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Abstract. We consider the necessary redistribution of bicycles in public bicycle
sharing systems in order to avoid rental stations to run empty or entirely full. For
this purpose we propose a general Variable Neighborhood Search (VNS) with
an embedded Variable Neighborhood Descent (VND) that exploits a series of
neighborhood structures. While this metaheuristic generates candidate routes for
vehicles to visit unbalanced rental stations, the numbers of bikes to be loaded or
unloaded at each stop are efficiently derived by one of three alternative methods
based on a greedy heuristic, a maximum flow calculation, and linear programming,
respectively. Tests are performed on instances derived from real-world data and
indicate that the VNS based on a greedy heuristic represents the best compromise
for practice. In general the VNS yields good solutions and scales much better to
larger instances than two mixed integer programming approaches.

1 Introduction

A large number of public Bicycle Sharing Systems (BSSs) has been introduced in many
cities around the world in the last decade. Such systems augment public transport well and
frequently present attractive “green” alternatives to individual motorized traffic. A BSS
consists of a number of stations where users can rent and return bikes in an automated
way. Operators face an important challenge with regard to customer satisfaction: Due
to different factors such as the topographical height, the numbers of bikes rented and
returned, respectively, differ significantly among the stations. Running such a system
without any maintenance would therefore soon result in many completely empty or,
equally worse, completely full stations. Thus the operator needs to actively rebalance
the system by moving bicycles between stations with a fleet of vehicles, e.g. cars with
trailers. In the Balancing Bicycle Sharing System (BBSS) problem we aim at finding
efficient vehicle routes with corresponding bicycle-loading instructions at the visited
stations in order to bring the system in balance as far as possible.

In this work we address this problem by a Variable Neighborhood Search (VNS) with
an embedded Variable Neighborhood Descent (VND), which exploit various specifically
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designed neighborhood structures. While tours are searched within the VNS/VND,
corresponding loading instructions are efficiently derived by either a greedy approach,
a maximum flow calculation, or linear programming. Experiments are performed on
benchmark instances derived from Citybike, the BSS in Vienna, Austria. They indicate
that high quality solutions can be found with this approach and that the maximum flow
based calculating of loading instruction performs best in practice.

2 The Balancing Bicycle Sharing System Problem

In this section we formalize the BBSS problem. Currently, we only consider a static
problem variant in which user activities during the rebalancing process are neglected.
The BSS is represented by a complete directed graph G0 = (V0,A0). Node set V0 =V ∪O
consists of nodes for the rental stations V as well as start and end points O for vehicles
(garages or overnight parking places). Each arc (u,v) ∈ A0 has associated a travel time
tu,v > 0 that includes an expected time for parking near v and loading/unloading bikes.
Let the subgraph induced by the bike stations V only be G = (V,A), A⊂ A0.

Each station v ∈ V has associated a capacity Cv ≥ 0, i.e., the number of available
parking positions, the number of available bikes at the beginning of the rebalancing
process pv ≥ 0, and a target number of available bikes after rebalancing qv ≥ 0. A fleet
of vehicles L = {1, . . . , |L|} is available for transporting bikes. Each vehicle l ∈ L has
a capacity of Zl > 0 bikes, a total time budget t̂l within which it has to finish a route
(i.e., the worker’s shift length), as well as specific start and destination nodes sl ,dl ∈ O,
respectively. We assume that all vehicles start and finish rebalancing empty. A solution
consists of two parts. The first part is the route for each vehicle l ∈ L specified by an
ordered sequence of visited stations rl = (r1

l , . . . ,r
ρl
l ) with ri

l ∈ V , i = 1, . . . ,ρl and ρl
representing the number of stops. Note that stations may be visited multiple times by the
same or different vehicles. Start and end points sl and dl are fixed for each vehicle and
are prepended and appended, respectively, to each route in order to obtain complete tours.
The second part consists of loading and unloading instructions y+,i

l,v , y−,il,v ∈ {0, . . . ,Zl}
with l ∈ L, v∈V , and i= 1, . . . ,ρl , specifying how many bikes are picked up or delivered,
respectively, at station v at the i-th stop of vehicle l. Note that ∀v 6= ri

l : y+,i
l,v = y−,il,v = 0.

