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Abstract— This paper presents an improved hybrid Ge-
netic Algorithm (GA) for solving the Multiconstrained 0–1
Knapsack Problem (MKP). Based on the solution of the
LP-relaxed MKP, an efficient pre-optimization of the initial
population is suggested. Furthermore, the GA uses sophis-
ticated repair and local improvement operators which are
applied to each newly generated solution. Care has been
taken to define these new operators in a way avoiding prob-
lems with the loss of population diversity. The new algo-
rithm has been empirically compared to other previous ap-
proaches by using a standard set of “large-sized” test data.
Results show that most of the time the new GA converges
much faster to better solutions, in particular for large prob-
lems.

Keywords— Multiconstrained 0–1 Knapsack Problem, hy-
brid Genetic Algorithm, pre-optimized initialization, local
improvement.

I. Introduction

THE Multiconstrained 0–1 Knapsack Problem (MKP) is
a well known NP-complete combinatorial optimization

problem which can be formulated as follows:

maximize f(x1, . . . , xn) =
n∑

j=1

pjxj , (1)

subject to Ci :
n∑

j=1

wi,jxj ≤ bi, (2)

i = 1, . . . , m,

xj ∈ {0, 1}, j = 1, . . . , n

with pj > 0, ri,j ≥ 0, bi ≥ 0.

The objective function f(x1, . . . , xn) should be maxi-
mized while taking care of m constraints Ci. Note that
only the values 0 and 1 may be assigned to the xj , making
the problem a 0–1 integer programming problem. The sig-
nificant difference to general 0–1 programming problems is
the fact that in case of the MKP all wi,j are positive. This
property allows for better heuristics to obtain near optimal
solutions.

The MKP has many applications in various fields, e.g.
economy: Consider a set of projects (j = 1, . . . , n) and a
set of resources (i = 1, . . . , m). Each project has assigned a
profit pj and resource consumption values wi,j . The prob-
lem is to find a subset of all projects leading to the highest
possible profit and not exceeding given resource limits bi.

Most of the research concerning Knapsack Problems
deals with the much simpler uni-dimensional Knapsack
Problem (KP) with only a single constraint (m = 1). For
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this case, the MKP is not strongly NP-hard [13], and ef-
ficient approximation algorithms have been developed for
obtaining near-optimal solutions, see e.g. [16]. For cases
where both m and n are large, the efficiency of existing ex-
act and heuristic optimization methods is limited concern-
ing execution time and quality of found solutions. Some
exact algorithms which are only applicable to very small
MKPs are presented e.g. by Gavish and Pirkul in [10].

Balas and Martin [1] introduced a heuristic algorithm
for the MKP which utilizes linear programming (LP) by re-
laxing the integrality constraints xj ∈ {0, 1} to 0 ≤ xj ≤ 1.
Linear programming problems are not NP-hard and can be
solved efficiently, e.g. with the well known Simplex algo-
rithm [6]. The fractional xj are then set to 0 or 1 according
to a heuristic which maintains feasibility. More examples of
heuristic algorithms for the MKP can be found in [15], [16],
[19], [23]. A comprehensive review on exact and heuristic
algorithms is given in [7], [8].

In the last few years, Genetic Algorithms (GAs) have
shown to be very well suited for solving larger Knapsack
Problems, see [12], [14], [18], [22], [20], [7], [8], and general
0–1 integer programming problems [21].

The next section gives a survey of these GAs. In section
3 a new hybrid GA is introduced which starts with an ini-
tial population of pre-optimized solutions determined by
a heuristic based on the LP-relaxed MKP. Furthermore,
this GA uses sophisticated repair and local improvement
operators which are applied to each newly generated so-
lution. Empirical results of the new GA and comparisons
with other algorithms using standard test problems follow
in section 4. Finally, some conclusions and remarks for
further works are given in section 5.

II. Prior GA-Based Work

The mentioned prior GAs for the MKP mainly differ in
the ways of encoding solutions. Basically, there are two
techniques, namely bit string and order based representa-
tion.

