
A Hybrid GP Approach for
Numerically Robust Symbolic Regression

Günther R. Raidl
Department of Computer Graphics
Vienna University of Technology

Karlsplatz 13/1861, 1040 Vienna, Austria
raidl@eiunix.tuwien.ac.at

ABSTRACT
This article introduces a hybrid vari-

ant of genetic programming (GP) for do-
ing symbolic regression. Instead of the
usual interpretation of a parse tree, all
top-level terms are identified and ex-
tended by multiplying them with locally
optimized factors. These weighted terms
are then linearly combined to form the
resulting expression. When using the
mean square error as fitness function,
local optimization of the factors can be
done efficiently by applying a robust
variant of the method of least squares.
Furthermore, the presented hybrid GP
uses arbitrary precision arithmetic for
evaluating each solution to detect major
precision losses, numerical underflows,
or overflows. A penalty according to the
lost accuracy is added to the objective
function to avoid such problems in the
final solution. Various experiments indi-
cate that the new hybrid GP finds nu-
merically robust expressions with much
smaller approximation errors faster and
more reliably than traditional GP.

1 Introduction
Approximating a function using a given finite sampling of
values of independent variables and associated values of de-
pendent variables is a very important practical problem. Usu-
ally, a mathematical model is given and numerical parameters
need to be found so that the resulting approximation provides
a good fit for the given samples. One very common technique
is linear regression, in which the model is a linear combina-
tion of given base functions and the parameters to be deter-
mined are their coefficients. Examples for base functions are
polynomials (polynomial regression) or trigonometric poly-
nomials (e.g. Fourier series). For general linearly indepen-
dent base functions, themethod of least squares(MLS) is an
efficient method for determining the coefficients to get the

smallest possible mean square error. Another class of approx-
imation techniques is the great variety of neural networks in
which the underlying model is a connected net of functional
units, and the unknown parameters are usually the weights of
connections between these units.

Over the last years, evolutionary algorithms have been rec-
ognized to be very suitable not only for optimizing parameters
for given fixed approximation models as e.g. neural nets width
predefined structures (Schaffer, Whitley, and Eshelman 1992)
or Tensor Product Bernstein Polynomials (Raidl 1998, Raidl
and Kodydek 1998), but also for adapting the models them-
selves, see e.g. Ahmed and De Jong (1997) and Schaffer,
Whitley, and Eshelman (1992). In McKay, Willis, and Bar-
ton (1995), a genetic algorithm is presented which optimizes
expressions encoded in tree structures to perform symbolic
regression. A non-linear optimization method was used to get
well suited values for constants in the evolved expressions.
Unfortunately, these non-linear optimizations are very time-
consuming. Rogers (1995) presented a commercial drug mod-
eling tool which uses a genetic algorithm. Numerical con-
stants within evolved polynomial models are efficiently op-
timized by using the MLS.

In Koza (1992),genetic programming(GP) was introduced
which is a class of evolutionary algorithms working on exe-
cutable tree structures (parse trees). Koza showed that GP is
capable of doingsymbolic regression(or function identifica-
tion) by generating mathematical expressions approximating
a given sample set very closely or in some cases even per-
fectly. Therefore, GP finds the entire approximation model
and its (numerical) parameters simultaneously. In the follow-
ing it is assumed that the reader is familiar with the basics
of GP. Otherwise, see Koza (1992) and Koza (1994a) for a
general introduction.

Although arbitrary numerical constants contained in func-
tions to be approximated can principally be evolved in GP by
using so-calledephemeral random constants< (Koza 1992),
they seem to be a weak point in the following sense: Since
the needed constants must be assembled from random val-
ues and the given set of base functionsF , destination func-
tions containing constants are usually much more demand-
ing to GP than others. E.g. an expression corresponding to
f1(x) = x + x2 + x3 is usually evolved much faster than one
corresponding tof2(x) = 2.71x + 3.14x2, assuming the set
of base functions isF = {+,−, ∗}, and the set of allowed ter-



minals isT = {x,<}. Similarly to McKay, Willis, and Bar-
ton (1995), Fr̈ohlich and Hafner (1996) presented a modified
GP including linear and non-linear optimization techniques
to improve these numerical constants. Unfortunately, only a
few steps of the time expensive non-linear optimization can
be applied to each new solution to keep the total running time
within limits.

