
Metaheuristic Hybrids

Günther R. Raidl, Jakob Puchinger, and Christian Blum

Abstract Over the last decades, so-called hybrid optimization approaches have be-
come increasingly popular for addressing hard optimization problems. In fact, when
looking at leading applications of metaheuristics for complex real-world scenarios,
many if not most of them do not purely adhere to one specific classical metaheuristic
model but rather combine different algorithmic techniques. Concepts from different
metaheuristics are often hybridized with each other, but they are also often combined
with other optimization techniques such as tree-search, dynamic programming and
methods from the mathematical programming, constraint programming, and SAT-
solving fields. Such combinations aim at exploiting the particular advantages of the
individual components, and in fact well-designed hybrids often perform substan-
tially better than their “pure” counterparts. Many very different ways of hybridizing
metaheuristics are described in the literature, and unfortunately it is usually difficult
to decide which approach(es) are most appropriate in a particular situation. This
chapter gives an overview on this topic by starting with a classification of meta-
heuristic hybrids and then discussing several prominent design templates which are
illustrated by concrete examples.

Günther R. Raidl
Institute of Computer Graphics and Algorithms, TU Wien, Vienna, Austria,
e-mail: raidl@ac.tuwien.ac.at

Jakob Puchinger
Laboratoire Genie Industriel, CentraleSupélec, Université Paris-Saclay, France
Institut de Recherche Technologique SystemX, Palaiseau, France
e-mail: jakob.puchinger@centralesupelec.fr

Christian Blum
Artificial Intelligence Research Institute (IIIA-CSIC), Campus UAB, Bellaterra, Spain
e-mail: christian.blum@iiia.csic.es

1



2 G. R. Raidl, J. Puchinger, and C. Blum

1 Introduction

Most of the other chapters of this book illustrate the existence of a large number
of different metaheuristics. Simulated annealing, tabu search, iterated local search,
variable neighborhood search, the greedy randomized adaptive search procedure,
evolutionary algorithms such as genetic and memetic algorithms, ant colony op-
timization, scatter search, and path relinking are—among others—prominent ex-
amples. Each of them has an individual historical background, follows certain
paradigms and philosophies, and puts one or more particular strategic concepts in
the foreground.

Over the last years a large number of algorithms were reported that do not purely
follow the concepts of one single traditional metaheuristic, but combine various
algorithmic ideas, often originating from other branches of optimization and soft-
computing. These approaches are commonly referred to as metaheuristic hybrids or
hybrid metaheuristics. For hybrids involving mathematical programming models or
techniques, the name matheuristics also is frequently used. Note that the lack of a
precise definition of these terms is sometimes subject to criticism. In our opinion,
however, the relatively open nature of these terms is rather helpful, as strict border-
lines between related fields of research are often a hindrance for creative thinking
and the exploration of new research directions.

The motivation behind hybridizations of different algorithmic concepts is usually
to obtain better performing systems that exploit and unite advantages of the individ-
ual pure strategies; i.e. such hybrids are believed to benefit from synergy. In fact,
today it seems that choosing an adequate combination of multiple algorithmic con-
cepts is the key for achieving top performance in solving most challenging optimiza-
tion problems of combinatorial nature. The vastly increasing number of reported ap-
plications of metaheuristic hybrids and dedicated scientific events such as the Work-
shops on Hybrid Metaheuristics (see the proceedings of the 2016 edition [15]), the
Workshops on Matheuristics (see the proceedings of the 2016 edition [78]), and the
conferences on the Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems (see the proceedings of the 2016
edition [103]) document the popularity, success, and importance of this specific line
of research.

The idea of hybridizing metaheuristics is not new but dates back to their origins.
At the beginning, however, such combinations were not very popular since several
relatively strongly separated and sometimes competing communities of researchers
existed who tended to consider “their” favorite class of metaheuristics generally su-
perior to others and dogmatically followed their specific philosophies. For example
the evolutionary computation community grew up relatively isolated and followed
quite strictly the biologically inspired thinking. The situation changed, according to
many researchers, with the no free lunch theorems [126] when people recognized
that there cannot exist a general optimization strategy which is always better than
any other. In fact, solving a specific problem most effectively almost always requires
a particularly tuned algorithm made of an adequate combination of sometimes very
problem specific parts often originating from different metaheuristics and other al-



Metaheuristic Hybrids 3

gorithmic techniques. Exploiting problem specific knowledge in the best possible
ways, picking the right algorithmic components, and combining them in the most
appropriate way are key ingredients for leading optimization algorithms.

Unfortunately, developing a highly effective hybrid approach is in general a dif-
ficult task and sometimes even considered an art. Nevertheless, there are several
strategies that have proven successful on many occasions, and they can provide
some guidance. In the next section, we will start with a general classification of
metaheuristic hybrids. The following sections will discuss the most prominent algo-
rithmic templates of combinations and illustrate them with selected examples from
the literature. For in-depth reading and comprehensive reviews on hybrid meta-
heuristics, we recommend the books by Blum and Raidl [25], Talbi [118], and
Blum et al. [22]. Hybrid metaheuristics for multiobjective optimization are specifi-
cally treated in [43] and for continuous—i.e., real-parameter—optimization in [82].

2 Classification

Several classifications and taxonomies of hybrid metaheuristics can be found in the
literature. Here we primarily follow the classification from Raidl [105] that com-
bines aspects of the taxonomy introduced by Talbi [117] with the points-of-view
from Cotta [34] and Blum et al. [26]. Differentiations with regard to parallel meta-
heuristics and hybridization of metaheuristics with exact optimization techniques
are adopted from El-Abd and Kamel [44] and from Puchinger and Raidl [99], re-
spectively. Figure 1 illustrates our classification.

We primarily distinguish hybrid metaheuristics according to four criteria, namely
the kinds of algorithms that are hybridized, the level of hybridization, the order of
execution, and the control strategy.

Hybridized algorithms. First, one may combine (components of) different me-
taheuristics (MH). Second, highly problem specific algorithms, such as entire
simulations for evaluating candidate solutions, are sometimes used in conjunc-
tion with metaheuristics. As a third class we consider the combination of meta-
heuristics with other more general techniques coming from fields like operations
research (OR) and artificial intelligence (AI). Here, we can further distinguish
between combinations with exact techniques or with other heuristics and soft-
computing methods. Prominent examples for exact techniques that are often suc-
cessfully combined with metaheuristics are tree-search-based methods such as
branch-and-bound (B&B), dynamic programming, linear programming (LP) and
mixed integer programming (MIP) methods as well as nonlinear programming
techniques, constraint programming (CP), and SAT-solving. For a survey dedi-
cated to combinations of metaheuristics with MIP techniques see [109], for an
overview on combinations of local search based methods with CP see [39, 53],
and for a review on combinations of local search methods with exact techniques
see [42]. Examples of other heuristic and soft-computing techniques include neu-
ral networks, fuzzy logic, and diverse statistical techniques. As a fourth class we



4 G. R. Raidl, J. Puchinger, and C. Blum

Fig. 1 Classification of metaheuristic (MH) hybrids based on Raidl [105].



Metaheuristic Hybrids 5

want to mention the combination of metaheuristics with human interaction com-
ponents, called human guided search. In particular for problems where it is dif-
ficult to quantify the quality of solutions in mathematically precise ways, where
candidate solutions can be well visualized, and where human intuition and intelli-
gence present an advantage, such interactive systems are often highly appreciated
in practice [74].

Level of hybridization. Hybrid metaheuristics can further be differentiated ac-
cording to the level (or strength) at which the individual algorithms are coupled:
High-level combinations retain in principle the individual identities of the origi-
nal algorithms and cooperate over a relatively well defined interface; there is no
direct, substantial relationship of the internal workings of the algorithms. On the
contrary, algorithms in low-level combinations strongly depend on each other;
individual components or functions of the algorithms are mixed.

Order of execution. In the simplest case, the batch execution, the individual al-
gorithms are performed in a sequential way and the results of one algorithm
are used as input for the next one. More sophisticated approaches apply the in-
dividual algorithms in an intertwined or even parallel way, and information is
exchanged more frequently, usually in a bidirectional way. Parallel metaheuris-
tics are an important research area by themselves and independent classifications
of hybrid parallel approaches have been proposed in [6, 44]. They distinguish the
following major criteria: (a) the architecture (SIMD: single instruction, multiple
data streams versus MIMD: multiple instructions, multiple data streams), (b) the
granularity of parallelization (fine- or coarse-grained), (c) the hardware (homo-
geneous or heterogeneous), (d) the memory (shared or distributed), (e) task and
data allocation (static or dynamic), and (f) whether the parallel processes run
asynchronously or are synchronized in some way.

Control strategy. Last but not least, we distinguish metaheuristic hybrids accord-
ing to their control strategy, which can be either integrative (coercive) or collab-
orative (cooperative).
In the extremely popular integrative case, one algorithm is the subordinate, em-
bedded component of another. Examples include the local improvement of can-
didate solutions by an inner optimization algorithm (as in memetic algorithms,
see also Section 3), special techniques for searching large neighborhoods (see
Section 9.1), indirect or incomplete representations relying on decoders (see Sec-
tion 5), and intelligent merging (recombination) of solutions (see Section 6).
In contrast, in collaborative approaches the individual algorithms exchange infor-
mation but are not part of each other. For example, the popular island model [32]
for parallelizing evolutionary algorithms (EAs) is of this type. Collaborative ap-
proaches can further be classified into homogeneous approaches, where several
instances of one and the same algorithm are performed (as in traditional island
models), and heterogeneous approaches. An example for the latter are asyn-
chronous teams (A-Teams) [120]: An A-Team consists of a collection of agents
and memories connected into a strongly cyclic directed network. Each of these



6 G. R. Raidl, J. Puchinger, and C. Blum

agents is an optimization algorithm that works asynchronously on the target prob-
lem, on a relaxation of it, i.e. a superproblem, or on a subproblem. Information is
exchanged via shared memory. Denzinger and Offermann [38] presented a sim-
ilar multi-agent approach for achieving cooperation between search algorithms
following different search paradigms, such as B&B and EAs. Especially in col-
laborative combinations, a particular question is which search spaces are actually
explored by the individual algorithms. Implicit decomposition results from dif-
ferent initial solutions, parameter settings, or random decisions, while an explicit
decomposition is obtained when each algorithm works on its individually defined
subspace. Effectively decomposing large problems is often an important issue in
practice. Occasionally, problems decompose in a relatively natural way (see Sec-
tions 4 and 9), but most often finding a strong decomposition into weakly related
or even unrelated subproblems is a difficult task, and (self-)adaptive schemes are
sometimes applied.

Starting with the next section, we will consider several templates for implement-
ing metaheuristic hybrids, which have successfully been applied on many occasions.

3 Finding Initial or Improved Solutions by Embedded Methods

The most natural way of hybridizing two optimization algorithms is probably to
embed one algorithm into another for obtaining either promising starting solutions
or for possibly improving intermediate solutions.

Problem-specific construction heuristics are often used for finding initial solu-
tions which are then further improved by local search or metaheuristics. A fre-
quently applied and more general strategy for obtaining initial solutions is to solve a
relaxation of the original problem, such as the LP relaxation, and repair the obtained
solution in some heuristic way, e.g., by rounding. Examples to such approaches can
also be found in Section 7.

The greedy randomized adaptive search procedure (GRASP) [47] systematically
extends the principle of locally improving a starting solution by iterating a ran-
domized construction process, and each of the resulting solutions is then used as a
starting point for local search.

