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ABSTRACT

This paper presents a genetic algorithm (GA) approach to
the problem of choosing C disjoint subsets of n items to be
packed into distinct containers, such that the total value
of the selected items is maximized, without exceeding the
capacity of each of the containers. This so-called multi-
ple container packing problem (MCPP) has applications
in naval as well as financial management. It is a hard com-
binatorial optimization problem comprising similarities to
the knapsack problem and the bin packing problem.

A novel technique for encoding MCPP solutions is used
within the GA: The genotype is a vector of numerical
weights associated with the items of the problem. The
corresponding phenotype is obtained by temporarily mod-
ifying the original problem according to these weights and
applying a greedy decoding heuristic for the MCPP to the
new problem. This solution is then evaluated using the
original problem data again. Two different techniques for
biasing the original problem and four decoding heuris-
tics are discussed. They were tested in a weight-coded
steady-state GA on a variety of MCPP instances. One
biasing technique and one decoding heuristic turned out
to be clearly more effective than the others, and the GA
using them found solutions of significantly higher quality
than direct-encoded and order-based GAs from a previous
work.

1. INTRODUCTION

We consider the problem where n given items should be
partly packed into C containers of equal capacity Smax.
Each item has an associated value vj (j = 1, . . . , n) and a
(scalar) size sj . The problem is to select C disjoint subsets
of items, such that each subset fits into a container and
the total value of the selected items is maximized. There
are several applications for this problem in fields such as
ship or truck loading, air baggage handling, or deciding

how to fill C liquids into n tanks, when the liquids may
not be mixed.

Formally, we can define the multiple container packing
problem (MCPP) by

maximize V =

C∑
i=1

n∑
j=1

vjxi,j , (1)

subject to

n∑
j=1

sjxi,j ≤ Smax, i = 1, . . . , C, (2)

C∑
i=1

xi,j ≤ 1, j = 1, . . . , n, (3)

xi,j ∈ {0, 1}, i = 1, . . . , C, j = 1, . . . , n,

with sj > 0, vj > 0, Smax > 0,

where xi,j = 1 if item j is assigned to container i and
xi,j = 0 otherwise. The C constraints in (2) guarantee
that the total size of all items packed into each container
does not exceed Smax, the n constraints in (3) ensure that
each item is packed into a single container only.

To avoid trivial cases we further assume

sj ≤ Smax, j = 1, . . . , n, (4)
n∑

j=1

sj ≥ Smax . (5)

The first assumption (4) ensures that each item j fits
into a container as otherwise it may be removed from the
problem. Constraint (5) avoids the trivial case where all
items fit into one of the containers.

The MCPP comprises similarities to the well known knap-
sack problem (KP) and the bin packing problem (BPP).
The KP is equivalent to the special case of the MCPP
with only a single container (C = 1). It belongs to
the family of NP-hard problems, meaning that it is
very unlikely that we ever can devise polynomial algo-
rithms to solve it exactly [6]. But despite the exponen-
tial worst-case solution times of all exact KP-algorithms,
many large scaled problem instances of practical relevance
are pseudo-polynomially solvable, i.e. the complexity is



bounded by the number of variables and the magnitude
of the largest coefficient in the instance. Such KP in-
stances may be solved to optimality in very reasonable
times using branch-and-bound techniques [20, 25]. Fur-
thermore, efficient approximation algorithms have been
developed for obtaining near optimal solutions [19].

There is a more general variant of the KP, called the mul-
ticonstraint knapsack problem [25], which involves more
than one limited resources leading to multiple resource
constraints. E.g. additionally to the size, the weight could
be a second constrained resource. Exact algorithms to
this problem can be found in [19, 25], but their applica-
tion is limited to relatively small problem instances be-
cause this KP-variant is generally NP-hard in the strong
sense.

Note that in the literature, the MCPP is sometimes also
refered to as multiple knapsack problem [25], but we do
not adopt this name here since it is also used for the mul-
ticonstraint knapsack problem [17, 18] and can therefore
be misleading.

In the BPP, the goal is to minimize the number of con-
tainers necessary to pack all n items while not violating
any size constraint. In contrast to the MCPP, values of
items do not play a role. The BPP in its general form is
NP-hard in the strong sense [6].

The MCPP can also be seen as a combination of the KP
and the BPP, since the MCPP can be divided into two
strongly dependent parts which must be solved simulta-
neously: (a) select items for packing, and (b) distribute
chosen items over available containers. See [27] for a more
detailed comparison of the MCPP to other combinatorial
optimization problems.