The following conditions must hold in a feasible solution: The number of bikes
available at each station v ∈ V needs to be within {0, . . . ,Cv}. For any vehicle l ∈ L
capacities Zl may never be exceeded, and the tour time tl

tl =

tsl ,r1
l
+

ρl
∑

i=2
tri−1

l ,ri
l
+ trρl

l ,dl
for ρl > 0

tsl ,dl for ρl = 0,
(1)

is restricted by the time budget t̂l , ∀l ∈ L. Let av be the final number of bikes after
rebalancing at each station v ∈V ,

av = pv +∑
l∈L

ρl

∑
i=1

(
y−,il,v − y+,i

l,v

)
. (2)

The objective is to find a feasible solution that primarily minimizes the deviation
from the target number of bikes δv = |av−qv| at each station v ∈V and secondarily the



number of loading/unloading activities plus the overall time required for all routes, i.e.,

min α
bal

∑
v∈V

δv +α
load

∑
l∈L

ρl

∑
i=1

(
y+,i

l,ri
l
+ y−,i

l,ri
l

)
+α

work
∑
l∈L

tl , (3)

where αbal,α load,αwork ≥ 0 are scaling factors controlling the relative importance of the
respective terms.

A simplification that may be exploited in different approaches is to consider mono-
tonicity regarding fill levels of stations. Let Vpic = {v ∈ V | pv ≥ qv} denote pickup
stations and Vdel = {v ∈V | pv < qv} denote delivery stations. A vehicle is only allowed
to load bicycles at pickup stations and unload them at delivery stations. In this way
the number of bikes decreases or increases monotonically, therefore the order in which
different vehicles visit a single station does not matter. On the downside, forcing mono-
tonicity might exclude some better solutions that would have been feasible without this
restriction.

3 Related Work

It was not until recently that the BBSS problem has been recognized as a combinatorial
optimization problem and the operations research community described a few systematic
solution approaches. However, they address significantly different problem variants and
a direct comparison between existing approaches is difficult. The majority of existing
works uses mixed integer programming (MIP), which in principle is able to find proven
optimal solutions but in practice is restricted to very small instances.

Chemla et al. [1] address the static case with only one vehicle and achieving perfect
balance as a hard constraint. They describe a branch-and-cut approach utilizing an
embedded tabu search for locally improving incumbent solutions. To the best of our
knowledge, their tabu search is the only metaheuristic approach applied to the rebalancing
problem until now. One of the key concepts is to only consider the visiting order of the
rebalancing vehicle in the solution representation and to obtain the loading instructions
by an auxiliary algorithm based on a maximum flow computation. With this technique
the search space can be reduced significantly. In our work we extend this idea towards
our more general problem definition. Raviv et al. [2] propose four MIP models. In
their objective function they model user dissatisfaction and tour lengths but ignore the
number of loading operations. The models were tested on real-world data obtained from
Vélib (Paris) with up to 60 stations. Results show that the most basic arc indexed model
produces the best lower bounds in a given time limit, but more complex models offer
more flexibility with respect to the requirements. Benchimol et al. [3] again assume
balancing as hard constraint, only consider the total tour length as objective, and focus
on approximation algorithms for selected special situations. Finally, Contardo et al. [4]
investigate the more complex dynamic scenario where rebalancing is done while the
bike sharing system is in use. They propose an arc-flow formulation and a pattern-based
formulation for a space-time network model. The latter is solved heuristically by a hybrid
approach using column generation and Benders decomposition. On randomly created
instances, this approach was able to handle instances with up to 100 stations and 60 time
periods, however significant gaps between lower and upper bounds still remain.



There are other works in the literature which focus on the strategic planning aspects
of bike sharing systems (i.e., location and network design depending on demands).
However, these aspects are not within the scope of this work. More generally, BBSS
is closely related to diverse variants of the classical vehicle routing problem (VRP).
However, it differs in substantial ways: Most importantly, stations may be visited multiple
times, even by different vehicles. Consequently, BBSS can be described as a capacitated
single commodity split pickup and delivery VRP.

