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Abstract. This paper introduces a novel approximation technique that
uses Tensor Product Bernstein Polynomials (TPBPs) as base functions.
An Evolution Strategy (ES) is proposed for finding suitable control points
for TPBPs so that the resulting approximation functions fit given finite
samplings of data points very well. Also for more difficult test data sets
taken from functions containing discontinuities, the approach is numer-
ically robust. Moreover, due to the ES it is flexible concerning the used
error measurement. One major advantage of the method over many other
approximation techniques is the possibility to manually adapt the con-
trol points of a TPBP in a very intuitive way to achieve specific changes.
Another important aspect of the new technique is its good generalization
ability: Samples other than those used in the optimization process for de-
termining control points are also mapped to their counterparts with only
small errors. The new approach has been compared to the well known
Least Square Method (LSM) for doing polynomial regression using vari-
ous sample sets. Especially for structurally more complex polynomials (as
TPBPs of higher degrees), the generalization capabilities of the LSM are
rather poor. Although the ES does not usually find the globally optimal
approximation with the smallest error, the found solutions are preferable
because they generalize very well.

1 Introduction

Function approximation involves finding a set of parameters for a given model
that provides a good, best, or perfect fit between a given finite sampling of values
of independent variables and associated values of dependent variables. There are
many applications of this general technique as e.g. in controlling, forecasting,
technical design, and computer graphics.

One very common and simple approximation method is linear polynomial
regression, in which the model is a given polynomial (or a vector of polyno-
mials) and the parameters to be determined are the coefficients of the linearly
combined terms. If the used error function is the mean square error, the optimal
coefficients can be determined very easily by using the well known Least Square
Method (LSM). On the other hand, depending on the chosen polynomials and
the given sample sets, difficulties may arise with numerically critical operations
(subtraction of very similar values e.g.).



Another quality criterion for an approximation method is its ability to gener-
alize. This means that the approximation should also map values not used during
parameter determination near to their real counterparts. Applying the LSM to
more complex polynomials is known to generalize not very well, because the ap-
proximations tend to oscillate heavily and overshoot between the samples used
for determining the coefficients. This is especially true for destination functions
containing discontinuities.

Another class of function approximation techniques are the many kinds of
neural networks in which the model is usually a given structure of connected
cells and the weights of the connections are the parameters to be found for a
specific problem. In many applications these neural networks are robust and
generalize very well. They are especially useful for high dimensional problems
with large numbers of often Boolean valued variables. In case of difficult low
dimensional approximation problems with real valued parameters, the usage of
neural networks is not so common, because polynomial regression often gives
better results e.g.

A major drawback of usual polynomial regression, most neural networks,
and other approximation techniques is the fact that it is very difficult for a
human to understand the whole effect of each determined parameter in the
model and to adapt those parameters manually for achieving specific changes in
the approximation.

In this paper a new approximation technique which enables a very intuitive
manual post-processing will be introduced. The underlying model is a Tensor
Product Bernstein Polynomial (TPBP), which will be described in the next sec-
tion. In section 3, an Evolution Strategy (ES) will be proposed as a robust,
stochastic optimization method for determining the problem dependent param-
eters (namely the control points) of TPBPs. Some specific practical experiments
will be presented in section 4. In these experiments, the new approach leads
to very well approximating and generalizing solutions. A comparison of these
results to those of the LSM follows in section 5, and a conclusion is given in
section 6.

2 Tensor Product Bernstein Polynomials

Bernstein Polynomials and their tensor products are well known in computer
graphics due to their usage in Bézier curves, Bézier surfaces, and Free-Form
Deformations (FFDs), see e.g. [4, 7, 14, 12].

A Bézier curve of degree w in Rn, which involves a mapping from E = [0, 1]
to Rn, can be defined as a weighted sum of w + 1 n-dimensional control points
Ci (i = 0, . . . , w) as follows:

Bw(t) =
w∑

i=0

Cib
w
i (t), t ∈ E (1)



with the weights bw
i (t) being the Bernstein Polynomials

bw
i (t) =

(
w

i

)
ti(1− t)w−i. (2)

According to [4], a Bézier surface is a tensor product of two Bézier curves
needing (w1 +1)(w2 +1) control points and involving a mapping from E2 to Rn:

Bw1,w2(t1, t2) =
w1∑

i1=0

w2∑

i2=0

Ci1,i2b
w1
i1

(t1)bw2
i2

(t2), t1, t2 ∈ E. (3)

This approach can be generalized to get mappings from a source space of
any dimension m to an n-dimensional destination space by using

∏m
j=1(wj + 1)

control points Ci of dimension n. Such a mapping function is called multivariate
Tensor Product Bernstein Polynomial:

Bw(t) =
w1∑
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w2∑

i2=0

. . .

wm∑
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Cib
w1
i1

(t1)bw2
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(t2) . . . bwm
im

(tm), (4)

t = {t1, t2, . . . , tm}, t1, t2, . . . , tm ∈ E,

i = {i1, i2, . . . , im}, w = {w1, w2, . . . , wm}.

