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Abstract- This paper presents different variants of
weight-coding in a genetic algorithm (GA) for solving the
multiconstraint knapsack problem (MKP). In this coding,
a chromosome is a vector of weights associated with the
items of the MKP. The phenotype is obtained by using
the weights to generate a modified version of the origi-
nal problem and applying a decoding heuristic to it. Four
techniques of biasing the original problem with weights
are discussed. Two well working decoding heuristics, one
based on the surrogate relaxation and the other one based
on the Lagrangian relaxation, are introduced.

The different weight-coding variants are experimen-
tally compared to each other using a steady-state GA.
Furthermore, the influence of the biasing strength, a
strategy parameter of the codings, is investigated. In gen-
eral, the GA found solutions being substantially better
than those obtained by applying heuristics to the MKP
directly.

1 Introduction

Weight-Codingis a solution encoding technique for genetic
algorithms (GAs) that already proved to be well suited for dif-
ferent combinatorial optimization problems. The basic idea
is to represent a candidate solution by a vector of numeri-
cal weight valueswj (j = 1, . . . , n). A two-step process is
used to decode such a chromosome into a phenotypic solu-
tion: First, the original problemP is temporarily modified to
P ′ by biasing problem parameters with the weightswj . Sec-
ondly, a problem-specific non-evolutionarydecoding heuris-
tic is used to actually generate a solution forP ′. This solution
is finally interpreted and evaluated for the original (unmodi-
fied) problemP .

In a weight-coded GA, classical recombination and mu-
tation operators can be used to generate new chromosomes.
Feasibility of all generated candidate solutions can be guar-
anteed if a suitable decoding heuristic is used. In contrast to
many other techniques that map vectors of numerical values
to feasible solutions of constrained combinatorial optimiza-
tion problems, weight-coding usually provides strong local-
ity: Similar chromosomes normally map to similar pheno-
typical solutions, and recombination can therefore produce
offsprings inheriting much of the parental phenotypical struc-
ture.

Weight-codings have already been successfully used for
a variety of problems, such as the optimum communications
spanning tree problem [16], the rectilinear Steiner tree prob-
lem [9], the 3-satisfiability problem [5], the minimum weight
triangulation problem [2], the traveling salesperson problem
[10, 11], and the multiple container packing problem [19].

This paper presents different variants of weight-coding
in a GA for themulticonstraint knapsack problem(MKP).
The next section provides a definition of the MKP and a
short overview of prior approaches to solve it. Section 3 de-
scribes four different biasing methods and two suitable de-
coding heuristics. A steady-state GA, which formed the basis
for a number of experiments, is described in Sec. 4, and Sec.
5 documents obtained results. These results indicate that a
weight-coded GA is a robust and effective technique for find-
ing high-quality solutions to the MKP, provided that a suitable
decoding heuristic and biasing technique is used. Average re-
sults are comparable to those of two previously presented,
highly effective hybrid GAs for the MKP (Chu and Beasley
[3, 4], Raidl [18]).

2 The Multiconstraint Knapsack Problem

The MKP is a classical, NP-complete combinatorial opti-
mization problem with applications in various fields such as
economics. A set ofn items and a set ofm resources are
given. Each itemj (j = 1, . . . , n) has assigned a profitpj and
for each resourcei (i = 1, . . . ,m) a resource consumption
valueri,j . The problem is to identify a subset of all items that
leads to the highest possible total profit and does not exceed
given resource limitsbi. Formally, the MKP can be stated as
follows:

maximize f =
n∑

j=1

pjxj , (1)

subject to
n∑

j=1

ri,jxj ≤ bi, i = 1, . . . ,m, (2)

xj ∈ {0, 1}, j = 1, . . . , n

with pj > 0, ri,j ≥ 0, bi ≥ 0.

The variables searched for are thexj . If item j is element of
the subset,xj is set to 1, otherwise to 0. Equation 1 represents
the total profit of selected items and Eq. 2 them resource



constraints. Note that allpj , ri,j , andbi are always positive
(or zero).