4 Greedy Construction Heuristic

To efficiently generate a meaningful initial solution, we employ a construction heuristic
based on greedy principles. This procedure assumes monotonicity as described in Sec-
tion 2. A solution is built by iteratively creating a tour for each vehicle following a local
best successor strategy. From the last station of a partial tour, we first determine the set
F ⊆V of feasible successor stations. These are all stations that are not yet balanced and
can be reached without exceeding the shift length, i.e., there is enough time left to visit
the station and to go to the destination node afterwards.

For each such candidate station v∈ F , we calculate the maximum amount of bicycles
that can be picked up or delivered by

γv =

{
min(av−qv,Zl−bl) for v ∈ F ∩Vpic,

min(qv−av,bl) for v ∈ F ∩Vdel,
(4)

where bl represents the final load of vehicle l and av the final number of bikes at station
v in the currently considered partial tour. For ρl = 0 they are initialized with bl = 0 and
av = pv.

We assume that no bikes are allowed to remain on a vehicle when returning to the
depot. Therefore, an additional correction is necessary for pickup stations: We determine
for each v ∈ F ∩Vpic if after visiting v the remaining time budget allows the vehicle to
deliver at least bl +1 bicycles to other stations, i.e., all bikes the vehicle currently has
loaded plus at least one that would be picked up from v. If this is not the case, visiting v
is useless as no bike may finally be picked up there.

For this purpose, we estimate the number of deliverable bikes bdel
v after visiting v

by iteratively applying the exact same greedy heuristic restricted to delivery stations
only. We stop extending this delivery-only route when either bdel

v ≥ bl + γv (i.e., we have
shown that all bicycles picked up at v can be delivered later) or the time budget t̂l is
exceeded. Then, pickup stations v with bdel

v < bl +1 are removed from set F , while the
number of bikes to be picked up is possibly reduced for the others:

γv←min(γv,bdel
v −bl), ∀v ∈ F ∩Vpic. (5)

Now, all candidate stations v ∈ F are evaluated using the ratio γv/tu,v, where tu,v is
the traveling time from the vehicle’s last location u to station v; thus we consider the
balance gain per time unit. The node v ∈ F with the highest ratio is then appended to the



tour of vehicle l; ties are broken randomly. Loading instructions are set as follows:

y+,ρl
l,v = γv and y−,ρl

l,v = 0 if v ∈Vpic, (6)

y+,ρl
l,v = 0 and y−,ρl

l,v = γv if v ∈Vdel. (7)

Next, bl and av are updated accordingly and the procedure continues with the next
extension, evaluating stations in F from scratch, until no feasible extension remains.

5 Variable Neighborhood Search

In this section we describe our VNS approach. It uses the general VNS scheme with an
embedded VND for local improvement as described in [5].

5.1 Solution Representation and Derivation of Loading Instructions

Concerning the VNS we use an incomplete solution representation by storing for
each vehicle l ∈ L its route rl = (r1

l , . . . ,r
ρl
l ) only. Corresponding loading instructions

y+,i
l,v , y−,il,v , l ∈ L, v ∈V, i = 1, . . . ,ρl are derived for each created set of tours by one of

the following, alternative procedures, which have different assets and drawbacks.

Greedy Heuristic (GH): This simplest and fastest approach follows the pure greedy
strategy from the construction heuristic and assumes monotonicity. For each tour, the
stations are considered in the order as they are visited and loading instructions are
computed as described in Section 4. Even under the restriction of monotonicity, GH is
not guaranteed to find optimal loading instructions. For example, it can be beneficial to
retain bikes in the vehicle at a first stop at some station v in order to satisfy a following
delivery station as v will be visited a second time and can also be satisfied then.

Maximum Flow Approach (MF): When assuming monotonicity, we are able to derive
optimal loading instructions via an efficient maximum flow computation on a specifically
defined flow network. This approach is inspired by [1] but extends their method towards
multiple vehicles and the consideration of balance in the objective function. We define
graph Gfm = (Vfm,Afm) with node set Vfm = {σ ,τ}∪Vpic∪Vdel∪VL where σ and τ are
the source and target nodes of the flow, respectively, and VL =

⋃
l∈L Vl with Vl = {vi

l | l ∈
L, i = 1 . . . ,ρl} represents the stops of all routes.