The well known Free-Form Deformation as proposed by Sederberg and Parry
in [12] can be seen as the special case of such a TPBP with m = 3 and n = 3.
The major application of this space deformation technique is the very intuitive
manual design of solid models: An initial object is embedded into a regular
grid of control points in E3. By displacing the control points, the space inside
and therefore the initial object will be deformed. Another application can be
found in computer animation: A FFD is often used to model an object’s smooth
transition from one state into another, see e.g. [3, 14]. In [9], the standardized
CIELAB color space was deformed by a FFD with the goal to get a perceptually
more uniform color space. In this application, the control points of the FFD were
optimized by an Evolution Strategy to fulfill empirically obtained distance data
about color samples as closely as possible. A similar FFD/ES based approach
is presented in [10, 15] to get a smooth transformation from the device specific
color space of a scanner to CIELAB. A general description of deforming color
spaces with FFDs and Evolution Strategies is given in [13].

In computer graphics and computer aided design, Bézier curves, Bézier sur-
faces and FFDs are very popular because of their properties: The effects of dis-
placing control points are very intuitive, which enables an easily understandable
manual design process. Furthermore, these techniques are all functions consist-
ing of polynomials. Therefore, a derivative continuity to any degree is given.
Due to the usage of Bernstein polynomials, these functions are numerically ro-
bust, which is not the case for many other kinds of polynomials. Especially
Bézier curves and surfaces have been studied in detail, see [4], and several high
quality criteria like the convex hull and variation diminishing properties have



procedure ES for Optimizing a TPBP;
t ← 0;
P0 ← µ random solutions;
evaluate (P0);
while not converged (Pt) do

/* use µ parents to create λ offsprings: */
Rt ← recombine (Pt);
Mt ← mutate (Rt);
evaluate (Mt);
Pt+1 ← select best µ solutions (Mt);
t ← t + 1;

done

Figure 1. Pseudo code of the ES for optimizing a TPBP’s control point coordinates

been derived. Altogether, they indicate that these curves, surfaces, or general
transformation functions are very smooth and do not overshoot between control
points.

Due to these properties, the general TPBP seems to be an interesting model
for general function approximation. Unfortunately, the problem of finding robust
control point coordinates so that the approximation leads to small errors and
generalizes well is in general a difficult optimization task.

3 Evolutionary Optimization

The term Evolutionary Computation subsumes various kinds of stochastic opti-
mization techniques which include some basic concepts of natural evolution in
a strongly simplified form. These algorithms have shown to be very effective for
various complex, multi-modal problems, although it cannot be guaranteed that
globally optimal solutions will be found within a given amount of time. Due to
the fact that there is basically only the necessity to specify an evaluation func-
tion which determines a quality value (“fitness”) for a possible solution, these
algorithms are applicable to a large field of problems. See [1, 2, 5, 8] for a general
introduction.

3.1 The Evolution Strategy

Beside the well-known Genetic Algorithms (see [6, 8, 5]), another type of such
techniques are Evolution Strategies which were originally proposed by Schwefel
[11]. In the last years, ESs have been improved in several ways and applied
to many difficult problems, see e.g. [1, 2, 5]. They have proven to be suitable
especially for multi-dimensional optimization tasks in which many real numbers
are the parameters to be optimized and where the optimization goal is an almost
continuous function.

Figure 1 shows the spezific (µ, λ)-ES adapted to the problem of finding suit-
able control points for TPBPs. Initially, a starting population consisting of µ



solutions is generated. As usual in ESs, these solutions are random samples
taken from the whole search space. In the next step, these initial solutions are
evaluated as will be described in section 3.3.

The initial population is then improved in a loop over many generations until
the ES converges and all solutions are nearly equal. The creation of a new popu-
lation for the next generation works as follows: λ offsprings are generated by first
copying randomly selected solutions from P . Then these copies are recombined
two by two and modified via a mutation operator as will be described in section
3.2. The newly generated offsprings are evaluated, and the best µ offsprings are
finally selected to survive and to be the parents for the next generation. Because
of this selection step, the number λ of offsprings must be larger than the popu-
lation size µ. As discussed in [11, 1, 2], λ is usually selected about six to seven
times larger than µ.