Because of the NP-completeness of the MKP, exhaus-
tive search algorithms such as branch-and-bound that lead to
globally optimal solutions are in general too time-consuming
and can only be applied to very small problems. Note that
much research concerning knapsack problems deals with the
simpler uni-dimensional knapsack problem withm = 1. For
this special case, effective approximation algorithms have
been presented in the past [14]. Several heuristics were also
presented for the general MKP, such as those from Pirkul
[17], Magazine and Oguz [13], and Volgenant and Zoon [22].
But unfortunately, the effectiveness of these heuristics is very
limited if they are applied to MKPs where bothm andn are
large. See [3, 4] for a comprehensive review on exact and
heuristic algorithms.

In the last years, GAs have shown to be well suited for
finding high-quality solutions to also larger knapsack prob-
lems, see [3, 4, 6, 7, 8, 15, 18, 20, 21]. In [18], Raidl observed
that these GA approaches can be divided into two categories
according to the solution encoding techniques. Some algo-
rithms usedirect encoding, meaning that a chromosome of
the GA contains a gene for each item indicating directly if
the item is supposed to be packed into the knapsack. In this
case infeasible solutions must be handled by using a repair
algorithm or adding a penalty term to the objective function.
On the other hand, some GAs useorder-based encodingin
which a chromosome contains a permutation of all items. The
actual solution is obtained by applying a first-fit algorithm: In
the order given by the permutation, one item after the other
is inserted into the initially empty knapsack as long as it does
not violate a capacity constraint. When applying order-based
encoding, special recombination and mutation operators must
be used to generate new chromosomes that contain valid per-
mutations again. Note that the efficiency of some GAs for the
MKP could be enhanced considerably by hybridizing them,
i.e. by including some local improvement operator, heuristic
repair operator, and/or heuristic initialization procedure, see
[3, 4, 6, 18].

3 Weight-Codings for the MKP

Weight-coding seems to be an interesting new approach to
the MKP since it eliminates the necessity of an explicit repair
algorithm, a penalization of infeasible solutions, or special re-
combination and mutation operators. Furthermore, a weight-
coded GA is already a hybrid approach since it includes the
problem specific heuristic decoding function.

3.1 Biasing the Original Problem

In the proposed weight-coded GA for the MKP, a candi-
date solution is represented by a vector(w1, w2, . . . , wn) of
weights. Weightwj is associated with itemj. Different bias-
ing techniques can be used for obtaining the modified (biased)
problemP ′ to which the decoding heuristic will be applied.

Furthermore, the weightswj may be initialized and mutated
in different ways. The methods that are examined in this work
are described in the following.

(B1) Addition of uniformly distributed weights to profits:

p′j = pj + wj , wj = R(0, γp). (3)

Biased profitsp′j are obtained by adding associated weights
wj to the original profits. During initialization and mutation,
weightswj are set to uniformly distributed random numbers
(denoted byR(0, γp)) in the range from 0 to the average orig-
inal profitp = (

∑n
j=1 pj)/n multiplied by abiasing strength

γ. Negative weights are not allowed to avoid problems with
profits that may otherwise become negative. The biasing
strengthγ is a strategy parameter which therefore does not
depend on absolute values of profits.

(B2) Addition of relative, uniformly distributed weights to
profits:

p′j = pj + wj , wj = R(0, γpj). (4)

Weights are now set to random values in ranges proportional
to the actual profitspj . γ is again the biasing strength. An
advantage of this technique over B1 is that the median bi-
ased problem corresponds to the original problem since the
problem structure does not change if profits are multiplied by
the same constant value. This biasing technique is therefore
“symmetrical”.

(B3) Multiplication of profits with logarithmically dis-
tributed weights:

p′j = pjwj , wj = (1 + γ)R(−1,1). (5)

Original profits are now multiplied by weights that are loga-
rithmically distributed in the range[1/(1 + γ), 1 + γ]. The
median value of this distribution is 1. Therefore, median bi-
ased profits correspond to original profits.

(B4) Multiplication of profits with log-normally dis-
tributed weights:

p′j = pjwj , wj = (1 + γ)N (0,1). (6)

In contrast to B3, a log-normal distribution is used for ini-
tializing and mutating weights.N (0, 1) denotes a normally
distributed random number with mean 0 and standard devia-
tion 1. This gives the advantage that small changes of profits
are made with higher probabilities, but large changes are also
possible. Again, median biased profits correspond to original
profits.