Arc set Afm = Aσ ∪AL∪Apic∪Adel∪Aτ consists of:
– Aσ = {(σ ,v) | v ∈Vpic} with capacities pv−qv.
– Aτ = {(v,τ) | v ∈Vdel} with capacities qv− pv.
– Apic = {(v,vi

l) | vi
l ∈VL, v = ri

l , v ∈Vpic}, i.e., each pickup node in Vpic is connected
with every node representing a stop at this station in any route l ∈ L. These arcs’
capacities are not limited.

– Adel = {(vi
l ,v) | vi

l ∈ VL, v = ri
l , v ∈ Vdel}, i.e., each node representing a stop at a

delivery station is connected to the corresponding delivery node in Vdel. These arcs’
capacities are also not limited.

– AL = {(vi−1
l ,vi

l) | vi
l ∈VL, i > 1}, i.e., the nodes representing the stops in each tour

are connected according to the tour. Arc capacities are Zl .
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Fig. 1. Exemplary flow network when considering monotonicity for the tours r1 = (a,b,a,c) and
r2 = (d,a,b) with Vpic = {a,d} and Vdel = {b,c}.

An exemplary network is shown in Figure 1. Calculating a maximum (σ ,τ)-flow on
it directly yields optimal loading instructions y+,i

l,v , y−,il,v via the flows on the corresponding
arcs Apic and Adel, respectively. In our implementation, we used the efficient push-relabel
method from Cherkassky and Goldberg [6] for the flow computation.

Linear Programming Approach (LP): Finally, we are able to determine optimal
loading instructions even for the general, not necessarily monotonic case by solving a
minimum cost flow problem on a differently defined network by linear programming.
The main difference is that the order in which vehicles make their stops (at possibly
the same stations) is considered. Bikes can be buffered at stations or even be directly
transferred from one vehicle to another when they meet.

Let t(ri
l) denote the absolute time when vehicle l makes its i-th stop at station ri

l .
We define the multi-graph Gf = (Vf ,Af) with node set Vf = {σ ,τ}∪Vt where Vt = {v j |
∃vi

l ∈Vl : t(ri
l) = j}, i.e., besides source and target nodes σ and τ we have a node v j for

each station v and time j when a vehicle arrives at v. Furthermore V first = {v jmin ∈Vt |
jmin = min{ j | v j ∈Vt}}, i.e., these nodes represent the first visits of all stations among
all routes, and V last = {v jmax ∈Vt | jmax = max{ j | v j ∈Vt}}, i.e., these nodes represent
the last visits of all stations.

Arc set Af = Aσ ∪Aτ ∪AR∪AV consists of:
– Aσ = {(σ ,v j) | v j ∈V first} with capacities pv.
– Aτ = {(v j,τ) | v j ∈V last} with capacities qv.
– AR =

⋃
l∈L AR,l with AR,l = {(u j′ ,v j) | u = ri−1

l , v = ri
l , j′ = t(ri−1

l ), j = t(ri
l), i =

2, . . . ,ρl}, ∀l ∈ L, i.e., the arcs representing the flow induced by the vehicles. Ca-
pacities are Zl . Note that multiple arcs exist between two nodes if two (or more)
vehicles leave and arrive at the same stations exactly at the same times.

– AV =
⋃

v∈V Av with Av = {(v j1 ,v j2), . . . ,(v jmax−1 ,v jmax)}, (v j1 , . . . ,v jmax) is the se-
quence of nodes {v j ∈Vt} sorted according to increasing j. Capacities are Cv.

An example of this network is given in Figure 2. Now, a simple maximum flow
calculation would in general not yield optimal or even feasible loading instructions.
Instead, we have to solve a minimum cost flow problem via the following LP, which
uses flow variables fu,v, ∀(u,v) ∈ Af. By predl(v j) ∈ Vt we denote the predecessor of
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Fig. 2. Exemplary flow network for the general case with tours r1 = (a,b,a,c) and r2 = (d,a,b).

the node v j on the route of vehicle l, i.e., predl(v j) = u j′ with u = vi−1
l , j′ = t(ri−1

l ),
and by succl(v j) ∈Vt the successor, i.e., succl(v j) = w j′′ with w = vi+1

l , j′′ = t(ri+1
l ).

