Apic = {(v,vi
l) | vi

l ∈VL, v = ri
l , v∈Vpic}, i.e., each pickup node in Vpic is connected with

every node representing a stop at this station in any route l ∈ L. These arcs’ capacities
are not limited.

– Adel = {(vi
l ,v) | vi

l ∈VL, v = ri
l , v∈Vdel}, i.e., each node representing a stop at a delivery

station is connected to the corresponding delivery node in Vdel. These arcs’ capacities
are also not limited.

– AL = {(vi−1
l ,vi

l) | vi
l ∈ VL, i > 1}, i.e., the nodes representing the stops in each tour are

connected according to the tour. Arc capacities are given by the vehicle capacities Zl .
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Fig. 5 Exemplary flow network under the assumption of monotonicity for the tours r1 = (a,b,a,c) and
r2 = (d,a,b) with Vpic = {a,d} and Vdel = {b,c}.

An exemplary network for an instance with four stations and two vehicles is shown
in Figure 5. It can be seen easily that calculating a maximum (σ ,τ)-flow on the network
directly yields (under the assumption of monotonicity) optimal loading instructions yi

l via
the flows on the corresponding arcs Apic and Adel, respectively. In our implementation, we
use the efficient push-relabel method from Cherkassky and Goldberg [4] for the maximum
flow computations.

5.3 Linear Programming Approach (LP)

In the more powerful LP approach we are able to determine optimal loading instructions
for the general, not necessarily monotonic case by solving a minimum cost flow problem
on another network by linear programming (e.g., the network simplex algorithm). The main
difference is that we now consider the order in which vehicles make their stops (at possi-
bly the same stations). In this model, bikes can be buffered at stations or even be directly
transferred from one vehicle to another when they meet.

Let t(ri
l) denote the absolute time when vehicle l makes its i-th stop at station ri

l . We
define the multi-graph Gf = (Vf ,Af) with node set Vf = {σ ,τ}∪Vt where Vt = {v j | ∃vi

l ∈
Vl : t(ri

l) = j}, i.e., besides source and target nodes σ and τ we have a node v j for each
station v and time j when a vehicle arrives at v. Furthermore, let V first = {v jmin ∈Vt | jmin =
min{ j | v j ∈Vt}} denote the set of nodes representing the first visit of all stations among all
routes and V last = {v jmax ∈Vt | jmax =max{ j | v j ∈Vt}}, denote the set of nodes representing
the last visit of all stations. Arc set Af = Aσ ∪Aτ ∪AR∪AV consists of:

– Aσ = {(σ ,v j) | v j ∈V first} with capacities pv.
– Aτ = {(v j,τ) | v j ∈V last} with capacities qv.
– AR =

⋃
l∈L AR,l with AR,l = {(u j′ ,v j) | u = ri−1

l , v = ri
l , j′ = t(ri−1

l ), j = t(ri
l), i =

2, . . . ,ρl}, ∀l ∈ L, i.e., the arcs representing the flow induced by the vehicles. Capacities
are Zl . Note that multiple arcs exist between two nodes if two (or more) vehicles leave
and arrive at the same stations exactly at the same time.

– AV =
⋃

v∈V Av with Av = {(v j1 ,v j2), . . . ,(v jmax−1 ,v jmax)}, (v j1 , . . . ,v jmax) is the sequence
of nodes {v j ∈Vt} sorted according to increasing j. Capacities are Cv.

An example of such a network is given in Figure 6. Now, a simple maximum (σ ,τ)-
flow calculation would in general not yield optimal or even feasible loading instructions
anymore as it must be guaranteed that all arcs Aσ are satisfied (corresponding to the initially
available bikes) and we do not have a correspondence between the achieved balance and
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Fig. 6 Exemplary flow network for the general case with tours r1 = (a,b,a,c) and r2 = (d,a,b).

the total flow. Instead, we have to minimize a certain objective function that depends on
the flow, i.e., we have to solve the following minimum cost flow problem which is done
by linear programming. Let the flow variables be fu,v, ∀(u,v) ∈ Af. By predl(v j) ∈ Vt we
denote the predecessor of the node v j on the route of vehicle l, i.e., predl(v j) = u j′ with
u = vi−1

l , j′ = t(ri−1
l ), and by succl(v j) ∈ Vt we denote its successor, i.e., succl(v j) = w j′′

with w= vi+1
l , j′′ = t(ri+1

l ). To calculate the balance as final absolute deviations of the target
values and the total amount of loading operations, we split the variables for the loading
instructions yi

l,v ∈ {−Zl , . . . ,Zl} into y+,i
l,v ∈ {0, . . . ,Zl} for pickups and y−,il,v ∈ {0, . . . ,Zl} for

deliveries of bikes, i.e., yi
l,v = y+,i

l,v − y−,il,v , y+,i
l,v = 0 ∨ y−,il,v = 0, and |yi

l,v|= y+,i
l,v + y−,il,v .

min ω
bal

∑
∀v∈V last

δv +ω
load

∑
l∈L

ρl

∑
i=1

(
y+,i

l,ri
l
+ y−,i

l,ri
l

)
(9)

subject to

∑
(u,v j)∈Aσ∪AV

fu,v j +∑
l∈L

∑
(u,v j)∈AR,l

fu,v j =

∑
(v j ,w)∈Aτ∪AV

fv j ,w +∑
l∈L

∑
(v j ,w)∈AR,l

fv j ,w ∀v j ∈Vt (10)

y+,i
l,v − y−,il,v =


fv j ,succl(v j) ∀l ∈ L, i = 1, v = ri

l , j = t(ri
l)

fv j ,succl(v j)− fpredl(v j),v j ∀l ∈ L, i = 2, . . . ,ρl−1,v = ri
l , j = t(ri

l)

− fpredl(v j),v j ∀l ∈ L, i = ρl , v = ri
l , j = t(ri

l)

(11)

fσ ,v j = pv ∀(σ ,v j) ∈ Aσ (12)

fv j ,τ −qv ≤ δv ∀(v j,τ) ∈ Aτ (13)

qv− fv j ,τ ≤ δv ∀(v j,τ) ∈ Aτ (14)

0≤ fv j ,τ ≤Cv ∀(v j,τ) ∈ Aτ (15)

0≤ fu j′ ,v j ≤ Zl ∀l ∈ L, (u j′ ,v j) ∈ AR,l (16)

0≤ fv j′ ,v j ≤Cv ∀(v j′ ,v j) ∈ AV (17)

δv ≥ 0 ∀(v j,τ) ∈ Aτ (18)

y+,i
l,v ∈ {0, . . . ,Zl} ∀l ∈ L, v ∈V, i = 1, . . . ,ρl (19)
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y−,il,v ∈ {0, . . . ,Zl} ∀l ∈ L, v ∈V, i = 1, . . . ,ρl (20)

The objective function (9) is directly derived from our BBSS objective (3). Equa-
tions (10) are the flow conservation equalities, while equations (11) link the loading in-
struction variables with the flows. The flows at arcs (σ ,v j) ∈ Aσ are fixed to the station’s
initial number of bikes pv in (12).

As we have a capacitated but unrestricted flow network with all capacities being integer,
the LP is totally unimodular and the corresponding polytope’s extreme points are all integer.
Therefore by solving this LP with a common LP solver (or more specifically a network
simplex algorithm), we obtain optimal integral values for the loading instructions.

5.4 Maximum Flow Approach for the General Case (MF-GC)

Since solving the above minimum cost flow problem on Gf by linear programming is com-
putationally expensive, we developed an alternative approach for obtaining the same opti-
mal loading instructions based on two maximum flow calculations and an additional post-
processing step; details of this rather complex procedure can be found in [19].

Although this approach, which we call here MF-GC, is computationally significantly
more efficient than LP, it is still slower than MF-MC and especially GH. In preliminary
results we observed that similar to the LP approach, the additional computational effort for
allowing the solution to overcome the monotonicity restriction does not pay off in most
cases. In this article we omit a detailed description but will include comparative results in
Section 9.