3.2 Decoding Heuristics

The following two heuristics are proposed as decoding heu-
ristics for obtaining the phenotypical solution to a biased
problem. For simplicity, we assume that the resource coef-
ficientsri,j are normalized during a preprocessing step:

ri,j ← ri,j/bi for i = 1, . . . , m, j = 1, . . . , n,
bi ← 1 for i = 1, . . . , m.



functionHeuristic-1:
determineai for i = 1, . . . , m by solving the LP-relaxed

MKP and taking the dual variables;
µj ←

∑m
i=1 airi,j for j = 1, . . . , n;

uj ← pj/µj for j = 1, . . . , n;
xj ← 0 for j = 1, . . . , n;
Ri ← 0 for i = 1, . . . ,m;
for all j sorted according to decreasinguj do

if Ri + ri,j ≤ 1 for all i = 1, . . . , m then
xj ← 1;
Ri ← Ri + ri,j for i = 1, . . . , m;

return(x1, x2, . . . , xn);

Figure 1:The surrogate relaxation based heuristic H1

(H1) The surrogate relaxation based heuristic:
In [17], Pirkul presents a heuristic for the MKP which

makes use of surrogate duality. Them resource constraints
(Eq. 2) are transformed into a single constraint using surro-
gate multipliersai (i = 1, . . . , m):

n∑

j=1

(
m∑

i=1

airi,j

)
xj ≤

m∑

i=1

ai. (7)

Assuming suitable surrogate multipliersai are known, a
feasible solution to the MKP can be obtained in the following
greedy way: First, all items are sorted in decreasing order of
profit/pseudo-resource consumption ratiosuj = pj/µj with
µj =

∑m
i=1 airi,j . Then, the items are processed in this or-

der, and each item which would not violate any of them re-
source constraints is packed into the knapsack, i.e.xj is set
to 1. See Fig. 1 for a more detailed pseudo-code.

Pirkul [17] suggests several methods to derive the surro-
gate multipliersai. One of the simplest methods to obtain
reasonably good multipliers is to solve thelinear program-
ming (LP) relaxed MKP in which the variablesxj may get
arbitrary values from the interval[0, 1] and to use the values
of the dual variables as the surrogate multipliers. In other
words,ai is set to the shadow price of thei-th constraint in
the LP relaxed MKP.

To keep the computational effort of decoding a chromo-
some in a weight-coded GA with this heuristic small, the sur-
rogate multipliersai are determined only once for the origi-
nal problem data in a preprocessing step. Furthermore, also
the pseudo-resource consumptionsµj can be predetermined.
During the chromosome decoding step the heuristic starts
with the computation of the ratiosuj for the biased profitsp′j .
The computational effort for decoding a chromosome in this
way is onlyO(n ld n) for sorting the items according to ac-
tual profit/pseudo-resource consumption ratios plusO(nm)
for packing the knapsack and checking the constraints during
each step.

(H2) The Lagrangian relaxation based heuristic:
In [13], Magazine and Oguz present a heuristic for the

functionHeuristic-2:
λi ← 0 for i = 1, . . . , m;
xj ← 1 for j = 1, . . . , n;
Ri ←

∑n
j=1 ri,j for i = 1, . . . , m;

while not(Ri ≤ 1 for all i = 1, . . . ,m) do
determine resourceI for whichRI = max{Ri};
for all itemsj with xj = 1 do

if rI,j > 0 then
δj ← (pj −

∑m
i=1 λiri,j) /rI,j ;

else
δj ←∞;

determine itemJ for which δJ = min{δj |xj = 1};
λI ← λI + δJ ;
xJ ← 0;
Ri ← Ri − ri,J for i = 1, . . . ,m;

for all itemsj with xj = 0 sorted according to
decreasingpj do

if Ri + ri,j ≤ 1 for all i = 1, . . . , m then
xj ← 1;
Ri ← Ri + ri,j for i = 1, . . . , m;

return(x1, x2, . . . , xn);

Figure 2:The Lagrangian relaxation based heuristic H2

MKP which uses the Lagrangian relaxation of the MKP. All
m resource constraints (Eq. 2) are incorporated into the max-
imization goal (Eq. 1) by subtracting resource consumptions
multiplied byLagrange multipliersλi (i = 1, . . . , m, λi ≥ 0)
from the total profit:

maximize fLR =
n∑

j=1

pjxj −
m∑

i=1

λi

n∑

j=1

ri,jxj . (8)