The so-called proximate optimality principle (POP) was first mentioned by
Glover and Laguna in the context of tabu search [56]. It refers to the general in-
tuition that good solutions are likely to have a similar structure and can therefore
be found close to each other in the search space. Fleurent and Glover transferred
this principle in [51] from complete to partial solutions in the context of GRASP.
They suggested that mistakes introduced during the construction process may be
undone by applying local search during (and not only at the end of) the GRASP
construction phase. They proposed a practical implementation of POP in GRASP
by applying local search at a few stages of the construction phase only.



Metaheuristic Hybrids 7

Often local search procedures or more sophisticated improvement algorithms are
applied within an outer metaheuristic for “fine-tuning” intermediate candidate solu-
tions. While the outer metaheuristic is responsible for diversification, the inner im-
provement algorithm focuses on intensification. For example, memetic algorithms
[83] typically rely on this principle: The outer metaheuristic is an EA, and inter-
mediate candidate solutions are locally improved. If each intermediate solution is
always turned into a local optimum, the EA exclusively searches the space of local
optima (w.r.t. the neighborhood structure of the inner local improvement procedure)
only. Memetic algorithms are often more successful than simple EAs, because inten-
sification is typically considered a weakness of traditional EAs. By adjusting how
much effort is spent in the local improvement, one can tune the balance between
intensification and diversification. Note that the inner local improvement does not
always have to be just a simple local search. Occasionally, more sophisticated strate-
gies like tabu search or even exact techniques for solving a restricted problem are
applied. This also leads to the related large neighborhood search methods, which
we will consider in Section 9.1.

Another example is variable neighborhood search (VNS) [63], where each can-
didate solution undergoes some kind of local improvement and a sequence of differ-
ent neighborhood structures is utilized. Especially in general variable neighborhood
search, a more sophisticated variable neighborhood descent is uses as the inner lo-
cal improvement procedure, which makes use of its own, typically systematically
searched sequence of different neighborhood structures.

Considering exact techniques, B&B approaches strongly rely on good upper and
lower bounds in order to prune the search tree as strongly as possible. Metaheuristic
techniques are frequently applied to obtain a promising initial solution or to improve
intermediate solutions in order to find tight(er) bounds. Sections 6 and 8 contain
several examples such as [37, 59, 113] that also fall into this category.

4 Multi-Stage Approaches

Some optimization approaches consist of multiple sequentially performed stages,
and different techniques are applied at the individual stages.

In many complex real-world applications, the problem naturally decomposes into
multiple levels. If the decision variables associated with the lower level(s) have a
significantly weaker impact on the objective or the whole solution than the higher-
level variables or if the impact of these variable sets is only loosely correlated, it is
a very reasonable approach to optimize the individual levels in a strictly sequential
manner. This corresponds to a kind-of top-down solution construction. Different
techniques can be applied at the individual levels yielding simple but often very
effective hybrid approaches.

For example, for vehicle routing applications where the aim is to deliver goods
to customers, it is a meaningful approach to first partition the customers into groups
which are then independently treated by finding appropriate delivery tours. Such



8 G. R. Raidl, J. Puchinger, and C. Blum

approaches are called cluster-first route-second methods [50]. In contrast, it is also
perfectly reasonable to start by finding a giant tour (ordering) over all customers
and partition this tour into feasible subtours in the second stage; these methods are
called route-first cluster second or order-first split-second approaches [98]. While
such two-staged methods are often relatively fast, they typically only yield solutions
of moderate quality due to the neglected dependency of the decision making in the
two phases. Such methods, however, can also be further embedded in more rigor-
ous (hybrid) metaheuristic search frameworks and thus combined with other design
patterns. In case of vehicle routing, order-first split-second approaches have been
very successful recently when applied within a hybrid genetic algorithm following
a decoder-based strategy, which we will explain in Section 5.

Another example are job scheduling problems, for which it is often natural to first
assign the jobs to machines and then independently optimize the schedules for each
machine. For large communication network design problems it may be wise to first
optimize a possibly redundant backbone infrastructure, then design the individual
local access network structures, and finally decide about the concrete cable laying
and technical parameters such as the capacities of the individual links.

We remark that in practice such multi-stage approaches will usually not lead to
optimal solutions, as the sequentially solved subproblems are typically not inde-
pendent. However, for many complicated real-world problems of large size, as for
example when designing a communication infrastructure for a larger city, a multi-
stage approach is the only viable choice. Furthermore, multi-stage approaches are
often very useful for relatively quickly first approximate solutions. Therefore, they
are frequently used in practice.

Multi-stage approaches are sometimes even applied when such a problem de-
composition is not so obvious but results in algorithmic advantages. Classical pre-
processing techniques, where the problem is usually reduced to a hard-to-solve core
by applying certain problem specific simplification strategies, are an example.

A more general, systematic approach is based on tools from the field of parame-
terized complexity. It offers both a framework of complexity analysis and toolkits
for algorithm design. One of the tools for algorithm design is known as problem
kernelization. The idea is to reduce a given problem instance in polynomial time to
a so-called problem kernel such that an optimal solution to the problem kernel can,
in polynomial time, be transformed into an optimal solution to the original problem
instance. In [55], Gilmour and Dras propose different ways of using the informa-
tion given by the kernel of a problem instance for making ant colony system more
efficient for solving the minimum vertex cover problem. The most intuitive version
applies the ant colony system directly to the problem kernel and subsequently trans-
forms the best solution obtained for the kernel into a solution to the original problem
instance.

Multi-level refinement strategies [125] can also be considered a special class of
multi-stage approaches. They involve a recursive coarsening to create a series of ap-
proximations to the original problem. An initial solution is identified for the coarsest
level and is then iteratively refined at each level—coarsest to finest—typically by us-
ing some kind of (meta-)heuristic. Solution extension operators transfer the solution



Metaheuristic Hybrids 9

from one level to the next. In iterated multi-level algorithms, solutions are not just
refined but occasionally also re-coarsened, and the whole process is iterated. These
strategies have been successfully applied on several problems including multilevel
graph partitioning, graph coloring, very large traveling salesman problems, vehicle
routing, and DNA sequencing.

Variable fixing strategies where variables of the original problem are fixed to
certain values (according to some, usually heuristic, criterion) to perform the op-
timization over a restricted search space are also related to the above mentioned
strategies. Examples of effective variable fixing strategies are the core concepts for
knapsack problems [94, 102].

Some approaches determine a set of (complete) initial solutions by a first stage
method and apply one (or even more) other technique(s) for further improving upon
them. For example, occasionally a metaheuristic is used for finding a pool of diverse
high-quality solutions, and merging is performed to identify a single final solution
combining the particularly beneficial properties of the intermediate solutions. We
will consider merging in more detail in Section 6.

In [122], Vasquez and Hao present a two-stage approach for tackling the 0-1
multi-dimensional knapsack problem (MKP). Given n items and m resources, each
object has an associated profit ci and resource consumptions ai, j, ∀i = 1, . . . ,n, ∀ j =
1, . . . ,m, and each resource has a capacity b j. The goal of the MKP is to choose a
subset of the n objects such that its total profit is maximized without violating the
capacity constraints. In the ILP formulation of the MKP, a binary variable xi ∈ {0,1}
is defined for each object. In the first stage of the proposed hybrid solution method
a series of LP relaxations with additional constraints is solved. They are of the form
∑

n
i=1 xi = k where k ∈ {kmin, . . . ,kmax}, i.e. the number of items to be selected is

fixed to k. Each setting of k defines an LP that is solved to optimality. In the second
stage of the process, tabu search is used to search for better solutions around the
usually non-integral optimal solutions of the kmax−kmin +1 LPs. The approach has
been improved in [123] by additional variable fixing.

A general multistage approach is implemented in the context of the so-called
generate-and-solve (GS) framework [84], which decomposes the original optimiza-
tion problem into two conceptually different levels. One of the two levels makes use
of a component called solver of reduced instances (SRI), in which an exact method
is applied to sub-instances of the original problem instance that maintain the con-
ceptual structure of the original instance, that is, any solution to the sub-instance is
also a solution to the original instance. At the other level, a metaheuristic component
deals with the problem of generating sub-instances that contain high quality solu-
tions. In GS, the metaheuristic component is called generator of reduced instances
(GRI). Feedback is provided from the SRI component to the GRI component, for
example, by means of the objective function value of the best solution found in a
sub-instance. This feedback serves for guiding the search process of the GRI com-
ponent. Application examples in which the GRI component makes use of EAs and
simulated annealing can be found in [36, 91, 92].



10 G. R. Raidl, J. Puchinger, and C. Blum

5 Decoder-Based Approaches

The hybrid metaheuristic design template considered in this section is particularly
popular for problems where solutions must fulfill certain constraints and a fast con-
struction heuristic yielding feasible solutions exists. In decoder-based approaches,
a candidate solution is represented in an indirect or incomplete way and a problem
specific decoding algorithm is applied for transforming the encoded solution into a
complete feasible solution. This principle is often applied in EAs, where encoded
solutions are denoted as genotypes and the decoded counterparts are called pheno-
types [58].

A prominent, quite generic way of indirectly representing solutions is by means
of permutations of solution attributes. The decoder is then usually a greedy con-
struction heuristic which composes a solution by considering the solution attributes
in the order given by the permutation, i.e. the order of an attribute in the permuta-
tion is the greedy criterion. Cutting and packing problems are examples where such
decoder-based methods are frequently used [72]. The overall performance obviously
depends strongly on the quality and the speed of the decoder. Such approaches are
often straightforward and relatively easy to implement, in particular as standard
metaheuristics with traditional neighborhoods for permutations can directly be ap-
plied. On the downside, more elaborate metaheuristics based on direct encodings
and tuned problem specific operators are often likely to achieve better performance,
as they may exploit problem specific features in better ways.

Especially attractive are decoder-based approaches where the decoder is a more
sophisticated algorithm rather than a simple construction procedure. For example,
a mixed integer linear programming problem can be approached by splitting the
variables into the integral and continuous parts. One can then apply a metaheuristic
to optimize the integer part only; for each candidate solution, corresponding optimal
fractional variable values are efficiently determined by solving the remaining LP.
Such approaches are described in conjunction with GRASP by Neto and Pedroso
[85] and in conjunction with tabu search by Pedroso [88].

Besides problem specific heuristics and LP solvers, other efficient techniques are
sometimes used as a decoder to augment incompletely represented solutions. For
example, Hu and Raidl [68] consider the generalized traveling salesman problem in
which a clustered graph is given and a shortest tour visiting exactly one node from
each cluster is requested. Their approach is based on VNS and represents a candi-
date solution in two orthogonal ways: On the one hand, a permutation of clusters
is given, representing the order in which the clusters are to be visited. A dynamic
programming procedure is used as decoder to derive a corresponding optimal se-
lection of particular nodes. On the other hand, only the unordered set of selected
nodes from each cluster is given, and the classical chained Lin-Kernighan heuristic
for the traveling salesman problem is uses as a decoder to obtain a corresponding
high-quality tour. The VNS uses several types of neighborhood structures for each
representations.

More recently, Biesinger et al. [14] have proposed a related VNS for the gener-
alized vehicle routing problem with stochastic demands. Again, a clustered graph



Metaheuristic Hybrids 11

is given and exactly one node from each cluster needs to be visited. Now, however,
stochastic customer demands are additionally given and due to the vehicle’s lim-
ited capacity, restocking trips back to the depot must also be considered. The VNS
employs a permutation of the clusters as incomplete solution representation. For se-
lecting optimal nodes from the clusters to be visited and the expected tour lengths,
an exact but time-consuming dynamic programming approach is described. As ex-
act objective values are not always needed in the VNS to possibly recognize and
discard inferior solutions, an efficient multi-level evaluation scheme is used.