The MCPP is NP-hard in the strong sense, and thus any
dynamic programming approach would result in strictly
exponential time bounds [6]. Recently, Pisinger [24, 25]
devised a branch-and-bound algorithm which is able to
find globally optimal solutions for various problem in-
stances involving many items but only few containers.
Nevertheless, large instances with smaller n/C ratios re-
main usually intractable. Because of its hardness, the
MCPP is addressed by heuristic methods, including ge-
netic algorithms (GAs) [1, 8, 21].

This paper presents a GA that encodes candidate solu-
tions via a technique called weight-coding : A solution
to the optimization problem is represented by a vector
of weights that modifies the original problem. A non-
evolutionary decoding heuristic is applied to get the ac-
tual solution which is then evaluated using the original,
unmodified problem. Such encodings have already been
used successfully in several other combinatorial optimiza-
tion problems such as the optimum communications span-
ning tree problem [23], the rectilinear Steiner tree prob-
lem [13], the shortest common supersequence problem [2],
the 3-satisfiability problem [4], and the traveling salesman
problem [15, 16]. An overview of various weight-coded
GAs is given by Julstrom [14].

The next section provides a short overview of prior evo-
lutionary algorithm approaches to the MCPP and the
related KP and BPP. Section 3 describes the weighted
coding and suitable decoding heuristics. A steady-state
GA that uses weight-coding is presented in section 4, and
section 5 documents results of experimental comparisons.
These experiments indicate that the performance of the
weight-coded GA mainly depends on the decoding heuris-
tic and secondarily on the used biasing technique. Using
a suitable configuration, the new GA approach outper-
forms previous hybrid GAs with traditional encodings on
nearly all test problems.

Note that this article is based on [28], but extends it by
the introduction of a new, more efficient biasing technique
involving log-normally distributed weights and an empir-
ical study regarding the selection of the biasing strength
parameter γ.

2. Prior Evolutionary Approaches

Besides other heuristic approaches, several researchers
have developed successful GAs for the KP and especially
the more difficult multiconstraint KP, including Chu and
Beasley [3], Hinterding [11, 12], Khuri et. al. [17], Olsen
[22], Raidl [26], and Thiel and Voss [32]. A GA employ-
ing weight-coding is described in [29]. Leguizamon and
Michalewicz [18] applied an ant system to the multicon-
straint KP. A concise overview of various evolutionary ap-
proaches to multiconstraint KPs is given by Gottlieb [9].
He also points out that focusing the search to the border
of the feasible region is a key-criterion for high effectivity.
The feasible region contains all feasible solutions which
cannot be simply improved by packing additional items
without removing others. Falkenauer [5], Gent [7], and
Reeves [31] presented hybrid GAs for the BPP.

In [27], it was observed that prior GA approaches to the
KP and BPP can be roughly divided into two categories
according to the solution encoding techniques: Some al-
gorithms use direct encoding (DE), meaning that a chro-
mosome of the GA contains a gene for each item indi-
cating directly if the item is supposed to be packed into
the knapsack (or into which container the item should be
packed). In this case, infeasible solutions must be han-
dled by using a repair algorithm or adding a penalty term
to the objective function. On the other hand, some GAs
use order-based encoding (OBE) in which a chromosome
contains a permutation of all items. The actual solution
is obtained by applying a first-fit algorithm: In the or-
der given by the permutation, one item after the other
is inserted into the initially empty knapsack (containers)
until a capacity constraint is violated. When applying
OBE, special recombination and mutation operators such
as order crossover and swap mutation (see [1, 21]) must
be used to generate new chromosomes that contain valid
permutations again.

Starting from the ideas of the various GAs for the KP
and BPP, Raidl and Kodydek [27] developed two effec-
tive GA variants for the MCPP based on these encoding



schemes. Additionally, problem-specific knowledge was
incorporated into both approaches using local improve-
ment operators: Each newly generated solution is possi-
bly improved by trying to pack its unpacked items into a
container that has not reached its maximum total size yet.
In this way, only solutions lying on the boundary of the
feasible region (according to [9]) are produced. The im-
provement is performed in a Lamarckian way, therefore,
the genotype is changed accordingly. The experimental
comparison in [27] indicates better performance for the
OBE approach in case of fewer items and for the DE ap-
proach in case of larger problems. The local improvement
leads in many cases not only to better results, but also to
shorter running times because of faster convergence.

