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Abstract This paper introduces a genetic algo-
rithm (GA) for tagging point features on images
with text labels. The goal is to place all labels in
a way that minimizes overlaps and simultaneously
consider predefined position preferences. The pro-
posed GA includes several problem dependent im-
provements: First, a preprocessing step reduces the
search space in a safe way. Second, the starting
population of the GA is generated in a heuristic
way, which enables a faster convergence but nev-
ertheless ensures the presence of enough diversity.
Third, each newly generated solution is locally im-
proved before its evaluation. The proposed GA is
empirically compared to a very efficient simulated
annealing approach using several randomly gener-
ated test cases.
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1 Introduction

Tagging graphical objects with text labels is a
fundamental task in generating informational
images. This problem arises most often in au-
tomated cartography, though it occurs also fre-
quently in the production of many other types
of informational graphics as e.g. scatterplots.
A major factor affecting the clarity of the final
image is the degree to which labels obscure dis-
play features including other labels as a result
of spatial overlap.
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Figure 1: Possible label positions relative to a
given point and their desirability.

In cartography, three different label place-
ment tasks are distinguished [11, 7]: Labeling
of point features (e.g. cities, peaks of moun-
tains), line features (e.g. streets, rivers), and
area features (e.g. countries, seas). While de-
termining the optimal labeling of point features
is a very different task from labeling lines or ar-
eas, the three categories share a common com-
binatorial aspect when dealing with multiple
features placed near to each other: The com-
plexity arises because the placement of a sin-
gle label usually has global consequences due
to label-label overlaps [3].

In this work, we concentrated on the point-
feature label placement (PFLP) problem, which
can be stated as follows: A set of n points is
given, each of them must be labeled by assign-
ing its label to one of m predefined positions.
A complete label placement is represented by
a vector ~x = (x1, . . . , xn), where each compo-
nent xi ∈ {1, 2, . . . , m} (i = 1, . . . , n) identifies
the assigned position of label i. The eight stan-
dard positions for text labels most commonly
used in cartography [3, 4] are shown in Fig. 1.
Imhof discusses in [11] many of the concerns
affecting label placement. Figure 2 shows ex-
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Figure 2: Small examples for (a) a good and
(b) a bad point-feature label placement.

amples for good and bad labelings. Two goals
stand out as being of particular importance:
Minimizing the degree to which labels overlap
and obscure other features and maximizing the
degree to which labels are unambiguously and
clearly associated with the features they iden-
tify. For a specific label placement ~x the first
goal can be expressed in a scalar value Conf (~x)
by counting the number of conflicting labels
that at least partially overlap any other label or
image feature [3, 11, 17]. The second criterion
can approximately be evaluated by assigning a
relative desirability value to each possible la-
bel position and basically calculating the sum
of the values of all label positions used in the
specific placement ~x [2, 3, 4]. In cartography,
the upper right position is usually preferred,
and desirability values correspond to the po-
sition numbers j = 1, 2, . . . , m as depicted in
Fig. 1 (smaller values indicate more desirable
positions).

According to these goals and corresponding
to [2, 3, 4], the following objective function f ,
which should be minimized, is used within this
work for evaluating a label placement ~x:

f(~x) = Conf (~x) +
n∑

i=1

xi − 1
m

. (1)

The second term adds a position penalty de-
termined out of the rank (desirability value)

of each actual label position to the number of
conflicting labels. Since the position penalty
for a single label lies in [0, (m− 1)/m], a label
overlap always counts more than assigning the
label to its least desired position and avoiding
any conflict.

Marks and Shieber [13] and Formann and
Wagner [8] have independently shown that
the PFLP and various variants of it are NP-
complete. Note that NP-completeness is also
already given if only label conflicts are mini-
mized and position desirabilities are ignored.

2 Algorithms for PFLP

Various algorithms for PFLP were already
published. As for any other NP-complete
problem, these approaches can be divided into
two categories: Exhaustive search algorithms,
which are complete but too time expensive,
even for moderately sized problems, and in-
complete heuristics or local search algorithms,
which do not guarantee to find the optimal la-
bel placement.