A. Bit String Representation

The values of all variables xj are directly stored in a bit
string of length n.

At a first glance, this representation seems to be the most
direct and easiest way, but infeasible solutions containing
constraint violations need to be considered. One way to do
this is the usage of penalty functions incorporated into the
objective function. This well known approach is generally
discussed in e.g. [11], [17]. Difficulties lie in the selection
of the penalty function and its coefficients to prevent pre-
mature convergence and infeasible final solutions. In [18],



Olsen compared various penalty functions for such a GA
for the uni-dimensional KP. In a similar GA of Khuri et
al. [14], a graded penalty term was used; only moderate
results were reported on a small number of standard test
problems. Rudolph and Sprave [20] presented a GA where
parent selection is restricted to be between “neighbouring”
solutions. Infeasible solutions were penalized as in [14].
An adaptive threshold acceptance schedule for child accep-
tance was used. Thiel and Voss [22] introduced a combina-
tion of a GA and Tabu Search with local search operators.
Their approach was tested on a set of standard test prob-
lems, but the results were not computationally competitive
with those obtained using other heuristic methods.

Another approach to handle infeasible solutions is to in-
corporate a repair algorithm which transforms each infea-
sible solution into a feasible one (see [3], [17] for a general
introduction). In the MKP, this can be done by setting
some xj to 0. Chu describes such a GA in his PhD thesis
[7] and together with Beasley in [8]. This GA uses a heuris-
tic algorithm based on the shadow prices of the LP-relaxed
solution for selecting the xj which are set to 0 in case of
infeasible solutions. Additionally, the GA includes a local
optimization operator for improving each newly generated
solution by setting previously unset xj to 1 if no constraints
are violated. Empirical tests of the GA on standard test
problems and comparisons to many other approaches are
reported in [7], [8]. The results show that Chu’s GA per-
forms superior to the other approaches concerning quality
of the final solutions. One drawback of Chu’s GA seems to
be its high computational effort.

B. Order Based Representation

Similarly to the well known Traveling Salesman Problem
(see e.g. [2], [3], [11], [17], [9]), a solution is encoded via a
specific permutation of the values j = 1, . . . , n. A first fit
algorithm is used as a decoder to get the variable values xj :
The xj are initialized to 0 and then considered to be set to 1
in the order given by the permutation. If the solution with
xj = 1 would not violate any constraint, xj is definitely set
to 1 otherwise to 0.

This approach guarantees that only feasible solutions are
generated. But on the other hand, a disadvantage of this
representation seems to be the fact that a specific solu-
tion can be encoded in many ways and the search space
is much larger than when using the string representation.
Hinterding presented in [12] a GA with such an order based
representation for the uni-dimensional KP. He used a uni-
form order based crossover (see [3], [11], [17]) as recom-
bination operator and realized that disallowing duplicates
in the population significantly improves results. Further-
more, he compared this GA to another order based GA
with a variable length chromosome representation. Results
show that the standard order based GA performed slightly
better for larger problems.

Sun and Wang [21] proposed a very similar order based
GA for the general 0–1 integer programming problem. Ow-
ing to the fact that the wi,j may also be negative in this
problem, a more complex decoding function is necessary to

TABLE I

Characteristics of the IGA.

GA: steady state,
no duplicate individuals

Encoding: bit string
Selection: tournament (k = 2)
Mutation: bitwise (pm = 1/n)
Recombination: uniform crossover (pc = 0.9)
Population size: 100
Termination: after 106 evaluations
Improvements: pre-optimized initialization,

repair operator,
local improvement operator

procedure Initialize ~x:
~x ← ~0;
P ← random permutation of (1, 2, . . . , n);
for j ← 1 to n do

if xLP
P [j] > Rj then

xP [j] ← 1;
if any Ci is violated then

xP [j] ← 0;
done;

Fig. 1. Algorithm for generating an improved initial solution ~x.

guarantee feasibility.

III. The Improved GA (IGA)

By introducing the following new techniques, the perfor-
mance of a standard steady state GA (see e.g. [3], [11], [17])
for the MKP using bit string representation has been im-
proved essentially. Various characteristics of this proposed
IGA are shown in Table I.