min α
bal

∑
∀v∈V last

δv +α
load

∑
l∈L

ρl

∑
i=1

(
y+,i

l,ri
l
+ y−,i

l,ri
l

)
(8)

subject to

∑
(u,v j )∈Aσ ∪AV

fu,v j +∑
l∈L

∑
(u,v j )∈AR,l

fu,v j = ∑
(v j ,w)∈Aτ∪AV

fv j ,w +∑
l∈L

∑
(v j ,w)∈AR,l

fv j ,w ∀v j ∈Vt (9)

y+,i
l,v − y−,il,v =


fv j ,succl (v

j ) ∀l ∈ L, i = 1, v = ri
l , j = t(ri

l)

fv j ,succl (v
j )− fpredl (v

j ),v j ∀l ∈ L, i = 2, . . . ,ρl −1,v = ri
l , j = t(ri

l)

− fpredl (v
j ),v j ∀l ∈ L, i = ρl , v = ri

l , j = t(ri
l)

(10)

f
σ ,v j = pv ∀(σ ,v j) ∈ Aσ (11)

fv j ,τ −qv ≤ δv ∀(v j ,τ) ∈ Aτ (12)

qv− fv j ,τ ≤ δv ∀(v j ,τ) ∈ Aτ (13)

0≤ fv j ,τ ≤Cv ∀(v j ,τ) ∈ Aτ (14)

0≤ f
u j′ ,v j ≤ Zl ∀l ∈ L, (u j′ ,v j) ∈ AR,l (15)

0≤ f
v j′ ,v j ≤Cv ∀(v j′ ,v j) ∈ AV (16)

δv ≥ 0 ∀(v j ,τ) ∈ Aτ (17)

y+,i
l,v ∈ {0, . . . ,Zl} ∀l ∈ L, v ∈V, i = 1, . . . ,ρl (18)

y−,il,v ∈ {0, . . . ,Zl} ∀l ∈ L, v ∈V, i = 1, . . . ,ρl (19)

The objective function (8) is directly derived from our main objective (3). Equa-
tions (9) are the flow conservation equalities, while equations (10) link the loading
instruction variables with the flows. The flows at arcs (σ ,v j) ∈ Aσ are fixed to the
station’s initial number of bikes pv in (11).

As we have a capacitated but unrestricted flow network with all capacities being
integer, the LP is totally unimodular and the corresponding polytope’s extreme points
are all integer. Therefore by solving this LP with a common LP solver (or more specifi-
cally a network simplex algorithm), we obtain optimal integral values for the loading
instructions.



5.2 VND and VNS Neighborhood Structures

We use several classical neighborhood structures that were successfully applied in
various VRPs together with new structures exploiting specifics of BBSS. Concerning the
classical neighborhood structures, we based our design on the experience from [7].

VND Neighborhoods: The following neighborhoods are all searched in a best improve-
ment fashion and applied in the given, static order. Preliminary experiments with a
dynamic reordering strategy brought no significant advantages. All created candidate
tours are incrementally checked for feasibility with respect to time budgets and infeasible
solutions are discarded. For a feasible solution we derive loading instructions by one of
the methods from Section 5.1 and remove obsolete nodes without any loading actions.

Remove station (REM-VND): This neighborhood considers all single station removals
to avoid unnecessary visits.

Insert unbalanced station (INS-U): This neighborhood includes all feasible solutions
where a yet unbalanced station is inserted at any possible position.

Intra-route 2-opt (2-OPT): This is the classical 2-opt neighborhood for the traveling
salesman problem, applied individually to each route.

Replace station (REPL): Here, any solution in which one station is replaced by a
different, yet unbalanced station is included.

Intra or-opt (OR-OPT): This neighborhood considers all solutions in which sequences
of one, two, or three consecutive stations are moved to another place within the
same route.

2-opt* inter-route exchange (2-OPT*): This classical neighborhood considers all fea-
sible exchanges of arbitrarily long end segments of two routes.

Intra-route 3-opt (3-OPT): This neighborhood resembles a restricted form of the well-
known 3-opt neighborhood, individually applied to each route. For any partitioning
of a route into three nonempty subsequences rl =(a,b,c), the routes (b,a,c) and
(a,c,b) are considered. An effective enumeration scheme excludes all solutions of
the previous neighborhoods.