3.2 Mutation and Recombination

The aim of the more important mutation operator is to modify a solution slightly.
Each coordinate Ci,j (j = 1, . . . , n) of all control points Ci is perturbed by adding
a normally distributed random offset with mean 0 and standard deviation σi,j :

C ′i,j = Ci,j +N (0, σi,j) (5)

In this way smaller changes are more likely, but large changes are also possible.
σi,j can be determined by using heuristics like Rechenberg’s 1/5 rule (see [11, 2])
or by using the more common and very robust self adaption mechanism: In
this approach, all the standard deviations σi,j are also optimized by the ES
together with the control point coordinates Ci,j . To apply self adaption, all these
standard deviations must be stored together with each solution, and mutation
and recombination operators must also be specified. As usual in self adaption,
the following kind of mutation is used for σi,j :

σ′i,j = σi,j · eN (0,τ) (6)

In this way σi,j will always remain positive. The standard deviation τ for this
mutation has been shown not to be so critical and is usually set to a constant
value depending on the number of parameters to be optimized, see [1, 2].

The aim of recombination is to mix informations contained within two ran-
domly chosen parental solutions. Many different operators are known for this
purpose, see [1, 2, 5]. In our test examples, we observed the best results when
using the following techniques:

C ′i,j = Cα
i,j or Cβ

i,j (7)

σ′i,j = (σα
i,j + σβ

i,j)/2 (8)

In case of C ′i,j a Boolean random value is used to decide, whether the control
point coordinate should be inherited from parent α or parent β. Standard devi-
ations σ′i,j are set to the average values of the parents’ σi,j .



Table 1. Artificial test functions

Function Mapping

F1(x, y) = sgn(x− 0.3) sin(2πxy) E2 → R
F2(x, y) = sgn(x− y) sin(2π(x + 0.5)y) E2 → R
F3(x, y) = sgn(x− y) sin(2π(x + 0.5)y) E2 → R
F4(x, y) = sgn(0.5− x) sin(2π(y + 0.1)x) E2 → R
F5(x, y) = (F1(x, y), F2(x, y), F3(x, y), F4(x, y))T E2 → R4

Table 2. Some implementation details of the ES

µ (# of parents): 15
λ (# of offsprings): 100
Initial Ci,j : random values ∈ [min{dk,j}, max{dk,j}],

(j = 1, . . . , n)

Initial σi,j :
max{dk,j}−min{dk,j}

2·
√

(w+1)m
(according to [1])

Termination condition: all σi,j of best individual ≤ 1% of initial σi,j

3.3 Evaluation of Solutions

Based on a given sample set A of pairs of independent values sk and dependent
values dk (sk = (sk,1, . . . , sk,m)T , dk = (dk,1, . . . , dk,n)T , k = 1, . . . , |A|), the fol-
lowing mean square error is proposed as evaluation function:

MSE (A) =
1
|A|

|A|∑

k=1

‖ Bw(sk)− dk ‖2 (9)

Euclidean distances between the transformed values sk and dependent values
dk are determined, squared, and averaged. But note that the ES would also work
with different error functions based on other metrics like the general Minkowski
metric e.g. Several kinds of constraints can also be incorporated into the fitness
function by adding penalty terms, see [1, 2, 5].

4 Practical Experiments

The proposed ES has been implemented on a Pentium 133Mhz PC using Linux
and GNU–C++. In order to test the new TPBP/ES approach, various artificial
destination functions like those depicted in Table 1 were used. F1 to F4 map
(x, y)T ∈ E2 to scalar values in R, F5 is a combination of F1 to F4 mapping E2

to R4. 100 arbitrarily chosen samples of E2 comprised the samples sk in source
space of set A, see section 3.3. For each of these samples the resulting dependent
mapping dk in destination space was calculated according to the test functions.
TPBPs of different degrees1 were optimized using the determined sample sets
1 The same degree was used for all dimensions of the source space:

w = w1 = w2 = . . . = wm.



