
Decomposition Based Hybrid Metaheuristics

Günther R. Raidl1

Institute of Computer Graphics and Algorithms, Vienna Unviersity of Technology,
Favoritenstr. 9/1861, 1040 Vienna, Austria

Abstract

Difficult combinatorial optimization problems coming from practice are nowa-

days often approached by hybrid metaheuristics that combine principles of clas-

sical metaheuristic techniques with advanced methods from fields like math-

ematical programming, dynamic programming, and constraint programming.

If designed appropriately, such hybrids frequently outperform simpler “pure”

approaches as they are able to exploit the underlying methods’ individual ad-

vantages and benefit from synergy. This article starts with a general review

of design patterns for hybrid approaches that have been successful on many

occasions. More complex practical problems frequently have some special struc-

ture that might be exploited. In the field of mixed integer linear programming,

three decomposition techniques are particularly well known for taking advantage

of special structures: Lagrangian decomposition, Dantzig-Wolfe decomposition

(column generation), and Benders’ decomposition. It has been recognized that

these concepts may also provide a very fruitful basis for effective hybrid meta-

heuristics. We review the basic principles of these decomposition techniques

and discuss for each promising possibilities for combinations with metaheuris-

tics. The approaches are illustrated with successful examples from literature.
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1. Introduction

Difficult combinatorial optimization problems are in practice frequently ap-

proached by means of metaheuristics. This term has originally been introduced

by Glover (1977) and essentially refers to a broad class of problem-independent

strategies for approximate optimization and problem solving. In fact, the bound-5

aries of this class are today somewhat fuzzy, but typically cited representa-

tives include neighborhood-search-based strategies like simulated annealing, tabu

search, and variable neighborhood search, population-based methods like evolu-

tionary/genetic algorithms and scatter search, and construction-oriented tech-

niques like the greedy randomized adaptive search procedure and ant colony10

optimization.

When one is confronted with a non-trivial combinatorial optimization prob-

lem from practice that should be solved “as well as possible”, a typical approach

is to start with a relatively simple constructive heuristic and try to improve ob-

tained solutions by means of local search. To overcome the trap of local optimal-15

ity, which inherently appears in almost all non-trivial problems, metaheuristics

are frequently the next step. Assuming one is still not satisfied with the obtained

solutions, one will then typically try to refine the so far developed approach by

tuning parameters and certain design decisions, but from a conceptual point-of-

view even more important by identifying special characteristics of the problem20

at hand and finding effective possibilities to exploit them. In this way, one

frequently ends up with a more complex solver that is not a straight-forward,

“pure” instantiation of a classical metaheuristic anymore, but rather a combina-

tion of cleverly chosen techniques that might even stem from diverse algorithmic

research fields. This is what we refer to as hybrid metaheuristic (HM).25

The obvious motivation behind such hybridizations is to obtain better per-

forming systems that exploit and unite advantages of the individual components,

i.e., to benefit from synergy. The large number of publications on HMs and

dedicated scientific events such as the ongoing series of Workshops on Hybrid

Metaheuristics (Blum et al., 2004) and Workshops on Matheuristics (Maniezzo30
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et al., 2006) document the popularity, success, and importance of this specific

line of research. In fact, today it seems that choosing an adequate hybrid ap-

proach is determinant for achieving top performance in solving many real-world

problems.

This does, of course, not imply that more complex approaches are always35

the better choice. Increased complexity also comes with disadvantages: The

software is more difficult to maintain and tune and adaptions in problem speci-

fications are frequently harder to adhere. Thus, a still very valid design goal also

is to keep an optimization approach as simple as possible, and include extensions

only if they indeed provide significant benefits. Such decisions are often difficult,40

and it shall be explicitly remarked that sometimes, especially when development

time is limited or a large versatility is required due to expected changes in

problem specifications, a simpler, pure approach might be the wiser choice.

The idea of hybridizing different optimization approaches is not new but

dates back to the origins of metaheuristics themselves. For a long time, how-45

ever, such hybrids were not so popular since several separated and even compet-

ing communities of researchers existed who considered “their” favorite class of

optimizers “generally best” and followed specific philosophies too dogmatically.

It is mostly due to the no free lunch theorems (Wolpert & Macready, 1997)

that this situation fortunately changed and people recognized that there cannot50

exist a general optimization strategy that is globally best. To solve a problem

at hand most effectively, it almost always requires a specialized algorithm that

needs to be compiled of adequate parts.

Several publications exist that try to classify HMs or provide guidelines for

their design. Talbi (2002) gives a general taxonomy, Cotta et al. (2005) con-55

centrate on parallel hybrids, and El-Abd & Kamel (2005) consider cooperative

search strategies. Combinations of metaheuristics with exact optimization tech-

niques are particularly addressed by Puchinger & Raidl (2005). Talbi (2013b)

further describes a unified taxonomy of HMs with mathematical programming,

constraint programming, and machine learning. More recent general surveys60

on HMs pointing out prominent design principles are provided by Raidl et al.
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Figure 1: A basic taxonomy for hybrid metaheuristics.

(2010) and Blum et al. (2011).

Figure 1 illustrates the top levels of a basic taxonomy as suggested by Raidl

(2006). First, we might distinguish what is hybridized: concepts of differ-

ent metaheuristics; metaheuristics with problem-specific algorithms like sim-65

ulations; metaheuristics with other techniques e.g. from operations research or

artificial intelligence; or metaheuristics with human interaction. A second cri-

terion for distinguishing HMs is the order of execution of the individual parts,

which can be strictly sequential (i.e., a batch approach), interleaved, or parallel.

A third criterion is what we call control strategy : In an integrative approach,70

we have some kind of master algorithm in which one or more subordinate com-

ponents are embedded or called. In contrast, in collaborative hybrids individual

components may run more independently and exchange information in some

way. Last but not least a fourth criterion for characterizing HMs is the level of

hybridization: In a high-level hybrid, individual components are coupled rather75

weakly and typically not so much communication takes place between them,

while a low-level hybrid has strongly interwoven parts. For more details on

such taxonomies we refer to the above publications; here we just introduced the

nomenclature we will use later.