VNS Neighborhoods: For diversification, the shaking procedure selects solutions ran-
domly from the following types of VNS neighborhoods, which are all parameterized by
δ , yielding a total of 24 individual neighborhoods. During this process, created routes
that violate the time budget are repaired by removing stations from the end.

Move sequence (MV-SEQ): Select a sequence of one to min(δ ,ρl) stations at random,
delete it, and reinsert it at a random position of a different route. If the original route
contains less than δ stations, the whole route is inserted at the target route. Both
source and target routes are selected randomly. δ ∈ {1, . . . ,5,ρl}.

Exchange sequence (EX-SEQ): Exchange two randomly selected segments of length
one to min(δ ,ρl) between two randomly chosen routes. δ ∈ {1, . . . ,5,ρl}.

Remove stations (REM-VNS): Consider all stations of all routes and remove each
station with probability δ ∈ {10%,14%,18%,22%,26%,30%}.



Destroy and recreate (D&R): Select a random position in a randomly chosen route,
remove all nodes from this position to the end, and recreate a new end segment by
applying a randomized version of the greedy construction heuristic. The randomiza-
tion is done in the typical GRASP-like way [8] with the threshold parameter set to
δ ∈ {0%,4%,8%,12%,16%,20%}.

6 Computational Results

We tested our VNS algorithm on a set of instances based on real-world data provided by
Citybike Vienna1 which runs a bike-sharing system with 92 stations. They are generated
as follows:

– Travel times tu,v, (u,v) ∈ A0 are real average driving times plus an estimation for
parking the vehicle and loading/unloading bikes based on the experience of the
drivers.

– The number of currently available bikes pv at station v ∈V is taken from a snapshot
of the system.

– The target value qv is assumed to be 50% of the station’s capacity.
– In order to make perfect balance at least theoretically possible when having enough

time, ∑v∈V pv = ∑v∈V qv must hold. This is established by applying small changes
to pv for some randomly chosen stations.

– We derived instances with |V | ∈ {10,20,30,60,90} stations by choosing them
randomly from the pool of 92 stations. In addition we consider one common depot
(one of the remaining stations) to be the start and end point for all vehicles.

– We assume a homogeneous fleet of |L| ∈ {1,2,3,5} vehicles with capacity Zl =
20, ∀l ∈ L.

– The total time budget for each vehicle is set to t̂l ∈ {2h,4h,8h}.
– Each instance set uses a unique combination of |V |, |L|, t̂l and contains 30 instances,

resulting in a total of 1800 instances2.
The scaling factors in the objective function were set to αbal = 1, α load = αwork =

1
10000 . Using these factors, improving the system balance always has a greater impact on
the objective value than reducing the tour lengths or the number of loading operations.
The algorithm has been implemented in C++ using GCC 4.6 and each test run was
performed on a single core of an Intel Xeon E5540 machine with 2.53 GHz and 3 GB
RAM per core. Each run was terminated when no improvement could be achieved within
the last 5000 VNS iterations or after a CPU time of one hour. For solving the LP-based
approach to determine loading instructions CPLEX 12.4 was used with default settings.

In addition to the VNS algorithm, we implemented a mixed integer programming
(MIP) model similar to the sequence-indexed formulation from [2] but adapted to our
problem formulation. This model is not able to consider dependencies among vehicles
and is therefore restricted to the monotonic case. CPLEX 12.4 with default settings
and a CPU-time limit of one hour was used for trying to solve the instances with
this model. In addition, we also investigated a second MIP model based on a time-
indexed formulation [2] for the general case. Experiments indicated that this approach

1 http://www.citybikewien.at/
2 Benchmark instances: https://www.ads.tuwien.ac.at/w/Research/Problem Instances



Table 1. Results of the MIP approach and the VNS considering the three variants of deriving
loading instructions. Each instance set contains 30 instances. All runtimes are in seconds.

