
Time-Bucket Relaxation Based Mixed Integer
Programming Models for Scheduling Problems:
A Promising Starting Point for Matheuristics?

Günther R. Raidl, Thomas Jatschka, Martin Riedler, and Johannes Maschler

Institute of Computer Graphics and Algorithms,
TU Wien, Vienna, Austria

{raidl|riedler|maschler}@ac.tuwien.ac.at, jatschka.thomas@gmail.com

1 Introduction

In job shop and project scheduling problems, generally speaking, a set of ac-
tivities shall be scheduled over time. The execution of the activities typically
depends on certain resources of limited availability and diverse other restric-
tions like precedence constraints. A feasible schedule is sought that minimizes
some objective function like the makespan. For such problems, mixed integer
linear programming (MIP) techniques are frequently considered, but also known
to have severe limitations.

Basically, there are few general MIP modeling strategies for approaching such
scheduling problems: Firstly, it is sometimes possible to come up with a com-
pact model where the starting times of activities are directly expressed by means
of corresponding variables. Resource constraints, however, impose a particular
challenge in this respect. While they can be often treated in principle, e.g., by
discrete-event models [2], these models are typically rather weak. A second, fre-
quently applied option are so-called time-indexed (TI) formulations. They are
based on a discretization of time, i.e., the activities may only start on a limited set
of possible starting times. Binary variables are used that are additionally indexed
by these possible starting times. The success of such TI models strongly depends
on the resolution of the time discretization. While such models can have strong
linear programming (LP) relaxations, the number of variables and constraints
increases dramatically with the number of possible starting times. Frequently, a
rather crude discretization can therefore only be applied to obtain any result in
reasonable computation time. Further MIP techniques for approaching the con-
sidered scheduling problems make use of exponentially sized models and apply
advanced techniques such as column generation, Lagrangian decomposition, or
Benders decomposition, see, e.g., [2]. While they are frequently very successful,
they are also substantially more complex to develop and implement.

Here, we consider a relaxation of a potentially very fine-grained TI model in
which the set of possible starting times is partitioned into so-called time-buckets
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(TB). This TB relaxation is typically much smaller than the original TI model
and can be solved relatively quickly. An obtained solution provides a lower bound
for the TI model’s solution value but in general does not directly represent a fea-
sible schedule as activity start times are only restricted to certain time-intervals.
This solution, however, provides a promising starting point for matheuristics. On
the one hand, we may try to derive a feasible schedule by heuristically fixing the
start times to specific values, trying to fulfill all constraints. On the other hand,
we can further subdivide some time-buckets and re-solve the resulting refined
model to obtain an improved bound and a model that comes closer to the TI
model. Doing this refinement iteratively yields a matheuristic that in principle
converges to a provably optimal solution. In practice, it is crucial to subdivide
the time-buckets in a sensible way in order to increase the model’s size only
slowly while hopefully obtaining significantly stronger bounds. (Meta-)heuristic
techniques and dual variable information may provide a strong guidance.

The basic idea of the time-bucket relaxation originates in work from Wang
and Regan [4] on the traveling salesman problem with time windows. Dash et
al. [1] build upon this work and suggest an iterative refinement based on the
solution to the LP-relaxation. We are not aware of any work that applies this
principle already in the scheduling domain. There is just other work where the TI
model is applied with different resolutions for the time discretization, but such
approaches do in general not yield lower bounds and introduce imprecisions and
are therefore conceptually different.

2 Resource Constrained Scheduling with Precedence
Constraints

The above sketched general approach is more specifically investigated on a re-
source constrained scheduling problem with precedence constraints. This prob-
lem, for example, arises as a subproblem in the daily planning of activities to
treat cancer patients with modern particle therapy [3]. Our experimental evalu-
ation considers benchmark instances from this application.

We are given a set of resources R = {1, . . . , ρ}, a set of activities A =
{1, . . . , α}, and for each activity a ∈ A a processing time pa, a release time
tra, a deadline tda, and a subset of required resources Qa ⊆ R. Let the overall
(huge) set of discrete times be T = {Tmin, . . . , Tmax}. Each resource r ∈ R
is only available at certain time intervals specified by set Wr ⊆ T . Last but
not least, precedence constraints among the activities are stated by a directed
acyclic graph G = (A,P ) with P ⊂ A × A and for each precedence relation
expressed by an arc (a, a′) ∈ P minimum and maximum end-to-start time lags
Lmin
a,a′ , L

max
a,a′ ∈ N≥0 with Lmin

a,a′ ≤ Lmax
a,a′ need to be obeyed.

A solution S = (S1, . . . , Sα) ∈ Tα assigns to each activity a ∈ A a starting
time Sa ∈ T , from which on the activity is performed without preemption. We
are looking for a feasible solution that minimizes the makespan.



3 Time-Bucket Relaxation and Matheuristic

Let B = {B1, . . . , Bβ} be a partitioning of T into subsequent time-buckets with
Bb = {Bstart

b , . . . , Bend
b },∀b = 1, . . . , β, and Bend

b + 1 = Bstart
b+1 , ∀b = 1, . . . , β− 1.

We further make the following definitions.

