
Genetic Algorithms for the Multiple Container
Packing Problem

Günther R. Raidl, Gabriele Kodydek

Department of Computer Graphics
Vienna University of Technology

Karlsplatz 13/1861, 1040 Vienna, Austria
e-mail: {raidl,kodydek}@eiunix.tuwien.ac.at

Abstract. This paper presents two variants of Genetic Algorithms
(GAs) for solving the Multiple Container Packing Problem (MCPP),
which is a combinatorial optimization problem comprising similarities
to the Knapsack Problem and the Bin Packing Problem. Two different
representation schemes are suggested, namely direct encoding and order
based encoding. While order based encoded solutions are always feasible,
a repair algorithm is used in case of direct encoding to ensure feasibil-
ity. Additionally, local improvement operators have been applied to both
GA variants. The proposed algorithms were empirically compared by
using various sets of differently sized test data. Order based encoding
performed better for problems with fewer items, whereas direct encod-
ing exhibited advantages when dealing with larger problems. The local
improvement operators lead in many cases not only to better final results
but also to shorter running times because of higher convergence rates.

1 Introduction

The Multiple Container Packing Problem (MCPP) is a combinatorial optimiza-
tion problem which involves finding the most remunerative assignment of n items
with given weights and values to C containers such that each item is assigned
to one container or remains unassigned, and the total weight of each container
does not exceed a given maximum. This problem has applications in various
fields as e.g. in air baggage handling and many other important sectors of a
modern economy. In detail, it can be formulated as follows:

maximize f =
C∑

i=1

n∑

j=1

vjxi,j , (1)

subject to
C∑

i=1

xi,j ≤ 1, j = 1, . . . , n, (2)

n∑

j=1

wjxi,j ≤ Wmax, i = 1, . . . , C, (3)

xi,j ∈ {0, 1}, i = 1, . . . , C, j = 1, . . . , n,

with wj > 0, vj > 0, Wmax > 0 .

Let wj be the weight and vj be the value of item j. The variables searched for
are xi,j (i = 1, . . . C, j = 1, . . . , n): If item j is assigned to container i, xi,j is set
to 1, otherwise to 0. The goal is to maximize the total value of all assigned items
(1). The n constraints in (2) ensure that each item is assigned to one container
at maximum. According to (3), each of the C containers has a total maximum
weight Wmax which must not be exceeded by the sum of the weights of all items
assigned to this container.

The next section gives a short survey of combinatorial problems related to
the MCPP and of Genetic Algorithms (GAs) for solving them. In Sect. 3, two
GA variants differing in their solution encoding techniques are presented, and
specific local improvement operators are introduced. An empirical comparison
of the new GAs using various test problem sets follows in Sect. 4. Finally, some
conclusions are drawn in Sect. 5.

2 Related Problems

There are some other combinatorial optimization problems which are closely
related to the MCPP. The well-known Knapsack Problem (KP) can be seen as
the variant of the MCPP with only one container (C = 1): Which items should
be selected for packing into a single knapsack to get the highest possible total
value while not exceeding a given total weight? The KP is not strongly NP-hard
[8], and efficient approximation algorithms have been developed for obtaining
near optimal solutions, see e.g. [13]. The more general and strongly NP-hard
Multiconstrained Knapsack Problem (MKP) involves more than one (m > 1)
limited resources leading to m constraints. E.g. additionally to the weight, the
volume might be a second constrained resource. Various exact algorithms and
heuristics for the MKP can be found in [13]. A comprehensive review is given in
[3, 5].

Another combinatorial optimization problem related to the MCPP is the Bin
Packing Problem (BPP): In this problem, the goal is to minimize the number of
containers necessary to pack all n items while not violating any weight constraint.
The values of items do not play a role. Like the MKP, the BPP in its general
form is NP-hard, see [6]. Note that the MCPP can also be seen as a complex
combination of the KP and the BPP, since the MCPP can be divided into two
strongly depending parts which must be solved simultaneously: (a) Select items
for packing, and (b) distribute chosen items over the available containers.

One more related problem, which can be seen as a more general form of the
BPP, is known under the term General Assignment Problem (GAP), see [3, 4]:
A set of jobs (=̂ items) must be assigned to a set of agents (=̂ containers). Each
possible assignment has its individual capacity requirements and costs, and each
agent has its individual capacity limits. The goal is to distribute all jobs in a
way to pay minimal costs while satisfying all constraints.

