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Abstract

Premature convergence is a serious problem
in many applications of evolutionary algo-
rithms (EAs), since it decreases the EA’s
chance to reach new high-quality regions of
the search space and hence degrades the over-
all performance. In particular decoder-based
EAs are frequently susceptible to premature
convergence due to their encoding redun-
dancy. Our comparison of four decoder-based
EAs for the multidimensional knapsack prob-
lem reveals the importance of maintaining
the population’s phenotypic diversity. We
identify phenotypic duplicate elimination as
a general method which efficiently prevents
premature convergence for most EAs, while
duplicate elimination on genotypic level is
demonstrated as being unable to maintain
phenotypic diversity.

1 Introduction

It is crucial for evolutionary algorithms (EAs) to main-
tain an appropriate balance between exploration and
exploitation. If the ability of exploration is limited,
an EA usually achieves a worse performance. In par-
ticular premature convergence prevents an EA from a
successful search for optimal solutions. Decoder-based
EAs are particularly susceptible to this problem, be-
cause the decoding procedure often induces a high re-
dundancy between the genotypic search space and the
phenotypic search space.

Four decoder-based EAs for the multidimensional
knapsack problem (MKP), a well-known NP-complete
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combinatorial optimization problem with a wide range
of applications (Garey and Johnson (1979)), are com-
pared in our study. The MKP is stated as

maximize
∑

j∈J

pjxj (1)

subject to
∑

j∈J

rijxj ≤ ci, i ∈ I (2)

xj ∈ {0, 1}, j ∈ J (3)

with I = {1, . . . , m} and J = {1, . . . , n} denoting
the sets of resources and items, respectively. Many
exact and heuristic algorithms have been developed
for the MKP and diverse variants (Chu and Beasley
(1998), Martello and Toth (1990)), and in particular
several EAs were proposed, see (Gottlieb (1999b)) for
a survey.

The considered decoder-based EAs are tested with dif-
ferent duplicate elimination strategies. Duplicate elim-
ination (DE) means that newly generated solutions are
only accepted if they are not already contained in the
current population. This is expected to be helpful for
maintaining population diversity and, therefore, pre-
venting premature convergence. Our experiments re-
veal that duplicate elimination at the genotypic level
is clearly inferior to phenotypic duplicate elimination.
The detailed investigation of the effects of duplicate
elimination on the interplay of selection, crossover,
mutation, and the employed decoder exhibits several
important aspects which explain the impact of pheno-
typic duplicate elimination on the EA’s performance.
We expect similar results for decoder-based EAs ap-
plied to other problems.

A survey of the considered decoder-based EAs for the
MKP is presented in Section 2, including a general
comparison of different duplicate elimination strate-
gies. Section 3 introduces several statistical mea-
sures which are useful to analyze the dynamics of the
search. The effects of the different duplicate elimina-



tion strategies on the considered EAs are discussed in
detail in Section 4. Conclusions are given in Section 5.

2 Decoder-Based EAs for the MKP

The MKP has been used to compare several constraint
handling techniques for EAs (Gottlieb (1999b)). Many
approaches are based on penalizing infeasible solu-
tions, however the best results are obtained when in-
cluding heuristic repair and local optimization meth-
ods (Chu and Beasley (1998), Gottlieb (1999b), Raidl
(1998)). While these EAs explicitly work in the phe-
notyic search space P = {0, 1}n, decoder-based EAs
explore an arbitrary genotypic search space G, which
is mapped into P by a decoder to perform an implicit
search for MKP solutions. Such a decoder usually
employs problem-specific knowledge to generate feasi-
ble solutions. The performance of decoder-based EAs
strongly depends on the locality of the decoder and
the employed operators and on the heuristic pressure,
i.e. the ability to concentrate the search on promising
phenotypes (Gottlieb and Raidl (1999)). Furthermore
the decoder should be computationally fast since oth-
erwise the fitness evaluation of the genotypes would
be too time-consuming. Our experiments reveal that
it is crucial to prevent premature convergence of the
population. One way to achieve this would be to
design special operators, however this obviously de-
pends on the representation of G. Therefore we focus
on the general concept of duplicate elimination (DE),
which was found useful in several different EAs for the
MKP (Chu and Beasley (1998), Gottlieb (1999a,b),
Gottlieb and Raidl (1999), Hinterding (1994), Raidl
(1998,1999)) and also for many other combinatorial
optimization problems. Duplicate elimination means
that newly generated solutions are rejected if they are
already represented by the current population. There
are two distinct interpretations of the duplicate con-
cept: A newly generated genotype is called a duplicate,
if (i) the genotype itself is already contained in the cur-
rent population, or (ii) the corresponding phenotype is
already represented by a genotype in the current pop-
ulation. These two interpretations lead to different
DE strategies which we call genotypic duplicate elimi-
nation (case (i)) and phenotypic duplicate elimination
(case (ii)). For comparison purposes, we also consider
EAs without duplicate elimination and term the cor-
responding strategy no duplicate elimination. In the
following, four decoder-based EAs are introduced and
compared with respect to the effects of the different
duplicate elimination strategies.