When considering combinations of metaheuristics with other optimization80

techniques, hybrids with mathematical programming approaches became par-

ticularly popular over the last decade. The reason behind this is that espe-

cially classical mixed integer linear programming (MIP) techniques have pros
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and cons that are complementary to those of metaheuristics to a large de-

gree. When a problem can be expressed by means of a linear objective function85

and linear constraints, chances are good that at least small instances can be

solved to proven optimality by a state-of-the-art general purpose MIP solver like

CPLEX2, GUROBI3, or the freely available SCIP4. While these modern solvers

are sometimes astonishingly effective in solving smaller problems or problems

with certain structures, they are also known to typically scale rather poorly.90

When it comes to large instances of hard problems running times or memory

requirements often become intractable. Hybrid metaheuristics might exploit the

advantages of MIP solvers, e.g., by applying them to smaller subproblems while

relying on the power of metaheuristic search as outer framework. Combinations

of metaheuristics and mathematical programming techniques are frequently also95

termed matheuristics; see Raidl & Puchinger (2008) for a survey and Maniezzo

et al. (2009) for a comprehensive book on this topic. Further recommended

books covering many more general aspects and applications of HMs are by

Blum et al. (2008) and Talbi (2013a).

The following section reviews major classical design patterns of HMs that100

have proven to be successful already on many occasions. The main part of

this article will concentrate on a class of hybrids which is not that commonly

found but we nevertheless consider highly promising for many large real-world

problems: Approaches that are based on decomposition techniques having the

origins in solving large (mixed integer) linear programs: Lagrangian decompo-105

sition, Dantzig-Wolfe decomposition utilizing column generation, and Benders’

decomposition. Sections 3 to 6 overview the principles of these techniques and

discuss possibilities of exploiting them in a hybrid metaheuristic context. Sec-

tion 7 concludes this article and points out promising future research directions.

2http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
3http://www.gurobi.com
4http://scip.zib.de
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2. Design Patterns for Hybrid Metaheuristics110

The following design patterns describe typical strategies for obtaining hy-

brids by combining different simpler or more classical algorithms or concepts of

such. This section summarizes the presentation of Raidl et al. (2010) and ex-

tends it with recent developments. Note that frequently, these design patterns

also appear in combination, and sometimes there also is no clear borderline of115

what one calls a “real” hybrid and where a described pattern is actually part of

some classical optimization approach.

2.1. Intelligent Initialization

The probably most natural way of boosting many optimization algorithms is

by supplying an already good starting solution. Such initial solutions might be120

obtained from problem-specific constructive heuristics or essentially any other

optimization approach that is considered fast enough. Note that also classical

exact optimization methods like branch-and-bound typically depend heavily on

a good initialization in order to be able to prune the search space effectively

from the very beginning. For population based metaheuristics like evolutionary125

algorithms it is crucial to start with a set of initial solutions that is diverse

enough in order to avoid premature convergence. Multiple initialization pro-

cedures may be utilized, or a deterministic procedure might be randomized in

order to obtain different promising starting solutions. Note that the latter ap-

proach is also systematically applied in the Greedy Randomized Adaptive Search130

Procedure (GRASP) (Feo & Resende, 1995).

2.2. Embedded Improvement Methods

Another extremely commonly applied pattern is to embed some improvement

method, e.g., a classical local search or more advanced metaheuristic like simu-

lated annealing or tabu search, into a master algorithm. Such an approach thus135

follows an integrative control strategy. A typical representative that uses this

pattern as main distinguishing feature is the memetic algorithm (Moscato, 1999;

Hart et al., 2005), which essentially is an evolutionary algorithm including some
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local improvement technique that is applied to all or part of the newly created

solution candidates of each iteration. In this way intensification of the heuristic140

search is frequently successfully enhanced. As another example, variable neigh-

borhood search approaches (Hansen et al., 2001) can be seen to systematically

extend this pattern by applying a series of neighborhood searches in a nested

way. Last but not least, also classical branch-and-bound often relies on primal

local improvement procedures for finding sooner better heuristic solutions and145

corresponding global bounds in order to prune larger parts of the search space.

2.3. Multi-Stage Approaches

This kind of hybrids solves some larger problem by decomposing the whole

optimization into multiple stages that are addressed by individual techniques in

a typically sequential manner.150

Especially more complex real-world problems frequently involve hierarchical

decisions and corresponding sets of variables. A first stage of optimization may

then be used to fix higher-level decisions while the remaining lower-level vari-

ables are determined in one or more successive phases where the higher-level

variables are considered fixed. As an example consider some vehicle routing155

problem (Fisher & Jaikumar, 1981): The principal decisions which customers

are visited by which vehicle might be considered the upper level which is de-

cided first, e.g., according to a clustering. Further details such as the specific

vehicle routes and the exact timing of the visits may be optimized in a second

stage, where we have the advantage that the problem decouples into indepen-160

dent subproblems for all the vehicles. Obviously the stages in such approaches

are in general not independent and suboptimal solutions are therefore usually

obtained. Nevertheless, for very large and difficult problems such approaches

may be meaningful or even be the only practically reasonable possibility. Note,

however, that in the context of vehicle routing problems also the alternative165

possibility of deciding an order for visiting all customers in a first stage, i.e.,

building one large route, and splitting it into several tours in the second stage

can be effective, especially as the splitting step might be done efficiently via dy-
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namic programming; Prins et al. (2014) presents a review on such approaches.

As another example, consider the design of large telecommunication net-170

works, where the decision process will again be hierarchical: Only after an opti-

mization of the general layout and structure, technical details like link capacities

and properties of routers will be derived (Martins & Ribeiro, 2006).