Another drawback of doing symbolic regression with GP
is the possibility of getting final solutions with very low ap-
proximation errors but undetected numerical problems: The
closure property of GP requires that each of the base functions
is able to accept, as its arguments, any value that might possi-
bly be returned by any base function and any value that may
possibly be assumed by any terminal. To use e.g. division, a
protected functiondiv(a, b) is usually defined which returns 1
if b = 0 anda/b otherwise. Similar protections must be estab-
lished for many other base functions as e.g.log(a) or

√
a. At

first sight, these protected definitions seem to solve numerical
problems. But they may introduce unwanted and unexpected
discontinuities in the resulting approximation. Furthermore,
extremely small or high values triggering problems with nu-
merical underflows or overflows might easily occur during the
evaluation of GP solutions. E.g. including functions likeea or
ab in F is dangerous in this sense. Functions must therefore
also be protected against under- and overflow.

Usually, solutions for which such extreme values occur
as intermediate results during evaluation will perform only
poorly and get bad fitness values. But this is not always the
case. Sometimes, GP leads to final solutions containing un-
derflows or overflows which are compensated in some way
(e.g. a very large value may be multiplied by a very small
one). Although numerical problems do occur, only small er-
rors might be observed for the samples used during evalua-
tion. One way to circumvent these problems is to introduce
a special valueundef which is returned by a function in case
of any error. Each function gettingundefas one of its param-
eters must also returnundef. Errors made at any time during
evaluation are encountered in this way and the solution gets
worst fitness and will never be selected for recombination or
reproduction.

Often GP solutions also contain overlooked numerical
problems which, unlike underflows, overflows, or undefined
results, are not directly detectable: E.g. the subtraction of two
nearly equal values may result in a substantial loss of pre-
cision. Also, determining a trigonometric function such as
sin(a) for some valuea much larger than2π usually results in
a major precision loss. Often such a precision loss exceeds the
precision of the underlying arithmetic and the result renders
absolutely meaningless, purely depending on the implemen-
tation of the arithmetic, and therefore in some sense random.

This paper introduces an improved version of GP called
hybrid genetic programming(HGP) in which each solution
is locally optimized by applying the method of least squares
to find optimum coefficients for top-level terms. Furthermore,
an arithmetic is used which observes the numerical precision

during each step of the evaluation of a solution. Solutions are
then penalized according to their loss of accuracy. Although
local optimization introduces a time overhead, experimental
results indicate that for many problems the algorithm con-
verges faster to much better solutions which are numerically
robust.

2 Locally Improving GP solutions
The general goal is to find a numerically robust expression
E(x) which minimizes the following mean square error for
a given sample setA of independent input valuesxk and de-
pendent output valuesdk (k = 1, . . . , |A|):

MSE (E,A) =
1
|A|

|A|∑

k=1

(E(xk)− dk)2 (1)

Note that limiting the dimensions of the input and output
spaces to one does not restrict generality, since the approx-
imation of a functionf : Rm → Rn can be substituted by
n independent approximationsEj : Rm → R, j = 1, . . . , n.
Furthermore, the extension from one-dimensional input space
to m dimensions is also straightforward in GP by includingm
variables instead of only one in the terminal setT . But to keep
things simple, only approximations with one-dimensional in-
put and output spaces are considered in the following.