Table 3. Results of TPBP/ES approach

Function Degree 1 2 3 4 5 6 7 8 9

MSE(A)[%] 0.27 0.17 0.11 0.05 0.04 0.03 0.02 0.02 0.02
F1(x, y)

MSE(G)[%] 0.33 0.15 0.31 0.27 0.42 0.55 0.62 0.20 0.29

MSE(A)[%] 0.23 0.13 0.09 0.08 0.07 0.06 0.06 0.05 0.05
F2(x, y)

MSE(G)[%] 0.30 0.20 0.15 0.22 0.15 0.12 0.12 0.19 0.23

MSE(A)[%] 0.20 0.10 0.07 0.06 0.05 0.05 0.04 0.04 0.04
F3(x, y)

MSE(G)[%] 0.29 0.14 0.11 0.20 0.12 0.11 0.14 0.11 0.15

MSE(A)[%] 0.24 0.14 0.07 0.05 0.04 0.03 0.03 0.02 0.02
F4(x, y)

MSE(G)[%] 0.31 0.24 0.14 0.19 0.20 0.08 0.10 0.09 0.07

MSE(A)[%] 0.95 0.55 0.36 0.28 0.22 0.20 0.18 0.17 0.16
F5(x, y)

MSE(G)[%] 1.22 0.73 0.60 0.54 0.52 0.59 0.68 0.49 0.44

to approximate F1 to F5. Table 2 shows ES specific parameters leading to good
solutions for the discussed experiments.

To see, how well a final solution of the ES transforms samples between those
used during the optimization (set A), the mean square error was finally also
determined for a different set G of 100 randomly chosen samples. This MSE(G)
can be seen as a measure for the generalization ability and is therefore called
generalization error.

Typical approximation errors MSE (A) and generalization errors MSE (G) of
final solutions are listed in Table 3. These values show that the final solutions
are all approximating and generalizing very well. Naturally, TPBPs of very low
degrees (≤ 3) contain larger errors. But the obtained MSE (A) and MSE (G)
values for TPBPs of degree 4 and up differ only slightly. Especially the results
for function F5 demonstrate the ability of the TPBP/ES approach to cope also
with more complex, multi-dimensional problems, see Figure 2a.

A drawback of the ES in general is its high computational effort. Depend-
ing on the degree of the TPBP and the dimensions of source and destination
space, the ES needed in case of the described experiments from a few seconds
up to about three hours CPU time. The TPBP/ES approach is therefore only
applicable to offline applications.

5 Comparison to the Least Square Method

The LSM is a well known deterministic way to find the optimal coefficients for
a linear combination of functions minimizing the mean square error for a given
sample set A. Partially differentiating MSE (A) successively by all the coefficients
searched for and setting these derivatives equal to zero results in a system of
linear equations which can be solved easily.

Table 4 shows commonly used polynomials for doing regression from R2 to
R. The LSM was applied to these ten polynomials of increasing complexity for
approximating the test functions F1 to F4 using the same sample sets as in section
4. For approximating F5, four-dimensional vectors of the same polynomials were



Table 4. Used regression polynomials for the LSM

P0(x, y) = a1x + a2y
P1(x, y) = a0 + a1x + a2y
P2(x, y) = a1x + a2y + a3xy
P3(x, y) = a0 + a1x + a2y + a3xy
P4(x, y) = a1x + a2y + a3xy + a4x

2 + a5y
2

P5(x, y) = a0 + a1x + a2y + a3xy + a4x
2 + a5y

2

P6(x, y) = a0 + a1x + a2y + a3xy + a4x
2 + a5y

2 + a6x
3 + a7y

3

P7(x, y) = a0 + a1x + a2y + a3xy + a4x
2 + a5y

2 + a6x
3 + a7y

3 + a8xy2 + a9x
2y

P8(x, y) =
P3

i=0

P3
j=0 aijx

iyj

P9(x, y) =
P4

i=0

P4
j=0 aijx

iyj

Table 5. Results of Polynomial/LSM approach

Function Polynomial P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

MSE(A)[%] 0.31 0.30 0.27 0.27 0.24 0.21 0.20 0.16 0.11 0.05
F1(x, y)

MSE(G)[%] 0.36 0.35 0.33 0.33 0.25 0.19 0.18 0.15 0.35 0.56

MSE(A)[%] 0.24 0.24 0.24 0.23 0.23 0.22 0.22 0.13 0.09 0.07
F2(x, y)

MSE(G)[%] 0.30 0.29 0.30 0.30 0.30 0.28 0.28 0.20 0.17 0.12

MSE(A)[%] 0.21 0.21 0.20 0.20 0.16 0.15 0.15 0.09 0.07 0.05
F3(x, y)

MSE(G)[%] 0.31 0.30 0.28 0.28 0.24 0.24 0.24 0.16 0.12 0.12

MSE(A)[%] 0.39 0.24 0.29 0.24 0.26 0.20 0.16 0.10 0.07 0.05
F4(x, y)

MSE(G)[%] 0.43 0.32 0.34 0.31 0.34 0.30 0.26 0.19 0.14 0.27

MSE(A)[%] 1.15 0.99 1.01 0.95 0.89 0.79 0.74 0.49 0.34 0.22
F5(x, y)