The approaches from Doerschler and Free-
man [6], which use a rule-based system, and
Jones [12], fall into the category of exhaustive
search algorithms. A greedy heuristic, which
avoids the high effort of backtracking needed in
the exhaustive methods altogether, is discussed
by Yoeli [17]. In [18], Zoraster addresses PFLP
by formulating it as a 0–1 integer programming
problem and applying mathematical program-
ming techniques to find nearly optimal solu-
tions in a reasonable amount of time. Chris-
tensen et al. presented in [4] a relatively simple
discrete gradient descent method, thus a local
search technique, which gives surprisingly good
results. A more sophisticated gradient descent
method is presented by Hirsch in [10].

In [2, 3], Christensen, Marks, and Shieber
address PFLP by using a simulated annealing
(SA) algorithm: This stochastic gradient de-
scent method starts with a randomly created
label placement ~x. In a loop, a new solution
~x′ is generated by copying ~x and reassigning



a single, randomly chosen label to a new ran-
dom position. The new solution ~x′ is accepted
to be the current solution and parent for the
next pass if it is better than ~x. But even if ~x′ is
worse, it is accepted with some probability con-
trolled by a temperature parameter T , which
decreases over time. This behavior makes it
possible for the algorithm to escape from lo-
cal optima and explore the whole search space.
Since the modification from one solution (~x) to
the next (~x′) is only very small, the objective
value of ~x′ can be determined incrementally by
calculating the objective value change ∆f and
adding it to the score of ~x. This approach is far
more efficient than recalculating the objective
value of ~x′ from scratch.

An experimental comparison of various, very
different algorithms for PFLP is presented by
Christensen, Marks, and Shieber in [4]. These
tests indicated the best performance (concern-
ing running time and quality of found solu-
tions) for the SA approach. Furthermore, the
results for Zoraster’s and Hirsch’s methods
were slightly better than for the simple dis-
crete gradient descent method. Empirical tests
of algorithms for a variant of PFLP in which
the sizes of labels may also be adapted are pre-
sented by Christensen, Friedman, Marks, and
Shieber in [5]. Again, a SA approach per-
formed best.

3 A GA for PFLP

Genetic algorithms (GAs) are known to be
robust, stochastic search methods applicable
to a great variety of difficult problems, see
[1, 9, 14] for a general introduction. Especially
for many combinatorial problems as e.g. the
traveling salesman problem [14] or variants of
the knapsack problem [15], GAs have proven to
be very well suited and sometimes much more
efficient than other known optimization tech-
niques. Since a GA works on a population of
solutions and not only with a single current
solution as SA or similar techniques, it has
greater potentialities to escape from local op-
tima without completely losing found regions

in the search space containing high quality so-
lutions. Because of these properties, it seems
to be interesting to apply a GA to PFLP.

Inspired by several previous GAs for com-
binatorial optimization problems (especially
[15]), a steady-state GA with tournament se-
lection and a replacement scheme which elim-
inates the worst solution or the last one gen-
erated in case of duplicates is used as a ba-
sis instead of the traditional generational GA
[9, 14]. For more details about the proposed
GA, see also [16].

An essential decision for applying a GA to
any problem is the way of encoding a solution.
In case of PFLP, the most natural way surely
is to directly use vector ~x. This enables the us-
age of the traditional recombination operators
as e.g. uniform crossover [9, 14]. Mutation is
performed by setting a randomly selected xi

to a new random value (random replacement
mutation) – this is exactly the same as the
method of generating a new solution in the SA
approach.