Instance s MIP VNS with GH VNS with MF VNS with LP
|V | |L| t̂ ub lb ttot obj sd ttot obj sd ttot obj sd ttot
10 1 120 28.3477 28.3477 4 28.3477 9.9111 1 28.3477 9.9111 2 28.3477 9.9111 212
10 1 240 4.2942 0.0424 3600 4.2941 3.5524 5 4.2941 3.5524 10 4.2941 3.5524 1332
10 1 480 0.0320 0.0276 3600 0.0317 0.0033 8 0.0317 0.0033 17 0.0317 0.0033 2042
10 2 120 9.8269 9.4768 911 10.0266 6.3028 2 9.9601 6.2475 3 9.9600 6.2475 459
10 2 240 0.0340 0.0322 856 0.0339 0.0043 5 0.0339 0.0043 10 0.0339 0.0043 1441
10 2 480 0.0317 0.0313 1245 0.0317 0.0033 7 0.0317 0.0033 15 0.0317 0.0033 1797
20 2 120 55.8294 26.9012 3600 55.0962 13.2321 4 55.3628 13.3731 8 55.3628 13.3731 1097
20 2 240 19.7884 0.0383 3600 4.3908 3.7546 29 4.2575 3.7276 58 4.2576 3.7275 3600
20 2 480 1.8906 0.0403 3600 0.0614 0.0061 51 0.0615 0.0061 142 0.0614 0.0061 3600
20 3 120 37.3759 1.4777 3600 31.9096 11.9065 7 31.7763 11.8112 13 31.8430 11.8650 1727
20 3 240 6.2083 0.0401 3600 0.0651 0.0060 31 0.0650 0.0060 65 0.0652 0.0060 3600
20 3 480 13.4191 0.0316 3600 0.0616 0.0060 55 0.0614 0.0061 114 0.0614 0.0061 3600
30 2 120 106.9631 56.3908 3600 104.7633 17.7686 6 104.7633 17.7686 12 104.7633 17.7142 1539
30 2 240 74.9886 0.0487 3600 34.7941 10.8729 48 34.6608 10.4812 109 35.1940 10.9637 3600
30 2 480 69.8069 0.0432 3600 0.0926 0.0062 186 0.0925 0.0061 491 0.0928 0.0061 3600
30 3 120 90.4419 16.6454 3600 78.0441 17.2764 10 78.1773 17.0832 21 78.5771 17.2677 2521
30 3 240 61.6715 0.0461 3600 7.1526 4.7495 86 7.1523 4.2272 191 7.6186 4.3543 3600
30 3 480 175.4000 0.0015 3600 0.0925 0.0061 156 0.0925 0.0061 399 0.0928 0.0062 3600
60 3 120 274.3101 157.7350 3600 253.9795 27.8187 20 253.8462 27.6739 45 254.3794 27.3265 3600
60 3 240 370.2000 0.0000 3600 126.7616 20.5332 260 126.8282 20.9660 521 129.2945 20.1347 3600
60 3 480 — — — 6.1766 4.1036 1835 6.7758 4.1422 3600 10.1071 5.0800 3601
60 5 120 289.3111 34.9784 3600 197.7411 28.0192 54 196.6749 29.4401 99 197.0747 28.7557 3600
60 5 240 370.2000 0.0000 3600 41.1497 12.6579 725 41.6161 13.3489 1556 47.2145 13.0440 3600
60 5 480 — — — 0.1901 0.0090 2006 0.1902 0.0087 3600 0.1938 0.0087 3601
90 3 120 492.2319 290.8990 3600 441.5141 21.0737 35 441.6473 20.8266 82 441.4474 20.8250 3600
90 3 240 566.2667 0.0000 3600 295.1644 15.6493 425 294.5646 16.1776 985 297.3642 15.4610 3601
90 3 480 — — — 100.5887 9.6476 3600 101.1221 9.9480 3600 110.5868 9.4745 3601
90 5 120 566.2667 0.0000 3600 375.7435 19.5815 83 376.1432 20.6335 169 376.2767 20.5456 3600
90 5 240 — — — 174.9566 13.5297 1411 174.3566 12.7181 3304 184.8218 12.6962 3601
90 5 480 — — — 1.2863 1.5549 3600 1.6855 1.6746 3600 9.0772 3.5834 3601

unfortunately led to even worse results due to the higher complexity of the model and
a required discretization of station visit times. We therefore omit these results here.
Besides documenting the general suitability of the VNS and comparing it to the MIP
approach, we aim at analyzing the impacts of the three alternative procedures to derive
loading instructions. Table 1 lists average results for 30 instance sets (out of the 60) that
appear most relevant for practice. Complete results are available for download with the
benchmark instances.