3. A Weighted Coding for the MCPP

In the weight-coded GA, a candidate solution to the mul-
tiple container packing problem is represented by a weight
vector ~w = (w1, w2, . . . , wn). Weight wj is associated
with item j. To decode such a chromosome, a modified
problem is generated in a first step in one of the following
two ways.

3.1. Uniform Additive Biasing

As in most previous weight-coded approaches for other
problems, we add weights to problem data, in detail to
the relative item values rj = vj/sj (vj : absolute item
value, sj : item size):

r′j = rj + wj . (6)

While item sizes remain unchanged, new absolute item
values are derived as follows:

v′j = r′jsj = vj + sjwj . (7)

During the generation of a GA’s initial population and
during mutation, weights wj get uniformly distributed
random values in a certain range [−γr, γr] with r =
1/n

∑n

j=1
rj being the average relative item value. The

parameter γ controls how strong item weights can be bi-
ased and is therefore called biasing strength. Suitable val-
ues are theoretically discussed in section 3.3 and empir-
ically investigated in section 5.1. Due to the symmetry
of the range of values, the median biased problem corre-
sponds to the original problem in a randomly generated
initial GA population. Care must be taken to guarantee
always positive biased item values, which means

γ ≤ minj=1,...,n rj

r
. (8)

However, our latest investigations on a weight-coded GA
for the multiconstraint knapsack problem [29] revealed
that the following different biasing approach might give
some advantages.

procedure Heuristic A;
for all containers i do

p ← 0; /* occupied size of container */
for all unpacked items j sorted according to

decreasing v′j (or r′j) do
if p + sj ≤ Smax then

pack item j into container i;
p ← p + sj ;

done;

Figure 1: A greedy decoding heuristic for the MCPP.

3.2. Log-Normal Multiplicative Biasing

In this case, initial and mutated weights are randomly
chosen from the distribution (1 + γ)N (0,1), where N (0, 1)
is the normal distribution with mean 0 and variance 1,
and γ is again the biasing strength. Relative item values
are now biased in a multiplicative way by

r′j = rjwj , (9)

which means for the absolute item values simply

v′j = vjwj . (10)

Because of the log-normal distribution of the weights,
small changes of item values are made with higher prob-
abilities, but arbitrarily large changes are theoretically
possible. Biased item values will always be greater than
0 for any γ > 0. Again, median biased item values corre-
spond to original item values.

The second step in decoding a chromosome is to apply a
heuristic for the MCPP to the modified problem to obtain
the phenotypic solution. Finally, an objective value is
determined for this phenotype according to equation (1)
using the original, unmodified problem data (item values
vj).

A suitable decoding heuristic should not be too time-
demanding since it must be performed for each new chro-
mosome in the GA. Further, it should provide strong lo-
cality in the sense that small variations of the genotype
(and therefore of the problem) will usually lead to rela-
tively small changes in the phenotype [10]. The pseudo-
code of two well suited heuristics is shown in Figs. 1 and
2 and discussed in the following sections.

3.3. Decoding Heuristic A

The first greedy heuristic for the MCPP is straightfor-
ward. One container after the other is filled by going
through all unpacked items and packing all items not vi-
olating the size constraint into the current container. An
essential decision in this algorithm is the order of process-
ing items. Clearly, items processed first are more likely to
fit into a container than items coming later. Since we want



to maximize the total value of all packed items, valuable
items should be favored and ranked at the beginning. An
obvious processing order is obtained by sorting the items
according to decreasing absolute values v′j . Equally valu-
able items are ranked in random order.

On the other hand, favoring items with high values v′j
is not always a good decision: High-valued items can be
expected to have above-average sizes, and fewer items will
therefore fit into a container. Items with average or even
small values but very small sizes might often be better
choices. Therefore, it makes also sense to sort the items
according to decreasing relative values r′j .

To theoretically ensure that the GA is in principle ca-
pable of generating the globally optimal solution to an
MCPP instance, all possible item permutations must be
representable by a weight vector.

For uniform additive biasing, this means that the range
[−γr, γr] of possible weight values wj must be large
enough so that each item can become both most and least
valuable in the modified problem. On the other hand, the
range of values should not be unnecessarily large so that
the genotypic search space of the GA remains as small as
possible. For a GA using relative value (r′j) ordering in
heuristic A, the smallest biasing strength which guaran-
tees the reachability of all item permutations is therefore

γ∗ =
maxj=1,...,n rj −mink=1,...,n rk

2r
. (11)

But note that condition (8) might not always be fulfilled
in this case. To ensure always positive item values, we
therefore should set

γ = min
(
γ∗,

minj=1,...,n rj

r

)
(12)

and have to abandon the goal to make all possible item
permutations representable in all cases.