Each new solution generated by the applica-
tion of selection, recombination, and mutation
must be evaluated. Unfortunately, a fast incre-
mental calculation of the objective value (as in
the SA approach) is not possible because an
offspring solution usually contains much more
than one changed element when compared to
each of its two parental solutions. To make the
evaluation of solutions nevertheless as efficient
as possible, a conflict table created in an initial-
ization phase prior to the GA run holds infor-
mations about possible conflicts.1 This conflict
table consists of two parts, namely the conflict
level array ci,j and the conflict references array
Pi,j (i = 1, . . . , n, j = 1, . . . , m):

A conflict level ci,j is set to 0 (“safe”) if po-
sition j of label i does not overlap any fixed
image feature (as another point) and can never
be in conflict with any other label. If the la-
bel position (i, j) overlaps any part of a fixed
image feature, the conflict level ci,j is set to

1Note that also the SA approach uses a compara-
ble but more primitive data structure for speeding up
evaluation.



2 1

34

12

3
2

3

1

4

4

Label 1

Label 3

Label 2

ci,j :

j\i 1 2 3
1 0 2 0
2 0 1 0
3 ∞ 1 0
4 0 1 1

Pi,j :

P2,1 = {(1, 3), (3, 4)}
P2,2 = P2,3 = P2,4 =

= {(1, 3)}
P3,4 = {(2, 1)}

Figure 3: An example arrangement (m = 4)
and its conflict table: conflict levels ci,j and
conflict references Pi,j .

∞ marking the position as “hopeless”. Other-
wise, ci,j is set to the total number of positions
of all other labels with which conflicts would
occur. In this last case (0 < ci,j < ∞), the
label numbers and position indices of the con-
flicting label positions are altogether stored as
conflict references set Pi,j . See Fig. 3 for an
example of a conflict table.

Beside the faster detection of overlaps dur-
ing evaluation, the conflict table can be utilized
to reduce the whole search space in a safe way,
generate a more meaningful starting popula-
tion, and perform local improvements on newly
generated solutions. This techniques, which al-
together improve the performance of the GA
essentially, are described in the following sub-
sections.

3.1 Problem Reduction

Applying two rules to the conflict level ar-
ray usually enables the reduction of the search
space in advance to the GA run without the
danger of overlooking the global optimum:

(a) Any label i for which ∃j(j ∈ {1, . . . ,m}∧
ci,j = 0) (a safe position j exists) and ∀k(1 ≤

Label 2

Label 3

Label 1

Figure 4: All labels may be prematurely fixed
to the upper right position.

k < j → ci,k = ∞) (all more desirable po-
sitions are hopeless) can be prematurely as-
signed to position j. In fact, such a label needs
not be considered any longer and can therefore
also be omited in the solution encoding of the
GA.

(b) Any position j of a label i for which
ci,j = ∞ (position is hopeless) can be dis-
missed from further consideration if ∃k(1 ≤
k ≤ m ∧ ci,k = 0) (a safe position exists).
Such a position (i, j) is marked in some way
and hereafter excluded from usage during ini-
tialization, mutation, and any other part of the
GA.

Fixing labels or dismissing label positions
according to these rules leads to simplifications
in the conflict table: If a label i is fixed to
a specific position, there is no possibility that
any other label can stay in conflict with it any-
more. Therefore, all conflict references from
all other label positions to any position of la-
bel i should be deleted, and the corresponding
conflict levels need to be decremented. Note
that the affected label positions can be found
easily via the conflict references sets of label
i. Clearly, all entries for label i itself may also
be deleted. Similarly, if a label position is dis-
missed by rule (b), conflict references from any
other label position to it can be deleted.

Note that such a deletion of conflict refer-
ences may also open the affected label positions
for a further, recursive application of simplifi-
cation rules. Figure 4 shows an example for
such a chain reaction, in which all labels can



consecutively be fixed to the upper right posi-
tion starting with label 1.

3.2 Heuristic Initialization

The convergence of the GA can be sped up
by generating the starting population not in
a purely random way but using some heuris-
tics during the initialization. On the other
hand, it is essential to provide enough diversity
within the starting population to avoid prema-
ture convergence to bad local optima.