For the MIP approach the table shows mean upper bounds ub, mean lower bounds
lb, and median total run times ttot for the cases where upper or lower bounds could be
obtained within the time limit. The other column groups in the table show the results
of the three VNS variants with GH, MF and LP applied to obtain loading instructions,
respectively. For each variant mean objective values of the final solutions obj, their
standard deviations sd, and median total run times ttot are listed. In each row best mean
results are printed bold.



In general we can clearly observe that the pure MIP approach is only able to solve
very small instances to optimality within the time limit. Very large gaps between lower
and upper bounds show that it scales badly with increasing numbers of vehicles and
especially with longer time budgets. For large instances CPLEX often only found trivial
solutions where all vehicles stay at the depot, or even no solutions at all.

Among the three VNS variants, the one applying GH clearly was fastest. MF in-
creased the running time on average by about 120%. The VNS with LP even took
about 110 times longer than the VNS with MF on average for those runs that were not
terminated by the time limit. Concerning solution quality, we observed that GH is able
to obtain results very similar to those of MF. Both variants found better final solutions
with lower objective values than the respective other variant in about 21% of runs. In the
remaining 58% both approaches obtained equally good results. Objective values are on
average slightly better for the MF-variant. In general, however, absolute quality differ-
ences are rather small. Also, a Wilcoxon signed-rank test does not show a significant
difference regarding solution quality of GH and MF. MF runs were terminated by the
time limit for the largest 8% of instances. When only comparing runs not terminated by
the time limit, average objective values are more favorable for MF. However, also in this
comparison the improvement over GH cannot be said to be statistically significant.

In principle the VNS with LP is sometimes able to obtain better results than the
other variants since it may take advantage of not being restricted to monotonicity. Due
to the substantially higher computational overhead, however, about 60% of all runs
were terminated before a reasonable convergence had been achieved due to exceeding
the time limit of one hour. Therefore, the LP-approach typically led to significantly
worse results, particularly for larger instances. The LP-variant obtained better solutions
in only 10%, while the MF-variant outperformed the LP-variant in 36% of all runs. A
Wilcoxon signed-rank test confirms the assumption that the VNS with MF performs
better w.r.t. solution quality with a very low error probability of less than 0.01%.

Figure 3 shows typical relative success rates for the VND neighborhoods on a large
instance. In the VNS, all shaking neighborhoods have similar relative success rates,
therefore we omit the corresponding chart. These results show that all neighborhood
structures contribute well to the overall performance.

REM-VND
INS-U
2-OPT
REPL

OR-OPT
2-OPT*
3-OPT

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Fig. 3. Relative success rates of VND neighborhoods for an instance with |V | = 90, |L| = 5,
t̂ = 480 using the MF-variant.



7 Conclusions and Future Work

We presented a VNS metaheuristic with an embedded VND for solving the balancing
bicycle sharing system problem. Main ingredients are a meaningful greedy construction
heuristic for generating initial solutions, neighborhood structures derived from VRPs,
new problem-specific neighborhood structures, as well as three alternatives for deriving
optimized loading instructions for created candidate tours. Experimental results on
instances derived from real-world data show that the VNS in general performs well
and scales much better than two MIP approaches. Concerning the derivation of loading
instructions, the greedy method is fastest and delivers solutions similar in quality to
those of the more complex maximum flow based approach. The LP-based method has
the advantage of being able to find optimal loading instructions even for the general, not
necessarily monotonic case, but unfortunately the added flexibility cannot compensate
the typically much larger computational effort when considering reasonable runtime
limits. Thus, the fast greedy method is the best compromise for practice.

In future work, we intend to model the times needed for loading bikes at a station
more accurately by taking the number of loading actions into account instead of assuming
average dwell times. Another practically relevant extension is to allow vehicles to start
and return nonempty. Finally, we also want to turn towards the dynamic scenario, where
the fill levels at stations change during the balancing process. Stochastic aspects then also
need to be considered. Last but not least, hybridizing the VNS with the MIP approaches,
e.g., by including some MIP-based large neighborhood search, appears to be promising.
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