The common way of improving a GA with a local op-
timization technique or heuristic is to either apply this
method to the final best solutions of a GA run or to in-
corporate the method in the GA by applying a few opti-
mization steps to each newly generated solution. Another
not so usual possibility is to determine a starting popula-
tion consisting of already pre-optimized solutions. In this
approach, care must be taken to find starting solutions not
too similar so that the population diversity is high enough.
Otherwise, the GA might get stuck in local optima very
easily.

Fig. 1 shows the IGA’s algorithm for generating a mean-
ingful starting solution for the MKP. Based on the solution
~xLP = (xLP

1 , . . . , xLP
n )T of the LP-relaxed MKP, the algo-

rithm proceeds as follows: All variables xj are initially set
to 0. Then, a random permutation P of the indices 1 to n
is generated to process all the variables xj in random or-
der. In the following loop, each variable xP [j] is first set to
1 with a probability equal to the LP-solution’s value xLP

P [j].
Pseudo-random numbers Rj (0 ≤ Rj < 1) are used for



procedure Repair ~x:
P ← random permutation of (1, 2, . . . , n) with

xLP
P [j] ≤ xLP

P [j+1] (j = 1, . . . , n− 1);
for j ← 1 to n do

if xP [j] = 1 and any Ci is violated then
xP [j] ← 0;

done;

Fig. 2. Algorithm for making a solution ~x feasible.

procedure Locally improve ~x:
P ← random permutation of (1, 2, . . . , n) with

xLP
P [j] ≥ xLP

P [j+1] (j = 1, . . . , n− 1);
for j ← 1 to n do

if xP [j] = 0 then
xP [j] ← 1;
if any Ci is violated then

xP [j] ← 0;
done;

Fig. 3. Algorithm for locally improving a solution ~x.

this purpose. If setting xP [j] to 1 violates any constraint
Ci, xP [j] is reset to 0. Thus, only feasible solutions are
initially generated. Due to the random elements, this al-
gorithm generates different starting solutions most of the
time ensuring population diversity.

Instead of penalizing infeasible solutions created by stan-
dard uniform crossover and bitwise mutation, a repair op-
erator similar to [7], [8] is used. This operator which is
depicted in Fig. 2 is applied to each infeasible solution im-
mediately before its fitness evaluation. Again, a permuta-
tion P of the indices 1 to n is first determined to check all
the variables xj in a specific order. But now the indices
are sorted according to increasing LP-solution values xLP

j .
Only indices with the same values are shuffled randomly.
The aim is therefore to process variables with low xLP

j first
and variables with high xLP

j , which are assumed to be more
valuable when set to 1, later. Inside the loop, all variables
xP [j] set to 1 are one after the other reset to 0 as long as
any constraint Ci is violated. Thus, in the worst case, all
variables are reset to 0 and ~x = (x1, . . . xn)T is guaranteed
to be a feasible solution.

Furthermore, the local improvement technique shown in
Fig. 3 is applied to each newly generated solution after
making it feasible: In contrast to the repair operator, the
variables xj are now processed in decreasing order of the
LP-solutions’ values xLP

j . As in the initialization proce-
dure, each variable xP [j] = 0 will be set to 1 if this does
not violate any constraint. Therefore, solutions have the
chance to become better while feasibility is retained.

Note that Chu et al. used a similar repair and local op-
timization technique in [7], [8]. The major difference is
that their methods are deterministic and based on shadow
prices of the inverse LP-relaxed MKP. Similar elements can
also be found in the heuristics in [15], [19].

IV. Empirical Results

The proposed IGA has been implemented on a Pentium
PC (133MHz) using Linux and the GNU C++ compiler.
To compare the new algorithm to previous approaches,
Hinterding’s order based GA (OBGA) [12] and the bit
string based GA from Chu et al. (CHUGA) [7], [8] have also
been re-implemented. The mathematic package SCILAB
was used to solve LP-relaxed problems for getting ~xLP and
shadow prices.