Multi-stage approaches may be meaningful even for problems that do not

have a natural hierarchy of decision variables. Multi-level refinement strate-175

gies (Walshaw, 2008) apply a recursive coarsening to create a series of approx-

imations to the original problem. An initial solution is then identified for the

coarsest level and iteratively refined at each level – coarsest to finest – until

a solution for the original problem is obtained. Iterated multi-level algorithms

extend this concept by iteratively re-coarsening the problem based on obtained180

solutions; in this way poor decisions in the coarsening may be redeemed. Multi-

level refinement strategies have been successfully applied on problems such as

multilevel graph partitioning, graph coloring, and very large vehicle routing

problems. In general, they are a promising technique for improving the scala-

bility of some optimization algorithm. As a recent example, Valejo et al. (2014)185

applies multi-level refinement to partition social network graphs and suggests a

coarsening method exploiting the neighborhood similarity.

Another kind of multi-stage hybrids are approaches involving (advanced)

preprocessing techniques as well as kernelization methods. Especially in the

latter, the original problem is reduced in polynomial time to a so-called prob-190

lem kernel such that an optimal solution to it can, in polynomial time, be trans-

formed back into an optimal solution to the original problem. Heuristic variants

of such methods are variable fixing approaches, where in early stages variables

are identified that are very likely to have certain values in good or optimal

solutions and these variables are correspondingly fixed for the later stage(s).195

For examples of kernelization approaches to the to the vertex cover problem

see Gilmour & Dras (2006) and to the multi-dimensional knapsack problem see

Puchinger et al. (2010); Angelelli et al. (2010).
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2.4. Decoder-Based Approaches

Especially in the field of evolutionary algorithms it is popular to represent200

candidate solutions in some indirect way, in this context often called genotype,

and use some problem-dependent decoding algorithm to obtain the correspond-

ing “real” solution (phenotype). The advantage of such an approach is mainly

that the variation operators to construct new candidate solutions can be cho-

sen more or less independently of the particular problem. Problem specificities205

like special constraints can often be nicely hidden from the optimization algo-

rithm and possibly efficiently be handled by means of the decoder. Sometimes,

genotypes represent only incomplete solutions, i.e., not all aspects are specified,

and an “intelligent” decoding procedure augments the missing values by solv-

ing some remaining subproblem. Such approaches have been successfully used210

especially for (multi-dimensional) cutting and packing as well as scheduling and

timetabling problems, where direct representations are often difficult to handle

due to the many complex constraints. Indirect representations are in such cases

frequently based on permutations, and decoders are derived from construction

heuristics considering the objects in the orders specified by the permutations215

(Kellerer et al., 2004).

As another example consider solving a MIP involving integer variables as

well as continuous variables. A metaheuristic might be used to tackle the inte-

ger variables only, while optimal values for the continuous variables are derived

for each integer-candidate solution efficiently by means of a linear program-220

ming solver.

So-called hyper-heuristics (Burke et al., 2013) also make heavy use of ideas

similar to decoder-based approaches: They operate on a search space of heuris-

tics or heuristic components rather than directly on the space of solutions in

order to find/compile a heuristic that best solves the target problem.225

2.5. Exploring Large Neighborhoods

Sometimes local search is enhanced by using particularly large neighbor-

hoods that are not investigated by naive enumeration but some more efficient
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algorithm. If the neighborhood structure and the corresponding algorithm are

chosen appropriately, large portions of the search space might be efficiently cov-230

ered. Such techniques are generally known as large neighborhood search (Shaw,

1998) or very large-scale neighborhood search (Ahuja et al., 2002).

Many of today’s combinations of metaheuristics with MIP approaches follow

this scheme as it is relatively straight-forward to apply once a compact MIP

model is available for the problem at hand: Part of the variables are fixed to235

the incumbent solution’s values and the others are kept open and optimized

via a MIP solver. Of course the selection of the variables to be kept open and

optimized might be crucial. Typically, they are selected either randomly or

according to some greedy heuristic trying to identify weak parts of the solution.

Often it is also meaningful to select variables that are strongly related together.240

For examples see Büdenbender et al. (2000); Prandtstetter & Raidl (2008);

Lopes et al. (2014).

Besides MIP solvers, also constraint programming is sometimes applied as,

e.g., described by Shaw (1998) for vehicle routing problems and more recently

by Di Gaspero & Urli (2014) for homecare scheduling problems. Furthermore,245

dynamic programming frequently is a promising candidate for identifying best

solutions in large neighborhoods, providing the neighborhood structure is suit-

ably chosen.

In the context of problems where objects need to be partitioned into disjoint

sets, such as vehicle routing problems, machine scheduling problems, and other250

assignment problems, cyclic and path exchange neighborhoods can be highly

effective (Ahuja et al., 2002). In these neighborhoods a series of objects is

exchanged among an arbitrary number of partitions in a cyclic or path-like

fashion; the best move is determined by constructing an improvement graph

where an arc corresponds to the movement of a single object and applying a255

shortest path-like algorithm.

Obviously, it is not necessary to always find a best solution within a large

neighborhood as it is the case in the above examples (except when prema-

turely terminating the MIP solver or dynamic programming). Sometimes also
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simpler but faster heuristics such as greedy constructive methods are used to260

assign promising values to the open variables. Such approaches are frequently

called destroy-and-recreate or removal-and-insertion techniques, as a solution

is partially dissolved and the missing parts are redetermined. A good exam-

ple is the adaptive large neighborhood search heuristic for pickup and delivery

problems with time windows (Ropke & Pisinger, 2006), which involves several265

competing types of large neighborhoods and corresponding sub-heuristics whose

application is controlled by their historic performance. In fact, this principle

of adaptive large neighborhood search turned out to work particularly well on

a larger variety of vehicle routing problems and became quite popular over the

recent years. For example, Hemmelmayr et al. (2012) describe such an approach270

for two-echelon vehicle routing problems in city logistics and Azi et al. (2014)

for a vehicle routing problem with multiple routes per vehicle.