To improve the efficiency of GP for finding such expres-
sionsE(x) including floating point constants, the parse tree
of a solution is interpreted in a different, more sophisticated
way than it is usually done. In a first step, all subtrees which
have no other nodes than addition or subtraction as prede-
cessors are identified. These so-calledtop-level termsTi(x)
(i = 1, . . . , l) are as usual interpreted as subexpressions and
extended by multiplying them with independent weightswi.
The final resulting expression is the sum of all weighted top-
level terms, see also the example depicted in Fig. 1:

E(x) =
l∑

i=1

wiTi(x) (2)

The optimum weightswi of such a linear combination of
terms leading to a minimum mean square error can be found
efficiently by the well-known method of least squares, see e.g.
Crow, Davis, and Maxfield (1960): Partially differentiating
MSE (E,A) successively by all the weightswi and setting
these derivatives equal to zero results in a system of linear
equations. This system of linear equations can be solved eas-
ily as long as the termsTi are linearly independent and the
system is well-conditioned. To also handle critical cases con-
taining linearly depending terms, a QR decomposition with
Givens rotations is used. In this way, the MLS always gives
meaningful values. More details on this efficient and robust
technique can be found in Golub and Loan (1990).

To make the expression more compact and in some cases
numerically more robust, some algebraic simplification rules



+

+ /

* -
T

T3
7T2

T1
4

x x

x

x

xsqrt

(F = {+,−, ∗, /, sqrt}, T = {x,<})
Traditional interpretation:
E(x) = x2 + x +

√
x− 7

x

New interpretation:
E(x) = w1T1 + w2T2 + w3T3 + w4T4 =

= w1x
2 + w2x + w3

√
x + w4

7
x

Figure 1 Interpretation of a parse tree.

are applied to the whole expression before and after perform-
ing the MLS.

Note that all the described techniques are only applied to
a copy of the original parse tree generated before evalua-
tion. The unchanged original parse tree remains the genotype
which may be used during the next generation of GP for cre-
ating offspring solutions. In various experiments GP has per-
formed poorly when the parse trees were adapted to corre-
spond to the expressions finally obtained. One reason for the
poor performance in this case might be that building blocks
cannot evolve well because they are frequently destroyed.

3 Numerical Robustness
As already mentioned in the introduction, an important goal
in symbolic regression is to get a solution which is numeri-
cally robust and which does not require a special underlying
arithmetic to give accurate output values for given input pa-
rameters.

Unfortunately, it is very hard to decide on the robustness
of a general expression for all possible input values within
certain limits. In practice, only an estimation for the general
robustness based on the sample set used during evaluation
seems to be possible.

In contrast to other work, e.g. Koza (1992), Koza (1994a),
and Fr̈ohlich and Hafner (1996), we propose to use the special
symbolundef in case of underflows, overflows, or undefined
results instead of providing protected versions of functions.
Our tests point out that GP finds solutions with small mean
square errors slightly faster when using protected functions,
but on the other hand it is much safer if a solution containing
any kind of numerical error gets the worst possible fitness (∞)
and will never be selected for reproduction or recombination.
In this way, underflows or overflows cannot be compensated
and will therefore not occur in a final solution. Furthermore,
if the function setF only contains continuous and differen-
tiable functions, the final solution is usually continuous and
differentiable. In contrast, protected functions usually contain

discontinuities and therefore often lead to discontinuities in
the final solution.

To estimate the numerical robustness of an expression not
directly leading to any numerical error during evaluation, spe-
cial arbitrary precision arithmetic is used which keeps track of
the real precision of a value at all points during evaluation: For
each numerical valuea, the number of decimal digits treated
as significant and therefore known exactly is stored together
with the value as precisionPrec(a). Since the floating point
format is used to handle large values as well as values close
to zero, this precision is a measure of the relative error in the
value. In case of HGP, each terminal’s value gets the same
initial precision. Each function of the function set must be
able to determine the correct precision of the resulting value
considering the precision of its input values, see Fig. 2.

