
A WEIGHT-CODED GENETIC ALGORITHM FOR
THE MULTIPLE CONTAINER PACKING PROBLEM

Günther R. Raidl
Department of Computer Graphics, Vienna University of Technology

Karlsplatz 13/1861, 1040 Vienna, Austria
raidl@eiunix.tuwien.ac.at

Keywords: Combinatorial optimization, hybrid genetic
algorithm, weighted coding, multiple container packing
problem.

ABSTRACT

This paper presents a genetic algorithm (GA) approach to
the multiple container packing problem (MCPP), which
is a combinatorial optimization problem comprising sim-
ilarities to the knapsack problem and the bin packing
problem. A novel technique for encoding MCPP solu-
tions is used within the GA: The genotype is a vector of
numerical weights associated with items of the problem.
The corresponding phenotype is obtained by temporarily
modifying the original problem according to these weights
and applying a greedy decoding heuristic for the MCPP
to the new problem. This solution is then evaluated using
the original problem data again. Four different decoding
heuristics are discussed. They were tested in a weight-
coded steady-state GA on a variety of MCPP instances.
Two of the heuristics are clearly more effective than the
others, and the GA using them found solutions of signifi-
cantly higher quality than direct-encoded and order-based
GAs from a previous work.

1. INTRODUCTION

The multiple container packing problem (MCPP) is a
combinatorial optimization problem with applications in
various fields such as truck loading and air baggage han-
dling. A set of n items and a set of C equal containers
are given. The value vj (j = 1, . . . , n) and (scalar) size sj

of each item are known. Each container can hold items
with a total size up to a maximum container size Smax.
The goal is to pack a subset of the n items into the C
containers in such a way that the total value of all packed
items is maximized.

Formally, the MCPP can be stated in this way:

maximize V =

C∑
i=1

n∑
j=1

vjxi,j , (1)

subject to

C∑
i=1

xi,j ≤ 1, j = 1, . . . , n, (2)

n∑
j=1

sjxi,j ≤ Smax, i = 1, . . . , C, (3)

xi,j ∈ {0, 1}, i = 1, . . . , C, j = 1, . . . , n,

with sj > 0, vj > 0, Smax > 0 .

The variables searched for are xi,j (i = 1, . . . , C, j =
1, . . . , n): If item j is to be packed into container i, xi,j is
set to 1, otherwise to 0. The n constraints in (2) ensure
that each item is packed into a single container only, the
C constraints in (3) guarantee that the total size of all
items packed into each container does not exceed Smax.

The MCPP comprises similarities to the well known knap-
sack problem (KP) and bin packing problem (BPP). The
KP is equivalent to the special case of the MCPP with
only a single container (C = 1). This problem is NP-
complete, but efficient approximation algorithms have
been developed for obtaining near optimal solutions, see
e.g. [15]. In the BPP, the goal is to minimize the number
of containers necessary to pack all n items while not vio-
lating any size constraint. In contrast to the MCPP, the
values of items do not play a role. The BPP in its gen-
eral form is also NP-complete [6]. The MCPP can also be
seen as a combination of the KP and the BPP, since the
MCPP can be divided into two strongly dependent parts
which must be solved simultaneously: (a) select items for
packing, and (b) distribute chosen items over available
containers. See [20] for a more detailed comparison of the
MCPP to other combinatorial optimization problems.

Because of the NP-completeness of the KP and BPP it
is obvious that the MCPP is NP-complete [7]. Therefore,
exhaustive search algorithms such as branch-and-bound
that lead to globally optimal solutions are in general too
time-consuming and can only be applied to very small
problems. For larger instances of such problems genetic

algorithms (GAs) [1, 8, 16] have already proven to be
suitable for finding near-optimal solutions.

This paper presents a GA that encodes candidate solu-
tions via a technique called weight-coding : A solution to
a combinatorial optimization problem is represented by a
vector of weights that modifies the original problem. A
non-evolutionary decoding heuristic is applied to get the
actual solution which is then evaluated using the original,
unmodified problem. Such encodings have already been
used successfully in some other problems such as the opti-
mum communications spanning tree problem [18], the rec-
tilinear Steiner tree problem [10], the 3-satisfiability prob-
lem [5], the minimum weight triangulation problem [2],
and the traveling salesman problem [12, 13]. An overview
of various weight-coded GAs is given by Julstrom [11].