Last but not least, note that decoder based approaches discussed in Sec-

tion 2.4 might sometimes also be interpreted as large neighborhood search tech-

niques, especially when incomplete solution representations in conjunction with275

more complex decoders are used.

2.6. Solution Merging

Here, the idea is to derive a new, possibly better solution from the prop-

erties (i.e., variable values) contained in two or more input solutions. The

observation that high-quality solutions usually have many properties in com-280

mon is exploited. In the simplest form this principle is applied in the classical

recombination operator of evolutionary algorithms, where the attributes to be

inherited are typically chosen in a computationally cheap, random fashion. A

more advanced, but also computationally more expensive approach is path re-

linking (Glover et al., 2000), where a starting solution is more systematically285

transformed into a guiding solution by iteratively performing atomic changes.

Thus, a path between the two solutions is traced in the search space, and a

best solution on it is returned as result. For a recent example see Pessoa et al.

(2013), where path relinking is applied within a GRASP for set k covering.
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Even more systematic are optimal merging procedures, where the subspace290

of all solutions that can be constructed out of the properties appearing in a set

of given input solutions is considered and a best solution returned. Depending

on the underlying problem, identifying such an optimal offspring might be a

hard optimization problem on its own, but due to the typically limited num-

ber of different properties appearing in the parents, it can often be solved in295

practical time. Applegate et al. (1998) were one of the first describing such

an optimal merging: For the traveling salesman problem, they derive a set of

different high-quality tours by means of the chained Lin-Kernighan iterated lo-

cal search algorithm. The sets of edges of all these solutions are merged and

the problem is finally solved to optimality by means of a MIP approach on300

this strongly restricted graph. While merging appears in this example as sec-

ond stage in a sequential two-stage approach and is only performed once, there

are also cases of intertwined hybrids where optimal merging is used as a more

systematic variation operator replacing classical recombination. Such operators

are then also called optimal recombinations.For example, Blum & Blesa (2008)305

apply solution merging within a large neighborhood search for the k-cardinality

tree problem, and Eremeev (2008) studies optimal recombination operators for

the travelling salesman problem. Also the commercial MIP solver CPLEX con-

tains optimal merging as heuristic procedure for obtaining improved incumbent

solutions (Lodi, 2013).310

2.7. Strategic Guidance of Metaheuristics by Other Approaches

Many successful HMs exploit information on promising areas of the search

space obtained by other techniques by intensifying or restricting the heuristic

search to these regions.

Problem relaxations are most frequently used for such purposes: Some of315

the problem’s constraints are dropped in order to obtain a relaxation that can

be solved efficiently. The obtained solution may then be a good guiding point.

If a (compact) MIP formulation exists for the problem at hand, its linear pro-

gramming (LP) relaxation often is an obvious choice. An obtained fractional
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solution can frequently be rounded or in some other way repaired to obtain a320

feasible integral solution in its proximity, variables that have already integral

values in the LP solution might be fixed, or LP values may be used to bias vari-

ation operators, e.g., by choosing close variable values with higher probabilities.

Occasionally, dual variable information of LP solutions may provide even more

helpful guidance. Chu & Beasley (1998), for example, make use of it in a genetic325

algorithm for the multi-dimensional knapsack problem by calculating so-called

pseudo-utility ratios for the primal variables and using them in similar ways as

described above for the primal LP solution values. Also Puchinger et al. (2010)

point out that at least for this problem pseudo-utility ratios are significantly

better indicators for the likeliness of the corresponding items to appear in an330

optimal integer solutions than primal LP variable values.

Apart from the LP relaxation also other relaxations are sometimes exploited

in conjunction with metaheuristics. Besides problem-specific approaches, La-

grangian relaxation has been particularly successful (Haouari & Siala, 2006;

Jeet & Kutanoglu, 2007; Leitner & Raidl, 2008; Pessoa et al., 2013). In compar-335

ison to the LP relaxation, Lagrangian relaxation has the advantage of frequently

yielding tighter optimality bounds. This, however, comes at the cost of a usu-

ally higher computational effort. We will consider Lagrangian relaxation in more

detail in the context of decomposition approaches in Section 4.

Also other information is sometimes exploited for guiding metaheuristics,340

e.g., when constructing candidate solutions, lower and/or upper bounds deter-

mined for partial solutions (Dowsland et al., 2006) or reduced variable domains

determined by constraint propagation techniques (Meyer & Ernst, 2004). More

generally, in collaborative approaches solution migration can also be considered

a technique where one optimization task provides guidance for another.345

2.8. Strategic Guidance of Branch-and-Bound by Metaheuristics

Branch-and-bound is a fundamental tree-search approach for solving difficult

optimization problems systematically to proven optimality. It relies on the

calculation of lower and upper bounds for partial solutions in order to prune the
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search tree as far as possible. As already mentioned, good initial solutions and350

local improvement techniques frequently play an important role to obtain primal

bounds. Besides these aspects, principles of local search based metaheuristics

are sometimes mimicked by special control strategies for selecting the tree nodes

(i.e., open subproblems) to be processed next or special branching strategies

focusing the tree search to the neighborhoods of promising solutions.355

Danna et al. (2005) proposed guided dives, where the tree search temporally

switches to a depth-first strategy and always considers next a subproblem where

the branching variable has the value of the incumbent solution. Guided dives

are repeatedly applied in regular intervals, results indicate a strongly improved

heuristic performance.360

Fischetti & Lodi (2003), on the contrary, suggested local branching. Given

an incumbent solution again, branching is performed by adding on the one hand

a so-called local branching constraint that restricts the search space to the in-

cumbent’s k-OPT neighborhood and on the other hand its inverse representing

the remaining search space. The MIP solver is then forced to completely solve365

the k-OPT neighborhood before considering the remaining open nodes of the

branch-and-bound tree. If an improved solution has been found, a new sub-

problem corresponding to the k-OPT neighborhood of the new incumbent is

split off, otherwise a larger k may be tried. When no further improvements are

achieved, the remaining problem is processed in a standard way. While local370

branching is often beneficial, it was also shown that the addition of the inverse

local branching constraints frequently is counterproductive as many of these

dense constraints degrade performance.