To guarantee the representability of all item permutations
when using absolute value (v′j) ordering with uniform ad-
ditive biasing, we would have to set the biasing strength
to at least

γ∗ =
maxj=1,...,n ((vmax − vj)/sj , (vj − vmin)/sj)

r
(13)

with vmax = max
k=1,...,n

vk, vmin = min
k=1,...,n

vk .

Usually, this equation will result in a much larger bias-
ing strength than in case of relative value ordering, and
condition (8) is not fulfilled. As before, γ must then be
reduced to the maximum value ensuring positive biased
item values (equation (12)). Once again, reachability of
all possible phenotypic solutions can then not be guaran-
teed.

For log-normal multiplicative biasing, γ must only be
larger than 0 for theoretically being able to generate all
possible item permutations. Furthermore, condition (8)
can never be violated. But obviously, the choice of γ
is in practice crucial to avoid too small probabilities of

procedure Heuristic B;

~p ← ~0; /* occupied sizes of containers */
for all items j sorted according to

decreasing v′j (or r′j) do
/* search container c where item j fits and

least space cs remains */
c = 0;
cs = Smax;
for all containers i do

if (pi + sj ≤ Smax) ∧ (Smax − pi − sj < cs) then
c ← i;
cs ← Smax − pi − sj ;

if c > 0 then
pack item j into container c;
pc ← pc + sj ;

done;

Figure 2: A more sophisticated decoding heuristic.

generating some weight vectors leading to good solutions.
Therefore, section 5.1 presents empirical investigations to
the selection of γ.

3.4. Decoding Heuristic B

Decoding heuristic B (Fig. 2) is more sophisticated; it fills
the containers in parallel. For one item after the other,
the container where the item fits best is identified. This is
the container where the capacity constraint would not be
violated and the least space would remain when adding
the item. If such a container exists, the item is packed
into it; otherwise, it remains unpacked. The algorithm
tries to simultaneously exploit the remaining space in all
containers as well as possible. As in heuristic A, the or-
der of processing the items is crucial and more valuable
items should be tried first. Therefore, the items are again
sorted according to decreasing absolute values v′j or rela-
tive values r′j .

Again, the globally optimal solution can in principle be
generated by a GA using heuristic B if all possible per-
mutations can be achieved as item processing orders. Re-
garding the biasing strength γ, the same theoretical con-
siderations are therefore valid as for heuristic A.

The computational effort of both decoding heuristics is
O(n log n) for sorting the items plus O(C n) for the two
nested loops. For larger n and problems where most items
can be packed into containers, heuristic A can be imple-
mented slightly more efficiently than heuristic B if a heap
is used for storing all unpacked items in sorted order dur-
ing the inner loop.

4. The Weight-Coded GA

The GA used for the experiments the next section de-
scribes is a traditional steady-state GA with binary tour-
nament selection. Within a chromosome, weights wj are



Table 1: Average results of weight-coded GAs using uni-
form additive biasing and decoding heuristics A and B
with absolute value ordering (γ = 0.8).

Problem WEAv WEBv

n/C/Smax gap evals t[sec] gap evals t[sec]

30/3/100 2.74 5680 0.6 2.74 8860 1.2
30/6/100 2.32 11280 1.7 2.73 9520 1.5
30/9/100 2.90 2220 0.3 2.90 1440 0.2

30/12/100 1.05 27740 4.4 1.15 98900 16.9

50/5/100 3.89 34940 7.4 3.89 40260 9.0
50/10/100 3.38 41420 8.5 3.38 14000 3.4
50/15/100 2.16 44560 10.3 2.16 62660 16.2
50/20/100 1.05 41080 9.3 0.99 28260 8.0

200/20/100 2.45 25260 28.6 2.44 43180 49.7
200/40/100 2.00 123280 144.6 1.91 79900 110.6
200/60/100 1.67 326520 492.2 1.58 280500 459.7
200/80/100 2.14 160220 263.9 2.01 109640 213.7

30/3/200 1.67 21980 3.0 1.67 17480 2.5
30/3/300 1.45 78780 9.8 1.47 69540 10.3
30/3/400 0.33 8940 1.1 0.30 83680 12.4

50/5/200 1.16 28620 5.7 1.09 71420 15.4
50/5/300 0.80 168540 34.3 0.83 99480 21.5
50/5/400 1.34 216520 49.5 1.25 114320 25.4

