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Abstract

In this paper a new approach for approximation
problems involving only few input and output pa-
rameters is presented and compared to traditional
Backpropagation Neural Networks (BPNs). The ba-
sic model is a Tensor Product Bernstein Polynomial
(TPBP) for which suitable control points need to be
found. It is shown that a TPBP can also be in-
terpreted as a special class of feed-forward neural
networks where control point coordinates are rep-
resented by input weights. Although optimal con-
trol points for a TPBP leading to the smallest pos-
sible approximation errors can be determined by the
Method of Least Squares (MLS), this approach has
only poor generalization capabilities. Instead, the
usage of a (µ, λ)-Evolution Strategy is proposed. Ex-
periments with different sets of test data indicate
that the solutions obtained by the TPBP/ES ap-
proach generalize very well without exhibiting large
approximation errors. When comparing this tech-
nique to BPNs, similar approximation and general-
ization errors were observed. One major advantage
of the TPBP/ES approximation model over others
such as BPNs is the possibility for humans to bet-
ter understand a found approximation and to manu-
ally post-process it in a very intuitive way to achieve
specific changes. Another benefit is that any error
function might be used as optimization goal.
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1 Introduction

Backpropagation Neural Networks (BPNs, see [13])
are known to be well suited for many kinds of prob-

lems where functions from Rm to Rn must be approx-
imated using a given set of samples known in source
and destination space. Especially because of their ro-
bustness and good generalization abilities, BPNs are
often preferable to other techniques as e.g. polyno-
mial regression or trigonometric polynomial regres-
sion. On the other hand, a disadvantage of most
neural networks is their complex structure: Usually,
it is impossible for humans to understand the entire
meaning and interaction of certain weights of con-
nections obtained by learning rules. Furthermore,
a manual change of these weights to achieve some
specific local adaptions or improvements is most of
the time too difficult or too dangerous because of
unknown side effects.

This article introduces a new approximation tech-
nique based on Tensor Product Bernstein Polyno-
mials (TPBPs) and Evolution Strategies (ESs). Es-
pecially when dealing with complex problems con-
taining only a moderate number of input and output
parameters, this approach proved to be robust and
to generalize very well. In contrast to BPNs, the
underlying model enables easy understanding by hu-
mans and manual post-processing of automatically
generated approximations.

2 Tensor Product Bernstein
Polynomials

Bernstein Polynomials and their tensor products are
well known in computer graphics due to their usage
in Bézier curves, Bézier surfaces, and Free-Form De-
formations (FFDs), see e.g. [3, 5, 8, 15, 16].

A tensor product Bernstein polynomial, which in-
volves a mapping from Em to Rn, can be defined as
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In general, different degrees wj for different dimen-
sions j (j = 1, . . . ,m) may be useful, but to keep
things simple, we assume that w = w1 = . . . = wm

and call w the degree of the TPBP.

TPBPs are appreciated because of their good prop-
erties: The effects of displacing control points are
very intuitive, which enables an easily understand-
able manual design process. Especially Bézier curves
(E → R2) and Bézier surfaces (E2 → R3) have been
studied in detail, see [5], and several high quality cri-
teria like the convex hull and variation diminishing
properties have been derived. Altogether, they indi-
cate that these curves, surfaces, or general transfor-
mation functions are very smooth and do not over-
shoot between control points. Due to these proper-
ties, the general TPBP seems to be an interesting
model for general function approximation.

Within Eq. 1 the product of Bernstein polynomials
may be substituted by a sum as follows:

TPBPw(~t ) =
∑

~i

~C~i exp
( m∑
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ln bw
ij

(tj)
)

. (3)

In this way, TPBPs can also be interpreted as a spe-
cial class of feed-forward neural networks with two
hidden layers, see Fig. 1: The first layer calculates
logarithms of Bernstein polynomials for all inputs,
the next layer determines sums for all possible com-
binations and applies the exponential function, and
the output layer calculates final weighted sums. Note
that only the output layer has inputs with unknown
weights, which correspond to the control point co-
ordinates of the TPBP. Nodes such as these out-
put nodes are known as Adalines (adaptive linear
neurons), see e.g. [7, 17].

Usually, the goal is to minimize the mean square er-
ror MSE (A) for a given sample set A of pairs of inde-
pendent values ~sk in source space and dependent val-
ues ~dk in destination space (~sk = (sk,1, . . . , sk,m)T ,
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Figure 1: Neural network interpretation of a TPBP
of order w = 2 for E2 → R2.

~dk = (dk,1, . . . , dk,m)T , k = 1, . . . , |A|, MSE (A) in
percent):

MSE (A) =
100%
|A|

|A|∑

k=1

‖ TPBPw(~sk)− ~dk ‖2 . (4)

In this case, optimal input weights of an Adaline
(and therefore control point coordinates for TPBPs)
can be obtained efficiently by using the well known
Method of Least Squares (MLS). Although the small-
est possible approximation errors MSE (A) can be
achieved in this way, that approach has a major
drawback: Especially with increasing degrees of the
TPBP, resulting approximations tend to oscillate
heavily and overshoot between the samples of set A.
Therefore, the generalization capabilities are usually
only poor.