Danna et al. (2005) further proposed relaxation induced neighborhood search

(RINS), where occasionally a sub-MIP is spawned from a search-tree node corre-375

sponding to another special neighborhood of an incumbent solution: Variables

having the same values in the incumbent and the current solution to the LP

relaxation are fixed and an objective value cutoff corresponding to the current

LP value is set. The subproblem on the remaining variables is then solved with

limited time. In the authors’ experimental comparison of guided dives, local380
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branching, and RINS on a collection of MIP models originating from diverse

sources including job-show scheduling, network design, crew scheduling, lot-

sizing, and railway line planning problems and MIPLIB-3.05, RINS performed

best; it has been included in CPLEX as a standard strategy. More recently,

Gomes et al. (2013) suggested an extension of RINS that explicitly explores385

pre-processing techniques. This method systematically searches for a suitable

number of fixations to produce subproblems of controlled size, which are ex-

plored in a variable neighborhood descent fashion.

Also somehow related are metaheuristics that utilize a complete solution

archive to avoid reconsiderations of candidate solutions. Raidl & Hu (2010)390

proposed such an extension for a genetic algorithm based on a trie data struc-

ture, which actually closely resembles an explicitly stored branch-and-bound

tree. When an already evaluated solution would be reconsidered, it is efficiently

transformed into a usually similar but guaranteed new solution by appropriately

traversing the trie. In this way, the metaheuristic is in principle turned into an395

exact tree-search based approach. Such a solution archive may be particularly

effective in cases where the solution evaluation is expensive or decoder-based

approaches with incomplete representations are used.

3. Decomposition Techniques

Problem decomposition techniques are a class of approaches particularly400

aimed at solving very large or complex problems, frequently also involving dif-

ferent types of variables. The basic idea is to solve such a large problem by

solving a series of smaller problems and appropriately combining the results.

In fact, the previous sections already introduced several such techniques: Se-

quential multi-stage methods described in Section 2.3 follow this principle in a405

straight-forward way. Large-neighborhood search methods, cf. Section 2.5, obvi-

ously also fall into this category and in general have the advantage to avoid the

5http://www.or.deis.unibo.it/research pages/ORinstances/MIPs.html
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problem of fixing possibly suboptimal decisions too early. The same holds for

advanced solution merging strategies, cf. Section 2.6, which in fact might also

be considered special large neighborhood search approaches where the neigh-410

borhood is induced by more than one parent solutions.

Certain metaheuristics have been suggested that explicitly make decompo-

sition to their primary principle: Variable neighborhood decomposition search

(Hansen et al., 2001) extends classical variable neighborhood search by fixing

parts of incumbent solutions and applying some improvement method to the415

corresponding subproblems. Partial Optimization Metaheuristic Under Special

Intensification Conditions (POPMUSIC) from Taillard & Voß (2001) is another

general approach to solve very large problems by iteratively solving smaller

parts with an effective problem-specific method. A more specific, recent exam-

ple where such an approach has been applied to efficiently compute Steiner trees420

on large graphs is given by Leitner et al. (2014). Decomposition guided variable

neighborhood search (Fontaine et al., 2011) utilizes the graph of clusters pro-

vided by a tree decomposition of the constraints graph to guide the exploration

of large neighborhoods within a variable neighborhood search. More recently,

S. Loudni (2013) improved this method by new strategies for better controlling425

intensification and diversification, and Ouali et al. (2014) applied this method in

a cooperative parallel way for solving weighted constraint satisfaction problems.

Last but not least, the already mentioned multi-level refinement strategies (Wal-

shaw, 2008), cf. Section 2.3, also fall into this category, although they follow a

different bottom-up approach.430

All these approaches explicitly depend on the embedding of other, effective

optimization procedures and can thus be said to be hybrids already by definition.

In the following sections we will consider more specific decomposition ap-

proaches that build upon classical techniques coming from (mixed integer) lin-

ear programming. Lagrangian decomposition, Dantzig Wolfe decomposition with435

its related column generation, and Benders’ decomposition are prominent ap-

proaches for solving large LPs or MIPs having certain structures. We will re-

view their basic principles and discuss successful and promising combinations
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with metaheuristic approaches. For an overview that also discusses these three

MIP decomposition approaches and tries to reinterpret them as more general440

metaheuristic frameworks, see Boschetti et al. (2009). For general in-depth in-

troductions to MIP techniques and related topics the text books by Nemhauser

& Wolsey (1988); Wolsey (1998) are recommended.

4. Lagrangian Decomposition and Metaheuristics

Consider we are given a problem that can be modeled in the form

zMIP = min{cTx | Ax ≥ b, Dx ≥ d, x ∈ Dn}, (1)

where x is a vector of n non-negative decision variables of domain Dn, cTx is the

linear function to be minimized, and there are two sets of constraints Ax ≥ b

and Dx ≥ d. Assume that the constraints Ax ≥ b are easy in the sense that we

could solve the problem efficiently when dropping the “complicating” constraints

Dx ≥ d. Such an approach would be a feasible relaxation but typically yield

only a weak lower bound. Lagrangian relaxation (Fisher, 1981) replaces these

constraints by corresponding penalty terms in the objective function:

zLR(λ) = min{cTx+ λT (d−Dx) | Ax ≥ b, x ∈ Dn}. (2)

Vector λ is the vector of real-valued Lagrangian multipliers, and for any λ ≥ 0,

zLR(λ) ≤ zMIP holds; i.e., we have a valid relaxation of the original MIP (1). We

are now interested in finding a specific instantiation of λ yielding the best—i.e.,

largest—possible lower bound, which leads to the Lagrangian dual problem

z∗LR = max
λ≥0
{zLR(λ)}. (3)

This Lagrangian dual is a piecewise linear, convex function which can usually be445

well solved by iterative procedures like subgradient methods; see, e.g., Barahona

& Anbil (2000) for an advanced approach called volume algorithm.