The next section provides a short overview of prior GA
approaches to the MCPP and the related KP and BPP.
Section 3 describes the weighted coding and four possible
decoding heuristics. A steady-state GA that uses weight-
coding is presented in section 4, and section 5 documents
results of an experimental comparison. These experi-
ments indicate that the performance of the weight-coded
GA strongly depends on the decoding heuristic. Using a
suitable heuristic, the new GA approach outperforms pre-
vious hybrid GAs with traditional encodings on nearly all
test problems.

2. Prior approaches

Several researchers have developed successful GAs for the
KP and the more difficult multi-constraint KP, including
Chu [3], Chu and Beasley [4], Hinterding [9], Khuri et. al.
[14], Olsen [17], and Raidl [19]. Falkenauer [6] presented
a hybrid GA for the BPP.

In [20], Raidl and Kodydek observed that these GA ap-
proaches can be divided into two categories according to
the solution encoding techniques: Some algorithms use
direct encoding (DE), meaning that a chromosome of the
GA contains a gene for each item indicating directly if
the item is supposed to be packed into the knapsack (or
into which container the item should be packed). In this
case, infeasible solutions must be handled by using a re-
pair algorithm or adding a penalty term to the objective
function. On the other hand, some GAs use order-based
encoding (OBE) in which a chromosome contains a per-
mutation of all items. The actual solution is obtained by
applying a first-fit algorithm: In the order given by the
permutation, one item after the other is inserted into the
initially empty knapsack (containers) until a capacity con-
straint is violated. When applying OBE, special recom-
bination and mutation operators such as order crossover
and swap mutation (see [1, 16]) must be used to generate
new chromosomes that contain valid permutations again.

Starting from the ideas of the various GAs for the KP
and BPP, Raidl and Kodydek [20] developed two effec-
tive GA variants for the MCPP based on these encoding
schemes. Additionally, problem-specific knowledge was

procedure Heuristic A;
for all containers i do

p ← 0; /* occupied size of container */
for all unpacked items j sorted according to

decreasing v′j (or r′j) do
if p + sj ≤ Smax then

pack item j into container i;
p ← p + sj ;

done;

Figure 1: A greedy decoding heuristic for the MCPP.

incorporated into both approaches using local improve-
ment operators: Each newly generated solution may be
improved by trying to pack its unpacked items into a
container that has not reached its maximum total size
yet. Such an improvement is performed in a Lamarckian
way, therefore, the genotype is changed accordingly. The
experimental comparison in [20] indicates better perfor-
mance for the OBE approach in case of fewer items and
for the DE approach in case of larger problems. Local
improvement operators lead in many cases not only to
better results, but also to shorter running times because
of faster convergence.

3. A Weighted Coding for the MCPP

In a GA, a solution to the MCPP can be represented
by a weight vector ~w = (w1, w2, . . . , wn). Weight wj is
associated with item j. To decode such a chromosome,
a modified problem is generated by adding these weights
to the relative item values rj = vj/sj (vj : absolute item
value, sj : item size):

r′j = rj + wj . (4)

While item sizes remain unchanged, new absolute item
values are derived as follows:

v′j = r′jsj = vj + sjwj . (5)

A second step applies a greedy decoding heuristic for the
MCPP to the modified problem to obtain the phenotype.
Finally, a fitness value is determined for the phenotype
using the original, unmodified problem data.

A suitable decoding heuristic should not be too time-
demanding since it must be performed for each new chro-
mosome in the GA. Further, it should provide strong lo-
cality in the sense that small variations of the genotype
(and therefore of the problem) will usually lead to rela-
tively small changes in the phenotype. The pseudo-code
of two good heuristics is shown in Figs. 1 and 2 and dis-
cussed in the following sections.