An impressive example of a quite general decoder-based approach is the uni-
fied hybrid genetic search (UHGS) framework for solving a large variety of vehicle
routing type problems [124]. It is based on the order-first split-second principle
as presented in Section 4. The authors propose a component-based method, where
problem specifics are treated in the route evaluation component. Route evaluation is
the major building block of a problem independent split procedure, allowing to con-
struct a generic hybrid GA. The UHGS framework is applied to 29 vehicle routing
variants matching or outperforming most of the state-of-the-art problem specific al-
gorithms. This example shows the strength of decoder-based approaches from an
algorithm engineering point of view. Problem specifics are efficiently treated in
clearly defined subparts of the metaheuristic allowing to solve a large variety of
problem classes without giving away solution quality and algorithmic efficiency.

Besides permutations, random keys are another versatile indirect solution rep-
resentation technique making fundamental use of decoders. Originally, they were
proposed by Bean in the context of genetic algorithms [10], and more recently Re-
sende et al. [60] applied refined variants to a larger number of problems. A solution
is represented by a vector of real values associated again with the solution elements.
For initial solutions, these values are typically independently set to random values
of a certain interval, e.g. [0,1)—therefore the name “random keys”. The decoder
sorts all solution elements according to their random keys and then performs as in
a permutation-based method in a problem-specific way. The main advantage of this
approach is that the metaheuristic’s search space is even more basic (i.e., [0,1)n for
n solution elements) and standard operators like uniform crossover and mutation
where randomly selected keys are set to new random values can be used, which are
entirely independent of the targeted problem.

Decoder-based approaches have also been used in the context of ant colony opti-
mization (ACO). For example, Blum and Blesa [20] present a decoder-based ACO
for the general k-cardinality tree problem. Given an undirected graph, this problem
involves finding among all trees with exactly k edges a tree such that a certain objec-
tive function is minimized. In contrast to a standard ACO algorithm that constructs
trees (i.e. solutions) with exactly k edges, the decoder-based approach of [20] builds
l-cardinality trees, where l > k. Subsequently, an efficient dynamic programming
algorithm is applied for finding the best k-cardinality tree that is contained in the l-
cardinality tree. Results show that this approach has clear advantages over standard
ACO approaches.



12 G. R. Raidl, J. Puchinger, and C. Blum

6 Solution Merging

The basic idea of solution merging is to derive a new, hopefully better solution from
the attributes appearing in two or more promising input solutions. The observation
that high-quality solutions usually have many attributes in common is exploited.

In the simplest form, this operation corresponds to the classical recombination
(crossover) which is considered the primary operator in GAs: Usually two parent
solutions are selected and an offspring is constructed by inheriting attributes from
both of them based on naive random decisions. While such an operation is compu-
tationally cheap, created offspring are often worse than the respective parents, and
many repetitions are typically necessary for achieving strong improvements.

Alternatively, one can put more effort into the determination of such offspring.
An established technique is path relinking [57]. It traces a path in the search space
from one parent to a second by always exchanging only a single attribute (or more
generally by performing a move in a simple neighborhood structure towards the tar-
get parent). An overall best solution found on this path is finally taken as offspring.

This concept can further be extended by considering not just solutions on an in-
dividual path between two parents, but the whole subspace of solutions defined by
the joined attributes appearing in a set of two or more input solutions. An optimal
merging operation returns a best solution from this subspace, i.e. it identifies a best
possible combination of the ancestors’ features that can be attained without intro-
ducing new attributes. Depending on the underlying problem, identifying such an
optimal offspring is often a hard optimization problem on its own, but due to the
limited number of different properties appearing in the parents, it can sometimes be
solved in reasonable time in practice. Frequently, this underlying problem also is
only solved by means of a sub-(meta-)heuristic, yielding a near-optimal merging.

Applegate et al. [9] were among the first to apply more sophisticated merging in
practice. For the traveling salesman problem, they derive a set of different tours by
a series of runs of the chained Lin-Kernighan iterated local search algorithm. The
sets of edges of all these solutions are merged and the traveling salesman problem is
finally solved to optimality on this strongly restricted graph. Solutions are achieved
that are typically superior to the best ones obtained by the iterated local search.

Besides the one-time application of merging in the above way, variants of merg-
ing can also replace classical recombination in evolutionary and memetic algo-
rithms. Aggarwal et al. [1] originally suggested such an approach for the indepen-
dent set problem. The subproblem of identifying the largest independent set in the
union of two parental independent sets is solved exactly by an efficient algorithm.
Ahuja et al. [2] apply this concept to a GA for the quadratic assignment problem.
As the optimal recombination problem is more difficult in this case, they use a
matching-based heuristic that quickly finds high-quality offspring solutions. Opti-
mal merging is also used by Blum [18] in the context of an EA for the k-cardinality
tree problem. The individuals are trees with k edges. Crossover first combines two
parent trees, producing hereby a larger l-cardinality tree. Dynamic programming is
then used to reduce this tree to the best feasible subtree with k edges.



Metaheuristic Hybrids 13

Eremeev [45] studies the computational complexity of producing a best possi-
ble offspring from two parents for binary representations from a theoretical point of
view. He concludes that the optimal recombination problem is polynomially solv-
able for the maximum weight set packing problem, the minimum weight set parti-
tion problem, and linear Boolean programming problems with at most two variables
per inequality. On the other hand, determining an optimal offspring is NP-hard for
0/1 integer programming with three or more variables per inequality, like the knap-
sack, set covering, and p-median problems, among others.

Solution merging is also the underlying idea of the general construct, merge,
solve & adapt (CMSA) algorithm [24] which is suited for problems in which a so-
lution corresponds to a subset of components from a larger base set. CMSA main-
tains a so-called incumbent sub-instance of the original problem in which only a
part of the base set of all components is considered. Initially, this incumbent sub-
instance is empty. In each iteration of CMSA, a randomized greedy heuristic is used
to generate a set of solutions to the tackled problem. The components of all these
solutions are then collected and added to the incumbent sub-instance, and an exact
technique like a MIP solver is used to find, if possible within an allotted computa-
tion time, a best solution to this sub-instance. The CMSA framework not only adds
solution components to the incumbent sub-instance at each iteration, but also con-
tains a mechanism to dispose of seemingly useless solution components. Apart from
applications to the minimum common string partition and the minimum weighted
arborescence problem in the original paper [24], CMSA has also been successfully
applied to problems such as the repetition-free longest common subsequence prob-
lem [21] and the MKP [23].

Cotta and Troya [35] discuss merging in the light of a general framework for hy-
bridizing B&B and evolutionary algorithms. They show the usefulness of applying
B&B for identifying optimal offspring on various benchmarks.

For mixed integer programming, Rothberg [113] suggests a tight integration of
an EA in a branch-and-cut-based MIP solver. At regular intervals the evolution-
ary algorithm is applied as a B&B tree node heuristic. Optimal recombination is
performed by first fixing all variables that are common in the selected parental solu-
tions and by applying the MIP solver to the reduced subproblem. Mutation selects
one parent, fixes a randomly chosen subset of variables, and calls the MIP solver for
determining optimal values for the remaining variables. Since the number of vari-
ables to be fixed is a critical parameter, an adaptive scheme is applied to control it.
This method is integrated in the commercial MIP solver CPLEX1 since version 10.
See also [76] for further heuristic mechanisms embedded within CPLEX.

Hachemi et al. [61] studied different methods to heuristically integrate (i.e.,
merge) candidate solutions of a rich multi-depot periodic vehicle routing problem.
In particular the authors distinguish between restriction- and incentive-based ap-
proaches. In their restriction-based methods they fix critical characteristics of the
solutions, while in the incentive-based approaches incentive terms are added to the
objective function of the integration-subproblem. The authors conclude that inte-

1 http://www-01.ibm.com/software/info/ilog



14 G. R. Raidl, J. Puchinger, and C. Blum

gration operators fixing critical characteristics for which a consensus exist in all
input solutions outperform the others when used as stand-alone procedures. In the
context of cooperative search (UHGS framework from [124]), however, a mixture
also involving the incentive-based methods appears to be more fruitful. Overall, the
proposed solution integration procedures exhibit substantial advantages on the per-
formance of the heuristic search.

Parragh and Schmid [87] propose a hybridization of large neighbourhood search
and column generation for solving the dial-a-ride problem (DARP). Based on a
heuristically obtained initial feasible solution a set covering based column genera-
tion scheme is started where new reduced-cost columns are generated using VNS
applied on the existing columns (routes). At a certain interval large neighbourhood
search is used to improve the current best solution. All routes generated during the
LNS phase are added as new columns to the set covering column pool. This ap-
proach can be viewed from a solution merging perspective because the routes of
multiple solutions are merged into a single DARP solution by combining them opti-
mally using a set covering problem. The obtained computational results are improv-
ing the state-of-the-art. In general, heuristic approaches generating multiple solu-
tions for problems that can be decomposed in such a way can strongly benefit from
applying a set covering approach for merging them optimally.

7 Strategic Guidance of Metaheuristics by Other Techniques

Many successful hybrid metaheuristics use other optimization techniques for guid-
ing the search process. This may be done by either using information gathered by
applying other algorithms such as optimal solutions to problem relaxations; or this
may be done by directly enhancing the functionality of a metaheuristic with algorith-
mic components originating from other techniques. In the following two subsections
we give examples for both variants.

7.1 Using Information Gathered by Other Algorithms

Guiding metaheuristics using information gathered by applying other algorithms
is often a very successful approach that is commonly used. Problem relaxations,
where some or all constraints of a problem are loosened or omitted, are often used
to efficiently obtain bounds and approximate (not necessarily feasible) solutions
to the original problem. The gathered information can be utilized for guiding the
search, since an optimal solution to a relaxation often indicates in which parts of the
original problem’s search space good or even optimal solutions may be found.

Sometimes an optimal solution to a relaxation can be repaired by a problem spe-
cific procedure in order to make it feasible for the original problem and to use it
as a promising starting point for a subsequent metaheuristic (or exact) search; see



Metaheuristic Hybrids 15

also Section 3. For example, Raidl [104] applies this idea in a GA for the MKP.
The MKP’s LP relaxation is solved and a randomized rounding procedure derives
an initial population of diverse solutions from the LP-optimum. Furthermore, the
LP-optimum is also exploited for guiding the repair of infeasible candidate solu-
tions and for local improvement. The variables are sorted according to increasing
LP values. The greedy repair procedure considers the variables in this order and
removes items from the knapsack until all constraints are fulfilled. In the greedy
improvement procedure, items are considered in reverse order and included in the
knapsack as long as no constraint is violated. Many similar examples for exploiting
LP solutions—also including the biasing of operators such as recombination and
mutation in EAs—exist.

Plateau et al. [95] combine interior point methods and metaheuristics for solving
the MKP. In a first step an interior point method is performed with early termina-
tion. By rounding and applying several different ascent heuristics, a population of
different feasible candidate solutions is generated. This set of solutions is then the
initial population for a path relinking/scatter search.