-

+

*

sin

3 x=2
Prec=5

Prec=5

Value=2.0000

Value=6.0000
Prec=5 Value=5.9100

5.91

Value=0.0900
Prec=3

25.0

Prec=2
Acc=3

Value=-0.042

Value=25.000
Prec=5

Value=-0.132
Prec=3

Value=3.0000
Prec=5

Figure 2 Evaluation with arbitrary precision arithmetic.

If the precision of a resulting value amounts to zero, no
digit of the obtained value is accurate, and the entire value
is therefore useless. This case might easily happen for e.g.
sin(a), a À 2π, or when subtracting two nearly identical val-
ues. Expressions resulting in such useless values for any of
the evaluated samples will immediately be penalized by get-
ting fitness∞ as in the case of an underflow, overflow, or
undefined value.

But resulting values for which only a few digits are accurate
also depend highly on the underlying arithmetic. Small mean
square errors may then lead to wrong assumptions about the
real quality of the found expression. To be on the safe side,
a worst case absolute error should be determined and consid-
ered when calculating the mean square error.

From a specific valuea and its precisionPrec(a), the so-
called accuracyAcc(a), which is the number of significant
digits to the right of the decimal point and therefore a measure
for the absolute error, can be obtained easily:

Acc(a) = Prec(a)− blog10 |a|+ 0.5c (3)

Note that according to this definition,Acc(a) may also be
negative.

The calculation of the mean square error can be extended



as follows to take accuracy into account:

MSEAcc(E,A) =
1
|A|

|A|∑

k=1

(|E(xk)− dk|+ 10−Acc(E(xk)))2

(4)
Worst case errors are added asaccuracy penaltiesto the ab-
solute differences between the results of the expression for
the samplesxk and the aspired output valuesdk. Using the
mean square error determined in this way is therefore far more
meaningful.

Note that instead of the described arbitrary precision arith-
metic, exact interval arithmetic can be used for HGP in a very
similar way. Usually, interval arithmetic is more accurate, but
also more time expensive. Since only the order of magnitude
of accuracy is important in this application, the faster arbitrary
precision arithmetic seems to be the better choice.

4 Implementation and Results
The proposed HGP has been implemented using Linux, the
Genetic Programming Kernelwritten in C++ by Fraser and
Weinbrenner (1997), and Mathematica 3.0 (Wolfram 1991).
Solutions generated by the GP Kernel are sent over a pipe to a
Mathematica process running in parallel. Mathematica inter-
prets solutions by applying the MLS and algebraic simplifica-
tion rules and carries out the evaluation using arbitrary preci-
sion arithmetic. Resulting fitness values are returned to the GP
Kernel via a second pipe. Using a mathematics package like
Mathematica is surely not the most efficient way to implement
HGP, but a very flexible approach. Besides the fact that only a
few statements are necessary for simplifying a given expres-
sion or applying the MLS, the capabilities of Mathematica
made testing and debugging very easy. A more efficient im-
plementation using only one C++ process is planned for the
future.

Besides several other functions, those shown in Fig. 3 were
used for testing the new approach and comparing it to tra-
ditional GP. The sample setA always consisted of 50 sam-

Table 1 Control parameters used for GP and HGP.

Function set: F = {+,−, ∗, /, sqrt, 2̂, 3̂}
Terminal set: T = {x,<},< ∈ [−1, 1]
Fitness cases: A: set of 50 random samples
Fitness function: MSEAcc(E,A)
Init. precision for evaluation: 8
Error handling: returnundef
Population size: GP: 4000, HGP: 300
Number of generations: 50
Initialization: ramped half-and-half
Max. depth for initialization: 6
Selection: Tournament selection

(GP:k = 7, HGP:k = 5)
Elitism: yes
Crossover probability: 90%
Reproduction probability: 10%
Max. depth for crossover: 17

0 0.5 1 1.5 2 2.5 3

-1

0

1

2

3

4

3

2

1

F  (x)

F  (x)

F  (x)

F1(x) = sin(x)
F2(x) = ex/3 cos(3x)/2
F3(x) = ln(4+2 sin(x) sin(8x))+ecos(3x)

x ∈ [0, π]