3.1. Decoding Heuristic A

The first greedy heuristic for the MCPP is straightfor-
ward. One container after the other is filled by going

through all unpacked items and packing all items not vi-
olating the size constraint into the current container. An
essential decision in this algorithm is the order of pro-
cessing the items. Clearly, items processed first are more
likely to fit into a container than items coming later. Since
we want to maximize the total value of all packed items,
valuable items should be favored and ranked at the be-
ginning. An obvious processing order is obtained by sort-
ing the items according to decreasing absolute values v′j .
Equally valuable items are ranked in random order.

On the other hand, favoring items with high values v′j
is not always a good decision: High-valued items can be
expected to have above-average sizes, and fewer items will
therefore fit into a container. Items with average or even
small values but very small sizes might often be better
choices. Therefore, it makes also sense to sort the items
according to decreasing relative values r′j .

To ensure that the GA is in principle capable of generat-
ing the globally optimal solution to an MCPP instance,
all possible item permutations must be reachable during
decoding. This means that the range [−W, W] of possible
weight values wj must be large enough so that each item
can become both most and least valuable in the modified
problem. On the other hand, the range of values should
not be unnecessarily large so that the search space of the
GA remains as small as possible. For a GA with the rel-
ative value (r′j) ordering heuristic A, the smallest W is
therefore

W =

(
max

j=1,...,n
rj − min

k=1,...,n
rk

)/
2 . (6)

The smallest W for a GA with absolute value (v′j) order-
ing heuristic A is

W = max
j=1,...,n

((vmax − vj)/sj , (vj − vmin)/sj) (7)

with vmax = max
k=1,...,n

vk, vmin = min
k=1,...,n

vk.

3.2. Decoding Heuristic B

Decoding heuristic B (Fig. 2) is more sophisticated; it fills
the containers in parallel. For one item after the other,
the container where the item fits best is identified. This is
the container where the capacity constraint would not be
violated and the least space would remain when adding
the item. If such a container exists, the item is packed
into it; otherwise, it remains unpacked. The algorithm
tries to simultaneously exploit the remaining space in all
containers as well as possible. As in heuristic A, the or-
der of processing the items is critical and more valuable
items should be tried first. Therefore, the items are again
sorted according to decreasing absolute values v′j or rela-
tive values r′j .

Again, the globally optimal solution can in principle be
generated by a GA using heuristic B if all possible per-
mutations can be achieved as item processing orders. The

procedure Heuristic B;

~p ← ~0; /* occupied sizes of containers */
for all items j sorted according to

decreasing v′j (or r′j) do
/* search container c where item j fits and

least space cs remains */
c = 0;
cs = Smax;
for all containers i do

if (pi + sj ≤ Smax) ∧ (Smax − pi − sj < cs) then
c ← i;
cs ← Smax − pi − sj ;

if c > 0 then
pack item j into container c;
pc ← pc + sj ;

done;

Figure 2: A more sophisticated decoding heuristic.

range of values [−W, W] for the weights wj should there-
fore be the same as for heuristic A, as described in Eqs.
(6) and (7).

The computational effort of both decoding heuristics is
O(n log n) for sorting the items plus O(C n) for the two
nested loops. For larger n and problems where most items
can be packed into containers, heuristic A can be imple-
mented slightly more efficiently than heuristic B if a heap
is used for storing all unpacked items in sorted order dur-
ing the inner loop.

4. The Weight-Coded GA

The GA used for the experiments the next section de-
scribes is a traditional steady-state GA with binary tour-
nament selection. Within a chromosome, weights wj are
directly stored as real values. Initial solutions are gener-
ated by assigning each weight a random value from the in-
terval [−W, W]. In early experiments, uniform crossover
applied with a probability of 50% proved to be slightly
better than one- or two-point crossover. The mutation
operator randomly replaces a value with a new random
value with a probability of 3/n. A smaller probability
increases the danger of premature convergence; a much
larger probability degrades performance.

It proved to be essential to disallow duplicates in the
population. This is accomplished by using a replacement
scheme that only accepts new solutions different from all
others in the population. The test for equality is effi-
ciently performed on phenotype level using a hash table.
If a new solution is not a duplicate, it always replaces the
solution with the worst fitness.

Preliminary experiments indicated that a population size
of 100 works well with problems of very different sizes
and properties. Each GA run terminated when 200,000
solutions have been evaluated without finding a new best

Table 1: Gaps of best-of-run solutions with needed numbers of evaluations evals and CPU times t obtained by
weight-coded GAs using heuristics A and B with absolute and relative value item ordering (average values from
10 runs/problem).