– I(B) = {1, . . . , β} is the index set referring to all buckets in B.
– WB

r (b) = |Bb ∩Wr| denotes the aggregated availability of resource r ∈ R
over the whole bucket b ∈ I(B).

– Ca = {Ca,1, . . . , Ca,γa} ⊆ 2I(B) refers to all subsets of consecutive buckets
in B to which an activity a ∈ A can be jointly assigned so that some part of
activity a is performed in each of the buckets. These sets can be determined
by “sliding” the activity over all time-slots and taking the covered buckets.

– Let tsmin
a,c be the earliest time-slots from T at which activity a can possibly

start when it is assigned to bucket sequence Ca,c, and tsmax
a,c the latest.

– For each bucket sequence Ca,c ∈ Ca and each contained bucket b ∈ Ca,c
we further determine a lower bound zmin

a,b,c and an upper bound zmax
a,b,c for the

number of time-slots at which activity a can possibly take place in bucket b
when activity a is assigned to Ca,c.

The TB relaxation can now be stated as follows.

min MS (1)
γa∑
c=1

ya,c = 1 ∀a ∈ A (2)

γa∑
c=1

tsmin
a,c · ya,c + pa ≤ MS ∀a ∈ A (3)∑

a∈A,Ca,c∈Ca|b∈Ca,c∧r∈Qa

zmin
a,b,c · ya,c ≤WB

r (b) ∀r ∈ R, b ∈ I(B) (4)

γa′∑
c′=1

tsmax
a′,c′ · ya′,c′ −

γa∑
c=1

tsmin
a,c · ya,c ≥ pa + Lmin

a,a′ ∀(a, a′) ∈ P (5)

γa′∑
c′=1

tsmin
a′,c′ · ya′,c′ −

γa∑
c=1

tsmax
a,c · ya,c ≤ pa + Lmax

a,a′ ∀(a, a′) ∈ P (6)

ya,c ∈ {0, 1} ∀a ∈ A, c = 1, . . . , γa (7)

MS ≥ 0 (8)

Variable MS represents the makespan to be minimized (1). Binary variables
ya,c indicate if activity a ∈ A is completely performed in bucket sequence Ca,c.
Equations (2) ensure that for each activity exactly one bucket sequence is chosen
from Ca. Inequalities (3) are used for determining the makespan MS . Inequali-
ties (4) consider for each time bucket the aggregated resource availabilities and
resource consumptions for performing the respective activities. Finally, inequal-
ities (5) and (6) represent the precedence constraints with the minimum and
maximum time lags, respectively.



Our matheuristic works as follows. We initially solve the TB relaxation for
a rather crude partitioning of T into buckets. Then we try to derive a feasible
schedule from the solution of the TB relaxation, i.e., we try to choose valid ac-
tivity starting times as far as possible in correspondence to the selected bucket
sequences. This is done by a greedy construction heuristic that considers the
time buckets in chronological order and the assigned activities in a topological
order, taking care of the precedence constraints and resource constraints as far
as possible. Should we be able to find a feasible schedule whose makespan corre-
sponds to the solution value of the TB relaxation, then this schedule is optimal
and we can terminate.

Otherwise, the bucket partitioning is further refined by splitting buckets re-
lated to violated constraints. Furthermore, valid inequalities cutting off current
infeasibilities may be added to the model. The refined model is solved again and
the whole process iterated. We investigate and compare several strategies for the
bucket splitting, considering also dual variable information from the relaxation.

4 Results and Conclusions

An experimental comparison with a compact discrete-event model and a clas-
sical TI formulation clearly shows the advantages of the TB relaxation: While
the discrete-event model is only applicable to tiny instances due to its poor LP
relaxation, the TI formulation suffers from its huge size when considering prac-
tically reasonable time discretizations. The matheuristic based on the iterative
refinement of the TB model, however, soon yields reasonable lower bounds as
well as feasible heuristic solutions, and both are improved over time.

The described approach is relatively generic and can rather easily be adapted
to related scheduling problems. Clearly, there are many ways to enhance the basic
concept: Intermediate heuristic solutions may be further improved by advanced
local search techniques, the model may be strengthened by additional valid in-
equalities, possibly extending the approach to a branch-and-cut algorithm. More
generally the field of hybrid metaheuristics and matheuristics provides plenty of
opportunities to further exploit the proposed time-bucket relaxation.
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1. Dash, S., Günlük, O., Lodi, A., Tramontani, A.: A time bucket formulation for the
traveling salesman problem with time windows. INFORMS Journal on Computing
24(1), 132–147 (2012)

2. Hooker, J.N.: Planning and scheduling by logic-based Benders decomposition. Op-
erations Research 55(3), 588–602 (2007)

3. Maschler, J., Riedler, M., Stock, M., Raidl, G.R.: Particle therapy patient schedul-
ing: First heuristic approaches. In: Proceedings of the 11th Int. Conference on the
Practice and Theory of Automated Timetabling (to appear 2016)

4. Wang, X., Regan, A.C.: On the convergence of a new time window discretization
method for the traveling salesman problem with time window constraints. Comput-
ers & Industrial Engineering 56(1), 161–164 (2009)