In the last years, Genetic Algorithms [1, 2, 7, 10, 14] have proven to be
very well suited for finding nearly optimal solutions to difficult instances of
the (M)KP, BPP, GAP, and similar combinatorial problems. Olsen presented in

[15] a GA for the KP using a bit string representation for solutions. Infeasible
solutions containing constraint violations are penalized by adding a suitable
term to the objective function. Difficulties lie in the selection of the penalty
function and its coefficients to prevent premature convergence and infeasible
final solutions. Olsen compared various penalty functions for such a GA. In a
similar GA of Khuri et al. [12], a graded penalty term was used; only moderate
results were reported on a small number of standard test problems. Rudolph
and Sprave [17] presented a GA in which parent selection is restricted to happen
between “neighboring” solutions. Infeasible solutions were penalized as in [12].

Another approach to handle infeasible solutions is to incorporate a repair
algorithm which transforms each infeasible solution into a feasible one (see [10,
14] for a general introduction). In the (M)KP, this can be done by setting some
genes to 0. Chu describes such a GA in his PhD thesis [3] and together with
Beasley in [5]. This GA uses a heuristic algorithm based on the shadow prices
of the LP-relaxed solution1 for selecting the genes which are set to 0 in case
of unsatisfied constraints. Additionally, the GA includes a local optimization
operator for improving each newly generated solution by setting previously unset
genes to 1 as long as no constraints are violated. Empirical comparisons of the
GA to other approaches using various standard test problems are documented in
[3, 5]. The results show that Chu’s GA performs superior to the other methods
concerning the quality of the final solutions. In [16], we presented another GA
for the MKP also including a heuristic repair algorithm and local improvement.
The starting population is generated by using a greedy heuristic, which speeds
up the convergence to high quality solutions essentially. For the same test data,
this improved GA finds much faster slightly better solutions than that of Chu.

A different technique for representing solutions of the (M)KP is to use an
order based encoding scheme, which is well known from GAs for the Traveling
Salesman Problem (TSP), see [14]. A first fit algorithm is used as a decoder to
get the selected items. This approach guarantees that only feasible solutions are
generated. Hinterding presented in [11] a GA with such a representation for the
KP. He used uniform order based crossover (see [2, 10, 14]) as recombination
operator and realized that disallowing duplicates in the population significantly
improves results. Sun and Wang [18] proposed a very similar order based GA for
the more general 0–1 integer programming problem in which the weights wj may
also be negative. Owing to this property, a more complex decoding function is
necessary to guarantee feasibility.

For the BPP, an efficient hybrid GA is presented in [6]. A GA for the GAP
is discussed in [3, 4]. This approach uses a repair algorithm for improving in-
feasible solutions, but reaching feasibility cannot be guaranteed for all cases.
Furthermore, a greedy heuristic is used to locally improve solutions by reassign-
ing jobs to different agents involving lower costs. Regarding the quality of final
solutions, the GA outperformed several other optimization techniques for most
test problems.

1 The solution of the Linear Programming relaxation of the original problem, where
discrete parameters are substituted by continuous ones.

1 2 3 4 ... n 1 2 3 4 ... nIndex

Items

Container
or unassigned

t

i

bt
Container 2 3 1 1...0a
Items j

j
or 0

b)a)

... 413 n 2

1 ...2 unassigned3

Fig. 1. (a) Direct encoding versus (b) order based encoding

3 GAs for the MCPP

Inspired by [3, 4, 5, 16], a steady-state GA with tournament selection and a
replacement scheme which eliminates the worst solution or the last one generated
in case of duplicates is used as a basis instead of the traditional generational GA.

According to the experiences from the previous GAs for the (M)KP, BPP, and
GAP, two different solution encoding schemes seemed suitable for the MCPP:
Direct encoding (DE), similar to [4, 5, 12, 15, 16, 17], and order based encoding
(OBE), compare [11, 18]. These two techniques are described in detail in the
following.

3.1 Direct Encoding

A solution is encoded as a vector a consisting of n genes aj (j = 1, . . . , n). Each
aj represents the number i (i = 1, . . . , C) of the container to which item j is
supposed to be assigned or the special value 0 if no assignment to any container
should be done, see Fig. 1a.