Problem WEAv WEBv WEAr WEBr
n / C / Smax gap evals t[sec] gap evals t[sec] gap evals t[sec] gap evals t[sec]

30 / 3 / 100 2.74 5680 0.6 2.74 8860 1.2 2.74 380 0.1 2.74 540 0.1
30 / 6 / 100 2.32 11280 1.7 2.73 9520 1.5 2.32 4280 0.7 2.32 3040 0.5
30 / 9 / 100 2.90 2220 0.3 2.90 1440 0.2 2.90 5620 0.9 2.90 3160 0.6

30 / 12 / 100 1.05 27740 4.4 1.15 98900 16.9 1.05 12280 1.9 1.05 6520 1.2
50 / 5 / 100 3.89 34940 7.4 3.89 40260 9.0 2.08 3760 0.9 2.08 3420 0.9

50 / 10 / 100 3.38 41420 8.5 3.38 14000 3.4 0.87 79840 20.7 0.87 104860 29.2
50 / 15 / 100 2.16 44560 10.3 2.16 62660 16.2 1.67 42740 10.4 1.67 17400 5.2
50 / 20 / 100 1.05 41080 9.3 0.99 28260 8.0 1.05 144860 41.5 0.94 74460 24.1

200 / 20 / 100 2.45 25260 28.6 2.44 43180 49.7 1.34 119980 135.6 1.34 52080 65.7
200 / 40 / 100 2.00 123280 144.6 1.91 79900 110.6 1.26 404800 522.5 1.18 251540 382.4
200 / 60 / 100 1.67 326520 492.2 1.58 280500 459.7 1.06 819100 1237.0 0.87 446520 804.8
200 / 80 / 100 2.14 160220 263.9 2.01 109640 213.7 1.64 810300 1346.9 1.38 267920 574.5

30 / 3 / 200 1.67 21980 3.0 1.67 17480 2.5 0.56 4280 0.7 0.56 5920 1.0
30 / 3 / 300 1.45 78780 9.8 1.47 69540 10.3 0.40 79280 11.1 0.40 71200 11.8
30 / 3 / 400 0.33 8940 1.1 0.30 83680 12.4 0.26 55400 9.1 0.26 67060 11.0
50 / 5 / 200 1.16 28620 5.7 1.09 71420 15.4 0.18 46360 11.6 0.18 55160 14.3
50 / 5 / 300 0.80 168540 34.3 0.83 99480 21.5 0.06 93980 24.4 0.06 111340 28.9
50 / 5 / 400 1.34 216520 49.5 1.25 114320 25.4 0.17 112920 28.4 0.17 91880 23.8

200 / 20 / 200 1.42 338160 320.1 1.36 300660 353.2 0.27 316380 342.4 0.25 274480 339.5
200 / 20 / 300 1.91 586920 551.5 2.00 581160 670.5 0.14 594560 583.9 0.14 371940 450.5
200 / 20 / 400 1.37 559760 501.4 1.36 446600 505.4 0.13 402040 467.0 0.10 338400 416.4

Average 1.87 135830 116.6 1.87 121974 119.4 1.06 197769 228.5 1.02 124707 151.7

solution. This criterion ensures sufficient convergence in
practice. For many of the experiments, the GA could
have been stopped much earlier, but we were primarily
interested in finding high-quality solutions and only sec-
ondarily in CPU times.

5. Experimental Comparison

The test problem set of Raidl and Kodydek [20]1 was
used to evaluate the new weight-coded GA variants. This
set consists of 21 problems with different numbers of
items (n = 30, 50, 200), different numbers of contain-
ers (C = 3, . . . , 80), and different container capacities
(Smax = 100, . . . , 400). Item sizes sj were randomly cho-
sen out of the interval [5, 95], giving an average item size
of s = 50. The item values vj were generated by multi-
plying the size sj of each item by a relative item value rj

randomly taken from [0.8, 1.2]. More details about these
test problems can be found in [20].