200/20/200 1.42 338160 320.1 1.36 300660 353.2
200/20/300 1.91 586920 551.5 2.00 581160 670.5
200/20/400 1.37 559760 501.4 1.36 446600 505.4

Average 1.87 135830 116.6 1.87 121974 119.4

directly stored as real values. Initial solutions are gener-
ated by assigning each weight a random value (either uni-
formly distributed or log-normally distributed). In early
experiments, uniform crossover applied with a probability
of 50% proved to be slightly better than one- or two-point
crossover. The mutation operator randomly replaces a
weight with a new random value with a probability of
3/n. A smaller probability increases the danger of pre-
mature convergence; a much larger probability degrades
performance.

As observed in several previous steady-state GAs for com-
binatorial optimization problems and closer investigated
in [30], it proved to be essential to disallow phenotypic du-
plicates in the population in order to prevent premature
convergence. This is accomplished by using a replacement
scheme that only accepts new solutions different from all
others in the population. The test for equality is effi-
ciently performed on phenotype level using a hash table.
If a new solution is not a duplicate, it always replaces the
solution with the worst objective value.

Preliminary experiments indicated that a population size
of 100 works well with problems of very different sizes
and properties. Each GA run terminated when 200,000
solutions had been evaluated without finding a new best
solution. This criterion ensures sufficient convergence in
practice. For many of the experiments, the GA could
have been stopped much earlier, but we were primarily

Table 2: Average results of weight-coded GAs using uni-
form additive biasing and decoding heuristics A and B
with relative value ordering (γ = 0.2).

Problem WEAr WEBr

n/C/Smax gap evals t[sec] gap evals t[sec]

30/3/100 2.74 380 0.1 2.74 540 0.1
30/6/100 2.32 4280 0.7 2.32 3040 0.5
30/9/100 2.90 5620 0.9 2.90 3160 0.6

30/12/100 1.05 12280 1.9 1.05 6520 1.2

50/5/100 2.08 3760 0.9 2.08 3420 0.9
50/10/100 0.87 79840 20.7 0.87 104860 29.2
50/15/100 1.67 42740 10.4 1.67 17400 5.2
50/20/100 1.05 144860 41.5 0.94 74460 24.1

200/20/100 1.34 119980 135.6 1.34 52080 65.7
200/40/100 1.26 404800 522.5 1.18 251540 382.4
200/60/100 1.06 819100 1237.0 0.87 446520 804.8
200/80/100 1.64 810300 1346.9 1.38 267920 574.5

30/3/200 0.56 4280 0.7 0.56 5920 1.0
30/3/300 0.40 79280 11.1 0.40 71200 11.8
30/3/400 0.26 55400 9.1 0.26 67060 11.0

50/5/200 0.18 46360 11.6 0.18 55160 14.3
50/5/300 0.06 93980 24.4 0.06 111340 28.9
50/5/400 0.17 112920 28.4 0.17 91880 23.8

200/20/200 0.27 316380 342.4 0.25 274480 339.5
200/20/300 0.14 594560 583.9 0.14 371940 450.5
200/20/400 0.13 402040 467.0 0.10 338400 416.4

Average 1.06 197769 228.5 1.02 124707 151.7

interested in finding high-quality solutions and only sec-
ondarily in CPU times.

5. Experimental Comparisons

The publicly available MCPP test problem set of [27]1

was used to evaluate the new weight-coded GA variants.
This set consists of 21 problem instances with different
numbers of items (n = 30, 50, 200), different numbers of
containers (C = 3, . . . , 80), and different container capac-
ities (Smax = 100, . . . , 400). Item sizes sj were randomly
chosen out of the interval [5, 95], giving an average item
size of s = 50. Item values vj were generated by multi-
plying the size sj of each item by a relative item value rj

randomly taken from [0.8, 1.2]. Therefore, item values vj

are strongly correlated to item sizes giving more realis-
tic but also substantially more difficult problem instances
[24, 25].

In case of uniform additive biasing and relative value or-
dering within the heuristic, γ should be about 0.2 for
the used problem instances according to equations (11)
and (12). For absolute value ordering, equation (13) re-
sults in a biasing strength γ∗ ≈ 22 which is larger than
minj=1,...,n rj/r ≈ 0.8 and not feasible according to con-
dition (8). Therefore, we have to choose a significantly
smaller biasing strength γ = 0.8, and reachability of all

1http://www.apm.tuwien.ac.at/pub/TestProblems/mcpp



Table 3: Average results of weight-coded GAs using log-
normal multiplicative biasing and decoding heuristics A
and B with relative value ordering (γ = 0.2).