With this representation it is easily possible that solutions are generated
which violate constraints (2) concerning the maximum total weight Wmax of
containers. Results of the mentioned GAs for related problems suggest the usage
of a repair mechanism within the chromosome decoding function rather than
penalizing such infeasible solutions.

The algorithm for decoding and possibly repairing a chromosome a is shown
in Fig. 2a. First, the current weights of all containers (vector s) are initialized
with 0. Then, all items are processed in a random, always different order so that
not the same items are favored every time. Each item j is checked if it fits into
the container possibly specified in aj , in which case the item is actually assigned
and the current weight of the container sai is increased accordingly. If adding
item j would result in exceeding the total maximum weight Wmax, the value of
the corresponding gene aj is set to 0 meaning that the item is not assigned to
any container.

Note that this encoding scheme allows the usage of the standard recombi-
nation and mutation operators as uniform crossover and flip mutation, which
behaved best in performed experiments.

a)
procedure DecodeDE (a);
s ← 0;
for all items j in random order do

if aj 6= 0 then
if saj + wj ≤ Wmax then

saj ← saj + wj ;
assign item j to container aj ;

else
aj ← 0;

done;

b)
procedure ImproveDE (a);
for all unassigned items j

in random order do
for all containers i

in random order do
if si + wj ≤ Wmax then

si ← si + wj ;
aj ← i;
assign item j to container aj ;
skip remaining containers;

done;

Fig. 2. Direct encoding: (a) chromosome decoding including repair mechanism and (b)
heuristic improvement

a)
procedure DecodeOBE (b);
i ← 1; s ← 0; t ← 1;
while i ≤ C do

if si + wbt ≤ Wmax then
si ← si + wbt ;
assign item bt to container i;

else
ei ← t;
i ← i + 1;
if i ≤ C then

si ← wbt ;
assign item bt to container i;

t ← t + 1;
done;

b)
procedure ImproveOBE (b);
for t ← eC to n do

for all containers i
in random order do

if si + wbt ≤ Wmax then
si ← si + wbt ;
j ← bt;
for k ← t− 1 downto ei do

bk+1 ← bk;
bei ← j;
for r ← i to C do

er ← er + 1;
assign item j to container i;
skip remaining containers;

done;

Fig. 3. Order based encoding: (a) chromosome decoding and (b) local improvement

3.2 Order Based Encoding

A solution is represented by a permutation of all items j = 1, . . . , n stored in a
chromosome b = (b1, . . . , bn), see Fig. 1b. The first fit algorithm shown in Fig.
3a is used as a decoder to get the item/container assignments: All available con-
tainers i (i = 1, . . . , C) are consecutively filled with the items in the order given
by permutation b. If an item bt does not fit into the current container i, the
algorithm will proceed with the next container, and the index t of this first item
not fitting into container i is stored in ei for later usage during local improve-
ment. If all containers are packed in this way, the remaining items are treated
as unassigned. This method ensures that only feasible solutions are created, and
no repair mechanism is necessary.

When using order based encoding, special recombination and mutation op-
erators are needed to prevent solutions with duplicate or missing items. Various
recombination methods known from the TSP such as order crossover, partially
matched crossover, uniform order based crossover, and cycle crossover satisfy
those requirements, see [14]. Preliminary experiments indicated a slightly better
performance for the MCPP when order crossover was used. As mutation opera-
tor the exchange of two randomly chosen items performed better than insertion
or inversion.

3.3 Local Improvement Algorithms

As already mentioned, many GAs benefit from the inclusion of local or heuristic
improvement techniques applied to some or all newly generated solutions, see
e.g. [3, 4, 5, 16]. Such a hybridization should therefore also be considered for the
MCPP. The basic idea is to improve each newly generated solution by trying
to assign its unassigned items to a container that has not reached its maximum
total weight yet.

Figure 2b shows the algorithm when using direct encoding in detail: All
previously unassigned items j (aj = 0) are processed in random order, and each
container is checked in random order if enough space is available to hold item
j. In this case, the item is assigned to the found container and the algorithm
proceeds with the next unassigned item.

When using order based encoding, the local improvement gets a little more
complicated, see Fig. 3b: Again, the algorithm processes all unassigned items,
now starting with the first one at position eC in b. Each container is checked in
random order if there is enough space left for putting item bt into it. In this case,
the item is moved from its current position to position ei and is now considered
the last element of container i. For this purpose all items between these two
positions need to be moved one gene up, and the container border indexes ei to
eC must be incremented.