Puchinger and Raidl [101] suggest a new variant of VNS: relaxation guided vari-
able neighborhood search. It is based on the general VNS scheme and a new em-
bedded variable neighborhood descent (VND) strategy utilizing different types of
neighborhood structures. For a current incumbent solution, the order in which the
neighborhoods are searched is determined dynamically by first solving relaxations
of them. The objective values of these relaxations are used as indicators for the
potential gains of searching the corresponding neighborhoods, and more promis-
ing neighborhoods are searched first. The proposed approach has been tested on
the MKP but is more generally applicable. Computational experiments involving
several types of ILP-based neighborhoods show that the adaptive neighborhood or-
dering is beneficial for the heuristic search, improving obtained results.

Occasionally, dual variable information of LP solutions is also exploited. Chu
and Beasley [30] make use of it in their GA for the MKP by calculating so-called
pseudo-utility ratios for the primal variables and using them in similar ways as de-
scribed above for the primal solution values. For the MKP, these pseudo-utility ra-
tios tend to be better indicators for the likeliness of the corresponding items to be
included in an optimal integer solution than the primal variable values and several
other heuristic measures (a more detailed analysis is given in [102]).

Other relaxations besides the LP relaxation are occasionally also exploited in
conjunction with metaheuristics. A successful example is the hybrid Lagrangian
GA for the prize collecting Steiner tree problem from Haouari and Siala [64]. It
is based on a Lagrangian decomposition of a minimum spanning tree-like ILP for-
mulation of the problem. The volume algorithm is used for solving the Lagrangian
dual. After its termination, the GA is started and exploits results obtained from the
volume algorithm in several ways: (a) The volume algorithm creates a sequence of
intermediate spanning trees as a by-product. All edges appearing in these intermedi-
ate trees are marked, and only this reduced edge set is further considered by the GA;
i.e. a core of edges is derived from the intermediate primal results when solving the
Lagrangian dual. (b) A subset of diverse initial solutions is created by a Lagrangian



16 G. R. Raidl, J. Puchinger, and C. Blum

heuristic, which greedily generates solutions based on the reduced costs appearing
as intermediate results in the volume algorithm. (c) Instead of the original objec-
tive function, an alternate one, based on the reduced costs that are obtained by the
volume algorithm, is used. The idea is to focus the search even more on regions of
the search space around the results of the Lagrangian heuristic, where also better
solutions with respect to the original objective function are likely to be found.

Pirkwieser et al. [93] describe a similar combination of Lagrangian decomposi-
tion and a GA for the knapsack constrained maximum spanning tree problem. The
problem is decomposed into a minimum spanning tree and a 0–1 knapsack problem.
Again, the volume algorithm is employed to solve the Lagrangian dual. While graph
reduction takes place as before, the objective function remains unchanged. Instead,
final reduced costs are exploited for biasing the initialization, recombination, and
mutation operators. In addition, the best feasible solution obtained from the volume
algorithm is used as a seed in the GA’s initial population. Results indicate that the
volume algorithm alone is already able to find solutions of high quality even for
large instances. These solutions are polished by the GA, and, remarkably, in most
cases proven optimal solutions are finally obtained.

Dowsland et al. [40] propose an approach where bounding information avail-
able from partial solutions is used to guide an EA. An indirect, order-based rep-
resentation of candidate solutions is applied. Phenotypes are derived by a specific
decoding procedure which is a construction heuristic that is also able to calculate
upper bounds for intermediate partial solutions (considering a maximization prob-
lem). Given a certain target value, which is e.g. the objective value of the so far best
solution, a bound point is determined for each candidate solution in the population:
It is the first position in the genotype for which the corresponding partial solution
has a bound that is worse than the target value. A modified one-point crossover is
then guided by this bound information. That is, the crossover point must be chosen
in the part of the first chromosome before its bound point. In this way, recombi-
nations definitely leading to worse offspring are avoided. The authors tested this
concept on a pallet loading and a two-dimensional packing problem.

7.2 Enhancing the Functionality of Metaheuristics

One of the basic ingredients of an optimization technique is a mechanism for ex-
ploring the search space. An important class of algorithms tackles an optimization
problem by exploring the search space along a so-called search tree. This class of
algorithms comprises approximate as well as complete techniques. A prominent ex-
ample of a complete method belonging to this class is B&B. An interesting heuristic
derivative of breadth-first B&B is beam search [86]. While B&B (implicitly) con-
siders all nodes at a certain level in the search tree, beam search restricts the search
to a certain number of nodes based on bounding information.

One relatively recent line of research deals with the incorporation of algorithmic
components originating from deterministic B&B derivatives such as beam search



Metaheuristic Hybrids 17

into construction-based metaheuristics. Examples are the so-called Beam-ACO al-
gorithms [17, 19] and approximate and non-deterministic tree search (ANTS) pro-
cedures [77]. Note that Beam-ACO can be seen as a generalization of ANTS. In
Beam-ACO, artificial ants perform a probabilistic beam search in which the exten-
sion of partial solutions is done in the ACO fashion rather than deterministically.
The existence of an accurate—and computationally inexpensive—lower bound for
the guidance of the ACO’s search process is crucial for the success of Beam-ACO.

Another example concerns the use of CP techniques for restricting the search per-
formed by an ACO algorithm to promising regions of the search space. The motiva-
tion for this type of hybridization is as follows. Generally, ACO algorithms are com-
petitive with other optimization techniques when applied to problems that are not
overly constrained. However, when highly constrained problems such as scheduling
or timetabling are considered, the performance of ACO algorithms frequently de-
grades. Note that this is usually also the case for other metaheuristics. The reason
is to be found in the structure of the search space: On the one side, when a problem
is not overly constrained, it is usually not difficult to find feasible solutions. The
difficulty rather lies in the optimization part, namely the search for good feasible
solutions. On the other side, when a problem is highly constrained the difficulty is
rather in finding any feasible solution. This is where CP comes into play, because
these problems are the typical target problems for CP applications. Meyer and Ernst
[81] introduced the incorporation of CP into ACO in an application to the single
machine job scheduling problem.

Raidl and Hu in [108] proposed to enhance a GA by a so-called trie-based com-
plete solution archive, which is in fact a hybridization of a GA with B&B. This rel-
atively general approach is particularly useful for problems with a compact solution
representation but expensive solution evaluation, such as methods relying on costly
decoders or rigorous simulations. The central idea is to store all created candidate
solutions of the GA efficiently in a special trie data structure, which essentially cor-
responds to an explicitly stored B&B tree. Doing so allows to efficiently check if a
created candidate solution has already been considered before. If this is the case, the
archive further provides an efficient way to transform the candidate solution into a
different but usually similar one, for which it is guaranteed not to have been consid-
ered before. Thus, the solution archive can also be seen as an “intelligent mutation”
operator effectively avoiding any re-visits. This even implies that the GA is in princi-
ple turned into an exact optimization technique that is guaranteed to find an optimal
solution in limited time. In practice, however, the approach will typically still be
terminated early, i.e., before the whole space of solutions has been covered. This
approach was tested in [108] on royal road functions and NK-landscapes with clas-
sical binary representations as proof of concept. Later, the usefulness of this hybrid
was also shown on a variety of other, practically more relevant problems with differ-
ent representations, including the generalized minimum spanning tree problem, the
discrete (r|p) centroid problem [12], and other competitive facility location prob-
lems [13]. The latter works exploit the solution archive also within an embedded
local search component turning it into a special kind of tabu search. Furthermore,
the principle is extended by also occasionally calculating dual bounds on partial



18 G. R. Raidl, J. Puchinger, and C. Blum

solutions, effectively including the bounding mechanism of classical B&B [69] in
order to prune larger parts of the search space. We refer the reader to [11] for more
details on trie-based solution archives.

8 Strategic Guidance of Other Techniques by Metaheuristics

Many metaheuristics are based on the principle of local search, i.e. starting from
an initial solution, a certain neighborhood around it is investigated, and if a better
solution can be identified, it becomes the new incumbent solution; this process is
then repeated. Thus, the central idea is to focus the search for better solutions on
regions of the search space nearby already identified good solutions.

In comparison, most classical B&B algorithms choose the next B&B tree node
to be processed by a best-first strategy: assuming minimization, a node with small-
est lower bound is always selected, since it is considered the most promising for
reaching an optimal solution. This approach is often the best strategy for minimiz-
ing the total number of nodes that need to be explored until finding an optimum
and proving its optimality. However, good complete solutions—and thus also tight
upper bounds—are often found late during this search. The best-first node selection
strategy typically “hops around” in the search tree and in the search space, and does
not stay focused on subregions. When no strong primal heuristic is applied for deter-
mining promising complete solutions, the best-first strategy is often combined with
an initial diving, in which a depth-first strategy is used at the beginning until some
feasible solution is obtained. In depth-first search, the next node to be processed is
always the one that has been most recently created by branching.

In the last two decades, several more sophisticated concepts have been proposed
with the aim to intensify B&B-search in an initial phase to neighborhoods of promis-
ing incumbents in order to quickly identify high-quality approximate solutions. In
some sense, we can consider these strategies to “virtually” execute a local search or
even a metaheuristic.

Danna et al. [37] describe guided dives, which are a minor, but effective modifica-
tion of the already mentioned simple diving by temporarily switching to depth-first
search. The branch to be processed next in case of guided dives is always the one
in which the branching variable is allowed to take the value it has in an incumbent
solution. Diving is therefore biased towards the neighborhood of this solution. In-
stead of performing only a single dive at the beginning, guided dives are repeatedly
applied at regular intervals during the whole optimization process. This strategy is
trivial to implement, and experimental results indicate significant advantages over
standard node selection strategies.

Fischetti and Lodi [48] proposed local branching, an exact approach introducing
the classical k-OPT local search idea in a generic branch-and-cut-based MIP solver.
The whole problem is partitioned into a k-OPT neighborhood of an initial solution
and the remaining part of the search space by applying a local branching constraint
and its inverse, respectively. The MIP solver is then forced to completely solve the k-



Metaheuristic Hybrids 19

OPT neighborhood before considering the remainder of the problem. If an improved
solution has been found in the k-OPT neighborhood, a new subproblem correspond-
ing to the k-OPT neighborhood of this new incumbent is split off and solved in the
same way; otherwise, a larger k may be tried. The process is repeated until no fur-
ther improvement can be achieved. Finally, the remaining problem corresponding to
all parts of the search space not yet considered is processed in a standard way.

Hansen et al. [63] present a variant of local branching in which they follow the
classical VNS strategy, especially for adapting the neighborhood parameter k. Im-
proved results are reported. Another variant of the original local branching scheme
is described by Fischetti et al. in [49]. They consider problems in which the set of
variables can be naturally partitioned into two levels and fixing the values of the
first-level variables yields substantially easier subproblems; cf. Section 4.

Danna et al. [37] further suggest an approach called relaxation induced neighbor-
hood search (RINS) for exploring the neighborhoods of promising MIP solutions
more intensively. The main idea is to occasionally devise a sub-MIP at a node of
the B&B tree that corresponds to a special neighborhood of an incumbent solution.
First, variables having the same values in the incumbent and in the current solution
of the LP relaxation are fixed. Second, an objective cutoff based on the objective
value of the incumbent is set. Third, a sub-MIP is solved on the remaining vari-
ables. The time for solving this sub-MIP is limited. If a better incumbent is found
during this process, it is given to the global MIP-search which is resumed after the
sub-MIP’s termination. In the authors’ experiments, CPLEX is the MIP solver, and
RINS is compared to standard CPLEX, local branching, combinations of RINS and
local branching, and guided dives. Results indicate that RINS often performs best.
CPLEX includes RINS as a standard strategy for quickly obtaining good heuristic
solutions since version 10. Recently, Gomes et al. [59] suggested an extension of
RINS that explicitly explores pre-processing techniques. Their method systemati-
cally searches for a suitable number of variable fixings to produce subproblems of
controlled size, which are explored in a variable-neighborhood-descent fashion.