In [19], we further evaluated a hybrid approach, in which the different strategies for
calculating loading instructions are applied in a combined, adaptive way. In the VND, an
additional neighborhood structure is used to determine the best suited method for a solution,
and this method is inherited by its descendants. Results on instances with up to 90 nodes
indicated small advantages for this approach. However, the benefits diminish for larger in-
stances as considered in the current work, and running times become again considerably
larger. Thus, we do not further consider the combination in this article.

6 Variable Neighborhood Descent (VND)

For locally improving candidate solutions, we employ several classical neighborhood struc-
tures that were successfully applied in various VRPs together with new structures exploiting
specifics of BBSS within a Variable Neighborhood Descent [15]. All these neighborhood
structures augment each other. Concerning the classical neighborhood structures, we based
our design on the experience from [18].

The following neighborhoods are traversed in a best improvement fashion and applied
in the given static order that has been determined experimentally. We also tried to use a
dynamic reordering strategy but it did not yield any significant advantages.

After each move inside a neighborhood, all candidate tours that have changed are effi-
ciently checked for feasibility with respect to time budgets using incremental computations.
If one station appears multiple times in direct succession within a route, only the first stop
is retained. Infeasible solutions, i.e., solutions where at least one vehicle route became in-
feasible, are discarded immediately. For solutions where all routes stay feasible we derive
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loading instructions by one of the methods from the last section. Obsolete stops without
any loading or unloading operations, i.e., where yi

l = 0, are immediately removed from the
routes.

Remove station (REM-VND): This neighborhood considers all possible removals of a sin-
gle station in each route. Thus, a successful move avoids an unnecessary visit of a sta-
tion: In this case, the same overall balance can be obtained without the visit, resulting in
a shorter total working time and a higher potential to include some other station.

Insert unbalanced station (INS-U): This neighborhood tries to improve balance by con-
sidering each single yet unbalanced station for insertion at any position of any route.

Intra-route 2-opt (2-OPT): This is the classical 2-opt neighborhood from the traveling
salesman problem applied individually to each route. Each possible segment of at least
two stations is tried for inversion.

Replace station (REPL): Similarly to INS-U, this neighborhood considers stations which
are currently unbalanced. However, it considers the replacement of an existing station
by another unbalanced station.

Intra or-opt (OR-OPT): Here we consider solutions where sequences of one, two, or three
stations are moved to another position within the same route.

2-opt* inter-route exchange (2-OPT*): This classical neighborhood of vehicle routing
problems considers pairs of routes. All feasible exchanges of arbitrarily long end seg-
ments of the routes are enumerated. The neighborhood is implemented efficiently such
that if an exchange of an end segment already resulted in an infeasible route, no end
segments of larger length will be considered for moving to the route which became
infeasible.

Intra-route 3-opt (3-OPT): This neighborhood structure resembles a restricted variation
of the well-known 3-opt neighborhood, individually applied to each route. For any par-
titioning of a route into three nonempty subsequences rl =(a,b,c), the routes (b,a,c) and
(a,c,b) are considered. An effective enumeration scheme excludes all solutions of the
previous neighborhoods.

7 Greedy Randomized Adaptive Search Procedure (GRASP)

In order to prolong the heuristic search and obtain potentially better solutions, we extend our
two construction heuristics to Greedy Randomized Adaptive Search Procedures (GRASP)
according to [22]. For this purpose we iteratively apply a randomized version of the greedy
or PILOT construction heuristic, respectively, and locally improve each solution with the
VND. The overall best solution is returned.

The construction heuristics are randomized in order to obtain a diversified set of starting
solutions for the VND. This randomization takes place in a GRASP-typical way: At each
iteration of the construction heuristic, we do not always pick the locally best successor
station but rank all candidates from F (the serviceable, not yet balanced stations) according
to the heuristic evaluation criterion. A restricted candidate list RCL ⊆ F of best successors
is preselected, and from these, one station is chosen uniformly at random. This successor is
appended to the route, and the construction heuristic continues with its next iteration.

More precisely, the restricted candidate list RCL contains the following elements:

RCL = {v ∈ F | g(v)≥ gmax−α (gmax−gmin)}, (21)

where g(v) is the greedy value of candidate station v, while gmax = max{g(v) | v ∈ F} and
gmin = min{g(v) | v ∈ F} are the maximum and minimum evaluation values that occur in
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(a) Instances with |V |= 180, |L|= 4.
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(b) Instances with |V |= 700, |L|= 14.

Fig. 7 GCH-GRASP: Final objective values in dependence of α; t̂l = 8h, ∀l ∈ L.

F , respectively. Parameter α ∈ [0,1] controls the strength of the randomization, with α = 0
resulting in a purely greedy solution, while α = 1 turns the heuristic into a completely
random construction method.

In preliminary tests on the benchmarks instances described in Section 9, we evaluated
different values for α in a fixed and a randomized version. In the fixed version α remains
constant throughout all GRASP iterations whereas in the randomized variant we choose
an individual α ′ randomly from [0,α] for each GRASP-iteration. The randomized version
turned out to be significantly more robust, and consequently we employ it in all further tests.

Moreover, our tests indicated that large instances w.r.t. |V | tend to require smaller values
for α than small instances. Figure 7 shows the impact of different values for α exemplarily
for GCH-based GRASP on instances with |V |= 180, |L|= 4 and instances with |V |= 700,
|L| = 14, and t̂l = 8h, ∀l ∈ L. One can see that differences are generally relatively small,
indicating the robustness of the method w.r.t. the choice of α . Based on those preliminary
tests we finally concluded to set

α = 0.1 · e−
|V |
200 (22)

in all following tests.

8 General Variable Neighborhood Search (VNS)

As an alternative to GRASP for diversification of the search, we embed the previously de-
scribed VND into a Variable Neighborhood Search (VNS) as described in [15]. Similarly
to the VND, the VNS neighborhood structures represent a combination of both classical
neighborhoods from vehicle routing problems and more problem-specific neighborhoods of
the BBSS problem.

In contrast to the VND, the VNS neighborhoods are generally larger and thus, they are
not systematically searched, but instead used for shaking, i.e., for randomly deriving single
new solutions in some distance to the incumbent solution. These solutions are always locally
improved by the VND before the VNS decides upon their acceptance.

We use four types of VNS neighborhood structures, and each is parameterized by six
different possible values of a parameter δ , yielding a total of 24 individual neighborhoods.
If a VNS move results in an infeasible solution containing routes that violate the available
time budget of a vehicle, the respective routes are repaired by removing stations from the
end. If the VNS does not find a better solution with the last neighborhood, it restarts with the
first, until a termination criterion (i.e., CPU time or a certain number of iterations without
improvement) is fulfilled.

Move sequence (MV-SEQδ ): This neighborhood selects a sequence of one to min(δ ,ρl)
consecutive stations of a source route rl , l ∈ L randomly, and moves it to a random
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position of a different route. If the original route contains less than δ stations, the whole
route is inserted into the target route and the first route becomes empty. Both source and
target routes are selected randomly, with the restriction that they must not be the same
route. δ ∈ {1, . . . ,5,ρl}.

Exchange sequence (EX-SEQδ ): This neighborhood also selects two routes at random.
In each route, a randomly selected segment of length one to min(δ ,ρl) is chosen and
exchanged with the respective other route. With a probability of 10% each exchanged
segment is added to the target route in reversed order. This particular feature is adopted
from [18]. δ ∈ {1, . . . ,5,ρl}.

Remove stations (REM-VNSδ ): Here we sequentially process all stops of all routes and
remove each station visit with probability δ ∈ {10%,14%,18%,22%,26%,30%}. We
trust on the VND to again add fruitful visits.

Destroy and recreate (D&Rδ ): In this neighborhood we select a random position in a ran-
domly chosen route rl , l ∈ L. Then, all nodes from this position to the end of the route
are removed and a new end segment is created by applying a randomized version of the
PILOT construction heuristic. The randomization is done as described in Section 7, but
with the threshold parameter set to α = δ ∈ {0%,4%,8%,12%,16%,20%}.