Given a solution λ to the Lagrangian dual problem (3) and a corresponding

optimal solution x∗ to the Lagrangian relaxation (2) that is also feasible for
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the original problem (1), i.e., Dx∗ ≥ d, the following complementary slackness

condition holds: x∗ is an optimal solution to the original problem (1) iff

λT (d−Dx∗) = 0. (4)

Provided the Lagrangian dual problem is solved to optimality, it can be shown

that the Lagrangian relaxation always yields a bound that is at least as good

as the one of the corresponding LP relaxation; in practice it often is far better.450

In case of Lagrangian decomposition (LD), the Lagrangian relaxation (2)

decouples into a series of k subproblems that can be independently solved:

zLD(λ) =
∑

i=1,...,k

min{ciTxi + λT (di −Dixi) | Aixi ≥ bi, xi ∈ Dn
i

}. (5)

These subproblems can be of the same type or different.

While Lagrangian relaxation in principle only yields a lower bound to the

original minimization problem, it is usually not hard to extend the approach to

a Lagrangian heuristic also yielding a feasible approximate solution and corre-

sponding upper bound, e.g., by problem-specific repairing.455

We illustrate LD on the knapsack-constrained maximum spanning tree prob-

lem (KCMST) following Pirkwieser et al. (2007). Consider a graph G = (V,E)

with node set V and edge set E; each edge has associated a weight we ≥ 0 and

a price pe. The aim is to find a subgraph T = (V,E′), E′ ⊆ E corresponding to

a spanning tree whose total weight does not exceed a limit W ≥ 0 and whose460

total price is a maximum. Obviously, this problem is a combination of the well

known minimum cost spanning tree problem (MST) when taking negative prices

as costs and the 0–1 knapsack problem (KP).
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We express KCMST in the following way in order to apply LD:

max
∑
e∈E

pexe (6)

s.t. x =̂ a spanning tree on G (7)∑
e∈E

weye ≤W (8)

xe = ye, ∀e ∈ E (9)

xe, ye ∈ {0, 1} ∀e ∈ E (10)

Binary variables xe = ye indicate whether or not the corresponding edges e be-

long to the solution, i.e., e ∈ E′. In this model, duplicating x with y obviously465

is redundant, but it facilitates LD as the spanning tree condition (7) is ex-

pressed only on variables x and the knapsack constraint (8) only on variables y.

Equalities (9) provide the linkage.

By relaxing now these linking constraints (9) in a Lagrangian manner, we

obtain the decomposition into the classical MST and KP:

zLD(λ) = max{(p− λ)Tx | x =̂ a spanning tree on G, x ∈ {0, 1}E} +

max{λT y | wT y ≤W, y ∈ {0, 1}E}. (11)

The MST can be efficiently solved by well known algorithms like Prim’s MST

algorithm, and the KP, which is only weakly NP-hard, by dynamic program-470

ming approaches like the COMBO algorithm (Martello et al., 1999). These

subproblems are iteratively solved within the subgradient procedure in order to

find best possible Lagrangian multipliers λ and a corresponding upper bound

for the optimal KCMST solution value.

Feasible heuristic solutions are obtained as follows:475

• Occasionally, the intermediate spanning trees obtained by solving the MST

subproblems may comply with the knapsack constraint (8), and thus we

may directly obtain approximate KCMST solutions. This is not guaran-

teed, however.
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• Infeasible intermediate spanning trees can be repaired, e.g. by a greedy480

approach that iteratively removes an edge with highest weight and recon-

nects the separated components by an edge with lower weight.

• As these possibly repaired intermediate solutions are typically only of

moderate quality, it becomes natural to additionally apply some improve-

ment heuristic. A straight-forward extension is a local search utilizing485

an edge-exchange neighborhood, which considers all feasible single-edge

replacements. Obviously, also more advanced metaheuristics might be

applied here to obtain even better solutions.

Besides this classical Lagrangian heuristic approach, metaheuristics may fur-

ther benefit by more rigorously exploiting information obtained by the LD, in490

particular Lagrangian dual variable values. Haouari & Siala (2006) describe

an effective strategy in the context of the prize collecting Steiner tree problem,

which Pirkwieser et al. (2007) apply in a similar spirit to our example of the

KCMST problem as follows.

Consider a memetic algorithm for the KCMST, which represents candidate495

spanning trees directly by storing their edges. Initial solutions are random

spanning trees, recombination is achieved by applying a random spanning tree

algorithm on the merged edge sets of two parent trees, and mutation performs

a random edge exchange. Any candidate tree not complying with the knapsack

constraint is greedily repaired as described above. Edge-exchange local search500

is applied to each new offspring solution. This memetic algorithm is improved

by making use of the above LD’s results as follows:

• A few best solutions directly obtained by the LD are used to seed the

initial population.

• The edge set E is reduced to only contain edges that appeared in at least505

one of the LD’s intermediate spanning trees (feasible or not). Thus, the

memetic algorithm can also be said to act as solution merging strategy

over all intermediate LD solutions, cf. Section 2.6.

20



• Most importantly, original edge profits pe are replaced by reduced profits

p′e = pe−λe, and recombination and mutation are biased in their random510

decisions to include edges with higher reduced profits more likely.

• Should a solution be found whose objective value corresponds to the LD

upper bound, the search is terminated as the solution is proven optimal.

Large-scale experiments on graphs with up to 8 000 nodes and over 23 000

edges have shown excellent results: More than 67% of all solutions could be515

solved to proven optimality, and average remaining relative gaps between the

LD’s upper bounds and the found solutions’ objective values were less than

10−6. The pure memetic algorithm without the guidance by the LD could

not compete at all, and the feasible solutions obtained from the pure LD were

only moderately good. These surprising results of course also indicate that the520

KCMST problem, although NP-hard, can be solved relatively well in practice.