In our tests, the following technique proved
to be well-suited for creating an initial solu-
tion: Each (not fixed) label i (i = 1, . . . , n)
is assigned to a position determined by choos-
ing two (not dismissed) positions randomly and
taking that with the smaller conflict level ci,j .
Thus, a kind of tournament selection is per-
formed for each label, and positions with a
smaller number of conflicts are favored.

3.3 Local Improvement

The performance of the GA could further be
increased by introducing a local improvement
operator, which is applied to each newly gen-
erated solution immediately before its evalua-
tion: Each label i of the solution is checked
once if it can be moved from its current posi-
tion j to any more desirable position k, k < j,
where no actual conflict would occur. Note
that checking for an actual conflict can be done
easily by looking into the conflict table and tak-
ing actual positions of referenced labels into
account. If no better position for label i can
be found in this way and the current position
j actually stays in conflict with any other la-
bel or static image feature, all remaining po-
sitions k = j + 1, . . . , m (if there are any) are
also checked in order to possibly circumvent
the conflict.

It turned out to be essential to process all
the labels in a random, always different order.
In this way not the same items are favored ev-
ery time, and the diversity of the population
remains higher reducing the risk of premature
convergence.

Table 1: Characteristics of the GA implemen-
tation.

GA: steady state,
no duplicate solutions

Selection: tournament (k = 2)
Recombination: uniform crossover (pc = 1)
Mutation: random replacement

(pm = 0.01 per individual)
Population size: 100
Termination: 15,000 evaluations without

finding a new best solution

4 Experimental Results

Various implementation characteristics and pa-
rameters of the GA, which were determined by
preliminary experiments and found to be ro-
bust and well suited for PFLP, are sub-summed
in Table 1. Note that each GA run was termi-
nated when no improvements were encountered
within the last 15,000 evaluations. This condi-
tion ensures that the GA usually has enough
time to converge. In general, we were primarily
interested in finding high-quality solutions and
only secondary in the needed CPU time. To
make comparisons to SA, we also implemented
this approach according to the descriptions in
[2, 3].

Test problems were generated according to
[4]: n point features with fixed-sized labels
(40 × 7 units) were randomly placed on a re-
gion of size 792 × 612. Tests were run for
n = 50, 100, 150, . . . , 1000. Labels were allowed
to be placed at the m = 8 positions around the
point feature as depicted in Fig. 1.

Table 2 shows final results of the GA and
SA: Note that all values are average values de-
termined from 10 runs per problem instance
and algorithm. Final objective values fmin and
number of conflicts Conf min are also depicted
in Fig. 5. Note that the GA led for all problem
sizes, but especially for smaller n, to slightly
better solutions. Relative differences of the ob-
jective values of SA and the GA are shown in
the last column of the table. The number of
conflicts Conf min of the GA were also always



Table 2: Final results of the GA and SA for differently sized problems: Objective values fmin,
numbers of conflicts Conf min, and numbers of evaluated solutions Evals with CPU times tmin until
final solutions have been found (average values from 10 runs per problem).

n
GA SA fSA

min−fGA
min

fSA
minfmin Conf min Evals tmin [s] fmin Conf min Evals tmin [s]

50 0.4 0.0 100 0.01 0.5 0.0 41251 0.42 20.0%
100 1.4 0.0 100 0.08 1.5 0.0 82798 0.85 8.8%
150 4.0 0.0 242 0.20 4.2 0.0 126411 1.52 5.3%
200 6.3 2.0 464 0.41 6.8 2.0 169959 2.17 7.6%
250 17.2 8.0 2149 1.92 17.7 8.0 214107 3.14 2.7%
300 17.6 0.0 4875 5.62 18.5 0.0 261368 4.09 4.4%
350 35.7 10.0 2357 3.44 36.8 10.3 305757 5.09 3.1%
400 33.8 0.0 12151 15.38 35.8 0.6 352770 6.24 5.7%
450 45.4 4.0 11308 20.20 47.7 4.3 398063 7.37 4.8%
500 71.5 20.2 13920 29.12 74.4 21.1 440866 8.81 4.0%
550 86.4 22.3 15667 37.32 89.5 27.6 486704 10.23 3.4%
600 112.7 36.1 25884 59.47 116.9 40.1 529178 11.88 3.6%
650 155.5 57.5 26959 84.86 161.6 69.1 574111 13.82 3.8%
700 172.2 59.7 25895 87.12 177.2 72.1 618253 15.42 2.8%
750 193.5 53.7 41805 134.29 199.9 74.9 663544 16.68 3.2%
800 253.1 94.3 52674 237.16 260.5 119.9 704693 19.20 2.8%
850 281.0 101.3 79727 370.05 290.6 133.4 748523 20.80 3.3%
900 328.1 133.5 88780 446.02 337.4 164.8 791061 22.98 2.7%
950 355.7 139.2 102513 605.63 366.5 182.1 834695 25.07 2.9%