Assuming the Lagrange multipliersλi are known, this maxi-
mization problem (without further constraints) can be solved
easily, sincexj must simply be set to 1 if and only if

n∑

j=1

pj −
m∑

i=1

λiri,j > 0. (9)

The difficulty is to find values for the Lagrange multipliers
such that this optimal~x = (x1, x2, . . . , xn) for Eq. 8 is a
feasible solution for the MKP and also satisfies

m∑

i=1

λi


1−

n∑

j=1

ri,jxj


 = 0, (10)

in which case~x is optimal for the MKP.
Magazine and Oguz [13] suggest the following heuristic

procedure for obtaining good (but usually suboptimal) values
for λi and simultaneously deriving~x. See also Fig. 2 for a
more detailed pseudo-code.

Initially, all Lagrange multipliersλi are set to 0, and all
xj are set to 1. Although Eq. 9 is satisfied, this is in general



not a feasible solution for the MKP. Next, all actual resource
consumptionsRi are determined, and the most violated con-
straintI is identified. The corresponding multiplierλI is then
increased as much as necessary to violate Eq. 9 for just one
variablexJ . xJ is set to 0, and resource consumptionsRi

are updated. This step is repeated until the solution has be-
come feasible. A final local improvement step checks if any
zero-variable can be set to 1 without violating any constraint.

Basically, the computational effort for this procedure is
O(n2m), but it can be improved toO(n(n + m)) if the net
profitspj−

∑m
i=1 λiri,j are saved and adjusted each time after

changing the multiplierλI . But nevertheless, this decoding
heuristic is computationally clearly more expensive than H1.

Note that only a relatively small part of all possible feasi-
ble solutions is covered by the search space of a weight-coded
GA using one of the proposed decoding heuristics. Gener-
ally it is essential that most good solutions and especially the
global optima are covered. In other words, only poor so-
lutions should be omitted. In case of the presented biasing
techniques and decoding heuristics, we can guarantee for any
feasible solution~x that either~x itself or a better solution con-
taining all items selected in~x plus some others is covered if
the biasing strengthγ is large enough. The advantage of both
heuristics is that they produce only meaningful solutions ly-
ing on the boundary of the feasible region of all possible solu-
tions where also the global optima are located. Note that also
Gottlieb [6] observed that it is crucial for any EA for MKP to
emphasize search on this boundary. The practical influence
of different values forγ is investigated in Sec. 5.

4 A weight-coded GA for the MKP

The described weight-coding variants have been incorporated
into a traditional steady-state GA with binary tournament se-
lection. Within a chromosome, weightswj are directly stored
as real valued genes. Initial solutions are generated by assign-
ing each weight a random value within the range or with the
distribution specific to the used biasing technique.

In early experiments, uniform crossover proved to behave
slightly better than one- or two-point crossover. The muta-
tion operator modifies a weight by resetting it to a new ran-
dom value. New candidate solutions are generated by always
performing crossover and applying mutation with a probabil-
ity of 3/n per gene. A smaller probability for performing
mutation or recombination increases the danger of premature
convergence; a much larger probability for mutation degrades
performance.

As already observed in previous GAs for similar combina-
torial optimization problems [3, 4, 11, 18, 19], it proved again
to be essential to disallow duplicates in the population. This
is accomplished by using a replacement scheme that only ac-
cepts new solutions different from all others in the population.
The test for equality is efficiently performed on phenotype
level using a hash table. If a new solution is not a duplicate,
it always replaces the solution with the worst fitness.

Preliminary experiments indicated that a population size
of 100 works well with problems of different sizes and prop-
erties. Each GA run terminated when 100,000 solutions had
been evaluated without finding a new best solution. This cri-
terion ensures sufficient convergence in practice.

5 Experimental Comparison

Standard MKP test data proposed by Chu and Beasley [3, 4]
and publically available from OR-Library1 [1] were used to
practically examine the GA with the different biasing tech-
niques and two decoding heuristics. These test data con-
tain 10 problem instances for each combination ofm ∈
{5, 10, 30}, n ∈ {100, 250, 500}, andα ∈ {0.25, 0.5, 0.75}
with α = bi/

∑n
j=1 ri,j being thetightness ratio. Since the

optimal solution values for most of these problems are not
known, the quality of a solution is measured by the percent-
age gap of the objective valuef with respect to the optimal
value of the LP-relaxed problemfLP

max: %-gap= 100(fLP
max−

f)/fLP
max.