4 Implementation and Experimental Results

Miscellaneous randomly generated test data sets were used to practically exam-
ine a GA using direct encoding with and without local improvement (DEI, DE)
and order based encoding with and without local improvement (OBEI, OBE).
These four GA variants have been implemented on a Pentium-II PC (266MHz)
using Linux, the GNU C++ compiler and the publicly available Genetic Algo-
rithms Library GAlib by M. Wall [19].

Various characteristics and parameters of the steady-state GA, which were
determined by preliminary experiments and found to be robust and well suited
for the MCPP in general, are summarized in Table 1. It is essential that duplicate
solutions are disallowed in the population (by using the replacement scheme
already described in Sect. 3) because otherwise the GA converges too fast to
only poor solutions. For the KP a similiar behavior has already been observed by

Table 1. Characteristics of the GA with the two solution encoding variants

GA: steady state, no duplicate solutions
Goal: maximize total value of assigned items (f)
Selection: tournament (k = 2)
Recombination: DE: uniform crossover (pc = 0.5), OBE: order crossover (pc = 0.5)
Mutation: DE: flip mutation (pm = 1/n), OBE: swap mutation (pm = 1/n)
Population size: 100
Termination: 200,000 solutions evaluated without finding a new best solution

Table 2. Gaps of best-of-run solutions with needed numbers of evaluations evals and
CPU-times t for problems with different numbers of containers C and fixed total con-
tainer weights Wmax = 100 (average values from 10 runs/problem)

Wmax = n = 30 n = 50 n = 200
100 C %-gap evals t[sec] C %-gap evals t[sec] C %-gap evals t[sec]

DE 3 2.74 11140 0.9 5 2.60 270720 37.7 20 1.91 377300 162.9
6 2.69 139260 12.0 10 1.43 379180 53.2 40 1.94 675140 295.2
9 3.31 98860 9.2 15 2.53 162220 23.7 60 1.99 730200 322.7

12 2.48 92640 8.2 20 2.58 244820 36.3 80 2.89 644500 295.6

DEI 3 2.74 5620 0.5 5 2.58 119620 17.4 20 1.65 711080 336.0
6 2.45 38900 3.5 10 1.10 408280 62.2 40 1.64 755220 356.5
9 3.01 19260 1.8 15 1.99 262800 42.5 60 1.48 935840 452.4

12 1.58 81680 8.0 20 1.50 305340 48.7 80 2.09 823100 401.5

OBE 3 3.16 61200 4.9 5 2.96 194300 25.6 20 2.84 706000 383.9
6 2.82 183560 13.1 10 1.73 352680 44.9 40 2.52 1371840 723.9
9 3.25 140780 9.8 15 2.35 397320 48.8 60 2.10 1431300 698.8

12 1.42 167120 12.4 20 2.03 358880 43.7 80 2.36 1431560 621.4

OBEI 3 2.74 78400 9.0 5 2.28 193980 37.1 20 2.57 717940 713.9
6 2.32 72000 7.4 10 1.58 299900 52.4 40 2.49 778920 860.9
9 2.90 32520 3.2 15 2.00 231300 39.0 60 2.28 1262140 1274.7

12 1.05 184500 15.9 20 1.67 231660 33.4 80 2.62 1009600 833.5

Hinterding [11]. Note that each GA run was terminated when no improvements
were encountered within the last 200,000 evaluations. This condition ensures that
the GA has enough time to converge. In general, we were primarily interested
in finding high-quality solutions and only secondary in the needed CPU-time.