The nested partitioning method proposed by Shi and Ólafsson [114] is another
example where a metaheuristic provides strategic guidance to another technique.
At each iteration the search focuses on a part of the search space called the most
promising region. The remaining part of the search space is called the surrounding
region. The most promising region may, for example, be characterized by a number
of fixed variables. At each step, the most promising region is divided into a fixed
number of subregions. This may be done, for example, by choosing one of the free
variables and creating a subregion for each of the variable’s possible domain value.
Each of the subregions as well as the surrounding region is then sampled. The best
objective function value obtained for each region is called the promising index. The
region with the best index becomes the most promising region of the next iteration.
The latter is thus nested within the current most promising region. When the sur-
rounding region is found to be the best, the method backtracks to a larger region.
The approach may be divided into four main steps: partitioning, sampling, selecting
a promising region, and backtracking. Each of these steps may be implemented in a
generic fashion, but can also be defined in a problem specific way. In particular the



20 G. R. Raidl, J. Puchinger, and C. Blum

sampling phase may benefit from the use of metaheuristics instead of performing a
naive random sampling. In a sense, metaheuristics can be seen as enhancements for
guiding the search process of the method. In [5], for example, ant colony optimiza-
tion is applied for sampling, whereas in [115] local search is used for this purpose.

A very different paradigm is followed in constraint-based local search [65]. It
combines the flexibility of CP concepts such as rich modeling, global constraints,
and search abstractions with the efficiency of local search. The Comet programming
language allows the modeling of combinatorial optimization problems in a relatively
natural way.

Note that the construct, merge, solve & adapt (CMSA) framework [24] previ-
ously described in Section 6 in the context of solution merging, can also be seen
as a technique in which heuristic elements provide guidance for an exact approach.
This is because the reduced sub-instances of the tackled problem instances—which
are solved by an exact technique—are generated by iteratively applying a greedy
heuristic in a probabilistic way.

Guidance of a complete technique by means of the information gathered by a
metaheuristic can also be found in the context of CP. An example is the work of
Khichane et al. [73] in which the pheromone information of an ACO algorithm is
used for value ordering during CP branching.

9 Decomposition Approaches

Problem decomposition approaches are another category of powerful techniques for
combining different optimization techniques. Usually, a very hard-to-solve problem
is decomposed into parts which can be dealt with more effectively. Some of the
multi-stage approaches in Section 4 already follow this basic idea. Large neighbor-
hood search, heuristic cut and column generation in mixed integer programming,
and constraint propagation by means of metaheuristics are three other prominent in-
stances of successful decomposition techniques, which we consider in the following
in more detail.

9.1 Exploring Large Neighborhoods

A frequently applied approach in more sophisticated local search based metaheuris-
tics is to search neighborhoods not by naive enumeration but by clever, more effi-
cient algorithms. If the neighborhoods are chosen appropriately, they can be quite
large and nevertheless an efficient search for a best (or almost best) neighboring
solution is still possible in short time. Such techniques are commonly known as
very large-scale neighborhood search [3] or just large neighborhood search [112].
Many of today’s combinations of local search based metaheuristics with dynamic
programming or MIP techniques follow this scheme. In the following, we present



Metaheuristic Hybrids 21

some examples. For further details we refer to the separate chapter in this book
specifically dedicated to large neighborhood search.

A frequently found general design principle for large neighborhoods is to select
a set of the problem’s variables for re-optimization and to fix all remaining variables
as they appear in the current incumbent solution. Clearly, the number of variables to
be optimized in each iteration and the way to select them have a substantial impact
on the performance of the search. Usually variables are selected randomly, but typi-
cally in a way to favor the joint selection of strongly related variables that determine
certain solution characteristics or to favor variables involved in constraint violations.
Different types of large neighborhoods can be obtained through different strategies
for variable selection and for re-optimization of the resulting subproblems. Methods
for the latter can range from basic greedy heuristics over dynamic programming to
MIP or CP solvers.

Numerous applications exist in which large neighborhoods are described in
the form of MIPs and a MIP-solver is applied for finding a good—or a best—
neighboring solution. Examples of MIP-based large neighborhood search can be
found in Duarte et al. [41], where an iterated local search framework is applied to
a real-world referee assignment problem, and in Prandtstetter and Raidl [97] where
several different MIP-based neighborhoods are searched within a VNS framework
for a car sequencing problem. Toledo et al. [121] describe an effective MIP-based
“relax-and-fix with fix-and-optimize” heuristic for multi-level lot-sizing problems.

As it is sometimes difficult to decide which large neighborhood is the best to
apply at a certain time, adaptive schemes that increase or decrease the probability to
apply each neighborhood structure according to its past performance have also been
useful. For example Ropke and Pisinger [112] proposed an adaptive large neigh-
borhood search (ALNS) for the pickup and delivery problem with time windows,
Muller et al. [52] applied an ALNS with MIP neighborhoods to a lot-sizing problem
with setup times, and Pereira et al. [89] described such an approach for a probabilis-
tic maximal covering location-allocation problem.

In Dynasearch [33] exponentially large neighborhoods are explored by dynamic
programming. A neighborhood consists of all possible combinations of mutually
independent simple search steps, and one Dynasearch move corresponds to a set
of such simple steps that are executed in parallel in a single local search iteration.
The required independence in the context of Dynasearch means that the individual
simple moves do not interfere with each other; in this case, dynamic programming
can be used to find a best combination. Ergun and Orlin [46] investigated several
such neighborhoods in particular for the traveling salesman problem.

Other types of large neighborhoods that can also be efficiently searched by dy-
namic programming are cyclic and path exchange neighborhoods [3, 4]. They are
often applied to problems where items need to be partitioned into disjoint sets. Ex-
amples of such problems are vehicle routing, capacitated minimum spanning tree,
and parallel machine scheduling. In these neighborhoods, a series of items is ex-
changed between an arbitrary number of sets in a cyclic or path-like fashion, and a
best move is determined by a shortest path-like algorithm.



22 G. R. Raidl, J. Puchinger, and C. Blum

Pesant and Gendreau [90] describe a generic framework for combining CP and
local search. They view and model the original problem as well as the (large) neigh-
borhoods as CP problems. Each of the neighborhoods is solved via a CP-based B&B
that preserves solution feasibility. The framework allows for a relatively generic
problem modeling while providing the advantages of local search. The authors solve
a physician scheduling problem as well as the traveling salesman problem with time
windows, and they approach them by tabu search in which large neighborhoods are
searched by means of the CP-based B&B. More recent examples of CP-based LNS
concern applications to a dial-and-ride problem [70] and a post enrolment-based
course timetabling problem [29]. A general modeling language and a hybrid solver
specially designed for LNS, called GELATO, was proposed in [31].

Hu et al. [67] describe a VNS for the generalized minimum spanning tree prob-
lem. The approach uses two dual types of representations and exponentially large
neighborhood structures. Best neighbors are identified by means of dynamic pro-
gramming algorithms, and—in case of the so-called global subtree optimization
neighborhood—by solving an ILP formulation with CPLEX.

A way of defining large neighborhoods in the context of a decomposition ap-
proach is proposed in a general framework called POPMUSIC (Partial OPtimiza-
tion Metaheuristic Under Special Intensification Conditions) [116]. POPMUSIC is
thought for the application to generally large-scale optimization problems in which
solutions have the property to be composed of parts that can be optimized relatively
independently. The basic idea is to identify and to optimize these parts a posteriori
once an initial solution to the problem under consideration is obtained. The sub-
problem solved at each iteration re-shapes at most r parts, where r is a parameter
of the algorithm, in the best possible way. This can be seen as a large neighborhood
based on soft fixing as it is known, for example, from other techniques such as local
branching [48], cf. Section 8. Exact solvers often come into play. A recent example
is the application of POPMUSIC to a berth allocation problem [75].

Note also that large neighborhood search and POPMUSIC are strongly related
to variable neighborhood decomposition search [62], where neighborhoods are
searched only for selected parts of an incumbent solution.

9.2 Hybrids Based on MIP Decomposition Techniques

Mathematical programming decomposition techniques are methods for solving a
large problem by considering a series of smaller problems and appropriately com-
bining the solutions. Lagrangian decomposition, Benders decomposition, and col-
umn generation are particularly well known and are used in many state-of-the-art ex-
act and heuristic solution approaches for different combinatorial optimization prob-
lems [127]. In fact, these decomposition techniques may also be interpreted as more
general metaheuristic frameworks themselves, see [28]. Frequently, these methods
can be considerably accelerated with the help of (meta-)heuristics, sometimes even
retaining completeness, or combined in fruitful ways with metaheuristics in order



Metaheuristic Hybrids 23

to guide them. See [106] for a survey on such decomposition based hybrids meta-
heuristics. The possibilities in this context are manifold. Here, we just want to give
a few ideas that have already been proven successful in several applications.

9.2.1 Lagrangian Decomposition

With respect to Lagrangian decomposition (LD), we have already considered the
works from Haouari and Siala [64] and Pirkwieser et al. [93] in Section 7.1, which
cleverly exploit the information gathered from LD in various ways within a GA.
More generally, LD is in principle only a method for obtaining a lower bound. To get
a feasible solution, it typically relies on some further heuristic method that usually
exploits the Lagrangian dual.

9.2.2 Column Generation

In column generation (CG) one usually aims at solving a MIP model with a huge
number of variables. Such models frequently resemble a kind of set covering or set
partitioning model and are attractive because they provide a strong LP relaxation.
For example, a vehicle routing problem may be modeled in a way where any feasi-
ble route corresponds to a variable, and a subset of all routes is sought that covers
all customers. Clearly, there are exponentially many routes, and thus variables, and
such a model cannot be solved directly in practice. Column generation starts with
a reduced model containing only a small set of initial variables, which are for ex-
ample derived from an initial solution provided by a heuristic. This reduced model
is then iteratively solved and augmented by further variables (i.e., columns in the
matrix notation of the MIP) that may lead in the next iteration to an improved so-
lution. The subproblem of identifying a new variable whose inclusion will yield an
improvement is called the pricing problem and is often difficult to solve on its own.
Applying fast (meta-)heuristics for this purpose is sometimes a very meaningful
option.

For example, Filho and Lorena [111] apply a heuristic CG approach to graph
coloring. A GA is used to generate initial columns and to solve the pricing problem
at every iteration. Column generation is performed as long as the GA finds columns
with negative reduced costs. The master problem is solved using CPLEX. Puchinger
and Raidl [100] describe an exact branch-and-price approach for the three-stage
two-dimensional bin packing problem. Fast CG is performed by applying a chain of
four methods: (a) a greedy heuristic, (b) an EA, (c) solving a restricted form of the
pricing problem using CPLEX, and finally (d) solving the complete pricing problem
using CPLEX. Massen et al. [80] use ant colony optimization for heuristic CG to
solve a black-box vehicle routing problem.

Alvelos et al [8] describe a general hybrid strategy called SearchCol where CG
and a metaheuristic are iteratively performed and information is exchanged between
them. The metaheuristic works in a problem-independent way trying to find a best



24 G. R. Raidl, J. Puchinger, and C. Blum

integral solution by searching over combinations of variables identified by CG,
while the CG is perturbed in each iteration based on the metaheuristic’s result by
fixing subproblem variables with special constraints.