First of all, test runs were performed with the aim to com-
pare biasing techniques B1 to B4 for both decoding heuris-
tics H1 and H2 and examine the influence of different biasing
strengthsγ in the range from 0.01 to 100. Results of runs for
10 medium sized problem instances withm = 10, n = 250,
andα = 0.5 were averaged. Tables 1 and 2 and Fig. 3 show
%-gaps of best-of-run solutions and the numbers of evalua-
tions needed to find them.

In general, it can be seen that all four biasing techniques
work well for both decoding heuristics if the biasing strength
γ is larger than or equal to someworking boundγmin (e.g.
for H1 with B1: γmin ≈ 0.02). If γ lies below this bound, the
GA’s search space is too narrow; chromosomes are not able
to represent some promising solutions. Note that Julstrom
observed a similar robustness of the biasing strength above a
certain lower bound in a weight-coded GA for the traveling
salesperson problem [12].

Although differences are small, biasing techniques B2,
B3, and B4 perform better than B1. A reason for this slightly
poorer behavior of B1 seems to be that B1 distorts the original
problem by asymmetrically biasing it: The median modified
problem does not correspond to the original problem. For
both decoding heuristics, the biasing techniques which mul-
tiply profits by logarithmically or log-normally distributed
weights (B3 and B4) lead to the best results with the smallest
%-gaps if the biasing strengthγ is chosen only a bit larger
thanγmin. For largerγ the%-gap increases and differences
between the four biasing techniques become insignificant.

Regarding the number of evaluations, no significant dif-
ferences could be observed between the biasing techniques.
Up to γ ≈ 2, there is the general trend that smaller biasing
strengths lead to faster convergence. Obviously, a reason for
this is the narrower search space whenγ is smaller.

Considering this observations and also that B4 has the

1http://mscmga.ms.ic.ac.uk/info.html



Table 1: Average results for a weight-coded GA using decoding heuristic H1, biasing techniques B1 to B4, and different biasing
strengthsγ. All values are average values obtained from runs for 10 different problems withm = 10, n = 250, andα = 0.5.

H1 B1 B2 B3 B4
γ %-gap Evals %-gap Evals %-gap Evals %-gap Evals

0.01 0.465 21800 0.408 3880 0.349 20410 0.314 21080
0.02 0.372 24170 0.322 13490 0.294 9770 0.277 35060
0.05 0.301 31880 0.292 45780 0.267 24430 0.276 52350
0.10 0.297 22270 0.273 32420 0.273 39640 0.275 82340
0.15 0.286 30930 0.288 19490 0.291 69960 0.300 79390
0.2 0.311 78990 0.281 47850 0.292 98280 0.343 95650
0.3 0.311 56830 0.301 50160 0.304 108530 0.344 118030
0.5 0.319 91250 0.303 84890 0.353 122360 0.321 151720
0.7 0.332 154680 0.309 75640 0.323 92600 0.334 150240
1.0 0.320 151610 0.338 93160 0.340 115550 0.382 143510
1.5 0.366 125370 0.335 124370 0.348 147200 0.356 122920

2 0.330 169900 0.322 176440 0.322 164750 0.363 161690
5 0.366 164120 0.344 123760 0.362 132610 0.374 134970

10 0.362 199200 0.352 111650 0.391 158370 0.367 147830
20 0.371 193400 0.337 178700 0.350 157830 0.356 159400
50 0.390 155540 0.369 163740 0.358 139850 0.360 121500

100 0.372 145590 0.326 247290 0.382 115590 0.368 197460

Table 2: Average results for a weight-coded GA using decoding heuristic H2, biasing techniques B1 to B4, and different biasing
strengthsγ. All values are average values obtained from runs for 10 different problems withm = 10, n = 250, andα = 0.5.