Test problems were generated in three different sizes, namely with n=30, 50,
and 200 items. Item weights wj were randomly chosen out of the interval [5, 95]
giving an average item weight of w = 50. The item values vj were generated by
multiplying the weight wj of each item by a relative item value randomly taken
from [0.8, 1.2]. In a first set of test problems, the total container weight Wmax

was set to 100 allowing two items of average weight to be packed in a single

Table 3. Gaps of best-of-run solutions with needed numbers of evaluations evals and
CPU-times t for problems with different total container weights Wmax and fixed num-
bers of containers C (average values from 10 runs/problem)

n = 30, C = 3 n = 50, C = 5 n = 200, C = 20

Wmax %-gap evals t[sec] %-gap evals t[sec] %-gap evals t[sec]

DE 100 2.74 11140 0.9 2.60 270720 37.7 1.91 377300 162.9
200 0.68 80180 6.8 0.42 573420 80.7 0.71 1045960 455.3
300 0.50 64400 5.5 0.51 454560 64.4 0.45 933200 407.1
400 0.39 208120 17.7 0.40 240400 34.2 0.32 1105640 484.7

DEI 100 2.74 5620 0.5 2.58 119620 17.4 1.65 711080 336.0
200 0.66 33360 3.0 0.35 331180 49.2 0.51 760720 371.8
300 0.47 17040 1.5 0.30 230960 35.2 0.27 1021280 474.6
400 0.37 160660 14.7 0.39 315820 47.8 0.25 1028240 476.7

OBE 100 3.16 61200 4.9 2.96 194300 25.6 2.84 706000 383.9
200 0.96 129980 9.8 0.88 368880 47.5 1.26 742280 408.9
300 0.53 84100 6.0 0.48 434700 54.0 0.76 773060 393.1
400 0.45 99400 7.2 0.53 286480 35.5 0.41 744180 314.6

OBEI 100 2.74 78400 9.0 2.28 193980 37.1 2.57 717940 713.9
200 0.68 113240 11.7 0.60 299620 48.3 2.49 558300 462.7
300 0.44 131040 12.0 0.70 243020 37.8 1.64 514560 341.7
400 0.33 199720 16.7 0.53 505960 70.2 0.64 565960 291.3

3 6 9 12 5 10 15 20 10
0 20 40 60 80

number of containers C

0

1

2

3

4

 DE

 DEI

 OBE

 OBEI

10
0

20
0

30
0

40
0

10
0

20
0

30
0

40
0

10
0

20
0

30
0

40
0

total container weights Wmax

0

1

2

3

4

 DE

 DEI

 OBE

 OBEI

n=50 n=200n=30

b)
=30, C=3 n=50, =5C =200, =20n n C

%
-g

ap

%
-g

ap

a)

WmaxCnumber of containers total container weights

Fig. 4. Average gaps for problems with (a) varying number of containers C and (b)
varying total container weights Wmax

container, and the number of containers C was varied in a way that roughly
20, 40, 60, and 80 percent of the n items could be packed in total: n = 30:
C ∈ {3, 6, 9, 12}, n = 50: C ∈ {5, 10, 15, 20}, n = 200: C ∈ {20, 40, 60, 80}. This
test series includes therefore 12 problems, and the four GA variants were run 10
times for each problem.

Since the optimal solution values for most of these problems are not known,
the quality of a final solution is measured by the percentage gap of the GA’s
solution value f with respect to the optimal value of the LP-relaxed problem

fLP
max. This upper bound can easily be determined for any MCPP by sorting

all items according to their relative values vj/wj and summing up the item
values vj starting with the best item until a total weight of CWmax is reached.
The last item is counted proportionately. Knowing the LP optimum, the gap
is determined by %-gap = 100(f − fLP

max)/fLP
max. Table 2 shows average results

derived from 10 runs per problem instance. Beside the gaps of the best-of-run
solutions, the numbers of evaluated solutions evals and CPU-times t in seconds
until these best-of-run solutions were found are presented. The average gaps are
also depicted in Fig. 4a.

In a second test series the number of containers was fixed (n = 30: C = 3,
n = 50: C = 5, n = 200: C = 20), and the total container weight Wmax was
varied from 100 to 400 in steps of 100. Table 3 and Fig. 4b show average results
for these 12 problem instances.

In general, direct encoding did always benefit from local improvement, order
based encoding in case of small or medium sized problems. Clearly, local im-
provement increases the CPU-time needed for a single evaluation. Nevertheless
entire runs using DEI and OBEI were most of the time only slightly slower and
sometimes even faster than runs with DE and OBE because the locally improved
GAs usually needed fewer evaluations to converge.

For small-sized problems (n = 30), OBEI lead nearly always to the smallest
gaps (best results), while OBE gave the worst final solutions. For large-scale
problems (n = 200), the results are surprisingly different: Generally, the direct
encoding GA variants were better than the order based ones. Especially DEI
outperformed all other approaches by far. The results of OBEI are in this case
often even worse than those of OBE. Furthermore, the execution times were
significantly higher for OBEI and OBE (except for the problems with larger
Wmax).