2.1 Permutation Based EA

The permutation based EA (PBEA) has been proposed
by Hinterding (1994) for the (unidimensional) knap-
sack problem and can easily be adapted to the MKP
(Raidl (1998), Thiel and Voss (1994)). A solution can-
didate is represented by a permutation π : J → J of
the items. The decoder starts with the feasible solu-
tion x = (0, . . . , 0) and traverses all variables xj in the
order determined by π, increasing the corresponding
variable from 0 to 1 if this does not violate any resource
constraint. Hinterding employs standard permutation
operators, namely uniform order based crossover and
swap mutation which randomly exchanges two differ-
ent positions.

2.2 Ordinal Representation based EA

The ordinal representation based EA (OREA) was
originally considered for the traveling salesperson
problem (TSP) by Grefenstette et. al (1985) however
its application to MKP is straightforward (Gottlieb
and Raidl (1999)). Solution candidates are repre-
sented by a vector v with va ∈ {1, . . . , n − a + 1}
for a ∈ J = {1, . . . , n}. The decoder is based on a list
initially containing all items in a predefined order and
starts with the MKP solution x = (0, . . . , 0). Items are
iteratively removed from the list and checked for inclu-
sion in the solution. In detail, v is scanned from the
first to its last position, interpreting each entry va as a
position in the current list. Such a position identifies
the next item j, for which xj is increased to 1 if the re-
source constraints remain satisfied. Since each checked
item is removed from the list, its size decreases by 1
during each step and reaches length 1 when the last
item is to be selected. Classical one-point crossover
is applicable because resulting offsprings always rep-
resent legal solutions. Moreover, a simple mutation
operator is used which randomly chooses a position a
and then draws va from {1, . . . , n− a + 1}. However,
a closer look at the decoding procedure reveals that a
change in a single position of v might have a major im-
pact on the decoded solution since each item selection
modifies the list, thus, influences all following item se-
lections. OREA yields bad results for MKP, due to the
weak locality of the decoder and the operators (Gott-
lieb and Raidl (1999)).

2.3 Surrogate Relaxation Based EA

Raidl (1999) proposed the surrogate relaxation based
EA (SREA) which represents solution candidates by
real-valued weights for the items. These weights are
used to temporarily modify the profits pj in the ob-



jective function (1) yielding a similar but slightly dif-
ferent MKP instance. This biased problem is then
solved by a surrogate duality based heuristic. The so-
lution obtained in this way is also feasible for the orig-
inal, unbiased problem since the resource constraints
(2) remain unchanged. The heuristic, which has origi-
nally been proposed by Pirkul (1987), starts with the
solution x = (0, . . . , 0) and traverses all items accord-
ing to decreasing profit/pseudo-resource consumption
ratio. Variables xj are set to 1 if no resource con-
straint is violated. Pseudo-resource consumptions are
determined via reasonable surrogate multipliers which
are obtained from the linear programming (LP) re-
laxed MKP. Since this process would result in solving
the LP relaxation for each solution candidate, Raidl
(1999) suggests to determine the surrogate multipliers
only once for the original problem in a preprocessing
step to decrease the computational effort. SREA uses
uniform crossover and a mutation operator which is
applied 3 times to each new genotype, modifying a
randomly chosen weight by resetting it to a new ran-
dom value. The results obtained for SREA are the
best among all decoder-based EAs for the MKP we
are aware of.