9 Computational Results

We performed extensive tests in order to assess the performance of our algorithms. After
describing the way we generated our test instances, Section 9.2 compares the performance
of VNS variants with different methods for deriving loading instructions and analyzes the
efficiency of the VND neighborhood structures. We also use results from a sequence-indexed
mixed integer programming (MIP) model as a baseline. For these preliminary analyses we
only use small to medium-sized instances since a clear trend is visible and the MIP approach
also reaches its limits. Finally, Section 9.3 compares the two construction heuristics with or
without a subsequent VND run, as well as the GRASP and VNS approaches on all instances.

9.1 Benchmark Instances

We tested our algorithms on a new benchmark suite based on real-world data from the
year 2011 provided by Citybike Wien1 which runs a bike-sharing system with, at the time,
92 stations in Vienna, Austria. In order to evaluate the performance of the approaches on
very large instances, our project partner Austrian Institute of Technology (AIT)2 provided
a larger set of 664 additional stations placed in Vienna at realistic positions. We generated
the instances, which are available on the web3, from the pool of 92 real plus 664 artificial
stations as follows:

– Travel times tu,v, (u,v)∈A0, are real average driving times from u to v plus an estimation
for parking the vehicle and loading or unloading bikes at v.

– Station capacities Cv of artificial stations were chosen randomly according to the distri-
bution of real stations’ capacities.

1 http://www.citybikewien.at/
2 http://www.ait.ac.at/
3 https://www.ads.tuwien.ac.at/w/Research/Problem Instances
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– The number of initially available bikes pv was taken from a snapshot of the system for all
real stations. For the artificial ones, we first dedicated some of them as support points to
which we assigned fill levels at random according to a certain distribution derived from
the real stations. The fill levels of the remaining artificial stations were then determined
by an Akima bicubic spline interpolation. In this way we achieve a small correlation
between the fill levels of geographically close stations, as it can also be observed in the
real data.

– Target values qv were derived from accumulated demands of the stations over a whole
day which are known for the real stations. For terminals with a high number of bike
demands we set the target value to 75% of the stations capacity, for a high number of
parking position demands we set the target value to 25% and, if both are similar, then
we set the target value to 50% of the capacity. For the artificial stations accumulated
demands were determined randomly in a similar way as initial fill levels, i.e., to achieve
a similar distribution and geographic correlation as in the real data.

– We derived instances with different numbers of stations |V | by choosing the first station
randomly from the pool of 756 stations and adding its |V | nearest neighbors with regard
to Euclidean distances. From the now |V |+1 stations, one was randomly selected to be
the depot.

– In order to make complete balance at least theoretically possible when having enough
working time and vehicles available, ∑v∈V pv =∑v∈V qv must hold in each instance. This
was achieved by randomly selecting a station v and incrementing or decrementing pv by
one, as required. We iterated this process until the above equation was fulfilled. Note
that there might not necessarily be the right number of bikes available to meet all target
levels in reality. Still, operators strive to fulfill target levels by controlling the number of
bikes in the system accordingly.

– We assume a homogeneous fleet of vehicles with capacities Zl = 20, ∀l ∈ L.
– The time budget was set to t̂ ∈ {2,4,8} hours, t̂l = t̂, ∀l ∈ L.
– The number of available vehicles |L| varies and is stated in the following sections.
– For each configuration of |V |, |L| and t̂, 30 independent instances were created.

For the real-world scenario at Citybike Wien the configuration with |L|= 2 and t̂ = 8 is
the most relevant. The planning for Citybike Wien’s two vehicles is done in the morning and
they are usually in action for a whole working day shift of eight hours. Considering shorter
shift times thus becomes interesting when performing an “on-line” re-optimization for the
remaining day after some major disruption only. Note that the considered static case is not
exactly met here, as Citybike Wien operates 24/7. Nevertheless solving the static BBSS is
still considered to be a reasonably good approximation as expected demands are relatively
well known and the target values are set correspondingly. Furthermore, stations are designed
with a significant reserve so that the balancing is not usually needed for solving short-term
fluctuations but to resolve imbalances occurring over a longer time horizon, e.g., one or even
more days. Citybike Wien has its highest activity in the evening and during the night.

Note that this benchmark suite is different from the one used in our former work [20].
While in the latter instances initial fill levels of artificial stations have been chosen simply
at random and all target values have been set to 50% of the stations’ capacities, the new
instances are more realistic.

We implemented all algorithms in C++ using GCC 4.6. Each test run was performed
on a single core of an Intel Xeon E5540 machine with 2.53 GHz and 3 GB RAM per core.
For solving the LP-based approach to determine loading instructions CPLEX 12.4 was used
with default settings, except for restricting CPLEX to only use a single thread.
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As already mentioned in Section 2, the scaling factors in the objective function were set
to ωbal = 1, ω load = ωwork = 1/100000. Using these factors, improving the system balance
always has a greater impact on the objective value than reducing the tour lengths or the
number of loading operations. This aspect is a result of our discussions with project partner
Citybike Wien. Reducing the lengths of routes and/or the number of loading operations
can lower operation costs and has a positive environmental impact. In addition, tours with
obviously redundant station visits or loading actions would strongly reduce the practical
acceptance by the drivers. However, the top priority is still to balance the system so that
target values are reached as far as possible and user satisfaction is maximized. From the
operator’s point of view, workers are paid for the whole shift length anyway, and therefore
a reduction in the tour lengths is just a secondary aspect.

Objective values of different solutions must be compared with care due to the small
scaling factors ω load and ωwork for the secondary terms in the objective function. If two
solutions achieve the same balance but differ regarding the secondary terms, the difference
between the objective values will be very small although possibly important. Therefore, we
list in the result tables for each algorithm variant and each instance set the number of runs
for which the variant yielded the best results (#best) besides average objective values. We
consider #best to be a better indicator for analyzing performance differences than average
objective value differences. Maximum #best values are printed bold for each instance set.

9.2 Comparison of VNS Variants

In this section we analyze the influence of the four alternative procedures for deriving load-
ing instructions within the VNS in Section 9.2.2 and further compare them to a MIP ap-
proach. Moreover, we study the performance of the VND neighborhood structures.

The following instance settings are used in these tests:

– The number of stations is |V | ∈ {10,20,30,60,90}.
– The vehicle fleet size is |L| ∈ {1,2,3,5}.
– Each instance set uses a unique combination of |V |, |L|, t̂ and contains 30 instances,

resulting in a total of 30 sets and 900 instances.
– For each instance five independent runs were performed.
– Each run was terminated when no improvement could be achieved within the last 5 000

VNS iterations or after a CPU time of one hour. In the first case we consider the heuristic
search as converged, major further improvements in prolonged runs are unlikely.

Tables 1 and 2 show aggregated results for these 30 instance sets. They also cover both
the situation where perfect balance cannot be achieved due to a small number of vehicles
and/or insufficient time budgets in relation to the number of stations, and the situation where
perfect balance is possible. Table 1 shows for all approaches the number of runs where
the respective approach obtained the best objective values (#best). For the MIP model, we
additionally give mean upper bounds ub, mean lower bounds lb and their respective standard
deviations ubsd, lbsd. For each variant of the VNS, in addition to #best, we also list mean
objective values obj and their standard deviations sd. Table 2 gives the median total run times
t̃tot for all approaches. For the VNS variants we also list the median number of performed
VNS iterations g̃tot.
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9.2.1 MIP models

In addition to the metaheuristic algorithms, we implemented a MIP model based on the
sequence-indexed formulation from [21] but adapted to our problem formulation in a
straight-forward way. Just like GH and MF-MC, this model is not able to consider depen-
dencies among vehicles and is therefore restricted to monotonicity. CPLEX 12.4 was used
for trying to solve the instances with this model. Again, we used default settings, except for
the restriction to use only a single thread. A CPU time limit of one hour was imposed. Fur-
thermore, we investigated a second MIP model based on a time-indexed formulation [21]
for the general case. Unfortunately, experiments indicated that this approach led to worse
results than the first model due to the higher complexity of the model caused by the dis-
cretization of station visit times. Thus, we omit the results of the time-indexed formulation
here.