3 Evolution Strategies

Evolution strategies, which were introduced by H.-
P. Schwefel [14] and improved by several other re-
searchers (see e.g. [1, 2, 6]), are generally known to
be robust optimization methods. They are especially
useful in finding nearly optimal parameters for com-
plex numerical functions. An ES explores the search



µ (# of parents): 15
λ (# of offsprings): 100

Initial C~i,p: random values

∈ [min{dk,p}, max{dk,p}],
(p = 1, . . . , n)

Initial σ~i,p:
max{dk,p}−min{dk,p}

2·
√

(w+1)m

(according to [1])

Fitness function: MSE(A)

Recombination: C′~i,p = CA
~i,p

or CB
~i,p

σ′~i,p = (σA
~i,p

+σB
~i,p

)/2

Mutation: C′′~i,p
= C′~i,p +N (0, σ′′~i,p)

σ′′~i,p = σ′~i,p · eN (0,τ)

Termination cond.: all σ~i,p of best individual

≤ 1% of initial σ~i,p

Table 1: Some implementation details of the ES.

space efficiently by evaluating samples chosen in a
partly stochastic way. This process usually converges
to highly fit regions of the search space. For a de-
tailed introduction to ESs see [1, 6].

Already in [10, 11, 18], (µ, λ)-ESs including self-
adaption of strategy parameters were used suc-
cessfully to find suitable control points for three-
dimensional space deformations (Free-Form Defor-
mations). In [12] this approach was generalized to
TPBPs of arbitrary input and output space dimen-
sions.

Basically, the ES starts with a population consisting
of µ randomly generated solutions. Each solution is
represented by all its control point coordinates C~i,p

(p = 1, . . . , n), which are randomly chosen out of
[min{dk,p},max{dk,p}]. In the next step, these initial
solutions are evaluated using MSE (A) as evaluation
function. The initial population is then improved in
a loop over many generations via the processes of
selection, recombination, and mutation until the ES
converges and all solutions are close to each other.
The creation of a new population for the next gen-
eration works as follows: λ offsprings are generated
by recombining randomly selected solutions from the
parent population two by two. Then these new so-
lutions are slightly modified via a mutation opera-
tor, which perturbs each control point coordinate by
adding a normally distributed offset with mean 0 and
standard deviation σ~i,p. Note that these strategy pa-
rameters σ~i,p are also optimized by the ES using the
mechanism of self-adaption. For a more detailed dis-
cussion of the recombination and mutation operators
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Figure 2: Test functions F1 and F2 (E2 → R).

including self-adaption see [12]. Finally the newly
generated offsprings are evaluated, and the best µ
offsprings are selected to form the parent population
for the next generation. This process continues until
all σ~i,p of the best solution so far fall below a certain
limit, which indicates that the ES has converged to
a small region in the search space.

Applying the ES to the problem of finding control
point coordinates for the discussed TPBPs results in
solutions with slightly larger MSE (A), but much bet-
ter generalization capabilities than when using the
MLS. Examples in the following section document
this behavior. A reason for this effect seems to be
that also slightly different solutions in the surround-
ings of the one obtained by the ES are of very high
quality. The global optimum, however, is often lo-
cated in a way so that solutions which only slightly
differ from the optimal solution often approximate
significantly worse.

4 Experimental Results

The TPBP/ES approach has been implemented with
the characteristics shown in Table 1 and was then
compared to the TPBP/MLS and the BPN tech-
niques using various sets of test data derived from
several functions. As an example the results of the
experiments are discussed here for two functions F1

and F2 (E2 → R), depicted in Fig. 2.

A setA of 100 randomly chosen pairs of values known
in source and in destination space was used for ap-
proximating each test function with the above men-
tioned methods. Generalization abilities of obtained
final solutions were measured by using a different set
G also made up of 100 samples. The mean square
error MSE (G) for sample set G is, therefore, called
generalization error.



TPBP/ES

F1 F2

Degree MSE(A) MSE(G) MSE(A) MSE(G)

1 19.36 21.50 34.58 53.65
2 4.28 4.72 34.22 52.64
3 4.17 4.57 26.12 37.24
4 3.89 4.24 22.89 31.24
5 3.39 3.84 11.22 27.17
6 2.27 2.57 6.57 24.36
7 1.96 3.26 3.31 26.20
8 1.82 2.88 2.98 22.84
9 1.51 3.38 3.08 24.74

Table 2: TPBP/ES approach: Results for test func-
tions F1 and F2.

TPBP/MLS

F1 F2

Deg. MSE(A) MSE(G) MSE(A) MSE(G)

1 19.36 21.42 34.58 53.70
2 4.28 4.86 34.22 52.41
3 4.13 4.92 25.44 77.32
4 3.81 4.42 16.92 2.15e+02
5 3.12 99.89 4.13 4.51e+02
6 1.67 9.81e+02 0.84 7.26e+02
7 1.43 4.77e+03 0.20 8.49e+03
8 0.45 1.61e+05 0.01 5.73e+03
9 7.18e-19 1.39e+08 3.51e-18 2.41e+06

Table 3: TPBP/MLS approach: Results for test
functions F1 and F2.