Since the optimal solution values for most of these prob-
lems are not known, the quality of a final solution is mea-
sured by the percentage difference (the gap) between the
solution’s total value of packed items V and the optimal
value V LP

max of the LP-relaxed problem. This upper bound
can be determined for any MCPP by sorting all items ac-
cording to their relative values rj and summing up the
item values vj starting with the most valuable item until
a total size C Smax is reached. The last item is counted

1This test problem set is publicly available from:
http://www.apm.tuwien.ac.at/pub/TestProblems/mcpp

proportionately. Knowing the LP optimum, the percent-
age difference is: gap = 100% (V − V LP

max)/V LP
max.

For each problem and each GA variant, 10 independent
runs were performed and averaged. Table 1 shows re-
sults for weight-coded GAs using the A and B decoding
heuristics with absolute values v′j and relative values r′j
as criteria for the order of processing items (algorithms
WEAv, WEBv, WEAr, and WEBr). The table contains
gaps of best-of-run solutions and the numbers of evalu-
ations together with the CPU times for obtaining these
solutions. The gaps of all four test series are presented
graphically in Fig. 3.

In all test problems, the GAs with the heuristics based
on relative value item ordering outperformed the heuris-
tics that used absolute value item ordering. WEAr and
WEBr found solutions of much higher qualities for prob-
lems with many items (n = 50, 200) and relatively few
containers. No significant quality and CPU time dif-
ferences could be observed between WEAv and WEBv.
Concerning the CPU time, WEAr and WEBr proved to
be faster than WEAv and WEBv for smaller problems
and slower for problems involving many items and small
containers. In most cases, WEBr found slightly better so-
lutions or—for the simpler problems—the same solutions
than WEAr. On average, but especially for large prob-
lems (n = 200), WEBr was also faster and needed fewer
evaluations than did WEAr.

Table 2 shows the gaps of solutions obtained by apply-
ing all four heuristics directly (without any GA) to the
original problems. In general, the heuristics using rel-

30
 /

3
/ 1

00

30
 /

6
/ 1

00

30
 /

9
/ 1

00

30
 /

12
 /

10
0

50
 /

5
/ 1

00

50
 /

10
 /

10
0

50
 /

15
 /

10
0

50
 /

20
 /

10
0

20
0

/ 2
0

/ 1
00

20

0
/ 4

0
/ 1

00

20
0

/ 6
0

/ 1
00

20
0

/ 8
0

/ 1
00

30
 /

3
/ 2

00

30
 /

3
/ 3

00

30
 /

3
/ 4

00

50
 /

5
/ 2

00

50
 /

5
/ 3

00

50
 /

5
/ 4

00

20
0

/ 2
0

/ 2
00

20
0

/ 2
0

/ 3
00

20
0

/ 2
0

/ 4
00

Problem: n / C / Smax

0

1

2

3

4
%

−
g

a
p

 WEAv

 WEBv

 WEAr

 WEBr

Figure 3: Average gaps of final solutions obtained by the four variants of weight-coded GAs.

Table 2: Gaps of solutions obtained by applying heuristics
only.

Problem Av Bv Ar Br
n / C / Smax gap gap gap gap

30 / 3 / 100 5.64 5.64 5.97 5.97
30 / 6 / 100 13.91 13.91 4.95 4.95
30 / 9 / 100 6.02 6.02 8.26 4.85

30 / 12 / 100 3.81 3.67 8.86 8.86
50 / 5 / 100 5.76 5.76 3.27 3.27

50 / 10 / 100 7.12 7.12 3.14 1.97
50 / 15 / 100 6.60 6.60 8.35 4.24
50 / 20 / 100 4.36 3.81 7.79 6.37

200 / 20 / 100 4.44 4.41 2.84 1.80
200 / 40 / 100 8.29 8.22 4.43 2.71
200 / 60 / 100 6.64 6.51 3.34 2.65
200 / 80 / 100 6.60 6.60 4.76 3.01

30 / 3 / 200 5.37 5.37 2.47 2.47
30 / 3 / 300 5.90 5.90 1.47 1.47
30 / 3 / 400 3.09 3.29 0.75 0.75
50 / 5 / 200 8.98 8.98 2.32 2.32
50 / 5 / 300 3.87 3.87 0.99 0.99
50 / 5 / 400 3.42 3.42 2.03 1.14

200 / 20 / 200 5.01 5.01 0.92 0.85
200 / 20 / 300 4.93 4.82 0.59 0.61
200 / 20 / 400 2.77 2.77 0.59 0.43

Average 5.83 5.79 3.72 2.94

ative value ordering found significantly better solutions
than those using absolute value ordering. The solutions
directly obtained by any heuristic were poor compared to
final solutions of the various GAs.