We can clearly observe that the pure MIP approach is only able to solve the smallest
instances to optimality within the given time limit. For most realistically sized instances
very large gaps remain between upper and lower bounds. The MIP approach scales very
badly with increasing numbers of vehicles and especially with longer vehicle time budgets.
This is reflected in the low #best values for all but the smallest instances. For the larger
instances CPLEX often only found trivial solutions where all vehicles are staying at the
depot, or even no solutions at all. Also, no useful lower bounds can be derived for these
more complex instances.

For the few instance groups with |V |= 10 where the MIP approach yielded small gaps,
we observe that the VNS variants are almost always able to find solutions with equal or
better objective values. Especially on instance sets with more than 10 stations, the VNS
dramatically outperforms the MIP approach by obtaining better solutions in substantially
shorter run times.

9.2.2 Comparing different variants for deriving loading instructions

Among our four VNS variants, the one applying GH is clearly the fastest. MF-MC required
about 120% more run time on average for each call of the auxillary algorithm for deriving
loading instructions. LP is very slow, resulting in run times that are about 250 times longer
than those of GH. MF-GC improves on the performance of LP, but is still around eight times
slower than GH.

The solution quality of the VNS approach strongly depends on the ability to perform a
substantial number of iterations. Therefore, a computationally more expensive variant needs
to achieve rather large improvements in order to compete with the faster variants. We will
now analyze the solution quality of the different variants for deriving loading instructions.

VNS with GH: As the fastest variant for deriving loading instructions, GH has a very high
number of #best values (2969) that is only slightly exceeded by MF-MC. GH’s total of the
objective values is even better by a small degree. Especially on instance sets with large
numbers of stations and shift lengths, this variant is able to achieve the highest #best values
among all VNS variants. On small instances, GH performs slightly worse than MF-MC,
but in general both variants obtain very similar results with regard to solution quality. In
addition, GH has the advantage of significantly shorter run times.
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VNS with MF-MC: This method shows the highest sum of #best values of all approaches
(2987), as well as the second lowest total objective values. A Wilcoxon signed-rank test
comparing MF-MC with the strongest contender GH on each instance set shows significant
advantages with error probabilities of less than 5% for 18 of the 60 classes. We observe a
clear tendency that MF-MC performs better on smaller instances while GH performs better
on larger instances. There is no statistically significant difference between the two methods
when looking at the total results of all 60 instance sets.

VNS with LP: In general the LP approach is able to construct better solutions than GH
and MF-MC since it is not restricted to monotonicity but computes the optimal loading
instructions for any given vehicle routes. However, this difference is barely visible in the
results. We conclude that for the static BBSS problem the assumption of monotonicity does
not have a practically significant negative impact on the solution quality. On the contrary,
the LP approach suffers from the longest run times in comparison to the other variants and
only a substantially smaller number of iterations can be performed within the time limit.
About 60% of all runs were terminated before the VNS converged reasonably. This usually
leads to worse objective values for LP in comparison to the other variants. When compared
to GH, LP performs significantly worse when considering all 60 instance sets in total with
an error probability of less than 0.1%. This is also reflected in the low sum of #best values
for LP (2161).

VNS with MF-GC: Similarly to LP, MF-GC is theoretically able to construct better solutions
than GH and MF-MC since it is not restricted to monotonicity. However, even with the vastly
improved performance of MF-GC over LP, this difference is barely visible in the results.
Again, higher computational expense of MF-GC compared to GH and MF-MC impedes
the ability to find good solutions for larger instances because only a substantially smaller
number of iterations can be performed within the time limit. While the #best values of
MF-GC are quite good for small to medium instances, the faster methods outperform it for
many instances with 60 and 90 stations, especially when the number of vehicles and/or shift
length is large. A Wilcoxon test confirms this by showing that GH is significantly better than
MF-GC for nine of the large instance sets and also in total over all instance sets with error
probabilities of less than 1%. The total sum of #best values (2625) is about 10% lower than
those of GH and MF-MC.

We conclude that it is more important to perform a large number of VNS iterations
than to employ a more sophisticated but slower method for deriving loading instructions.
While MF-GC and LP are theoretically more powerful than GH and MF-MC, they only
infrequently lead to slightly better solution qualities and therefore cannot justify the higher
computational effort. GH is by far the fastest method for deriving loading instructions, and
no other method offers consistent significant advantages with regard to solution quality.
Thus, GH is the best method for deriving loading instructions in practice.



PILOT, GRASP, and VNS Approaches for the Static Balancing of Bicycle Sharing Systems 23
Ta

bl
e

1
Q

ua
lit

at
iv

e
re

su
lts

of
th

e
M

IP
ap

pr
oa

ch
an

d
th

e
V

N
S

co
ns

id
er

in
g

th
e

fo
ur

va
ri

an
ts

of
de

riv
in

g
lo

ad
in

g
in

st
ru

ct
io

ns
.E

ac
h

in
st

an
ce

se
tc

on
ta

in
s

30
in

st
an

ce
s,

fiv
e

ru
ns

pe
ri

ns
ta

nc
e

w
er

e
pe

rf
or

m
ed

.

In
st

an
ce

se
t

M
IP

V
N

S
w

ith
G

H
V

N
S

w
ith

M
F-

M
C

V
N

S
w

ith
L

P
V

N
S

w
ith

M
F-

G
C

|V
|
|L
|t̂

[h
]

#b
es

t
ub

ub
sd

lb
lb

sd
#b

es
t

ob
j

sd
#b

es
t

ob
j

sd
#b

es
t

ob
j

sd
#b

es
t

ob
j

sd
10

1
2

15
0

27
.8

01
43

4
14

.2
11

77
9

27
.8

01
43

4
14

.2
11

77
9

14
5

27
.8

68
10

1
14

.3
02

00
6

14
5

27
.8

68
10

1
14

.3
02

00
6

14
0

28
.0

01
43

1
14

.3
21

39
0

14
0

28
.0

01
43

1
14

.3
21

39
0

10
1

4
95

3.
46

94
82

4.
69

00
47

0.
17

53
60

0.
51

37
99

13
2

3.
53

61
51

4.
71

14
62

14
2

3.
50

94
87

4.
69

15
93

13
0

3.
53

61
52

4.
71

14
63

14
1

3.
52

28
19

4.
70

15
57

10
1

8
35

0.
00

32
16

0.
00

04
55

0.
00

25
99

0.
00

04
62

13
5

0.
00

31
95

0.
00

04
53

14
6

0.
00

31
94

0.
00

04
52

15
0

0.
00

31
93

0.
00

04
52

15
0

0.
00

31
93

0.
00

04
52

10
2

2
15

0
9.

13
60

65
8.

89
43

77
8.

80
43

64
9.

17
38

47
14

0
9.

26
93

74
8.

81
55

57
14

5
9.

26
93

74
8.

81
55

57
14

5
9.

26
93

74
8.

81
55

57
14

1
9.

32
27

02
8.

78
93

74
10

2
4

11
0

0.
00

34
05

0.
00

05
64

0.
00

32
62

0.
00

05
42

14
5

0.
00

33
86

0.
00

05
59

14
8

0.
00

33
85

0.
00

05
59

14
9

0.
00

33
85

0.
00

05
59

15
0

0.
00

33
85

0.
00

05
59

10
2

8
11

5
0.

00
32

36
0.

00
05

00
0.

00
31

51
0.

00
04

26
13

0
0.

00
31

95
0.

00
04

53
14

3
0.

00
31

93
0.

00
04

52
14

5
0.

00
31

93
0.

00
04

52
14

5
0.

00
31

93
0.