Figure 3 Test functions.

ples randomly chosen out of[0, π]. The function and ter-
minal sets used for approximating the test functions were
F = {+,−, ∗, /, sqrt, 2̂, 3̂} andT = {x,<}. Various con-
trol parameters which proved to be well suited when using ei-
ther GP or HGP are subsumed in Table 1. Note that accuracy
penalization was used for HGP as well as GP. During evalua-
tion with the arbitrary precision arithmetic, an initial precision
of eight decimal digits was assumed for all values correspond-
ing to terminals. Note that in HGP, large population sizes are
not as useful as in traditional GP. When using HGP, a popu-
lation size of 300 turned out to be a good choice for the given
test problems. For traditional GP, a population size between
1000 and 5000 proved to be well suited. Concerning the CPU
time for interpreting and evaluating a solution, our implemen-
tation of HGP is about 10 to 15 times slower than the tradi-
tional approach. To make a comparison of GP and HGP easy,
the population size of GP was set to 4000, thus about 13 times
larger than the population size of HGP. In this way, the total
CPU times per generation are very similar for GP and HGP.
In both cases a run was terminated after 50 generations and
needed approximately 40 minutes CPU time.

Table 2 shows mean square errorsMSEAcc of final solu-
tions from 15 performed runs per test function and per algo-
rithm sorted according to increasing values. Note that HGP
outperforms traditional GP by several orders of magnitude.
The performance curves of the runs leading to median mean
square errors are depicted in Fig. 6. Already the best solu-
tions of the initial populations of HGP led to smaller errors
than the final solutions of GP. Note that the used initial pre-
cision for evaluation limits the smallest possibleMSEAcc .
This limitation can especially be observed in the HGP runs
for F1 and F2: While the runs perform very well until the
18th generations, only small improvements are made there-
after. Considering the order of magnitude of the dependent
variablesdk and our initial precision of eight digits,MSEAcc

can never get lower than≈ (10−8)2 = 10−16. Other exper-
iments have shown that a higher initial precision indeed en-
ables even smaller errors for such functions asF1 andF2.

For the shown typical runs the mean square errorsMSEAcc

andMSE , their relative difference (a measure for the total nu-
merical precision), and the structural complexity (total num-
ber of nodes) of the final solutions are depicted in Table 3.



Table 2 Sorted mean square errorsMSEAcc of final solutions from 15 runs for GP/HGP andF1 to F3.