Problem WEAN WEBN
n/C/Smax gap evals t[sec] gap evals t[sec]

30/3/100 2.74 300 0.1 2.74 250 0.0
30/6/100 2.32 3340 0.7 2.32 1910 0.4
30/9/100 2.90 5000 1.0 2.90 3800 0.8

30/12/100 1.05 10140 2.2 1.05 5360 1.2

50/5/100 2.08 3050 0.9 2.08 3180 1.0
50/10/100 0.87 64410 20.5 0.85 71240 22.8
50/15/100 1.67 39610 13.1 1.67 8170 2.8
50/20/100 0.96 104020 34.7 0.94 26160 9.4

200/20/100 1.34 48410 64.7 1.31 15170 20.7
200/40/100 1.24 343400 509.0 1.14 161150 260.2
200/60/100 0.96 387540 614.2 0.83 224120 411.8
200/80/100 1.57 249130 434.8 1.31 252810 542.3

30/3/200 0.56 4260 0.9 0.56 5450 1.1
30/3/300 0.40 76280 15.3 0.40 74200 14.8
30/3/400 0.25 70410 14.0 0.28 11790 2.3

50/5/200 0.18 42260 13.1 0.18 30470 9.3
50/5/300 0.06 105190 32.3 0.05 93670 29.0
50/5/400 0.18 113950 34.9 0.18 145780 45.1

200/20/200 0.22 291830 367.2 0.20 231940 304.8
200/20/300 0.11 540170 648.5 0.09 299880 390.7
200/20/400 0.09 534540 621.0 0.09 441530 573.9

Average 1.04 144630 163.9 1.01 100382 125.9

possible phenotypic solutions cannot be guaranteed in this
case.

Since optimal solution values for most of these problems
are not known, the quality of a final solution is measured
by the percentage difference (the gap) between a solu-
tion’s total value of packed items V and the optimal value
V LP

max of the LP-relaxed problem. This upper bound can
be determined for any MCPP by sorting all items accord-
ing to their relative values rj and summing up the item
values vj starting with the most valuable item until a to-
tal size C Smax is reached. The last item is counted pro-
portionately. Knowing the LP optimum, the percentage
difference is

gap = (V LP
max − V )/V LP

max · 100% . (14)

For each problem instance and each GA variant, 10 in-
dependent runs were performed and averaged. Table 1
shows results for weight-coded GAs using uniform addi-
tive biasing and decoding heuristics A and B with ab-
solute values v′j as criteria for the order of processing
items (algorithms WEAv and WEBv). As discussed be-
fore, the biasing strength γ was set to 0.8. The table
contains gaps of best-of-run solutions and the numbers
of evaluations together with the CPU times for obtain-
ing these solutions. Table 2 presents results for the same
GAs with relative value ordering during decoding (algo-
rithms WEAr and WEBr), and Table 3 shows results for

Table 4: Gaps of solutions obtained by applying heuristics
A and B with absolute/relative value ordering directly to
the original, unbiased problem instances.

Problem Av Bv Ar Br

n/C/Smax gap gap gap gap

30/3/100 5.64 5.64 5.97 5.97
30/6/100 13.91 13.91 4.95 4.95
30/9/100 6.02 6.02 8.26 4.85

30/12/100 3.81 3.67 8.86 8.86

50/5/100 5.76 5.76 3.27 3.27
50/10/100 7.12 7.12 3.14 1.97
50/15/100 6.60 6.60 8.35 4.24
50/20/100 4.36 3.81 7.79 6.37

200/20/100 4.44 4.41 2.84 1.80
200/40/100 8.29 8.22 4.43 2.71
200/60/100 6.64 6.51 3.34 2.65
200/80/100 6.60 6.60 4.76 3.01

30/3/200 5.37 5.37 2.47 2.47
30/3/300 5.90 5.90 1.47 1.47
30/3/400 3.09 3.29 0.75 0.75

50/5/200 8.98 8.98 2.32 2.32
50/5/300 3.87 3.87 0.99 0.99
50/5/400 3.42 3.42 2.03 1.14

200/20/200 5.01 5.01 0.92 0.85
200/20/300 4.93 4.82 0.59 0.61
200/20/400 2.77 2.77 0.59 0.43

Average 5.83 5.79 3.72 2.94

GAs using log-normal multiplicative biasing and heuris-
tics A respectively B with relative value item ordering
(algorithms WEAN and WEBN ). For WEAr, WEBr,
WEAN , and WEBN , γ was set to 0.2. Average gaps of
all six test series are also depicted graphically in Fig. 3.
Figure 4 shows the needed numbers of evaluations to find
the finally best solutions.