It turned out that especially the LD’s reduced profits are an excellent indicator

for how beneficial edges really are. In contrast, original edge prices pe, edge

weights we, and even relative prices pe/we may be frequently highly misleading

when used for guiding heuristic search. Note that there are also some parallels525

to the works on the multi-constrained knapsack problem by Chu & Beasley

(1998) and Puchinger et al. (2010) who used pseudo-utility ratios determined

from dual LP values for guiding heuristic search.

Leitner & Raidl (2008) describe another successful hybrid of LD and a vari-

able neighborhood search in the context of a fiber optic network design problem,530

and Leitner & Raidl (to appear) utilize large neighborhood search in combi-

nation with LD for solving the capacitated connected facility location prob-

lem. Boschetti & Maniezzo (2009) illustrate Lagrangian heuristics on the single

source capacitated facility location problem and the membership overlay prob-

lem arising in the context of P2P networks. Thiruvady et al. (2014) utilize LD535

in combination with ant colony optimization to solve a resource constrained job

scheduling problem on multiple machines. By relaxing the linking constraintes

each machine’s scheduling problem can be solved independently, and the solu-
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tion to the LD is used to effectively guide the ACO.

Last but not least, we remark that (meta-)heuristics may also become at-540

tractive for solving harder subproblems in Lagrangian relaxation approaches,

although one has to keep in mind that only optimal solutions to the subprob-

lems will guarantee the validity of a bound obtained for an original problem.

5. Column Generation Approaches and Metaheuristics

Dantzig-Wolfe decomposition (Dantzig & Wolfe, 1960) has originally been545

introduced for solving very large LPs having a special block-diagonal structure

and relies on delayed column generation (CG). In mathematical programming,

CG is a well-known technique to approach in particular MIP models involving

an exponential number of variables. Such MIPs frequently arise in set covering

or set partitioning formulations for, e.g., vehicle routing, network design, cutting550

and packing, and scheduling problems. Often such models can be shown to be

substantially stronger than some compact formulation w.r.t. the LP relaxation.

The challenge, however, is their very large number of variables which usually

prohibits a direct application of a MIP solver. CG provides a possible practical

solution approach at least for solving the LP relaxation of such MIP models. For555

in-depth information on CG we refer to Desaulniers et al. (2005) and Lübbecke

& Desrosiers (2005).

To illustrate the principles of CG, let us consider an abstract network design

problem, in which we are given a graph G = (V,E). The node set V consists

of a root node 0 (e.g., a central server), clients C ⊂ V , and possibly further

nodes S = V \ {0} \ C. The edge set E represents potential links that may

be installed for connecting the respective nodes at given costs ce > 0. The

objective is to find a minimum cost subgraph G′ = (V ′, E′), V ′ ⊆ V, E′ ⊆ E

corresponding to a network that provides for each customer c ∈ C a connection

to the root 0. In the simplest form this problem corresponds to the classical

rooted Steiner tree problem in which each client needs to be connected to the

root by a simple path. More generally, various complicating conditions may be
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considered for the individual connections such as hop- or length-constraints or

redundancy requirements like having some customers more reliably connected

via two independent paths. Thus, our abstract network design problem covers

many classes of more specific problems. We can approach it by the following

connection formulation:

min
∑
e∈E

cexe (12)

s.t.
∑
p∈Pk

fkp ≥ 1 ∀k ∈ C (13)

xe −
∑

p∈Pk|e∈p

fkp ≥ 0 ∀k ∈ C, e ∈ E (14)

xe ∈ {0, 1} ∀e ∈ E (15)

fkp ∈ {0, 1} ∀k ∈ C, p ∈ Pk (16)

Most remarkably, this formulation considers for each customer k ∈ C explicitly

the set of all possible feasible connections, referred to by Pk. Corresponding

binary variables fkp for all p ∈ Pk and k ∈ C indicate which connections are560

realized. Binary variables xe indicate the edges that are part of the solution. The

objective function (12) minimizes the costs of these selected edges. Inequalities

(13) ensure that (at least) one connection from Pk is realized for each customer

(cover constraints), and inequalities (14) provide the linkage between the fkp

and xe variables, ensuring that all edges that are part of a chosen connection565

are indeed selected.

Obviously, this MIP has far too many fkp variables – corresponding to

columns in the matrix notation – to be directly solved even for small instances,

as there are in general exponentially many possible connections. In short, CG

solves the LP relaxation of above model, called master problem (MP), by start-570

ing with a restricted master problem (RMP) that is obtained from MP by con-

sidering just a small subset of all connections and corresponding variables fkp ,

e.g., those contained in an initial heuristic solution. This RMP can be efficiently

solved and is then iteratively extended by adding further variables for connec-

tions that likely lead to better solutions. Each time one or more variables have575
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been added, the RMP is resolved until no further improvements are possible.

The task of finding suitable variables to be added is the so-called pricing

subproblem and directly derives from the mechanisms of the simplex method for

solving LPs: When having a solution to the current RMP, we consider the corre-

sponding dual variable values µ∗k and π∗k,e associated with the cover inequalities

(13) and linking constraints (14), respectively. They define reduced costs

ck,p = −µ∗k +
∑
e∈p

π∗k,e ∀k ∈ C, p ∈ Pk (17)

for all possible connections, and we have to identify a variable/connection with

negative reduced costs, i.e., ck,p < 0, as only such variables may yield an im-

provement in the RMP. If we can prove that no such variable exists anymore,

the current RMP solution is also optimal for the MP and CG terminates.580

In our abstract network design problem, the pricing problem is thus to find

for some k ∈ C a feasible connection p ⊆ E having costs
∑
e∈p π

∗
k,e < µ∗k or

to prove that none exists. Depending on the problem’s specific requirements

for connections, this task may be as simple as finding a shortest path or more

complex when, e.g., hop- or length-constraints or redundancy requirements need585

to be satisfied. The conceptually nice aspect, however, is that these specificities

only have to be dealt with in this pricing subproblem.