A reason for the different behaviors of the two encoding schemes seems to
be that the order based approach with its order crossover is more disruptive
and introduces therefore more diversity into the population. Smaller problems
with fewer items benefit from this property because the GA can easier escape
from local optima. For larger problems this property turns into a disadvantage
because the GA converges slower.

5 Conclusions

Two GA variants using different encoding schemes and recombination and mu-
tation operators were introduced for the MCPP. While infeasible solutions never
appear in OBE(I), a repair algorithm has been incorporated into the decoding
function of DE(I). Both encoding approaches performed generally well, but the
order based method, which seems to be more disruptive, exhibited advantages
for problems with fewer items. Direct encoding performed better for larger prob-
lems. The introduction of the local improvement operators lead in many cases
not only to better results, but also to shorter total running times because of
higher convergence rates.

References

1. Bäck T.: Evolutionary Algorithms in Theory and Practice, Oxford University
Press, New York (1996)

2. Bäck T., Fogel D. B., Michalewicz Z.: Handbook of Evolutionary Computation,
Oxford University Press (1997)

3. Chu P. C.: A Genetic Algorithm Approach for Combinatorial Optimization Prob-
lems, Ph.D. thesis at The Management School, Imperial College of Science, London
(1997)

4. Chu P. C., Beasley J. E.: A Genetic Algorithm for the Generalized Assignment
Problem, Computers & Operations Research 24(1) (1997) 17–23

5. Chu P. C., Beasley J. E.: A Genetic Algorithm for the Multidimensional Knapsack
Problem, working paper at The Management School, Imperial College of Science,
London (1997)

6. Falkenauer E.: A Hybrid Grouping Genetic Algorithm for Bin Packing, work-
ing paper at CRIF Industrial Management and Automation, CP 106-P4, 50 av.
F. D. Roosevelt, Brussels, Belgium (1994)

7. Fogel D. B.: Evolutionary Computation – Toward a New Philosophy of Machine
Intelligence, IEEE Press, Piscataway, NJ (1995)

8. Garey M. D., Johnson D. S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman, San Francisco (1979)

9. Gavish B., Pirkul H.: Efficient Algorithms for Solving Multiconstraint Zero-One
Knapsack Problems to Optimality, Mathematical Programming 31 (1985) 78–105

10. Goldberg D. E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, Addison–Wesley (1989)

11. Hinterding R.: Mapping, Order-independent Genes and the Knapsack Problem, in
Proc. of the 1st IEEE Int. Conference on Evolutionary Computation 1994, Orlando,
FL (1994) 13–17

12. Khuri S., Bäck T., Heitkötter J.: The Zero/One Multiple Knapsack Problem and
Genetic Algorithms, in Proc. of the 1994 ACM Symposium on Applied Computing,
ACM Press (1994) 188–193

13. Martello S., Toth P.: Knapsack Problems: Algorithms and Computer Implementa-
tions, J. Wiley & Sons (1990)

14. Michalewicz Z.: Genetic Algorithms + Data Structures = Evolution Programs,
Springer, Berlin (1992)

15. Olsen A. L.: Penalty Functions and the Knapsack Problem, in Proc. of the 1st
International Conference on Evolutionary Computation 1994, Orlando, FL (1994)
559–564

16. Raidl G. R.: An Improved Genetic Algorithm for the Multiconstrained 0–1 Knap-
sack Problem, in Proc. of the 1998 IEEE International Conference on Evolutionary
Computation, Anchorage, Alaska (1998) (to appear)

17. Rudolph G., Sprave J.: Significance of Locality and Selection Pressure in the Grand
Deluge Evolutionary Algorithm, in Proc. of the International Conference on Par-
allel Problem Solving from Nature IV (1996) 686–694

18. Sun Y., Wang Z.: The Genetic Algorithm for 0–1 Programming with Linear Con-
straints, in Proc. of the 1st ICEC’94, Orlando, FL (1994) 559–564

19. Wall M.: GAlib – A C++ Genetic Algorithms Library, Version 2.4, Massachusetts
Institute of Technology, http://lancet.mit.edu/ga (1996)

This article was processed using the LATEX macro package with LLNCS style