In nearly all test cases, the GAs with heuristics based on
relative value ordering outperform the variants using ab-
solute value ordering. Especially for instances with many
items (n = 50, 200) and relatively few containers, rela-
tive value ordering causes substantially better solutions.
No significant quality and CPU time differences could
be observed between WEAv and WEBv. Concerning
CPU time, WEAr, WEBr, WEAN , and WEBN proved
to be faster than WEAv and WEBv for smaller prob-
lems and slower for problems involving many items and
small containers. In nearly all cases, WEBr and WEBN
found slightly better solutions or—for the simpler prob-
lem instances—the same solutions as WEAr and WEAN .
On average, but especially for large problems (n = 200),
WEBr and WEBN are significantly faster and need fewer
evaluations than do WEAr and WEAN . Differences in
the obtained gaps between WEAr and WEAN , respec-
tively WEBr and WEBN , are only small, but the variants
using log-normal multiplicative biasing (WEAN , WEBN )
produce in nearly all cases either equally good or slightly
better solutions. Regarding the number of needed eval-
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Figure 3: Average gaps of final solutions obtained by the weight-coded GAs.
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Figure 4: Average numbers of evaluations until final solutions were found by the weight-coded GAs.

uations and the corresponding CPU times, WEAN and
WEBN are in average clearly faster than their counter-
parts WEAr and WEBr.

Table 4 shows the gaps of solutions obtained by applying
all four heuristics directly (without any GA) to the unbi-
ased, original problems. In general, the heuristics using
relative value ordering find significantly better solutions
than those using absolute value ordering. But note that

the solutions directly obtained by any heuristic are poor
compared to final solutions of the various GAs.

Table 5 contains results of the GAs Raidl and Kodydek
presented in [27]. These are direct-encoded (DE) and
order-based encoded (OBE) approaches with optional lo-
cal improvement operators (DEI and OBEI). For nearly
all test problems the new weight-coded GAs with relative
value ordering (WEAr, WEBr, WEAN , WEBN ) find so-



Table 5: Average gaps of final solutions from direct-
encoded and order-based GAs with optional local im-
provement (from [27]).

Problem DE DEI OBE OBEI

n/C/Smax gap gap gap gap

30/3/100 2.74 2.74 3.16 2.74
30/6/100 2.69 2.45 2.82 2.32
30/9/100 3.31 3.01 3.25 2.90

30/12/100 2.48 1.58 1.42 1.05

50/5/100 2.60 2.58 2.96 2.28
50/10/100 1.43 1.10 1.73 1.58
50/15/100 2.53 1.99 2.35 2.00
50/20/100 2.58 1.50 2.03 1.67

200/20/100 1.91 1.65 2.84 2.57
200/40/100 1.94 1.64 2.52 2.49
200/60/100 1.99 1.48 2.10 2.28
200/80/100 2.89 2.09 2.36 2.62

30/3/200 0.68 0.66 0.96 0.68
30/3/300 0.50 0.47 0.53 0.44
30/3/400 0.39 0.37 0.45 0.33

50/5/200 0.42 0.35 0.88 0.60
50/5/300 0.51 0.30 0.48 0.70
50/5/400 0.40 0.39 0.53 0.53

200/20/200 0.71 0.51 1.26 2.49
200/20/300 0.45 0.27 0.76 1.64
200/20/400 0.32 0.25 0.41 0.64

Average 1.60 1.30 1.71 1.65

lutions with smaller gaps than those prior approaches.
Furthermore, significantly fewer evaluations are usually
needed by all the weight-coded GAs.

A reason for the better performance of the weight-coded
GAs seems to be that the recombination and mutation
operators are not as disruptive to the phenotypes as in
case of the prior GAs. In DE(I) as well as in OBE(I), two
genotypically very similar solutions might represent very
different phenotypes. The genotype/phenotype mappings
of the proposed weight-coded GAs, especially WEBr and
WEBN , seem to have a much stronger locality. Similar
genotypes usually map to similar phenotypes, and the re-
combination can therefore produce offsprings that inherit
much of the parental phenotypical structures.