H2 B1 B2 B3 B4
γ %-gap Evals %-gap Evals %-gap Evals %-gap Evals

0.01 4.525 24670 4.472 31230 4.152 36580 3.453 61690
0.02 4.181 70210 4.550 23590 3.543 18550 2.559 108370
0.05 3.474 49920 4.175 29800 2.364 89790 0.969 151890
0.10 2.614 85760 3.372 52600 1.199 121180 0.316 128030
0.15 1.978 94720 2.923 73820 0.632 89231 0.292 122030
0.2 1.454 120600 2.501 118480 0.371 87820 0.321 86580
0.3 0.347 132740 1.936 101230 0.321 97143 0.307 81360
0.5 0.368 126300 1.345 112840 0.311 143740 0.325 131600
0.7 0.338 130230 0.372 109220 0.323 121353 0.337 127622
1.0 0.329 147290 0.333 104100 0.335 143250 0.354 141000
1.5 0.326 147910 0.343 143960 0.347 102314 0.334 104870

2 0.345 164910 0.352 70980 0.352 90610 0.320 150230
5 0.349 104930 0.335 114900 0.317 180450 0.325 183210

10 0.342 141910 0.348 111500 0.329 160550 0.341 152390
20 0.355 172160 0.327 137090 0.350 157670 0.352 147230
50 0.353 193280 0.323 112710 0.355 149910 0.336 173210

100 0.356 118360 0.345 120420 0.342 160232 0.351 130520

smallest working boundsγmin for both decoding heuristics,
B4 with γ ≈ 0.05 for H1 and withγ ≈ 0.2 for H2 seem to
be the best choices for at least the used test problems. But
note that for decoding heuristic H1 biasing technique B3 per-
formes similarly well.

Some experiments regarding the comparison of the four

biasing techniques were also made with smaller and larger
problem instances of Chu’s test problem set. The obtained
results were very similar to those documented here. Also the
working boundsγmin and therefore the optimal value forγ
did not differ substantially. But nevertheless, note that the
optimal value forγ depends on the distributions of profits
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Figure 3: Average results for a weight-coded GA using decoding heuristic H1 and H2, biasing techniques B1 to B4, and
different biasing strengthsγ.

pj and resource consumption valuesri,j (but not on absolute
values).

Using B4 withγ = 0.05 for H1 andγ = 0.2 for H2, large
scale tests were performed for all of Chu’s test problems. Ta-
ble 3 shows average%-gaps of the solutions obtained when
applying heuristics H1 and H2 directly (without any GA) and
average results of the GA runs. Note that heuristic H1 led al-
ways to better solutions than H2. Furthermore, the solutions
found by both GA variants are in all cases substantially better
than those obtained by the heuristics solely.

Although the total average%-gaps for the GA with H1
and H2 as decoding heuristic do not differ much (H1: 0.59,
H2: 0.65), the GA with H1 is the clear winner: The GA with
H2 found only slightly better solutions for some small prob-
lems with few constraints (m = 5, n = 100). Furthermore,
significantly different are the number of evaluations needed
to find these solutions. In average the GA with H1 needed
only half the number of evaluations of the GA with H2. But
even more different are the associated computing times (mea-
sured on a Pentium II PC). Because of the larger computa-
tional complexity of H2, the GA with this decoding heuristic
is especially for the large problems up to a factor 20 slower.
In general, these results indicate clearly that H1 should be
prefered over H2 as decoding heuristic (very small problems
might be an exception).

The obtained results, especially those for H1, also com-
pare well to the results of the hybrid GAs proposed by Chu
and Beasley [3, 4], Raidl [18], and Gottlieb [6]. For most
problems, they report slightly smaller%-gaps, but on the
other hand more evaluations were performed per run. Fur-

ther tests using the same numbers of evaluations would be
necessary to make a fair comparison.

6 Conclusions and Future Work

This paper has described different variants of a novel coding
of solutions for the MKP. Each chromosome is a vector of
weights associated with items. A phenotype is obtained by
using the weights to generate a modified version of the orig-
inal problem and applying a decoding heuristic to it. Both
presented decoding heuristics work well, but the surrogate re-
laxation based method (H1) is in general preferable because
of the smaller computational effort and the slightly better re-
sulting solutions. The solutions obtained by the weight-coded
GA variants were in all cases substantially better than those
found by the heuristics alone.

Four different biasing techniques were presented and ex-
perimentally compared to each other. Although they all work
well if the biasing strength is larger than a certain working
bound, the method of multiplying profits by log-normally
distributed weights exhibits small advantages. If the biasing
strength is chosen to be only a bit larger than this working
bound, the best results are usually achieved, and the number
of evaluations needed by the GA to converge to good solu-
tions is significantly smaller. Note that the results obtained
for the different biasing techniques may also be of interest for
weight-coded GAs addressing other combinatorial optimiza-
tion problems.