00
04

52
20

2
2

64
52

.4
69

72
6

15
.5

75
64

4
29

.7
79

82
4

17
.6

05
63

3
14

0
51

.6
29

72
9

15
.6

78
65

2
13

9
51

.6
43

06
0

15
.6

64
40

8
14

6
51

.5
23

06
7

15
.7

32
14

2
14

0
51

.5
89

72
8

15
.6

69
93

7
20

2
4

0
16

.0
05

67
5

9.
19

58
14

0.
00

38
73

0.
00

05
36

79
5.

27
25

03
5.

14
71

86
10

1
5.

24
58

38
5.

11
18

81
79

5.
29

91
68

5.
14

57
25

99
5.

24
58

38
5.

11
18

80
20

2
8

0
0.

14
15

35
0.

72
03

72
0.

00
34

99
0.

00
05

40
11

0
0.

00
63

78
0.

00
06

15
12

0
0.

00
63

76
0.

00
06

15
93

0.
00

63
80

0.
00

06
14

12
6

0.
00

63
76

0.
00

06
16

20
3

2
6

34
.7

37
65

4
12

.3
31

92
1

2.
08

77
99

4.
84

20
72

11
7

28
.7

91
11

3
12

.6
55

29
9

12
0

28
.7

51
11

5
12

.6
22

69
7

12
4

28
.9

64
44

8
13

.1
43

97
9

11
8

28
.8

57
78

6
12

.8
35

28
6

20
3

4
0

0.
94

10
61

2.
30

16
19

0.
00

53
57

0.
00

12
32

72
0.

00
67

01
0.

00
05

91
10

6
0.

00
66

96
0.

00
05

89
86

0.
00

67
00

0.
00

05
88

96
0.

00
66

97
0.

00
05

90
20

3
8

0
8.

14
20

02
31

.7
90

07
2

0.
00

34
41

0.
00

05
19

10
4

0.
00

63
79

0.
00

06
15

12
1

0.
00

63
77

0.
00

06
15

91
0.

00
63

81
0.

00
06

14
12

6
0.

00
63

76
0.

00
06

16
30

2
2

15
11

2.
86

97
99

21
.7

40
92

2
73

.2
09

36
0

21
.7

76
38

0
14

5
11

0.
00

31
55

22
.3

09
57

4
14

3
11

0.
00

31
57

22
.3

09
57

6
14

7
10

9.
84

31
62

22
.0

00
01

6
14

3
11

0.
02

98
21

22
.2

79
45

6
30

2
4

0
72

.2
72

51
5

24
.2

60
69

1
0.

00
56

88
0.

00
06

44
71

34
.6

59
67

8
10

.4
15

63
4

72
34

.6
59

67
4

10
.5

51
34

9
51

34
.9

39
66

7
10

.4
67

49
0

75
34

.7
79

66
7

10
.5

74
95

8
30

2
8

0
19

2.
73

36
79

38
.1

03
01

5
0.

00
37

46
0.

00
23

33
61

0.
00

94
88

0.
00

05
90

95
0.

00
94

83
0.

00
05

85
17

0.
00

95
05

0.
00

05
89

83
0.

00
94

86
0.

00
05

88
30

3
2

0
91

.9
04

45
6

16
.8

21
93

3
27

.7
90

73
5

15
.8

84
32

9
10

7
79

.5
51

28
1

18
.2

92
42

6
11

1
79

.2
57

93
9

17
.9

35
83

9
10

8
79

.1
77

95
2

17
.8

22
69

8
10

4
79

.4
31

27
0

18
.0

26
60

6
30

3
4

0
39

.2
08

43
7

19
.9

88
59

1
0.

00
54

42
0.

00
06

90
53

6.
03

55
19

3.
50

65
18

60
6.

00
88

53
3.

58
98

46
19

6.
46

21
63

3.
65

75
92

56
5.

94
21

95
3.

52
50

73
30

3
8

0
19

8.
53

33
33

26
.8

42
48

5
0.

00
00

00
0.

00
00

00
74

0.
00

94
90

0.
00

05
91

82
0.

00
94

87
0.

00
05

85
20

0.
00

95
14

0.
00

05
91

75
0.

00
94

88
0.

00
05

89
60

3
2

0
27

6.
30

45
78

30
.4

36
58

5
17

6.
90

18
80

32
.9

16
74

9
11

7
25

3.
35

15
13

29
.8

79
85

9
11

5
25

3.
23

15
19

30
.4

22
32

8
11

9
25

3.
13

81
90

30
.5

59
34

5
12

0
25

3.
13

81
84

30
.2

05
04

0
60

3
4

0
39

5.
20

00
00

41
.4

52
16

4
0.

00
00

00
0.

00
00

00
43

11
9.

10
31

59
17

.0
25

31
4

51
11

9.
02

31
63

16
.8

28
91

8
5

12
1.

68
97

81
16

.8
31

04
5

61
11

8.
98

31
63

16
.8

89
41

5
60

3
8

0
—

—
—

—
88

6.
08

46
25

2.
91

64
88

65
6.

32
45

94
2.

88
24

22
0

10
.4

57
51

6
4.

11
15

93
6

7.
13

78
50

2.
98

08
19

60
5

2
0

30
2.

13
77

68
60

.2
88

07
9

53
.5

76
79

9
33

.3
69

66
3

66
18

5.
66

12
02

25
.4

67
13

8
77

18
5.

32
78

72
25

.0
74

18
0

43
18

6.
20

78
50

25
.1

17
94

5
64

18
5.

54
12

02
25

.1
74

17
8

60
5

4
0

39
5.

20
00

00
41

.4
52

16
4

0.
00

00
00

0.
00

00
00

58
37

.8
95

26
8

8.
18

33
09

81
37

.6
15

26
5

7.
92

25
55

0
43

.2
41

74
2

8.
41

16
25

14
39

.0
68

54
3

8.
03

92
71

60
5

8
0

—
—

—
—

80
0.

01
94

82
0.

00
06

74
71

0.
01

94
77

0.
00

06
83

0
0.

01
98

29
0.

00
07

18
8

0.
01

95
43

0.
00

06
74

90
3

2
0

51
4.

33
61

70
69

.3
73

27
9

25
3.

10
87

77
17

1.
33

42
78

11
9

42
9.

71
17

72
45

.9
32

13
7

12
2

42
9.

45
84

44
45

.9
47

62
7

11
3

42
9.

61
84

40
46

.0
91

01
4

11
3

42
9.

57
84

45
45

.7
46

60
8

90
3

4
0

59
4.

33
33

33
48

.3
36

30
3

0.
00

00
00

0.
00

00
00

62
26

2.
83

70
77

36
.3

85
91

6
56

26
2.

95
70

75
36

.5
69

53
6

5
26

7.
37

03
37

36
.0

36
09

4
42

26
3.

29
04

08
36

.5
82

44
2

90
3

8
0

—
—

—
—

10
4

77
.3

26
03

9
16

.2
16

84
2

47
78

.0
46

02
1

16
.0

03
55

6
0

86
.6

72
45

0
15

.8
47

73
9

2
80

.4
05

97
4

16
.1

21
74

8
90

5
2

0
59

4.
33

33
33

48
.3

36
30

3
0.

00
00

00
0.

00
00

00
77

34
8.

06
15

80
46

.5
31

08
5

64
34

8.
24

82
50

46
.6

95
21

1
36

34
9.

63
48

89
46

.2
66

35
4

77
34

8.
38

15
73

46
.6

32
77

0
90

5
4

0
—

—
—

—
81

14
0.

46
96

27
24

.8
03

45
7

65
14

0.
84

29
43

25
.1

23
94

4
0

15
0.

88
27

56
25

.7
44

82
7

7
14

3.
28

29
10

25
.3

04
14

0
90

5
8

0
—

—
—

—
11

4
0.

80
17

14
1.

26
52

15
34

1.
14

83
50

1.
59

72
11

0
8.

00
06

37
3.