Table 3 contains results of the GAs Raidl and Kodydek
presented in [20]. These are direct-encoded (DE) and
order-based encoded (OBE) approaches with optional lo-
cal improvement operators (DEI and OBEI). For nearly
all test problems the new weight-coded GAs with relative

Table 3: Average gaps of final solutions from direct-
encoded and order-based GAs (from [20]).

Problem DE DEI OBE OBEI
n / C / Smax gap gap gap gap

30 / 3 / 100 2.74 2.74 3.16 2.74
30 / 6 / 100 2.69 2.45 2.82 2.32
30 / 9 / 100 3.31 3.01 3.25 2.90

30 / 12 / 100 2.48 1.58 1.42 1.05
50 / 5 / 100 2.60 2.58 2.96 2.28

50 / 10 / 100 1.43 1.10 1.73 1.58
50 / 15 / 100 2.53 1.99 2.35 2.00
50 / 20 / 100 2.58 1.50 2.03 1.67

200 / 20 / 100 1.91 1.65 2.84 2.57
200 / 40 / 100 1.94 1.64 2.52 2.49
200 / 60 / 100 1.99 1.48 2.10 2.28
200 / 80 / 100 2.89 2.09 2.36 2.62

30 / 3 / 200 0.68 0.66 0.96 0.68
30 / 3 / 300 0.50 0.47 0.53 0.44
30 / 3 / 400 0.39 0.37 0.45 0.33
50 / 5 / 200 0.42 0.35 0.88 0.60
50 / 5 / 300 0.51 0.30 0.48 0.70
50 / 5 / 400 0.40 0.39 0.53 0.53

200 / 20 / 200 0.71 0.51 1.26 2.49
200 / 20 / 300 0.45 0.27 0.76 1.64
200 / 20 / 400 0.32 0.25 0.41 0.64

Average 1.60 1.30 1.71 1.65

value ordering (WEAr and WEBr) found solutions with
smaller gaps than those prior approaches. Furthermore,
significantly fewer evaluations were usually needed by all
the weight-coded GAs.

A reason for the better performance of the weight-coded
GAs seems to be that the recombination and mutation op-
erators are not as disruptive to the phenotypes as in case
of the prior GAs. In DE(I) as well as in OBE(I), two geno-
typically very similar solutions might represent very dif-

ferent phenotypes. The genotype/phenotype mappings of
the proposed weight-coded GAs, especially WEBr, seem
to have a much stronger locality. Similar genotypes usu-
ally map to similar phenotypes, and the recombination
can therefore produce offsprings that inherit much of the
parental phenotypical structure.

6. Conclusions and Future Work

This paper has presented a new coding of solutions to the
MCPP using vectors of weights. For decoding solutions,
two substantially different heuristics for the MCPP were
described, and each of them can use either absolute or
relative value ordering. The coding, the decoding algo-
rithms, and various GA characteristics were tested using
21 different MCPP instances. The results indicate bet-
ter performance for relative value ordering. The heuristic
WEBr, which fills containers in parallel, works in many
cases slightly better than WEAr. WEAr and WEBr de-
cisively outperform the more traditional direct-encoded
and order-based GAs from [20] regarding the quality of
final solutions.

Future work will include the examination of other, more
sophisticated decoding heuristics that also may involve
some kind of local search. Currently, we are trying to
understand the implications of using weight-coding with
different decoding heuristics for the search space of the
GA. Furthermore, similar weight-coded GAs may also be
suited for approaching related problems as the (multi-
constraint) knapsack problem or the bin packing problem.

References

[1] Bäck T., Fogel D. B., Michalewicz Z.: Handbook of
Evolutionary Computation, Oxford University Press,
1997.