Standard “large-sized” test data proposed by Chu et al.
in [7], [8] and publically available from OR-Library [4], [5]
(http://mscmga.ms.ic.ac.uk/info.html) were used to test the
three GAs. These data contain randomly generated MKPs
with different numbers of constraints (m ∈ {5, 10, 30}),
variables (n ∈ {100, 250, 500}), and different tightness ra-
tios1 (α ∈ {0.25, 0.5, 0.75}). The coefficients pj are corre-
lated to wi,j making the problems in general more difficult
to solve than uncorrelated problems, see [19]. There are
10 problem instances for each combination of m, n, and α,
giving 270 test cases in total.

Based on these test data, an empirical comparison of
CHUGA to several other well known heuristics as [15], [19],
[23] can be found in [7], [8]. In these experiments, CHUGA
almost always found better solutions with smaller gaps, but
the other heuristics were all much faster.

The three implemented GAs were run once for each prob-
lem instance. Each run terminated when 106 non-duplicate
individuals had been generated. Since the optimal solution
values for most of these problems are not known, the qual-
ity of a solution is measured by the percentage gap of the
GA’s solution value with respect to the optimal value of the
LP-relaxed problem: %-gap = 100(fmax − fLP

max)/fLP
max.

Table II shows average best solutions’ %-gaps over the
30 test runs for each combination of m and n. Values for
the initial populations and after 103, 104, 105, and 106

evaluations are given. Most noticeable are the generally
much better performance values of IGA and CHUGA com-
pared to OBGA. The main reason for this result seems to
be the inclusion of local optimization operators in the two
bit string based GAs. Other experiments without the us-
age of local optimization (and pre-optimized initialization)
also indicate a better performance for the GAs with bit
string representation and repair algorithms, although the
differences were not so large.

Owing to IGA’s pre-optimization of initial solutions, the
initial %-gaps are much smaller than those of OBGA and
CHUGA. Often, the initial best solution of IGA is even
better than the final solution of OBGA after 106 evalu-
ations. Furthermore, the final %-gaps of IGA (after 106

evaluations) are nearly always slightly smaller than the cor-
responding values of CHUGA.

The major advantage of IGA seems to be its much faster
convergence rate: Especially for the larger problems with
m = 500, very low %-gaps could be achieved after a few
thousand evaluations when using IGA instead of over 105

1Tightness ratio α: The coefficients bi of the constraints have been
set to α

∑n

j=1
wi,j



TABLE II

Best solutions’ %-gaps of initial populations and after 103,

104, 105, and 106 generations for OBGA, CHUGA, and IGA

(average values over 30 runs).

%− gap
m n Evals.

OBGA CHUGA IGA
5 100 Initial 12.37 14.67 1.38

103 4.57 1.29 0.76
104 1.03 0.68 0.61
105 0.88 0.59 0.59
106 0.79 0.59 0.59

5 250 Initial 13.54 14.65 0.48
103 6.82 2.01 0.27
104 0.91 0.50 0.22
105 0.62 0.25 0.16
106 0.48 0.16 0.15

5 500 Initial 14.00 7.46 0.13
103 8.73 1.21 0.06
104 1.51 0.22 0.05
105 0.76 0.09 0.05
106 0.47 0.05 0.04

10 100 Initial 14.40 5.32 1.27
103 7.56 1.23 1.09
104 3.74 1.00 0.98
105 3.51 0.97 0.97
106 3.40 0.94 0.95

10 250 Initial 14.03 15.32 0.71
103 7.53 1.85 0.48
104 1.51 0.64 0.42
105 1.08 0.43 0.34
106 0.86 0.35 0.29

10 500 Initial 14.19 10.55 0.26
103 8.96 1.45 0.16
104 1.99 0.33 0.14
105 1.18 0.20 0.12
106 0.89 0.14 0.11

30 100 Initial 14.44 15.96 3.63
103 6.70 2.76 2.28
104 2.57 2.04 1.98
105 2.41 1.77 1.76
106 2.22 1.74 1.71