5.1. Influence of the biasing strength γ

Table 6 and Fig. 5 show how the biasing strength γ affects
the quality of the weight-coded GAs’ final solutions. Each
value was determined by averaging the results of 10 runs
for the problem instance with n = 200 items, C = 40
containers, and a container size of Smax = 100. Note
that for the GAs using uniform additive biasing, γ cannot
be larger than 0.8 to ensure always positive biased item
values v′j (condition (8)).

The influence of γ is basically very similar in all GA vari-
ants. If γ is smaller than a certain lower bound, final
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Figure 5: Influence of different values for γ on the final
gaps (problem instance n = 200 / C = 40 / Smax = 100).

solutions are significantly worse. This bound is about 0.2
for WEAv and WEBv, 0.1 for WEAr and WEAN , and
0.05 for WEBr and WEBN . Obviously, for values of γ
less than these limits, the weighted coding is in practice
not able to represent solutions significantly different from
those the decoding heuristics would find on their own with
enough probability. With increasing biasing strength, the
GAs can examine more of the problem’s search space. As
γ increases above 0.2 (respectively 0.1 or 0.05), the solu-
tions’ qualities do not change much. We can observe only
a slight increase of the gaps for WEAN and WEBN above
γ = 1.

The number of evaluations, which is also shown in Table 6,
depends strongly on γ. In general, more evaluations are
needed with increasing γ, since more different solutions
are produced causing larger diversity.

6. Conclusions and Future Work

This paper has presented a new coding of solutions to
the multiple container packing problem using vectors of
weights. Two techniques for biasing the original problem
with the weights were proposed. For obtaining the actual
solution out of a biased problem, two substantially differ-
ent heuristics were described, and each of them can use
either absolute or relative value ordering. Weight-coding
eliminates the necessity of an explicit repair algorithm,
a penalization of infeasible solutions, or special recombi-
nation and mutation operators. The different variants of
weight-coded GAs were tested using 21 problem instances.
Results primarily indicate better performance for relative
value ordering. Heuristic B, which fills containers in par-
allel, works in many cases slightly better than heuristic
A. Furthermore, log-normal multiplicative biasing leads
consequently to slightly better solutions than uniform ad-
ditive biasing and usually causes shorter running times
because less evaluations are needed for convergence. The
selection of a suitable value for the biasing strength γ
turned out to be not so critical as long as γ is large enough
to enable good solutions to be representable with enough
probability.



Table 6: Influence of different values for the biasing strength γ (problem instance: n = 200 / C = 40 / Smax = 100).

WEAv WEBv WEAr WEBr WEAN WEBNγ
gap evals gap evals gap evals gap evals gap evals gap evals

0.001 8.29 100 8.22 100 4.07 5160 2.71 100 3.63 57540 2.45 22700
0.002 8.29 100 8.22 100 3.63 70660 2.48 400 3.17 146960 1.87 157540
0.005 7.45 100 7.38 100 3.22 86460 1.95 53420 2.31 127760 1.58 117710
0.01 7.45 100 7.38 100 2.52 84740 1.60 146120 1.85 141460 1.34 302800
0.02 7.38 360 7.38 100 1.95 150600 1.40 246020 1.50 276220 1.21 194520
0.05 6.30 17680 6.28 11420 1.43 167060 1.18 148000 1.29 233220 1.14 131190
0.1 3.85 26940 3.85 22340 1.26 320880 1.18 155580 1.23 344170 1.14 160930
0.2 2.00 155640 1.96 129280 1.26 404800 1.18 251540 1.24 343400 1.14 161150
0.5 2.03 264980 1.93 149520 1.30 467400 1.18 286560 1.21 215620 1.16 194190
0.8 2.00 123280 1.91 79900 1.28 475620 1.21 284520 1.25 377400 1.15 324050

1 – – – – – – – – 1.26 350130 1.16 298340
2 – – – – – – – – 1.33 337710 1.17 330770
5 – – – – – – – – 1.28 345900 1.18 378520

10 – – – – – – – – 1.33 390470 1.16 329170

All GAs using relative value ordering decisively outper-
form the more traditional direct-encoded and order-based
GAs with optional local improvement from [27] regarding
the quality of final solutions and average numbers of eval-
uations needed for convergence.

Future work should include the examination of other,
more sophisticated decoding heuristics that also may in-
volve some kind of local search. Currently, we are try-
ing to understand the implications of using weight-coding
with different decoding heuristics for the search space of
the GA. Furthermore, similar weight-coded GAs may also
be suited for approaching related combinatorial optimiza-
tion problems.
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