2.4 Lagrangian Relaxation Based EA

The Lagrangian relaxation based EA (LREA) was also
proposed by Raidl (1999) and is basically equivalent
to SREA, except for the heuristic used to generate a
solution for the biased problem. LREA employs the
procedure introduced by Magazine and Oguz (1984)
to obtain a solution via Lagrangian relaxation. Since
the determination of exact Lagrange multipliers is too
time-consuming, some reasonable (but usually subop-
timal) multipliers are calculated by a simpler heuris-
tic. Each obtained solution is then locally improved by
traversing the variables according to decreasing profit
and increasing them if feasibility can be maintained.

2.5 The Effects of Duplicate Elimination

We compare the described decoder-based EAs on one
problem of the standard test suite of MKP bench-
marks introduced in (Chu and Beasley (1998)) and
available from the OR-Library3. Ten runs were per-
formed for the considered instance of size m = 10,
n = 250 and tightness ratio α = 0.5 (which means that
ci = α

∑
j∈J rij holds for all i ∈ I). The test suite also

contains problems of different size and α, however the
selected instance is representative since the same basic
trends were observed for the other problems too, co-
inciding with the results of our previous study (Gott-

3http://mscmga.ms.ic.ac.uk/info.html

Table 1: Obtained gap [%] and total duplicate elim-
ination ratio [%] for different EAs and DE strategies

DE PBEA OREA SREA LREA
strategy gap RE gap RE gap RE gap RE

no 1.04 0.00 5.87 0.00 0.37 0.00 0.42 0.00
genotypic 1.02 0.00 5.47 1.45 0.37 0.00 0.46 0.00
phenotypic 0.33 2.88 1.80 31.94 0.24 3.52 0.27 1.39

lieb and Raidl (1999)). Our experiments are based
on population size 100, parent selection via tourna-
ments of size 2, steady-state replacement (replacing
the worst individual), crossover probability 1.0 and an
evaluation limit of 1 000 000 generated solutions. The
results obtainted for the three duplicate elimination
strategies (no DE, genotypic DE, phenotypic DE) and
each EA are shown in Table 1. The solution quality
is measured by the gap of the objective value concern-
ing the optimal value of the LP-relaxed problem, i.e.
1−maxEA/optLP with maxEA and optLP denoting the
best objective value found by the EA and the opti-
mal value of the LP relaxation of MKP, respectively.
The duplicate elimination ratio RE reflects the ratio of
rejected duplicates among all generated solutions.

Concerning the obtained quality, no DE and genotypic
DE yield comparable gaps, while phenotypic DE re-
sults in a significantly better final solutions for each
EA. The bad quality achieved by no DE and genotypic
DE is caused by their inability to prevent premature
convergence at the phenotypic level of the population.
The similarity of no DE and genotypic DE is intuitive
since no (PBEA, SREA, LREA) or few (OREA) newly
generated solutions are rejected, hence both strategies
yield a comparable behaviour. In general, RE indicates
the usefulness of phenotypic DE and the missing capa-
bility of genotypic DE to recognize phenotypic dupli-
cates. A comparison of the different EAs reveals that
genotypic DE recognizes duplicates only in the case
of OREA. This shows that the operators employed by
OREA tend to produce offsprings genotypically simi-
lar to their parents, which stays in accordance to our
previous results (Gottlieb and Raidl (1999)). We pro-
ceed by a detailed examination of the interplay of op-
erators, decoder, and duplicate elimination strategies
and their effects on the EA dynamics.

3 Empirical Analysis of the Dynamics

To investigate the effects of the different duplicate
elimination strategies concerning selection, crossover,
and mutation separately, the following ratios were con-



tinuously observed during actual EA runs:

(a) Duplicate elimination ratio RE: The ratio of de-
tected and discarded duplicates among the total
number of generated solutions.

Clearly, RE is 0 if no duplicate elimination is ap-
plied. For genotypic and phenotypic duplicate
elimination, it seems to be interesting at which
stage of the evolutionary search how many solu-
tions are discarded, because this might indicate
the degree of premature convergence.