95
27

40
3

1.
97

49
77

2.
18

57
55

To
ta

l
74

0
39

32
.2

21
89

2
58

7.
14

56
78

65
3.

27
63

90
32

1.
63

64
53

29
69

22
17

.9
87

87
4

37
0.

44
62

15
29

87
22

18
.5

07
76

2
37

0.
66

73
75

21
61

22
63

.9
99

25
2

37
4.

79
35

50
26

25
22

27
.5

74
22

3
37

1.
70

28
39



24 Marian Rainer-Harbach et al.

Table 2 Results regarding computation times and iteration counts of the MIP approach and the VNS consid-
ering the four variants of deriving loading instructions.

Instance set MIP VNS with GH VNS with MF-MC VNS with LP VNS with MF-GC
|V | |L| t̂ [h] t̃tot [s] t̃tot [s] g̃tot t̃tot [s] g̃tot t̃tot [s] g̃tot t̃tot [s] g̃tot
10 1 2 3.0 0.8 5001.0 1.8 5001.0 224.0 5001.0 5.3 5001.0
10 1 4 3600.0 4.8 5003.0 12.1 5003.0 1382.7 5004.5 41.3 5002.0
10 1 8 3600.0 7.8 5001.0 19.2 5001.0 2056.6 5001.0 70.5 5001.0
10 2 2 897.5 1.8 5004.0 4.1 5008.0 488.9 5007.0 14.0 5004.5
10 2 4 3600.0 5.8 5009.5 12.9 5005.0 1467.7 5006.0 47.4 5006.5
10 2 8 3600.0 6.7 5001.0 16.7 5001.0 1795.9 5001.0 60.7 5001.0
20 2 2 3600.0 4.3 5012.0 10.5 5014.5 1346.9 5021.5 38.7 5020.0
20 2 4 3600.0 38.9 5670.0 95.3 5456.0 3601.0 2320.5 358.1 5374.0
20 2 8 3600.0 75.4 5271.0 193.4 5177.0 3601.3 1197.5 773.2 5163.5
20 3 2 3600.0 8.4 5103.0 19.3 5151.5 2017.0 5109.5 79.8 5137.0
20 3 4 3600.0 41.8 5372.5 101.9 5510.5 3600.8 2273.0 385.5 5361.0
20 3 8 3600.0 72.4 5400.0 188.6 5282.0 3601.5 1304.5 680.2 5258.0
30 2 2 3600.0 6.9 5032.0 17.6 5019.0 1848.8 5020.0 61.5 5025.5
30 2 4 3600.0 63.4 5866.0 158.6 5657.5 3601.2 1503.0 635.2 5780.0
30 2 8 3600.0 242.9 5806.0 695.3 5932.0 3603.4 423.5 2664.1 5684.5
30 3 2 3600.0 12.8 5072.5 29.7 5087.5 3000.9 5035.0 117.5 5095.5
30 3 4 3600.0 130.4 6813.0 316.9 6612.5 3602.3 938.0 1346.8 7015.5
30 3 8 3600.0 238.4 6446.5 615.6 5978.0 3603.4 476.5 2523.3 6155.0
60 3 2 3600.0 29.7 5129.5 74.5 5124.5 3600.9 2612.0 289.5 5136.5
60 3 4 3600.0 301.1 7046.5 878.1 7705.0 3605.9 393.0 3474.4 6441.5
60 3 8 3600.0 3009.4 10407.5 3600.4 4269.5 3632.1 59.0 3602.1 1022.0
60 5 2 3600.0 75.6 6115.0 185.3 5726.0 3601.4 1441.0 760.1 5757.5
60 5 4 3600.0 1115.9 10492.0 2703.7 10387.5 3613.7 170.0 3600.7 3126.0
60 5 8 3600.0 2826.7 9488.0 3600.4 4325.5 3643.6 52.0 3601.8 979.5
90 3 2 3600.0 46.7 5200.0 136.3 5184.0 3601.0 1803.5 474.1 5185.5
90 3 4 3600.0 490.8 7343.0 1506.6 7326.0 3608.7 239.0 3600.5 4629.5
90 3 8 3600.0 3600.2 6914.5 3600.9 2401.5 3666.5 34.0 3604.0 552.0
90 5 2 3600.0 126.5 5924.5 330.2 5772.5 3602.3 809.5 1412.4 5923.5
90 5 4 3600.0 1856.5 10899.5 3600.2 7425.5 3626.1 97.5 3601.7 1705.5
90 5 8 3600.0 3600.7 3164.0 3602.0 1077.5 3721.7 15.0 3608.1 236.0

Total 101700.5 18043.5 185008.0 26328.1 162622.0 87968.2 68368.5 41532.5 136780.5

Up to this point we only used instances with up to 90 stations. However, it is already
obvious that the more complex methods perform worse with increasing instance size. Since
GH already turns out to be the best overall method on these instances, we refrained from
testing even larger instances.

9.2.3 Performance of VND neighborhood structures

Figure 8 shows relative success rates (i.e., the number of times a particular neighborhood
structure was able to improve the solution divided by the number of applications) and CPU
times of the VND neighborhoods for runs of the VNS with GH on the large instance set with
|V | = 90, |L| = 5, t̂ = 8h. However, these results are typical for all instance sets except the
smallest ones.

REM-VND is applied as the first neighborhood despite having lower relative success
rates than the two following neighborhoods because it is meant to provide space in a route
for the insertion of additional stations. Experiments confirmed that it is advantageous to use
REM-VND as the first neighborhood directly followed by INS-U.
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Fig. 8 VND neighborhood performance for the instance set with |V | = 90, |L| = 5, t̂ = 8h using the VNS
with GH.

In the VNS, all shaking neighborhoods have similar relative success rates, therefore we
omit the corresponding chart. These results show that all neighborhood structures contribute
well to the overall performance.

9.3 Comparing the GRASP/PILOT Hybrid with VNS

In this section we compare our GRASP/PILOT hybrid (see Section 7) with VNS with GH
for deriving loading instructions. In order to analyze the different approaches in detail, we
performed extensive tests across all instance sizes.

The following configurations were used in this section:

– The number of stations is |V | ∈ {30,60,90,180,300,400,500,600,700}.
– Meaningful numbers of vehicles |L| ∈ {1, . . . ,21} were chosen in dependence of |V | and

t̂l and are listed in the result tables.
– Each instance set uses a unique combination of |V |, |L|, t̂ and contains 30 instances,

resulting in a total of 2310 instances grouped into 30 sets.

First of all, Table 3 compares the results of the basic greedy construction heuristic (GCH)
and the PILOT method. It lists the number of runs where the respective approach obtained
the best objective values (#best), the mean objective values obj, and their median computa-
tion times t̃tot. According to a Wilcoxon signed-rank test with an error level of 5%, PILOT
yields significantly better results on all aggregated results. This dominance can also be eas-
ily observed by looking at the objective values and #best. Although PILOT requires more
computation time, even on the largest instances the additional effort does not get out of hand,
and we consider it to be a good tradeoff. Consequently, for practical applications that require
solutions in short time, the PILOT heuristic is a good choice.

In order to analyze the improvement potentials of the solutions obtained by the construc-
tion heuristics, we add a local improvement step via VND at the end and compare the results
in Table 4. First we observe that PILOT with VND performs significantly better than GCH
with VND, which is supported by the Wilcoxon signed-rank test with an error probability
of less than 5%. The total run times of both approaches are very close now. The reason is
that although GCH is much faster than PILOT, VND has to spend more iterations to reach a
local optimum afterwards which evens up at the end. During these tests, PILOT is the clear
winner.

Finally, Table 5 shows the final results for VNS, GCH-GRASP (GRASP with random-
ized greedy construction heuristic), and PILOT-GRASP (GRASP with randomized PILOT
construction heuristic). Although we performed tests for the entire instances collection of
77 sets, the table only contains a selection of these sets. They represent the global trend and
are sufficient for the conclusions.
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Table 3 Computational results of the greedy construction heuristic (GCH) and the PILOT method.