1000 431.6 207.9 121724 748.32 437.9 251.3 875286 28.27 1.4%
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Figure 5: GA and SA: Average objective values
fmin and numbers of conflicts Conf min of final
solutions for differently sized problems.
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Figure 6: GA and SA: Average CPU times t
needed for finding solutions with objective val-
ues smaller than given bounds.
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Figure 7: Final solutions of (a) the GA (f(~x) =
191.8) and (b) SA (f(~x) = 201.3) for a problem
with n = 750 points and m = 8.

less than or equal to that of SA. Especially
larger problems were solved with much fewer
overlaps by the GA, but on the other hand,
the SA solutions had smaller position penal-
ties. Reasons for these effects seem to be the
very efficient problem reduction and local im-
provement techniques of the GA.

Table 2 also shows the numbers of evalua-
tions Eval and CPU times tmin needed by the
two approaches to find their finally best solu-
tions. In case of the GA and n ∈ {50, 100},
the finally best solutions could almost always
already be found in the initial populations due
to the effective interplay of problem reduction,
heuristic initialization, and local improvement.
In general, the numbers of needed evaluations

were much larger for SA, but CPU times tmin

show that the GA was nevertheless especially
for larger problems several orders slower. Only
for small problems (n ≤ 250), the GA could
find its final solution faster than SA.

For a better comparison of convergence ve-
locity, we also measured the times needed by
both approaches to find a solution with an ob-
jective value below a given, fixed bound. For
each problem this bound was set to the highest
final objective value observed during all runs of
SA and the GA together. Average results are
shown in Fig. 6. Note that the GA was par-
ticularly faster for all problems with n ≤ 600.
Thereafter, SA outperformed the GA.

See Fig. 7 for two examples of final label
placements with 750 point features generated
by the GA and SA.

5 Conclusions

This work shows that a GA can be a very ef-
ficient technique for finding nearly optimal so-
lutions to PFLP problems. When compared
to SA, the GA’s major drawback is its time
expensive evaluation function, which cannot
be implemented in an incremental way as in
SA. On the other hand, applying the proposed
problem reduction technique and local im-
provement operator and starting from a heuris-
tically generated initial population speeds up
the GA essentially. Moreover, this improved
GA converges nearly always to slightly bet-
ter solutions, especially with fewer overlaps,
than SA. The main reason for this effect is the
population based model of the GA, which has
greater potentialities to escape from local op-
tima without losing found high-quality regions
in the search space.

6 Future Work

Clearly, the proposed problem reduction tech-
nique can also be applied to SA. Preliminary
experiments indicate slightly shorter running
times without major improvements in the qual-
ities of final solutions, but more experiments



with different annealing schedules are neces-
sary. Furthermore, a local optimization oper-
ator similar to the one proposed for the GA
may also be of interest for SA if the efficient
incremental evaluation can be retained.

Another approach to PFLP would be to ap-
ply evolutionary programming [1, 14], which
is also a population based, stochastic search
method. Since a major difference to GAs is
the absence of any recombination operator, an
incremental evaluation of PFLP solutions may
become applicable.
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