9.2.3 Benders Decomposition

Benders decomposition (BD) has been originally suggested for solving large MIPs
involving “complicating” integer variables. The basic principle is to project the MIP
into the space of complicating integer variables only; real variables and the con-
straints involving them are replaced by corresponding inequalities on the integer
variables. These inequalities, however, are not directly available but are dynami-
cally separated as cuts. According to the classical BD, an optimal solution to the
relaxed master problem (including only the already separated cuts) is needed and an
LP involving this solution must be solved in order to separate a single new cut.

Rei et al. [110] improved classical BD by introducing phases of local branch-
ing on the original problem in order to obtain multiple feasible heuristic solutions
quickly. These solutions provide improved upper bounds on one hand, but also allow
the derivation of multiple additional cuts before the relaxed master problem needs
to be solved again. Poojari and Beasley [96] describe such an approach for solving
general MIPs in which a GA together with a feasibility pump heuristic are applied
to the master problem. The authors argue that a population based metaheuristic like
a genetic algorithm is particularly useful as it provides multiple solutions in each
iteration giving rise to more Benders cuts. Boland et al. [27] use a proximity search
to drive a BD for two-stage mixed-integer linear stochastic programming models.

Extensions of classical BD exist in which the subproblems can contain also in-
teger variables and may be difficult on their own. Especially in these cases, CP and
metaheuristics have a great potential for speeding up the overall approach by pro-
viding helpful cuts much faster. For example [66] describes a logic-based BD in
which subproblems are solved by CP. The approach substantially outperforms pure
MIP and pure CP approaches on a large class of planning and scheduling problems.

Raidl et al. [107] proposed an exact logic-based BD approach for a bi-level ca-
pacitated vehicle routing problem. The authors were able to speed it up considerably
by first solving all instances of the master problem as well as all subproblems with a
fast variable neighborhood search heuristic. Invalid Benders cuts possibly cutting off
feasible solutions may be created. In a second phase, all these heuristically gener-
ated Benders cuts undergo a validity check by re-solving exactly the corresponding
subproblems with a MIP solver, yielding possibly corrected cuts that replace the in-
valid ones. When the master problem is solved exactly and no further Benders cuts
can be derived, a proven optimal solution is obtained.



Metaheuristic Hybrids 25

9.3 Using Metaheuristics for Constraint Propagation

In CP the mechanism of constraint propagation is used to reduce the domains of the
variables at each node of a tree search. Similarly to cut generation in mixed integer
programming, the search space is reduced by propagating constraints from the cur-
rent state of the search. Usually specialized and standard combinatorial algorithms
are used [79] for this purpose. An example of the use of (meta-)heuristic methods
in the context of constraint propagation is local probing [71].

Galinier et al. [54] presents a tabu search procedure to speed up filtering for
generalized all-different constraints. That is:

SomeDifferent(X ,D,E) = {(x1, . . . ,xn) ∈ D | xi 6= x j ∀(i, j) ∈ E}

is defined over variables X = (x1, . . . ,xn) with respective domains D = (D1, . . . ,Dn)
and a graph G = (X ,E) with edge set E specifying pairs of variables that must
be assigned different values. The satisfiability of the constraint can be tested by
solving a special graph coloring problem. Tabu search is first applied to see if it
can color the graph. If it does not find a solution, an exact method is applied. In
a second step a similar tabu search procedure is used to determine a large set of
variable/value combinations that are feasible. Finally an exact filtering is applied to
the remaining variable/value pairs checking if some of them can be excluded from
the variable domains. Computational experiments show that the hybrid approach is
comparable to the state-of-the-art on data from a real-world work-force management
problem and is significantly faster on random graph instances for the SomeDifferent
constraint. The authors suppose that the idea of combining fast metaheuristics with
exact procedures can speed up filtering procedures for other hard constraints as well.

10 Summary and Conclusions

We have reviewed a large number of different approaches for combining traditional
metaheuristic strategies with each other or with algorithmic techniques from other
fields. All these possibilities have their individual pros and cons, but the common
underlying motivation is to exploit the advantages of the individual techniques in
order to obtain a more effective hybrid system, benefiting from synergy. In fact,
history clearly shows that focusing on a single metaheuristic is rather restrictive for
advancing the state-of-the-art when tackling difficult optimization problems. Thus,
designing hybrid systems for complex optimization problems is nowadays a natural
process.

On the downside, metaheuristic hybrids are usually significantly more complex
than classical “pure” strategies. The necessary development and tuning effort may
be substantially higher than when using a straightforward out-of-the-box strategy.
One should further keep in mind that a more complex hybrid algorithm does not
automatically perform better—an adequate design and appropriate tuning is always



26 G. R. Raidl, J. Puchinger, and C. Blum

mandatory, and the effort increases with the system’s complexity. Einstein’s advice
of “keeping things as simple as possible, but not simpler” therefore is especially
true also for metaheuristic hybrids.

We started by presenting a classification of metaheuristic hybrids in which we
pointed out the different basic characteristics. Then we discussed several commonly
used design templates. Note that these templates are not meant as a clear catego-
rization of existing hybrid approaches: Many of the referenced examples from the
literature can be argued to follow more than one design template, and occasionally
the boundaries are fuzzy.

Finding initial or improved solutions by embedded methods may be the most
commonly applied approach. Multi-stage combinations are sometimes straightfor-
ward for problems that naturally decompose into multiple levels and are also other-
wise popular as they are typically easier to tune than more intertwined hybrids. The
concept of decoder-based metaheuristics is also quite popular, because they can of-
ten be implemented quickly, once an appropriate construction heuristic is available.
The next design template that we discussed was solution merging for which numer-
ous successful examples exist. Then we considered cases where metaheuristics are
strategically guided by other techniques. In particular, solutions to relaxations of
the original problem are frequently exploited in various ways. The reverse, strate-
gic guidance of other techniques by metaheuristics, has been particularly successful
in the field of mixed integer programming, where such strategies can help to find
good approximate solutions early within an exact B&B-based method. Last but not
least, there are several different decomposition approaches: Exploring large neigh-
borhoods by specialized algorithms has become particularly popular over the last
years, and occasionally metaheuristics are applied to speed up Lagrangian decom-
position, column generation, and Benders decomposition.

As an important final advice for the development of well-performing metaheuris-
tic hybrids, the authors would like to recommend (1) the careful search of the litera-
ture for the most successful optimization approaches for the problem at hand or for
similar problems, and (2) the study of clever ways of combining the most interesting
features of the identified approaches. We hope this chapter provides a starting point
and some useful references for this purpose.

Acknowledgements Günther R. Raidl is supported by the Austrian Science Fund (FWF) under
grants P27615 and W1260.



Metaheuristic Hybrids 27

References

1. Aggarwal, C., Orlin, J., Tai, R.: Optimized crossover for the independent set problem. Oper-
ations Research 45(2), 226–234 (1997)

2. Ahuja, R., Orlin, J., Tiwari, A.: A greedy genetic algorithm for the quadratic assignment
problem. Computers & Operations Research 27(10), 917–934 (2000)

3. Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood
search techniques. Discrete Applied Mathematics 123(1-3), 75–102 (2002)

4. Ahuja, R.K., Orlin, J., Sharma, D.: Multi-exchange neighborhood search algorithms for the
capacitated minimum spanning tree problem. Mathematical Programming 91(1), 71–97
(2001)

5. Al-Shihabi, S.: Ants for sampling in the nested partition algorithm. In: C. Blum, A. Roli,
M. Sampels (eds.) Proceedings of HM 2004 – First International Workshop on Hybrid Meta-
heuristics, pp. 11–18. Valencia, Spain (2004)

6. Alba, E. (ed.): Parallel Metaheuristics: A New Class of Algorithms. Wiley (2005)
7. Almeida, F., Blesa Aguilera, M.J., Blum, C., Moreno Vega, J.M., Pérez, M.P., Roli, A., Sam-

pels, M. (eds.): Proceedings of HM 2006 – Third International Workshop on Hybrid Meta-
heuristics, LNCS, vol. 4030. Springer (2006)

8. Alvelos, F., de Sousa, A., Santos, D.: Combining column generation and metaheuristics. In:
Talbi [119], pp. 285–334

9. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: On the solution of the traveling sales-
man problem. Documenta Mathematica Extra Volume ICM III, 645–656 (1998)

10. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA
Journal on Computing 6(2), 154–160 (1994)

11. Biesinger, B.: Complete solution archives for evolutionary combinatorial optimization: Ap-
plication to a competitive facility location and stochastic vehicle routing problem. Ph.D.
thesis, TU Wien, Institute of Computer Graphics and Algorithms, Vienna, Austria (2016)

12. Biesinger, B., Hu, B., Raidl, G.: A hybrid genetic algorithm with solution archive for the
discrete (r|p)-centroid problem. Journal of Heuristics 21(3), 391–431 (2015)

13. Biesinger, B., Hu, B., Raidl, G.: Models and algorithms for competitive facility location
problems with different customer behavior. Annals of Mathematics and Artificial Intelligence
76(1), 93–119 (2015)

14. Biesinger, B., Hu, B., Raidl, G.R.: A variable neighborhood search for the generalized vehicle
routing problem with stochastic demands. In: G. Ochoa, F. Chicano (eds.) Evolutionary
Computation in Combinatorial Optimization – EvoCOP 2015, LNCS, vol. 9026, pp. 48–60.
Springer (2015)

15. Blesa, M.J., Blum, C., Cangelosi, A., Cutello, V., Di Nuovo, A.G., Pavone, M., Talbi, E.
(eds.): Proceedings of HM 2016 – Tenth International Workshop on Hybrid Metaheuristics,
LNCS, vol. 9668. Springer (2016)

16. Blesa Aguilera, M.J., Blum, C., Roli, A., Sampels, M. (eds.): Proceedings of HM 2005 –
Second International Workshop on Hybrid Metaheuristics, LNCS, vol. 3636. Springer (2005)

17. Blum, C.: Beam-ACO: Hybridizing ant colony optimization with beam search: An applica-
tion to open shop scheduling. Computers & Operations Research 32(6), 1565–1591 (2005)

18. Blum, C.: A new hybrid evolutionary algorithm for the k-cardinality tree problem. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference 2006, pp. 515–522. ACM
Press (2006)

19. Blum, C.: Beam-ACO for simple assembly line balancing. INFORMS Journal on Computing
20(4), 618–627 (2008)

20. Blum, C., Blesa, M.: Combining ant colony optimization with dynamic programming for
solving the k-cardinality tree problem. In: Proceedings of IWANN 2005 – 8th International
Work-Conference on Artificial Neural Networks, Computational Intelligence and Bioin-
spired Systems, LNCS, vol. 3512, pp. 25–33. Springer (2005)

21. Blum, C., Blesa, M.J.: Construct, merge, solve and adapt: Application to the repetition-free
longest common subsequence problem. In: F. Chicano, B. Hu, P. Garcı́a-Sánchez (eds.)