Instance set GCH PILOT
|V | |L| t̂ [h] #best obj sd t̃tot [s] #best obj sd t̃tot [s]
30 1 2 8 152.001530 26.203390 < 0.1 30 147.934980 25.818900 0.0
30 1 4 1 105.336470 22.402790 < 0.1 30 98.536640 20.824000 0.0
30 1 8 0 38.939550 11.694270 < 0.1 30 33.206330 9.834630 0.0
60 1 4 2 283.403320 30.702870 < 0.1 30 274.536880 30.974760 0.0
60 1 8 0 189.473390 23.429750 < 0.1 30 181.006870 23.042860 0.1
60 2 2 3 309.069590 35.718110 < 0.1 27 299.203200 33.768400 0.0
90 2 4 1 374.206650 39.689670 < 0.1 29 358.273740 40.821710 0.1
90 2 8 0 204.479890 28.385090 < 0.1 30 190.146840 28.724430 0.4
90 4 2 0 423.739160 54.371890 < 0.1 30 397.606520 45.975640 0.0
180 4 4 0 772.613200 45.352750 < 0.1 30 737.747390 45.958780 0.5
180 4 8 0 427.826300 34.797430 < 0.1 30 395.827040 33.669300 2.9
180 5 8 0 317.565360 29.071670 < 0.1 30 285.432860 28.725460 3.4
300 6 4 0 1321.753520 56.947210 < 0.1 30 1271.554660 60.493890 2.0
300 6 8 0 782.906610 37.341860 < 0.1 30 736.841050 35.493270 11.8
300 9 8 0 462.657110 25.704740 < 0.1 30 413.858500 22.799850 15.4
400 8 4 0 1754.493320 75.600710 0.1 30 1681.628380 68.761200 4.4
400 8 8 0 1028.119890 47.776700 0.1 30 971.388000 41.910880 27.6
400 12 8 0 607.542700 35.657190 0.1 30 543.077910 32.626580 36.0
500 10 4 0 2205.566730 74.431490 0.1 30 2118.902180 70.022140 8.1
500 10 8 0 1301.733160 50.863390 0.1 30 1225.801700 44.761010 50.9
500 15 8 0 764.095080 34.038710 0.1 30 681.564200 29.478280 67.6
600 12 4 0 2712.906470 50.845290 0.1 30 2597.909120 40.370350 13.7
600 12 8 0 1608.079730 29.548010 0.2 30 1514.815390 27.303960 87.8
600 18 8 0 954.114180 31.063330 0.2 30 854.983800 26.979600 116.6
700 14 4 0 3115.779650 72.914380 0.2 30 2986.049480 62.149560 21.1
700 14 8 0 1866.959250 51.772820 0.2 30 1755.028720 41.214960 132.8
700 21 8 0 1104.599490 43.605020 0.2 30 984.469630 34.184230 178.5

Total 15 25189.961300 — 1.7 806 23737.332010 — 781.7

Due to the highly different characteristics of our metaheuristics and in order to compare
them in a fair way, we use a common time limit (tmax) as the sole termination criterion. For
the largest instances (180 to 700 stations) it is set to one hour, for medium instances (60 to
90 stations) we use 30 minutes, and for small instances (30 stations) we use 15 minutes. The
median number of iterations g̃tot suggests that all approaches scale well up to 700 instances.

For the GRASP variants we set α according to equation (22) in Section 7. We observe
that PILOT-GRASP yields significantly better results than GCH-GRASP, which is supported
by the Wilcoxon signed-rank test (< 5% error probability). We also see a clear improvement
over the results of GCH-VND and PILOT-VND from the previous table.

As the main competitor for PILOT-GRASP, we chose VNS with GH since we concluded
in Section 9.2.2 that this is the most robust VNS variant with the best balance between com-
putation time and solution quality. Especially on larger instances which we are considering
now, VNS with GH outperforms the other VNS variants. For the VND inside the VNS we
use a fixed order of neighborhood structures as suggested in Section 6. However, for the
GRASP runs the random VND order yields overall better results and we thus employ it for
all GRASP tests. Comparing VNS with PILOT-GRASP, we observe an interesting trend.
While all approaches perform comparably good on small instances with 30 nodes, VNS
with GH dominates the medium-sized instances with 60 to 180 nodes. On large instances
with 400 or more nodes, PILOT-GRASP is the clear winner.

In order to check if this trend depends on the chosen time limits (tmax), we also per-
formed computational tests with shorter time limitations. Therefore, we apply the same gen-
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Table 4 Computational results for construction heuristics with local improvement via VND.

Instance set GCH-VND PILOT-VND
|V | |L| t̂ [h] #best obj sd t̃tot [s] #best obj sd t̃tot [s]
30 1 2 22 148.601630 25.806420 < 0.1 25 147.801650 25.764711 0.0
30 1 4 14 97.869980 20.537200 < 0.1 24 97.736620 20.649725 0.0
30 1 8 9 32.339640 10.280110 < 0.1 22 31.339650 9.661051 0.1
60 1 4 10 276.270150 29.556540 < 0.1 22 273.670200 30.617129 0.0
60 1 8 17 178.406880 22.605600 < 0.1 14 178.740170 22.806587 0.1
60 2 2 12 299.936470 32.798160 < 0.1 24 297.736530 33.968484 0.0
90 2 4 6 361.007000 39.099410 < 0.1 25 356.607050 40.592714 0.1
90 2 8 6 189.546730 29.401890 0.3 24 185.013490 28.761965 0.6
90 4 2 4 404.472980 46.165080 < 0.1 26 396.339860 46.010674 0.0
180 4 4 2 749.213760 46.891200 0.2 28 735.547360 45.351396 0.6
180 4 8 5 400.026790 35.451870 1.9 25 392.560250 32.355673 3.8
180 5 8 5 289.299210 28.640580 3.8 25 281.632680 28.291244 5.4
300 6 4 3 1282.421030 59.696840 1.0 27 1265.487980 60.006868 2.4
300 6 8 1 745.240620 37.650540 6.4 29 729.374280 36.928317 15.4
300 9 8 2 424.057690 24.342590 19.4 28 407.191520 24.301169 25.4
400 8 4 0 1704.227880 71.566280 3.0 30 1674.895060 70.285444 5.6
400 8 8 1 980.987530 42.888140 16.2 29 965.054470 41.931984 34.9
400 12 8 0 557.743570 31.479010 54.5 30 536.144270 34.064915 58.7
500 10 4 0 2145.301500 73.154580 6.3 30 2110.102140 70.194881 10.5
500 10 8 0 1240.201050 48.395080 39.7 30 1216.801520 44.478994 65.5
500 15 8 0 699.629590 31.067280 107.8 30 673.563680 27.767719 117.0
600 12 4 0 2630.441670 45.924340 13.2 30 2590.242360 40.951831 17.7
600 12 8 0 1541.014560 27.596550 61.5 30 1506.548520 27.790606 109.0
600 18 8 1 880.182330 26.932450 183.0 29 847.450010 27.957043 172.1
700 14 4 1 3023.781870 66.177400 24.6 29 2977.782790 60.409126 26.2
700 14 8 0 1778.027740 45.659610 101.0 30 1743.695180 41.563750 167.0
700 21 8 0 1015.934540 40.265470 262.9 30 974.269160 34.392786 274.7

Total 121 24076.184390 — 906.7 725 23593.328450 — 1112.8

eral settings as before, however set the run time tmax for instances with small instances (30
stations) to 5 minutes, for medium instances (60 to 90 stations) to 10 minutes and for largest
instances (180 to 700 stations) to 15 minutes. Computational results of these short-time runs
indicate as well that VNS dominates on medium instances and PILOT-GRASP on large in-
stances. A Wilcoxon signed-rank test with an error level of 5% confirms this observation.
Table 6 shows a few selected results from these tests. Naturally, the obtained solutions are
usually worse than those of Table 5 with the larger computation time limits.
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Table 6 Short runtime (limited to 5 to 15 minutes) results of VNS with GH and PILOT-GRASP.