30 250 Initial 14.60 15.88 1.58
103 8.47 2.32 0.89
104 2.08 1.15 0.81
105 1.64 0.85 0.72
106 1.33 0.73 0.64

30 500 Initial 14.70 14.00 0.70
103 9.69 2.18 0.43
104 2.67 0.77 0.38
105 1.76 0.49 0.35
106 1.28 0.40 0.33

TABLE III

Average numbers of evaluations required to find solutions

of given high quality (ECHUGA, EIGA), average speed-up of

IGA (ECHUGA/EIGA), and average execution times (TIGA).

m n ECHUGA EIGA
ECHUGA

EIGA
TIGA

5 100 24136 18462 1.31 640s
250 218304 43219 5.05 1004s
500 491573 6234 78.85 1581s

10 100 318764 581232 0.55 770s
250 475643 83813 5.68 1314s
500 645250 7135 90.43 2233s

30 100 197855 152712 1.30 1382s
250 369894 86143 4.29 2654s
500 587472 5323 110.36 4998s

Average 369877 109364 33.09 1842s

necessary evaluations in case of CHUGA. Table III shows
this faster convergence of IGA compared to CHUGA more
clearly: For both algorithms, the average numbers of evalu-
ations (ECHUGA and EIGA) required to find solutions with
%-gaps less than or equal to given limits (more specifically
the maxima of the final %-gaps of IGA and CHUGA) are
determined. The average speed-up factors ECHUGA/EIGA

show how much faster IGA found comparable high qual-
ity solutions than CHUGA. CHUGA outperformed IGA in
only a single test case (m = 10, n = 100). For the large
problems with n = 500 variables an average speed-up of
93.21 could be achieved. The total average speed-up over
all test runs was 33.09. The faster convergence to good
solutions can also be observed in Fig. 4 and 5 which show
average best solutions’ %-gaps of all three GAs plotted over
the number of evaluations for the two largest problem cases
(n = 500, m ∈ {10, 30}).

Additionally, Table III shows average total execution
times TIGA in seconds of CPU time for IGA. The times
for CHUGA were very similar, OBGA performed slightly
faster.

IGA was also tested with other GA-characteristics than
those shown in Table I, but the best and most robust results
were obtained by the proposed parameters. In all three
GAs it proved to be essential to avoid duplicates in the
population. Otherwise, the population diversity gets lost
very soon, and only few “super individuals” survive.

Applying pre-optimization of the initial population to
CHUGA also resulted in faster convergence rates for
CHUGA, but the achieved final solutions after 106 eval-
uations were worse than those from the original. The main
reason for this effect seems to be the deterministic local
optimization technique based on shadow prices of the LP-
relaxed solution which reduces population diversity more
than the non-deterministic local improvement of IGA.

V. Conclusions and Future Work

A bitstring based GA for the MKP has been improved
by introducing a pre-optimized initial population, a repair-,
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Fig. 4. Test case m = 10, n = 500: Average best solutions’ %-gaps
plotted over evaluations.
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Fig. 5. Test case m = 30, n = 500: Average best solutions’ %-gaps
plotted over evaluations.

and a local improvement operator. All these new tech-
niques are based on the solution of the LP-relaxed MKP.
For the “large-sized” test data used, this new IGA con-
verged most of the time much faster to slightly better so-
lutions than the comparable GA from Chu et al. [7], [8].
Both GAs outperformed the order based GA from Hinter-
ding [12].

Although the usage of heuristics and local optimization
techniques to improve GAs is generally known to be a very
effective possibility for many problems, pre-optimizing the
initial population is not so common. The main reason for
this might be the danger to lose population diversity from
the very beginning. In case of the proposed IGA, it turned
out to be essential that the pre-optimization of the initial
population and the repair- and local improvement opera-
tors all contain random elements for retaining diversity.

Future work will include the incorporation of other
heuristics (e.g. via Lagrange relaxation) into the generation
of initial solutions and/or locally improving them. Further-
more, it should be possible to extend the proposed IGA for
solving the more general 0–1 integer programming or other
similar combinatorial optimization problems.
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