MSEAcc F1(x) / GP F1(x) / HGP F2(x) / GP F2(x) / HGP F3(x) / GP F3(x) / HGP

Best: 1.77×10−2 1.38×10−14 3.17×10−2 8.72×10−13 2.34×10−1 1.94×10−4

1.93×10−2 1.46×10−14 3.62×10−2 9.36×10−13 2.35×10−1 2.49×10−4

3.58×10−2 1.50×10−14 3.79×10−2 1.28×10−12 2.51×10−1 2.79×10−4

3.82×10−2 3.23×10−14 3.83×10−2 1.50×10−12 2.88×10−1 3.12×10−4

4.98×10−2 4.38×10−14 7.85×10−2 4.32×10−12 2.97×10−1 3.86×10−4

5.13×10−2 1.20×10−13 7.88×10−2 5.61×10−12 3.25×10−1 3.90×10−4

5.36×10−2 1.60×10−13 8.43×10−2 8.18×10−12 5.08×10−1 4.33×10−4

Median: 6.31×10−2 1.68×10−13 9.13×10−2 8.63×10−12 5.93×10−1 6.98×10−4

6.36×10−2 2.47×10−13 1.04×10−1 1.22×10−11 6.02×10−1 8.12×10−4

6.44×10−2 2.79×10−13 1.11×10−1 1.32×10−11 8.71×10−1 8.23×10−4

7.38×10−2 5.14×10−13 1.12×10−1 2.10×10−11 1.01 1.08×10−3

1.19×10−1 6.19×10−13 1.64×10−1 2.87×10−11 1.04 1.09×10−3

1.20×10−1 6.50×10−13 2.12×10−1 5.57×10−11 1.16 1.41×10−3

1.69×10−1 9.25×10−13 2.25×10−1 5.73×10−11 1.20 1.55×10−3

Worst: 2.11×10−1 1.00×10−12 2.54×10−1 5.96×10−11 1.59 2.27×10−3

Average: 7.83×10−2 4.63×10−13 1.12×10−1 1.39×10−11 5.96×10−1 8.08×10−4

Table 3 The two mean square errors, their absolute and relative differences, and the structural complexitiesComp of
the final solutions from the runs shown in Fig. 6.

Function Algorithm MSEAcc MSE MSEAcc −MSE MSEAcc−MSE
MSE Comp

F1(x) GP 6.3093278×10−2 6.3093277×10−2 1.00×10−9 1.58×10−8 127
HGP 1.6799260×10−13 1.5379202×10−13 1.42×10−14 9.23×10−2 183

F2(x) GP 9.1329357×10−2 9.1329212×10−2 1.45×10−7 1.59×10−6 139
HGP 8.6278573×10−12 8.3136812×10−12 3.14×10−13 3.78×10−2 109

F3(x) GP 5.9343866×10−1 5.9343853×10−1 1.30×10−7 2.20×10−7 114
HGP 6.9802702×10−4 6.7389201×10−4 2.41×10−5 3.58×10−2 218

E(x) = 4.9510016×10−1+ 6.2906751×10−1 · x− 6.3670445×10−1 · x3 + 8.1338748×10−3 · x9 + 4.8007820×10−5·
·x12 − 2.6656530×10−2 · (2.3612010×10−2 − 1.9604153 · x + x3

)3 − 1.6270552 ·
√

x3 +
√

x7 +
√

x7·
·
(

3.009657×10−2 · (2.3612010×10−2 − 1.9604153 · x)2 + 1.0630923 ·
(
−1.9604152 · x + 4

√
x7

)2
)

Figure 4 A simplified final solution generated by HGP for functionF2: MSEAcc = 8.63×10−12.

E(x) = 5.6997292− 371.86678 · (2.6925×10−1 − x)3 − 1.007778 · √x− 114.92842 · x− 752.4797 · x3 − 661.50399·
·
√

x7 + 2325.1778 · (3.09898×10−1 + x)6 − 463.74047 ·
√

x7 · (3.1746×10−1 + x)− 1981.9457 · (3.1746×10−1 + x)3·
·(x2 + x3)− 346.04283 · (x5 + x6)

Figure 5 A simplified final solution generated by HGP without accuracy penalization for functionF2 leading to an
essential precision loss when evaluated:MSE = 1.43×10−15, MSEAcc = 4.36×10−2, MSEAcc−MSE

MSE = 3.0×1013.

Usually solutions of HGP runs were slightly larger than those
of GP. The final solution obtained by HGP for functionF2 is
shown in Fig. 4.

Fig. 5 shows a solution generated by HGP when accuracy
penalization has been disabled andMSE was used instead of
MSEAcc as fitness function. The large relative difference be-
tweenMSEAcc andMSE of 3×1013 indicates an essential
loss of precision. Very often, such ill-conditioned solutions
with MSE values close to zero but large losses of accuracy

were obtained as final results. This shows that the usage of the
arbitrary precision arithmetic andMSEAcc as fitness function
is a substantial part of the algorithm for getting robust solu-
tions.