Instance set VNS with GH PILOT-GRASP
|V | |L| t̂ [h] tmax [s] #best obj sd g̃tot #best obj sd g̃tot
30 1 2 300 28 147.201660 25.480770 569766.5 29 147.135000 25.519080 207275.0
30 1 4 300 28 95.203360 19.886650 101678.5 24 95.736670 20.582820 32566.0
60 1 4 600 29 269.603620 30.419670 107947.0 18 271.203580 31.599270 25369.0
60 1 8 600 28 170.473680 21.976200 14632.0 16 171.073660 22.001610 3515.0
90 2 4 600 26 346.273910 40.604890 16489.5 6 349.007180 41.164970 5910.0
90 2 8 600 25 174.680360 27.952510 2384.5 6 176.680330 28.783920 783.0
300 6 4 900 21 1248.954860 61.250840 748.0 9 1250.754900 60.019630 338.5
300 9 8 900 0 411.991360 24.300130 35.5 30 398.524990 23.012590 29.0
500 10 4 900 0 2115.502050 70.683370 130.0 30 2094.169080 69.288040 80.0
500 15 8 900 0 692.029890 29.335570 16.0 30 666.163990 29.783500 8.0
700 14 4 900 0 3003.715600 61.370360 47.5 30 2962.583020 59.063480 33.0
700 21 8 900 0 1011.267910 35.516260 7.0 30 968.735990 32.905700 4.0

Total: 8400 185 9686.898260 — 813882.0 258 9551.768390 — 275910.5

10 Conclusions and Future Work

We investigated different metaheuristic approaches for finding good solutions to the problem
of balancing bicycle sharing systems using a fleet of vehicles, focusing on the static problem
variant where any user activities during the rebalancing process are neglected.

We started with a greedy construction heuristic for quickly generating meaningful ini-
tial solutions. Its particular feature is the greedy criterion in which an estimation of still
deliverable bikes is considered. In a further step, the construction heuristic was extended
to a PILOT method. The impact of different choices for the PILOT depth parameter were
studied. Results showed that the unrestricted variant yielded clearly better results than any
depth restriction while still performing relatively fast even on the largest instances.

To locally improve solutions, we applied a VND employing seven neighborhood struc-
tures focusing on different problem aspects. For obtaining even better solutions in longer
running times, we suggested GRASP based on randomized versions of the greedy construc-
tion heuristic as well as the PILOT method and a general VNS that makes use of further,
larger neighborhoods exploited by shaking.

All these local search based metaheuristics focus on the search space of vehicle routes,
and corresponding loading instructions are derived for each candidate solution as second
level decision variables by an embedded method. Four alternative strategies have been de-
scribed for this purpose and were experimentally compared. The most general method based
on linear programming and its functionally equivalent but computationally more efficient
implementation based on two maximum flow calculations yield proven optimal solutions for
the general non-monotonic case, where bikes may, e.g., be buffered at stations and directly
be exchanged between vehicles. However, results indicate that this flexibility only rarely
yields better solutions and the average quality gains are rather small. The significantly higher
computational complexity does not pay off in general, and therefore we conclude to better
stay with the fast and relatively simple greedy heuristic approach for determining loading
instructions. Monotonicity is thus a very reasonable restriction for practical applications.

During computational experiments we compared the performance of the two construc-
tion heuristics, each optionally followed by the VND, as well as GRASP and VNS. Results
show that the PILOT method yields significantly better solutions than the pure greedy con-
struction heuristic in still relatively short running times. Furthermore, GRASP and VNS are
able to significantly improve the results obtained by the construction heuristics. They ex-
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hibit significant performance differences in dependence of instance size. For medium-sized
instances, the VNS showed significant advantages, while for large to very large instances it
was outperformed by GRASP. We conclude that for this problem GRASP scales better with
respect to instance size and complexity.

In future work further performance gains might possibly be achieved by considering
additional advanced neighborhood structures, e.g., very large neighborhoods based on ejec-
tion chains or mixed integer programming. For much larger BBSS instances with possibly
thousands of stations, it appears to become crucial to combine the suggested methods with
clustering, decomposition or multi-level optimization techniques to achieve even better scal-
ability.

Another interesting extension would be to drop the assumption that an increase in bal-
ance is always preferred over savings in travel times and the number of loading operations.
While our heuristics in principle still work with arbitrary weights for the corresponding
terms in the objective function, the advanced techniques for calculating loading instructions
do not necessarily produce optimal results anymore. Thus, corresponding extensions of these
procedures and, in general, more advanced multi-objective optimization techniques should
be considered.

Finally, it is important to also consider the dynamic (online) scenario where bikes are
rented or returned by users even during the balancing process. As this problem variant intro-
duces uncertainties, stochastic aspects need to be addressed. From the optimization point of
view, it will not suffice to consider the final deviations from target balance values anymore
because user demands will constantly change the fill levels of stations over time. Therefore
the order in which stations are visited becomes much more relevant. In addition, it is nec-
essary to consider user demand shifts which occur when full stations cause an increased
parking position demand whereas empty stations cause an increased bike demand in the
neighboring stations.
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of Vélib’. International Journal of Sustainable Transportation 7(1), 85–106 (2013)

17. Pfrommer, J., Warrington, J., Schildbach, G., Morari, M.: Dynamic vehicle redistribution and online
price incentives in shared mobility systems. Tech. Rep. arXiv:1304.3949, Cornell University, NY (2013)

18. Pirkwieser, S., Raidl, G.R.: A variable neighborhood search for the periodic vehicle routing problem
with time windows. In: C. Prodhon, et al. (eds.) Proceedings of the 9th EU/MEeting on Metaheuristics
for Logistics and Vehicle Routing. Troyes, France (2008)

19. Raidl, G.R., Hu, B., Rainer-Harbach, M., Papazek, P.: Balancing bicycle sharing systems: Improving a
VNS by efficiently determining optimal loading operations. In: M.J. Blesa, et al. (eds.) Hybrid Meta-
heuristics, 8th Int. Workshop, HM 2013, LNCS, vol. 7919, pp. 130–143. Springer (2013)

20. Rainer-Harbach, M., Papazek, P., Hu, B., Raidl, G.R.: Balancing bicycle sharing systems: A variable
neighborhood search approach. In: M. Middendorf, C. Blum (eds.) Evolutionary Computation in Com-
binatorial Optimization, Lecture Notes in Computer Science, vol. 7832, pp. 121–132. Springer Berlin
Heidelberg (2013)

21. Raviv, T., Tzur, M., Forma, I.A.: Static repositioning in a bike-sharing system: models and solution
approaches. EURO Journal on Transportation and Logistics pp. 1–43 (2013)

22. Resende, M., Ribeiro, C.: Greedy randomized adaptive search procedures. In: F. Glover, G. Kochen-
berger (eds.) Handbook of Metaheuristics, pp. 219–249. Kluwer Academic Publishers (2003)

23. Rudloff, C., Lackner, B.: Modeling demand for bicycle sharing system – neighboring stations as a source
for demand and a reason for structural breaks. Tech. rep., Austrian Institute of Technology, Vienna,
Austria (2013)

24. Savelsbergh, M.: Preprocessing and probing techniques for mixed integer programming problems.
ORSA Journal on Computing 6(4), 445–454 (1994)

25. Schuijbroek, J., Hampshire, R., van Hoeve, W.J.: Inventory Rebalancing and Vehicle Routing in Bike
Sharing Systems. Tech. Rep. 2013-E1, Tepper School of Business, Carnegie Mellon University (2013)

26. Vansteenwegen, P., Souffriau, W., Oudheusden, D.V.: The orienteering problem: A survey. European
Journal of Operational Research 209, 1–10 (2011)

27. Voß, S., Fink, A., Duin, C.: Looking ahead with the Pilot method. Annals of Operations Research 136,
285–302 (2005)