MSE(G)[%] 1.40 1.26 1.25 1.22 1.14 1.02 0.96 0.70 0.77 1.07

used. Resulting approximation and generalization errors of all these experiments
are listed in Table 5 and for function F5 additionally depicted in Figure 2b.
Note that MSE (A) decreases for polynomials with increasing complexity which
is quite natural. While the generalization error MSE (G) also decreases for the
polynomials P0 to P8, it is again higher for P9. Therefore, making the regression
polynomial more complex is not always a good idea, because the generalization
error may increase significantly. In the shown examples, the results for the best
polynomial P8 regarding MSE (A) and MSE (G) is slightly worse than most of
the results of the TPBP/ES approach. Note that due to numerical problems with
subtractions of nearly equal numbers, a high precision arithmetic was necessary
especially for the polynomials P8 and P9 to get accurate results.

Since TPBPs are also linear combinations of polynomials with the control
points Ci being the coefficients, the really optimal control point coordinates re-
garding minimal MSE (A) can be found by applying the LSM. The results of
this TPBP/LSM approach are listed in Table 6 and for F5 depicted in Figure
2c. Due to sufficient degrees of freedom, the TPBPs of higher degrees are able
to fit a sample set A perfectly resulting in approximation errors of 0. But note
that the LSM exhibits only very poor generalization abilities for these TPBPs.
In between the samples of set A the derived approximations tend to overshoot
and oscillate heavily. Therefore, the main advantage of the ES is the much bet-



Table 6. Results of TPBP/LSM approach

Function Degree 1 2 3 4 5 6 7 8 9

MSE(A)[%] 0.27 0.17 0.11 0.05 0.03 0.02 0.01 0.00 0.00
F1(x, y)

MSE(G)[%] 0.33 0.15 0.35 0.56 0.61 9.76 5.6E2 3.8E3 4.8E6

MSE(A)[%] 0.23 0.13 0.09 0.07 0.05 0.04 0.03 0.01 0.00
F2(x, y)

MSE(G)[%] 0.30 0.20 0.17 0.12 0.17 3.55 1.7E3 1.6E4 2.8E6

MSE(A)[%] 0.20 0.10 0.07 0.05 0.04 0.03 0.02 0.01 0.00
F3(x, y)

MSE(G)[%] 0.28 0.14 0.12 0.12 0.14 3.97 2.0E3 2.3E4 6.0E6

MSE(A)[%] 0.24 0.14 0.07 0.05 0.03 0.02 0.02 0.01 0.00
F4(x, y)

MSE(G)[%] 0.31 0.24 0.14 0.27 0.38 2.35 1.73 1.5E4 3.5E8

MSE(A)[%] 0.95 0.54 0.34 0.22 0.15 0.12 0.08 0.03 0.00
F5(x, y)

MSE(G)[%] 1.22 0.73 0.77 1.07 1.30 19.62 4.2E3 5.8E4 3.6E8
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Figure 2. Results for test function F5: (a) TPBP/ES approach, (b) Polynomial/LSM
approach, and (c) TPBP/LSM approach

ter generalization capability, although the globally optimal solution regarding
only MSE (A) is not usually found. A reason for this effect seems to be that
also slightly different solutions in the surroundings of the obtained one are of
very high quality. Moreover, note that from the mathematical point of view the
TPBPs of degree 3 and 4 are equivalent to polynomials P8 and P9. The obtained
errors are also the same, but the TPBPs behaved numerically very robust and
no high precision arithmetic was necessary.

6 Conclusions

This article proposes an Evolution Strategy for optimizing control point posi-
tions of Tensor Product Bernstein Polynomials with the goal to do function
approximation. Also for more difficult test functions containing discontinuities,
the approach is numerically robust. Moreover, it is flexible concerning the er-
ror function which needs not to be the mean square error in general. Although
the ES does not usually converge to the globally optimal solution as it can be
determined by the Least Square Method when using the mean square error as
evaluation function, the ES solutions are much better concerning generalization.
A drawback of the new approach is the higher computational effort of ESs in



general making the technique only applicable to offline approximation problems.
One major advantage of the TPBP/ES approach over many other approximation
techniques is the possibility for humans to understand the meaning and effects
of found control point positions and, therefore, to adapt solutions manually in a
very intuitive way.

Future work should include comparisons to other approximation techniques
like various kinds of neural networks e.g. Also more experiments should be done
with different sample sets to characterize the circumstances more precisely where
this new technique is most successful.
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