28 G. R. Raidl, J. Puchinger, and C. Blum

Proceedings of EvoCOP 2007 – 16th European Conference on Evolutionary Computation in
Combinatorial Optimization, no. 9595 in LNCS, pp. 46–57. Springer (2016)

22. Blum, C., Blesa Aguilera, M.J., Roli, A., Sampels, M. (eds.): Hybrid Metaheuristics –
An Emerging Approach to Optimization, Studies in Computational Intelligence, vol. 114.
Springer (2008)

23. Blum, C., Pereira, J.: Extension of the CMSA algorithm: An LP-based way for reducing
sub-instances. In: Proceedings of GECCO 2016 – Genetic and Evolutionary Computation
Conference, pp. 285–292. ACM (2016)

24. Blum, C., Pinacho, P., López-Ibáñez, M., Lozano, J.A.: Construct, merge, solve & adapt: A
new general algorithm for combinatorial optimization. Computers & Operations Research
68, 75–88 (2016)

25. Blum, C., Raidl, G.R.: Hybrid Metaheuristics – Powerful Tools for Optimization. Artificial
Intelligence: Foundations, Theory, and Algorithms. Springer (2016)

26. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Computing Surveys 35(3), 268–308 (2003)

27. Boland, N., Fischetti, M., Monaci, M., Savelsbergh, M.: Proximity Benders: a decomposi-
tion heuristic for stochastic programs. Journal of Heuristics 22(2), 181–198 (2015). URL
http://link.springer.com/article/10.1007/s10732-015-9306-1

28. Boschetti, M., Maniezzo, V., Roffilli, M.: Decomposition techniques as metaheuristic frame-
works. In: V. Maniezzo, T. Stützle, S. Voss (eds.) Matheuristics – Hybridizing Metaheuris-
tics and Mathematical Programming, Annals of Information Systems, vol. 10, pp. 135–158.
Springer (2009)

29. Cambazard, H., Hebrard, E., O’Sullivan, B., Papadopoulos, A.: Local search and constraint
programming for the post enrolment-based course timetabling problem. Annals of Opera-
tions Research 194(1), 111–135 (2012)

30. Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem.
Journal of Heuristics 4, 63–86 (1998)

31. Cipriano, R., Di Gaspero, L., Dovier, A.: A hybrid solver for large neighborhood search:
Mixing gecode and easylocal++. In: M.J. Blesa, C. Blum, L. Di Gaspero, A. Roli, M. Sam-
pels, A. Schaerf (eds.) Proceedings of HM 2009 – 6th International Workshop on Hybrid
Metaheuristics, no. 5818 in LNCS, pp. 141–155. Springer (2009)

32. Cohoon, J., Hegde, S., Martin, W., Richards, D.: Punctuated equilibria: A parallel genetic
algorithm. In: J. Grefenstette (ed.) Proceedings of the Second International Conference on
Genetic Algorithms, pp. 148–154. Lawrence Erlbaum Associates (1987)

33. Congram, R.K., Potts, C.N., van de Velde, S.L.: An iterated dynasearch algorithm for the
single-machine total weighted tardiness scheduling problem. INFORMS Journal on Com-
puting 14(1), 52–67 (2002)

34. Cotta, C.: A study of hybridisation techniques and their application to the design of evolu-
tionary algorithms. AI Communications 11(3–4), 223–224 (1998)

35. Cotta, C., Troya, J.M.: Embedding branch and bound within evolutionary algorithms. Ap-
plied Intelligence 18(2), 137–153 (2003)

36. Coudert, D., Nepomuceno, N., Rivano, H.: Power-efficient radio configuration in fixed broad-
band wireless networks. Computer Communications 33(8), 898–906 (2010)

37. Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods to im-
prove MIP solutions. Mathematical Programming, Series A 102(71), 71–90 (2005)

38. Denzinger, J., Offermann, T.: On cooperation between evolutionary algorithms and other
search paradigms. In: W. Porto, et al. (eds.) Proceedings of the 1999 Congress on Evolution-
ary Computation (CEC), vol. 3, pp. 2317–2324. IEEE Press (1999)

39. Di Gaspero, L.: Integration of metaheuristics and constraint programming. In: J. Kacprzyk,
W. Pedrycz (eds.) Springer Handbook of Computational Intelligence, pp. 1225–1237.
Springer (2015)

40. Dowsland, K.A., Herbert, E.A., Kendall, G., Burke, E.: Using tree search bounds to enhance
a genetic algorithm approach to two rectangle packing problems. European Journal of Oper-
ational Research 168(2), 390–402 (2006)



Metaheuristic Hybrids 29

41. Duarte, A.R., Ribeiro, C.C., Urrutia, S.: A hybrid ils heuristic to the referee assignment prob-
lem with an embedded mip strategy. In: T. Bartz-Beielstein, M.J. Blesa Aguilera, C. Blum,
B. Naujoks, A. Roli, G. Rudolph, M. Sampels (eds.) Proceedings of HM 2007 – Fourth Inter-
national Workshop on Hybrid Metaheuristics, LNCS, vol. 4771, pp. 82–95. Springer (2007)

42. Dumitrescu, I., Stützle, T.: Combinations of local search and exact algorithms. In:
S. Cagnoni, C.G. Johnson, J.J. Romero Cardalda, E. Marchiori, D.W. Corne, J.A. Meyer,
J. Gottlieb, M. Middendorf, A. Guillot, G.R. Raidl, E. Hart (eds.) Applications of Evolution-
ary Computation, LNCS, vol. 2611, pp. 211–223. Springer (2003)

43. Ehrgott, M., Gandibleux, X.: Hybrid metaheuristics for multi-objective combinatorial opti-
mization. In: C. Blum, M.J. Blesa Aguilera, A. Roli, M. Sampels (eds.) Hybrid Metaheuris-
tics – An Emerging Approach to Optimization, Studies in Computational Intelligence, vol.
114, pp. 221–259. Springer (2008)

44. El-Abd, M., Kamel, M.: A taxonomy of cooperative search algorithms. In: Blesa Aguilera
et al. [16], pp. 32–41

45. Eremeev, A.V.: On complexity of optimal recombination for binary representations of solu-
tions. Evolutionary Computation 16(1), 127–147 (2008)

46. Ergun, O., Orlin, J.B.: A dynamic programming methodology in very large scale neighbor-
hood search applied to the traveling salesman problem. Discrete Optimization 3(1), 78–85
(2006)

47. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal of
Global Optimization 6, 109–133 (1995)

48. Fischetti, M., Lodi, A.: Local branching. Mathematical Programming, Series B 98(1), 23–47
(2003)

49. Fischetti, M., Polo, C., Scantamburlo, M.: Local branching heuristic for mixed-integer pro-
grams with 2-level variables, with an application to a telecommunication network design
problem. Networks 44(2), 61–72 (2004)

50. Fisher, M.L., Jaikumar, R.: A generalized assignment heuristic for vehicle routing. Networks
11(2), 109–124 (1981)

51. Fleurent, C., Glover, F.: Improved constructive multistart strategies for the quadratic assign-
ment problem using adaptive memory. INFORMS Journal on Computing 11(2), 198–204
(1999)

52. Flindt Muller, L., Spoorendonk, S., Pisinger, D.: A hybrid adaptive large neighborhood
search heuristic for lot-sizing with setup times. European Journal of Operational Research
218(3), 614–623 (2012)

53. Focacci, F., Laburthe, F., Lodi, A.: Local search and constraint programming: Ls and cp illus-
trated on a transportation problem. In: M. Milano (ed.) Constraint and Integer Programming.
Towards a Unified Methodology, pp. 293–329. Kluwer Academic Publishers (2004)

54. Galinier, P., Hertz, A., Paroz, S., Pesant, G.: Using local search to speed up filtering algo-
rithms for some np-hard constraints. Annals of Operations Research 184(1), 121–135 (2011)

55. Gilmour, S., Dras, M.: Kernelization as heuristic structure for the vertex cover problem. In:
M. Dorigo, L.M. Gambardella, M. Birattari, A. Martinoli, R. Poli, T. Stützle (eds.) Proceed-
ings of ANTS 2006 – 5th International Workshop on Ant Colony Optimization and Swarm
Intelligence, LNCS, vol. 4150, pp. 452–459. Springer (2006)

56. Glover, F.: Surrogate constraints. Operations Research 16(4), 741–749 (1968)
57. Glover, F., Laguna, M., Martı́, R.: Fundamentals of scatter search and path relinking. Control

and Cybernetics 39(3), 653–684 (2000)
58. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Learning. Addison-

Wesley, Reading, MA (1989)
59. Gomes, T.M., Santos, H.G., Souza, J.F.: A pre-processing aware RINS based MIP heuris-

tic. In: M.J. Blesa, C. Blum, P. Festa, A. Roli, M. Sampels (eds.) Proceedings of HM
2013 – Eighth International Workshop on Hybrid Metaheuristics, LNCS, vol. 7919, pp. 1–11.
Springer (2013)

60. Gonçalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for combinatorial
optimization. Journal of Heuristics 17(5), 487–525 (2011)



30 G. R. Raidl, J. Puchinger, and C. Blum

61. Hachemi, N.E., Crainic, T.G., Lahrichi, N., Rei, W., Vidal, T.: Solution integration in com-
binatorial optimization with applications to cooperative search and rich vehicle routing.
Journal of Heuristics 21(5), 663–685 (2015). DOI 10.1007/s10732-015-9296-z. URL
http://link.springer.com/article/10.1007/s10732-015-9296-z

62. Hansen, P., Mladenovic, N., Perez-Britos, D.: Variable neighborhood decomposition search.
Journal of Heuristics 7(4), 335–350 (2001)

63. Hansen, P., Mladenović, N., Urosević, D.: Variable neighborhood search and local branching.
Computers & Operations Research 33(10), 3034–3045 (2006)

64. Haouari, M., Siala, J.C.: A hybrid Lagrangian genetic algorithm for the prize collecting
Steiner tree problem. Computers & Operations Research 33(5), 1274–1288 (2006)

65. Hentenryck, P.V., Michel, L.: Constraint-Based Local Search. MIT Press, Cambridge, MA
(2005)

66. Hooker, J.N.: Planning and scheduling by logic-based Benders decomposition. Operations
Research 55(3), 588–602 (2007)

67. Hu, B., Leitner, M., Raidl, G.R.: Combining variable neighborhood search with integer linear
programming for the generalized minimum spanning tree problem. Journal of Heuristics
14(5), 473–499 (2008)

68. Hu, B., Raidl, G.R.: Effective neighborhood structures for the generalized traveling salesman
problem. In: J.I. van Hemert, C. Cotta (eds.) Evolutionary Computation in Combinatorial
Optimization – EvoCOP 2008, LNCS, vol. 4972, pp. 36–47. Springer (2008)

69. Hu, B., Raidl, G.R.: An evolutionary algorithm with solution archives and bounding exten-
sion for the generalized minimum spanning tree problem. In: Proceedings of the 14th Annual
Conference on Genetic and Evolutionary Computation (GECCO), pp. 393–400. ACM Press,
Philadelphia, PA, USA (2012)

70. Jain, S., Van Hentenryck, P.: Large neighborhood search for dial-a-ride problems. In: J. Lee
(ed.) Proceedings of CP 2011 – 17th International Conference Principles and Practice of
Constraint Programming, no. 6876 in LNCS, pp. 400–413. Springer (2011)

71. Kamarainen, O., Sakkout, H.E.: Local probing applied to scheduling. In: P. Van Hentenryck
(ed.) Proceedings of CP 2002 – 8th International Conference on Principles and Practice of
Constraint Programming, no. 2470 in LNCS, pp. 155–171. Springer (2002)

72. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2004)
73. Khichane, M., Albert, P., Solnon, C.: Strong combination of ant colony optimization with

constraint programming optimization. In: A. Lodi, M. Milano, P. Toth (eds.) Proceedings of
CPAIOR 2010 – 7th International Conference on the Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, no. 6140 in LNCS, pp.
232–245. Springer (2010)

74. Klau, G.W., Lesh, N., Marks, J., Mitzenmacher, M.: Human-guided search. Journal of
Heuristics 16(3), 289–310 (2010)

75. Lalla-Ruiz, E., Voß, S.: POPMUSIC as a matheuristic for the berth allocation problem. An-
nals of Mathematics and Artificial Intelligence 76(1), 173–189 (2016)