An open question is how an optimal biasing strength can
be found in general. Beside the derivation of some heuristic



Table 3: Average results of tests on 270 problem instances with varyingm, n, andα: Shown are%-gaps obtained by applying
heuristics H1 and H2 directly and%-gaps of best-of-run solutions with needed evaluationsEvals and CPU timest obtained by
weight-coded GAs using decoding heuristics H1 and H2. Biasing technique B4 withγ = 0.05 for H1 andγ = 0.2 for H2 was
used. All values are average values determined from runs for 10 different problems.

H1 H2 GA with H1 GA with H2
m n α

%-gap %-gap %-gap Evals t [s] %-gap Evals t [s]
5 100 0.250 2.840 9.056 1.007 6370 4.4 0.989 22700 31.5

0.500 1.397 4.852 0.453 20350 14.0 0.455 20630 24.0
0.750 0.950 3.833 0.319 4520 3.1 0.318 10430 9.1
Avg. 1.729 5.914 0.593 10413 7.2 0.587 17920 21.5

5 250 0.250 1.026 4.839 0.256 47910 58.3 0.273 101000 588.3
0.500 0.530 3.969 0.127 53860 66.0 0.132 82630 368.0
0.750 0.309 2.811 0.080 29710 36.5 0.087 67630 184.0
Avg. 0.622 3.873 0.154 43827 53.6 0.164 83753 380.1

5 500 0.250 0.454 3.851 0.115 60860 136.2 0.126 199250 4198.1
0.500 0.217 2.536 0.053 105830 238.2 0.057 146760 2288.8
0.750 0.137 2.017 0.032 62180 140.7 0.037 114690 998.0
Avg. 0.269 2.802 0.067 76290 171.7 0.073 153567 2495.0

10 100 0.250 3.708 12.627 1.624 41322 29.6 1.707 50930 75.8
0.500 2.478 8.580 0.803 30560 22.3 0.827 42630 53.1
0.750 1.279 4.914 0.493 23380 17.1 0.519 40810 38.9
Avg. 2.488 8.707 0.973 31754 23.0 1.018 44790 55.9

10 250 0.250 1.754 9.812 0.589 79500 101.3 0.664 89340 544.4
0.500 0.801 5.788 0.276 52350 69.2 0.311 86580 407.0
0.750 0.528 3.711 0.161 33640 44.7 0.188 91430 266.6
Avg. 1.028 6.437 0.342 55667 72.1 0.388 89117 406.0

10 500 0.250 0.822 7.802 0.332 105390 246.9 0.385 129620 2838.9
0.500 0.403 5.216 0.150 42400 102.0 0.196 157080 2580.3
0.750 0.287 3.237 0.085 76920 189.4 0.126 149460 1379.0
Avg. 0.504 5.418 0.189 74903 179.4 0.236 145387 2266.1

30 100 0.250 11.087 14.568 3.067 8070 6.1 3.075 28960 49.4
0.500 4.339 10.403 1.376 30740 24.4 1.478 46960 68.9
0.750 2.345 5.751 0.848 18280 15.1 0.942 68170 77.0
Avg. 5.924 10.241 1.764 19030 15.2 1.832 48030 65.1

30 250 0.250 3.811 12.031 1.382 49710 69.1 1.615 143210 965.0
0.500 1.739 7.910 0.609 68840 102.3 0.706 89710 479.2
0.750 1.224 3.972 0.348 36820 58.4 0.449 101740 347.6
Avg. 2.258 7.971 0.780 51790 76.6 0.923 111553 597.3

30 500 0.250 2.217 8.955 0.785 133840 343.3 0.995 169330 4129.5
0.500 1.030 6.505 0.336 71650 199.9 0.447 200850 3737.3
0.750 0.524 3.452 0.195 85320 256.0 0.331 214830 2302.5
Avg. 1.257 6.304 0.439 96937 266.4 0.591 195003 3389.8

Total Average: 1.786 6.407 0.589 51179 96.1 0.646 98791.11 1075.19



formula,self adaption(i.e. the biasing strength is optimized
by the GA itself) might be a promising approach. Further-
more, there remain several other ways to bias the original
problem, and also other MKP heuristics may be suitable de-
coding heuristics.
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