Note that the total duplicate elimination ratios
were already presented in the last section.

(b) Selection-duplicate ratio RS: The ratio of parent
pairs selected for crossover, which are phenotypi-
cally identical.

In general, a high RS indicates that the diver-
sity of the population is small or parent selection
is biased towards few solutions of extraordinary
fitness. In case of the four considered EAs, tour-
nament selection with tournament size 2 is used,
yielding a moderate selection pressure. Therefore,
a high RS implies weak diversity.

(c) Crossover-duplicate ratio RC: The ratio of off-
springs generated by crossover that are phenotyp-
ically identical to one of their parents.

A high ratio RC indicates that crossover is not
able to produce offsprings that are sufficiently dif-
ferent from their parents, which leads to a rein-
forcement of premature convergence.

Usually, a high RS implies a high RC, since
the traditional understanding of the behaviour of
crossover is that as many phenotypic properties as
possible should be inherited from parent solutions
by an offspring (Goldberg (1989)). If RS is low
but RC is nevertheless relatively high, crossover
does not mix parental solutions in the context of
phenotypic properties well enough.

(d) Mutation-duplicate ratio RM: The ratio of mu-
tations which do not cause changes in the repre-
sented phenotypes.

In general, RM does not depend on the cur-
rent population’s diversity but influences it signif-
icantly. RM can principally be controlled by tun-
ing the mutation probability or rate. Obviously,
a higher mutation rate would decrease this ratio,
but this will also affect the EA to behave more
like inefficient random search. Note that the aim
of this paper is not to find a suitable mutation
rate but to observe the properties of well-tuned

mutation operators to either prevent or empha-
size duplicate generation.

All these ratios were measured by performing 10 runs
for each EA and each duplicate elimination strategy.
Values were independently calculated for blocks of b
consecutively generated solutions (generations), where
b = 10 during the first 100 generations, b = 100 for
generations 101 to 1 000, b = 1 000 for generations
1 001 to 10 000, b = 10 000 for generations 10 001 to
100 000, and b = 100 000 for generations 100 001 to
1 000 000. Finally, results were averaged over the 10
runs per EA and duplicate elimination strategy. Fig-
ures 1 to 4 show plots for these average ratios, which
are discussed in detail in the next section.

4 Discussion

For PBEA, SREA, and LREA, the ratio of eliminated
duplicates RE is always relatively small for all du-
plicate elimination (DE) strategies (never larger than
10%). But note that this observation does not imply
that DE is less important for these EAs. The plots for
RS indicate that only phenotypic DE guarantees a rea-
sonably small probability of selecting phenotypically
identical solutions for crossover. While RS is small in
all cases up to generation 3 000, it thereafter increases
dramatically up to nearly 100% when using genotypic
or no DE, implying a substantial loss of diversity. Note
that in case of phenotypic DE, RS remains small but
is nevertheless larger than 0, due to the possibility to
select the same solution twice.

Clearly, RE is 0 when using no DE. More interesting is
the fact that RE is also 0 when genotypic DE is applied
in PBEA, SREA, and LREA. For OREA with geno-
typic DE, RE is usually larger than 0 but nevertheless
substantially smaller than in case of phenotypic DE.
This means that the considered EAs generate geno-
typically identical solutions very seldom, and an EA
with genotypic DE performs practically identically to
the EA without DE.

This ineffectiveness of genotypic DE can be explained
by the high encoding redundancy in all considered EAs
due to the different sizes of G and P . While |P | = 2n,
the genotype search space has size |G| = n! in PBEA
and OREA, and is even larger for SREA and LREA
since real values are allowed for each weight. Such
a representational redundancy may decrease perfor-
mance, but sometimes, as in case of SREA and LREA,
it may also be beneficial and lead to better final re-
sults, see also (Ronald (1997)). An additional reason
why different genotypes may often map to the same
phenotypic solution is that the decoders may contain
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Figure 1: Results for PBEA
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Figure 2: Results for OREA
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Figure 3: Results for SREA
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Figure 4: Results for LREA