[2] Capp K., Julstrom B.: A Weight-Coded Genetic
Algorithm for the Minimum Weight Triangulation
Problem, in Proc. of the 1998 ACM Symposium on
Applied Computing, ACM Press, 1998, pp. 327–331.

[3] Chu P. C.: A Genetic Algorithm Approach for Com-
binatorial Optimization Problems, Ph.D. thesis at
The Management School, Imperial College of Sci-
ence, London, 1997.

[4] Chu P. C., Beasley J. E.: A Genetic Algorithm
for the Multidimensional Knapsack Problem, work-
ing paper at The Management School, Imperial Col-
lege of Science, London, 1997.

[5] Eiben A. E., Van der Hauw J. K.: Solving 3-SAT
by GAs adapting constraint weights, in Proc. of the
1997 IEEE Int. Conference on Evolutionary Compu-
tation, Indianapolis, IN, 1997, pp. 81–86.

[6] Falkenauer E.: A Hybrid Grouping Genetic Algo-
rithm for Bin Packing, working paper at CRIF In-
dustrial Management and Automation, CP 106-P4,
50 av. F. D. Roosevelt, Brussels, Belgium, 1994.

[7] Garey M. D., Johnson D. S.: Computers and Intrac-
tability: A Guide to the Theory of NP-Completeness,
Freeman, San Francisco, 1979.

[8] Goldberg D. E.: Genetic Algorithms in Search, Op-
timization and Machine Learning, Addison–Wesley,
1989.

[9] Hinterding R.: Mapping, Order-independent Genes
and the Knapsack Problem, in Proc. of the 1st IEEE
Int. Conference on Evolutionary Computation 1994,
Orlando, FL, 1994, pp. 13–17.

[10] Julstrom B.: Representing Rectilinear Steiner Trees
in Genetic Algorithms, in Proc. of the 1996 ACM
Symposium on Applied Computing, ACM Press,
1996, pp. 245–250.

[11] Julstrom B.: Strings of Weights as Chromosomes in
Genetic Algorithms for Combinatorial Problems, in
Proc. of the 3rd Nordic Workshop on Genetic Algo-
rithms and their Applications, Vaasa, Finland, 1997,
pp. 33–48.

[12] Julstrom B.: Comparing Decoding Algorithms in
a Weight-Coded GA for TSP, in Proc. of the
1998 ACM Symposium on Applied Computing, ACM
Press, 1998, pp. 313–317.

[13] Julstrom B.: Insertion Decoding Algorithms and Ini-
tial Tours in a Weight-Coded GA for TSP, in Proc. of
the 3rd Genetic Programming Conference, Madison,
1998, pp. 528–534.

[14] Khuri S., Bäck T., Heitkötter J.: The Zero/One Mul-
tiple Knapsack Problem and Genetic Algorithms, in
Proc. of the 1994 ACM Symposium on Applied Com-
puting, ACM Press, 1994, pp. 188–193.

[15] Martello S., Toth P.: Knapsack Problems: Algo-
rithms and Computer Implementations, J. Wiley &
Sons, 1990.

[16] Michalewicz Z.: Genetic Algorithms + Data Struc-
tures = Evolution Programs, Springer, Berlin, 1992.

[17] Olsen A. L.: Penalty Functions and the Knapsack
Problem, in Proc. of the 1st Int. Conference on Evo-
lutionary Computation 1994, Orlando, FL, 1994, pp.
559–564.

[18] Palmer C. C., Kershenbaum A.: Representing Trees
in Genetic Algorithms, in Proc. of the 1st Int. Con-
ference on Evolutionary Computation 1994, Orlando,
FL, 1994, pp. 379–384.

[19] Raidl G. R.: An Improved Genetic Algorithm for the
Multiconstrained 0–1 Knapsack Problem, in Proc. of
the 1998 IEEE International Conference on Evolu-
tionary Computation, Anchorage, Alaska, 1998, pp.
207–211.

[20] Raidl G. R., Kodydek G.: Genetic Algorithms for
the Multiple Container Packing Problem, in Proc. of
the 5th Int. Conference on Parallel Problem Solving
from Nature, Amsterdam, The Netherlands, 1998,
pp. 875–884.