5 Conclusions
Standard GP has been improved by extending the interpreta-
tion of parse trees: Top-level terms are multiplied by factors



0 10 20 30 40 50
Generation

0.01

0.02

0.05

0.10

0.20

0.50

1.00

M
SE

A
cc

GP

      F1(x)

      F2(x)

      F3(x)

0 10 20 30 40 50
Generation

1x10
−14

1x10
−13

1x10
−12

1x10
−11

1x10
−10

1x10
−9

1x10
−8

1x10
−7

1x10
−6

1x10
−5

1x10
−4

1x10
−3

1x10
−2

1x10
−1

1x10
0

M
SE

A
cc

HGP

      F1(x)

      F2(x)

      F3(x)

Figure 6 Typical performance curves for applying GP
and HGP to the test functionsF1 to F3.

determined by the MLS. Although only linear dependencies
are locally optimized in this way, HGP usually finds much
better approximations to functions involving numerical con-
stants than traditional GP and is also faster concerning con-
vergence speed. The MLS clearly introduces a time overhead
in the evaluation process, but the described technique is far
less time consuming than other, non-linear local optimization
methods improving general numerical constants in GP solu-
tions.

Numerical robustness seems to be a point often overlooked
in doing symbolic regression, especially when using GP. Es-
timating accuracy by using arbitrary precision arithmetic dur-
ing evaluation and considering the loss of accuracy in the fit-
ness calculation guarantees numerical robustness at least for
the samples used during evaluation.

6 Future Work
Our next step for accelerating HGP will be an implementation
as a single process in C++. This should allow the applica-
tion of HGP to larger problems. In general, more experiments
should be done to gain better knowledge about well suited GP

parameters. Incorporating automatically defined functions as
discussed in Koza (1994a) may also be an interesting step for-
ward in improving the abilities of HGP.

Bibliography
Ahmed M. A., De Jong, K.A. 1997. Function Approximator

Design Using Genetic Algorithms. InProc. of the 1997
IEEE Int. Conference on Evolutionary Computation. Indi-
anapolis, IN, pp. 519–523.

Crow, E. L., Davis, F. A., Maxfield M. W. 1960.Statistics
Manual. Dover Publications, New York.

Fraser, A., Weinbrenner, T. 1993–1997.The Genetic Pro-
gramming Kernel. Version 0.5.2, GNU free software.

Fröhlich, J., Hafner, C. 1996. Extended and Generalized Ge-
netic Programming for function Analysis. submitted to the
Journal of Evolutionary Computation.

Golub, F. H., Loan, C. F. 1990.Matrix Computations. The
Jones Hopkins University Press, London.

Koza, J. R. 1992.Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. The
MIT Press, Cambridge, MA.

Koza, J. R. 1994.Genetic Programming II: Automatic Dis-
covery of Reusable Programs. The MIT Press, Cambridge,
MA.

McKay, B., Willis, M. J., Barton G. W. 1995. Using a Tree
Structured Genetic Algorithm to Perform Symbolic Re-
gression. InProc. of the 1st Int. Conference on Genetic
Algorithms in Engineering Systems: Innovations and Ap-
plications. UK, pp. 487–492.

Raidl, G. R. 1998. Approximation with Evolutionary Opti-
mized Tensor Product Bernstein Polynomials. InProc. of
the Int. Conference on Artificial Intelligence in Industry:
From Theory to Practice. High Tatras, Slovakia, (to ap-
pear).

Raidl, G. R., Kodydek, G. 1998. Evolutionary Optimized Ten-
sor Product Bernstein Polynomials versus Backpropaga-
tion Networks. InProc. of the Int. ICSC/IFAC Symposium
on Neural Computation. Vienna, Austria, (to appear).

Rogers, D. 1995. Development of the Genetic Function Ap-
proximation Algorithm. InProc. of the 6th Int. Conference
on Genetic Algorithms. Pittsburgh, PA, pp. 589–596.

Schaffer, J. D., Whitley, D., Eshelman, L. J. 1992.Combina-
tions of Genetic Algorithms and Neural Networks: A Sur-
vey of the State of the Art. COGAN–92, IEEE Computer
Society Press.

Wolfram, S. 1991.Mathematica, a System for Doing Mathe-
matics by Computer. Addison Wesley, CA, 1991.