Typical approximation errors MSE (A) and general-
ization errors MSE (G) for the ES and the MLS tech-
niques are listed in Tables 2 and 3 and are graphically
depicted for F1 in Fig. 3. Usually, MSE (A) of a so-
lution obtained by the ES is only slightly worse than
that of the MLS, while MSE (G) of the ES-solution is
significantly smaller, particularly when solutions of
higher degrees are compared.

For the purpose of comparison, traditional backprop-
agation networks with one and two hidden layers and
varying numbers of hidden nodes were implemented
using the software package nn/xnn, see [9]. Because
of the sigmoidal output functions of neurons, output
values of the BPNs were linearly scaled so that the
interval [0.2, 0.8] was mapped to [min{dk}, max{dk}].
The resulting approximation errors MSE (A) and
generalization errors MSE (G) for both test functions
are shown in Tables 4 and 5 and are for F1 also
depicted in Fig. 4. Both, MSE (A) and MSE (G)
obtained by the BPN with only one hidden layer
are comparable to those of the TPBP/ES approach.

BPN - one hidden layer

F1 F2

H1 MSE(A) MSE(G) MSE(A) MSE(G)

1 16.26 17.47 36.97 61.19
2 11.41 11.20 27.75 48.29
3 4.14 3.95 28.41 50.90
4 4.16 4.10 25.23 52.45
5 4.19 4.18 22.65 46.24
6 4.10 3.81 28.51 57.08
7 2.81 3.10 27.02 52.60
8 3.86 4.17 22.88 47.29
9 4.36 4.35 23.37 50.15
10 4.88 4.86 23.16 44.81
11 2.59 3.06 13.13 38.84
12 4.42 4.50 19.26 46.54
13 2.34 2.94 6.39 20.43
14 2.41 2.59 19.92 45.53
15 4.31 4.29 23.74 47.51
16 5.03 4.73 4.85 20.42
17 5.14 4.78 8.92 22.33
18 2.01 2.13 21.36 53.58
19 2.20 2.47 8.41 22.90
20 2.12 2.44 2.04 15.43

Table 4: BPNs containing one hidden layer with
varying numbers of nodes (H1): Results for test func-
tions F1 and F2.

BPN - two hidden layers

F1 F2

H1/H2 MSE(A) MSE(G) MSE(A) MSE(G)

2/2 20.26 20.86 40.10 67.46
2/3 20.33 21.07 42.25 71.54
2/4 20.49 21.39 44.58 74.97
2/5 8.17 10.87 21.78 54.59

3/2 20.26 20.86 37.05 59.02
3/3 4.28 4.04 27.67 45.72
3/4 13.06 15.17 44.62 75.12
3/5 20.74 21.81 46.35 78.37

4/2 4.88 5.19 27.59 53.11
4/3 20.33 21.07 19.63 39.50
4/4 4.38 5.01 37.87 65.41
4/5 20.74 21.81 44.01 72.93

5/2 3.60 4.19 16.04 37.96
5/3 20.33 21.07 42.29 72.99
5/4 20.49 21.39 15.06 39.43
5/5 18.45 17.54 31.25 50.18

Table 5: BPNs containing two hidden layers with
varying numbers of nodes (H1, H2): Results for test
functions F1 and F2.

Sometimes the BPN approximates and generalizes
slightly better, but especially when using two lay-
ers of hidden nodes the results are not as good de-
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Figure 3: Results for test function F1: (a) TPBP/ES
and (b) TPBP/MLS.

spite the large numbers of performed iterations (from
18000 to 60000 depending on the number of nodes in
the hidden layers).

A drawback of the TPBP/ES approach is its higher
computational effort. The performed experiments
using the new method took between a few seconds up
to 2.5 hours1 depending on the degree of the TPBP.
The backpropagation learning rule needed up to 35
minutes for the most complex neural nets, but may
even be sped up by using more sophisticated tech-
niques as e.g. Quickprop, see [4]. Also, the proba-
bility for finding well approximating solutions with
BPNs containing two layers might be increased in
various ways.

5 Conclusion

Many experiments indicate that the TPBP/ES ap-
proach is a method well suited for complicated ap-
proximation problems involving only few input and
output variables. Although the ES does not usu-
ally converge to the globally optimal solution as it
can be determined by the MLS when using the mean
square error, the ES solutions are much better con-
cerning generalization. The approximation and gen-
eralization errors are comparable to those of various

1A Pentium 133MHz PC, Linux, and GNU C++ were used.
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Figure 4: Results for test function F1: BPNs contain-
ing (a) one hidden layer and (b) two hidden layers
with varying numbers of nodes (H1, H2).

BPNs. The major advantage of the TPBP/ES ap-
proach over many other approximation techniques as
BPNs is the possibility for humans to understand the
meaning and effects of found control point positions
and, therefore, to adapt or improve solutions man-
ually in a very intuitive way. Another advantage is
that any error function as e.g. the general Minkowski
metric might be used instead of only the mean square
error.
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