76. Lodi, A.: The heuristic (dark) side of MIP solvers. In: Talbi [119], pp. 273–284
77. Maniezzo, V.: Exact and approximate nondeterministic tree-search procedures for the

quadratic assignment problem. INFORMS Journal on Computing 11(4), 358–369 (1999)
78. Maniezzo, V., Stützle, T.: Matheuristics 2016 – Proceedings of the Sixth International Work-

shop on Model-based Metaheuristics. Tech. Rep. TR/IRIDIA/2016-007, IRIDIA, Université
libre de Bruxelles, Belgium (2016)

79. Marriott, K., Stuckey, P.J.: Introduction to Constraint Logic Programming. MIT Press, Cam-
bridge, MA (1998)

80. Massen, F., Deville, Y., Hentenryck, P.V.: Pheromone-based heuristic column generation for
vehicle routing problems with black box feasibility. In: N. Beldiceanu, N. Jussien, É. Pinson
(eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems – CPAIOR 2012, LNCS, vol. 7298, pp. 260–274. Springer (2012)

81. Meyer, B., Ernst, A.: Integrating ACO and constraint propagation. In: M. Dorigo, M. Birat-
tari, C. Blum, L.M. Gambardella, F. Mondada, T. Stützle (eds.) Proceedings of ANTS 2004 –



Metaheuristic Hybrids 31

Fourth International Workshop on Ant Colony Optimization and Swarm Intelligence, LNCS,
vol. 3172, pp. 166–177. Springer (2004)

82. Michalewicz, Z., Siarry, P.: Special issue on adaptation of discrete metaheuristics to contin-
uous optimization. European Journal of Operational Research 185(3), 1060–1273 (2008)

83. Moscato, P.: Memetic algorithms: A short introduction. In: D. Corne, M. Dorigo, F. Glover,
D. Dasgupta, P. Moscato, R. Poli, K.V. Price (eds.) New Ideas in Optimization, pp. 219–234.
McGraw-Hill (1999)

84. Nepomuceno, N., Pinheiro, P., Coelho, A.L.V.: A hybrid optimization framework for cutting
and packing problems. In: C. Cotta, J. van Hemert (eds.) Recent Advances in Evolutionary
Computation for Combinatorial Optimization, Studies in Computational Intelligence, vol.
153, pp. 87–99. Springer (2008)

85. Neto, T., Pedroso, J.P.: GRASP for linear integer programming. In: J.P. Sousa, M.G.C. Re-
sende (eds.) Metaheuristics: Computer Decision Making, Combinatorial Optimization Book
Series, pp. 545–574. Kluwer Academic Publishers (2003)

86. Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. International Journal of Produc-
tion Research 26(1), 297–307 (1988)

87. Parragh, S.N., Schmid, V.: Hybrid column generation and large neighborhood search for the
dial-a-ride problem. Computers & Operations Research 40(1), 490 – 497 (2013)

88. Pedroso, J.P.: Tabu search for mixed integer programming. In: C. Rego, B. Alidaee (eds.)
Metaheuristic Optimization via Memory and Evolution, Operations Research/Computer Sci-
ence Interfaces Series, vol. 30, pp. 247–261. Springer (2005)

89. Pereira, M.A., Coelho, L.C., Lorena, L.A.N., de Souza, L.C.: A hybrid method for the prob-
abilistic maximal covering location–allocation problem. Computers & Operations Research
57, 51–59 (2015)

90. Pesant, G., Gendreau, M.: A constraint programming framework for local search methods.
Journal of Heuristics 5(3), 255–279 (1999)

91. Pinheiro, P.R., Coelho, A.L.V., de Aguiar, A.B., Bonates, T.O.: On the concept of density
control and its application to a hybrid optimization framework: Investigation into cutting
problems. Computers & Industrial Engineering 61(3), 463–472 (2011)

92. Pinheiro, P.R., Coelho, A.L.V., de Aguiar, A.B., de Menezes Sobreira Neto, A.: Towards aid
by generate and solve methodology: application in the problem of coverage and connectivity
in wireless sensor networks. International Journal of Distributed Sensor Networks 2012
(2012). Article ID 790459

93. Pirkwieser, S., Raidl, G.R., Puchinger, J.: Combining Lagrangian decomposition with an
evolutionary algorithm for the knapsack constrained maximum spanning tree problem. In:
C. Cotta, J.I. van Hemert (eds.) Evolutionary Computation in Combinatorial Optimization –
EvoCOP 2007, LNCS, vol. 4446, pp. 176–187. Springer (2007)

94. Pisinger, D.: Core problems in knapsack algorithms. Operations Research 47(4), 570–575
(1999)

95. Plateau, A., Tachat, D., Tolla, P.: A hybrid search combining interior point methods and
metaheuristics for 0–1 programming. International Transactions in Operational Research
9(6), 731–746 (2002)

96. Poojari, C.A., Beasley, J.E.: Improving Benders decomposition using a genetic algorithm.
European Journal of Operational Research 199(1), 89–97 (2009)

97. Prandtstetter, M., Raidl, G.R.: An integer linear programming approach and a hybrid vari-
able neighborhood search for the car sequencing problem. European Journal of Operational
Research 191(3), 1004–1022 (2008)

98. Prins, C., Lacomme, P., Prodhon, C.: Order-first split-second methods for vehicle routing
problems: A review. Transportation Research Part C 40, 179–200 (2014)

99. Puchinger, J., Raidl, G.R.: Combining metaheuristics and exact algorithms in combinatorial
optimization: A survey and classification. In: Proceedings of the First International Work-
Conference on the Interplay Between Natural and Artificial Computation, Part II, LNCS, vol.
3562, pp. 41–53. Springer (2005)

100. Puchinger, J., Raidl, G.R.: Models and algorithms for three-stage two-dimensional bin pack-
ing. European Journal of Operational Research 183(3), 1304–1327 (2007)



32 G. R. Raidl, J. Puchinger, and C. Blum

101. Puchinger, J., Raidl, G.R.: Bringing order into the neighborhoods: Relaxation guided variable
neighborhood search. Journal of Heuristics 14(5), 457–472 (2008)

102. Puchinger, J., Raidl, G.R., Pferschy, U.: The core concept for the multidimensional knap-
sack problem. In: J. Gottlieb, G.R. Raidl (eds.) Evolutionary Computation in Combinatorial
Optimization – EvoCOP 2006, LNCS, vol. 3906, pp. 195–208. Springer (2006)

103. Quimper, C.G. (ed.): Proceedings of CPAIOR 2016 – 13th International Conference on the
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Opti-
mization Problems, LNCS, vol. 9676. Springer (2016)

104. Raidl, G.R.: An improved genetic algorithm for the multiconstrained 0–1 knapsack prob-
lem. In: D.B. Fogel, et al. (eds.) Proceedings of the 1998 IEEE International Conference on
Evolutionary Computation, pp. 207–211. IEEE Press (1998)

105. Raidl, G.R.: A unified view on hybrid metaheuristics. In: Almeida et al. [7], pp. 1–12
106. Raidl, G.R.: Decomposition based hybrid metaheuristics. European Journal of Operational

Research 244(1), 66–76 (2015)
107. Raidl, G.R., Baumhauer, T., Hu, B.: Speeding up logic-based Benders’ decomposition by a

metaheuristic for a bi-level capacitated vehicle routing problem. In: M.J. Blesa, C. Blum,
S. Voss (eds.) Proceedings of HM 2014 – Ninth International Workshop on Hybrid Meta-
heuristics, LNCS, vol. 8457, pp. 183–197. Springer (2014)

108. Raidl, G.R., Hu, B.: Enhancing genetic algorithms by a trie-based complete solution archive.
In: P. Cowling, P. Merz (eds.) Evolutionary Computation in Combinatorial Optimization –
EvoCOP 2010, LNCS, vol. 6022, pp. 239–251. Springer (2010)

109. Raidl, G.R., Puchinger, J.: Combining (integer) linear programming techniques and meta-
heuristics for combinatorial optimization. In: C. Blum, M.J. Blesa Aguilera, A. Roli, M. Sam-
pels (eds.) Hybrid Metaheuristics – An Emerging Approach to Optimization, Studies in Com-
putational Intelligence, vol. 114, pp. 31–62. Springer (2008)

110. Rei, W., Cordeau, J.F., Gendreau, M., Soriano, P.: Accelerating Benders decomposition by
local branching. INFORMS Journal on Computing 21(2), 333–345 (2008)

111. Ribeiro Filho, G., Nogueira Lorena, L.A.: Constructive genetic algorithm and column gener-
ation: an application to graph coloring. In: L.P. Chuen (ed.) Proceedings of APORS 2000, the
Fifth Conference of the Association of Asian-Pacific Operations Research Societies within
IFORS (2000)

112. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science 40(4), 455–472 (2006)

113. Rothberg, E.: An evolutionary algorithm for polishing mixed integer programming solutions.
INFORMS Journal on Computing 19(4), 534–541 (2007)

114. Shi, L., Ólafsson, S.: Nested partitions method for global optimization. Operations Research
48(3), 390–407 (2000)

115. Shi, L., Ólafsson, S., Chen, Q.: An optimization framework for product design. Management
Science 47(12), 1681–1692 (2001)

116. Taillard, É.D., Voß, S.: POPMUSIC: Partial optimization metaheuristic under special intensi-
fication conditions. In: C.C. Ribeiro, P. Hansen (eds.) Essays and Surveys in Metaheuristics,
pp. 613–629. Kluwer Academic Publishers (2001)

117. Talbi, E.G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5), 541–565 (2002)
118. Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley & Sons (2009)
119. Talbi, E.G. (ed.): Hybrid Metaheuristics, Studies in Computational Intelligence, vol. 434.

Springer (2013)
120. Talukdar, S., Baeretzen, L., Gove, A., de Souza, P.: Asynchronous teams: Cooperation

schemes for autonomous agents. Journal of Heuristics 4(4), 295–321 (1998)
121. Toledo, C.F.M., Arantes, M.d.S., Hossomi, M.Y.B., França, P.M., Akartunalı, K.: A relax-

and-fix with fix-and-optimize heuristic applied to multi-level lot-sizing problems. Journal
of Heuristics 21(5), 687–717 (2015). URL http://link.springer.com/article/10.1007/s10732-
015-9295-0

122. Vasquez, M., Hao, J.K.: A hybrid approach for the 0–1 multidimensional knapsack prob-
lem. In: B. Nebel (ed.) Proceedings of the 17th International Joint Conference on Artificial
Intelligence, IJCAI 2001, pp. 328–333. Morgan Kaufman, Seattle, Washington (2001)



Metaheuristic Hybrids 33

123. Vasquez, M., Vimont, Y.: Improved results on the 0–1 multidimensional knapsack problem.
European Journal of Operational Research 165(1), 70–81 (2005)

124. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A unified solution framework for multi-
attribute vehicle routing problems. European Journal of Operational Research 234(3), 658–
673 (2014)

125. Walshaw, C.: Multilevel refinement for combinatorial optimisation: Boosting metaheuristic
performance. In: C. Blum, M.J. Blesa Aguilera, A. Roli, M. Sampels (eds.) Hybrid Meta-
heuristics – An Emerging Approach to Optimization, Studies in Computational Intelligence,
vol. 114, pp. 261–289. Springer (2008)

126. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation 1(1), 67–82 (1997)

127. Wolsey, L.A.: Integer Programming. Wiley-Interscience (1998)