local improvement techniques or heuristics which al-
ways or mostly lead to preferred phenotypes in a re-
stricted subset P ′ ⊂ P . We call this effect heuristic
pressure (Gottlieb and Raidl (1999)). Therefore, solu-
tions x ∈ P \P ′ cannot be represented or have substan-
tially smaller probabilities to be generated. While such
a restriction of P to highly fit parts might sometimes
be advantageous, it must be ensured that all promising
areas and particularly the global optima are covered
(Raidl (1999), Ronald (1997)). Note that all four EAs
considered in this paper restrict the search to solu-
tions on the boundary of the feasible region, which is
known to contain the optimum (Gottlieb (1999a,b)).
Furthermore, SREA and LREA have an even higher
heuristic pressure since they additionally use heuristics
depending on profits pj and resource values rij .

When using phenotypic DE, RE is low at the begin-
ning of a run and increases significantly between gen-
erations 2 000 and 10 000. The obvious reason is the
population’s diversity which is initially high and de-
creases when an EA has found some locally nearly op-
timal solutions. Most noticeably is that RE decreases
again after about 20 000 generations. An explanation
for this effect seems to be that an EA with the used
replacement strategy finds relatively fast local optimal
solutions lying relatively near to each other in search
space. Thereafter, new better solutions, which are ac-
cepted by the replacement scheme for inclusion into
the population, usually lie further away and therefore
increase diversity again, which implies fewer generated
duplicates in general.

Crossover-duplicate ratios RC are strongly correlated
to selection-duplicate ratios RS. Therefore, crossover
can only efficiently produce new solutions when the
selected parents differ in their phenotypes. The loss
of diversity above generation 3 000 in case of no DE
or genotypic DE leads to an increase of RC up to
over 80% for all four EAs, which means that crossover
does not perform efficiently any longer. For PBEA,
SREA, and LREA with phenotypic DE, RC remains
below 10% during the whole run, while OREA already
starts with a relatively high RC (≈ 40%). In case
of phenotypic DE, this ratio increases only slightly,
but when using no or genotypic DE, RC soon reaches
nearly 100%. The reason is that OREA uses one-point
crossover, which might frequently exchange genes hav-
ing no effect on the decoded phenotype, because the
phenotypic properties are mainly determined by the
first genes. Note that this is also the reason why the
duplicate elimination ratio RE is always relatively high
for OREA with phenotypic DE.

The mutation-duplicate ratio RM remains nearly con-

stant at 50% in case of PBEA and OREA for all DE
strategies. In case of PBEA this is due to the fact
that only an exchange of one gene from approximately
the first α · n genes with another gene in the remain-
der results in a modification of the phenotype, which
happens with a probability of about 50% for α = 0.5.
Similar considerations are valid for OREA.

In case of SREA and LREA, RM does not remain con-
stant but increases, especially when employing geno-
typic or no DE. The problem-dependent heuristics in
these EAs seem to be responsible for this effect, since
in general, these heuristics decrease the probability of
good solutions to be modified by a single mutation in
comparison to worse solutions.

5 Conclusions

We investigated the effects of using genotypic or phe-
notypic duplicate elimination in steady-state decoder-
based EAs. Four EAs for the multidimensional knap-
sack problem were examplarily used for empirical
studies. In general, phenotypic duplicate elimination
turned out to be very important for good performance,
since otherwise the crossover operator cannot reliably
produce new solutions and the considered EAs get
trapped at bad local optima very early. Results in-
dicate that duplicate elimination based on comparing
genotypes cannot avoid or reduce this premature con-
vergence. Only a duplicate elimination which avoids
genotypes representing the same phenotypic solutions
in the population can reliably achieve this. A rea-
son for the failure of genotypic duplicate elimination
is that the considered EAs use large genotype search
spaces which are mapped to significantly smaller parts
of the actual phenotype space. This implies a high en-
coding redundancy, which is typical for decoder-based
EAs applied to combinatorial optimization problems.
Therefore our results should also be valid for other
decoder-based EAs. In this light, other approaches to
maintain higher diversity, e.g. niching techniques like
deterministic crowding, might also be beneficial and
influence performance significantly. Closer investiga-
tions should therefore be performed.
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