As pointed out, CG only solves the LP relaxation of a MIP model. To obtain

guaranteed optimal solutions for the MIP, the approach needs to be extended

to a branch-and-price, which is an LP based branch-and-bound in which CG590

is performed at every tree-node. However, as such MIP models are typically

relatively strong, good heuristic solutions can usually be directly obtained from

the LP solution by simple rounding or repairing.

With respect to metaheuristic hybrids several possibilities exist for boosting

the performance.595

• If the pricing subproblem is hard, meta-heuristics may be well suited for

identifying variables with negative reduced costs. It should just be kept

in mind that in the end an exact approach is necessary to prove that
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no further variables with negative reduced cost exist in order to have the

master problem solved exactly. Therefore, frequently a chain of algorithms600

is used for the pricing problem, starting with a fast greedy heuristic over

some metaheuristic approaches up to a usually slowest exact approach; for

example Puchinger & Raidl (2007) describe such a chained approach for

a two-dimensional cutting problem.

• Metaheuristics may also become useful in conjunction with solving the605

integer master problem. On the one hand, the set of variables initially

provided to the RMP obviously has a crucial impact on the performance,

and thus deriving them from one or more good starting solutions originally

determined by (meta-)heuristics often is beneficial. On the other hand,

metaheuristics can also be used to derive a better final solution based on610

the results of CG than those obtained by simple rounding or repairing, cf.

Section 2.7. In this context, several aspects may be exploited for guiding

the heuristic search:

– obviously, the LP solution;

– the overall set of variables finally contained in the RMP; when consid-615

ering our network design problem, one may, e.g., restrict the heuristic

search to only those edges that appear in some connection corre-

sponding to an included variable; note here the strong parallels to

the LD-based hybrids described in Section 4;

– reduced costs of variables may provide a more promising guidance620

than their LP values, again cf. Section 4;

– dual variable values may provide more fine-grained guidance, e.g., in

the case of our network design problem they may indicate which edges

are more likely to yield improvements or should better be spared.

• Instead of applying CG and a metaheuristic sequentially and providing625

guidance in only one way, a collaborative approach may be considered,

with both algorithms running intertwined or in parallel and mutually ex-
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changing information; i.e., while the metaheuristic continuously exploits

current LP solutions, dual variable information etc., it also sends newly

found good solutions to the CG and corresponding variables are inserted630

in the RMP.

For successful examples of above mentioned concepts, see Filho & Lorena

(2000), who describe a constructive genetic algorithm in conjunction with CG

for graph coloring, Pirkwieser & Raidl (2010), who consider a variable neighbor-

hood search and an evolutionary algorithm collaborating with CG to solve the635

periodic vehicle routing problem with time windows, and Massen et al. (2012),

who apply ant colony optimization for heuristic CG to solve a black-box vehicle

routing problem. Massen et al. (2013) show how the latter perhomone-based

heuristic CG can further be improved by automatic algorithm configuration

methods.640

Alvelos et al. (2013) describe a general hybrid strategy called SearchCol,

where CG and a metaheuristic are iteratively performed and information is ex-

changed between both. The metaheuristic works in a problem-independent way

trying to find a best integral solution by searching over combinations of vari-

ables identified in CG, while the CG is perturbed in each iteration based on the645

metaheuristic’s result by fixing subproblem variables with special constraints.

6. Benders’ Decomposition and Metaheuristics

Benders’ decomposition (BD) has been originally suggested for solving large

MIPs involving “complicating” variables (Benders, 1962). It can be regarded

dual to CG, as instead of iteratively adding variables to a RMP, inequalities,650

i.e., rows, are added.

We consider a MIP of the form

zMIP = min{cTx+ c′T y | Ax+By ≥ b, Dx ≥ d, x ∈ Dn, y ≥ 0} (18)

with two kinds of decision variable vectors x and y. The x variables are “compli-

cating” in the sense that when they are temporarily fixed the remaining problem
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becomes considerable more tractable, e.g., because the remaining problem de-

couples into multiple independent problems with only continuous variables.655

Benders’ decomposition reformulates the MIP by considering only the x

variables with their specific inequalities Dx ≥ d and accounting for the impact

of the y variables by adding a function zSP(x) to the objective

zB = min{cTx+ zSP(x) | Dx ≥ d, x ∈ Dn}, (19)

where zSP(x) is the result of the subproblem

zSP(x) = min{c′T y | By ≥ b−Ax, y ≥ 0}. (20)

In this subproblem, x is thus assumed to be a given constant vector. As the

remaining variables y are continuous, this subproblem is an LP, for which we

can also consider its dual form

zDP(x) = max{wT (b−Ax) | wTB ≤ c′, w ≥ 0}, (21)

where w is the vector of dual variables associated with the inequalities By ≥

b − Ax. Assuming the feasible region of this dual problem is bounded and not

empty, let W be the set of corresponding extreme points. Then, we may also

write zDP(x) = maxw∈W wT (b−Ax) and rewrite our master problem (18) as

zMIP = min{z | z ≥ cTx+ wT (b−Ax) ∀w ∈W, Dx ≥ d, x ∈ Dn}. (22)

Inequalities z ≥ cTx + wT (b − Ax) for all extreme points w ∈ W are called

Benders’ cuts.

Computationally, Benders’ decomposition starts by solving (22) with no or

only a small set of initial Benders’ cuts. This reduced master problem (RMP)

yields initial values for x for which the subproblem zSP(x) and its dual are660

solved. The dual solution corresponds to an extreme point w ∈ W for which a

respective Benders’ cut can be derived and added to the RMP, usually cutting off

its current solution x. The phases of (re-)solving the RMP and the subproblem

are iterated until no new cut violated by x is found. The finally obtained

solution x is then a minimum for the original MIP (18). More generally, the665
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primal subproblem (20) may sometimes be infeasible, yielding an unbounded

dual subproblem (21). In these cases, extreme rays are used to derive feasibility

cuts (in contrast to optimality cuts), driving the process towards feasibility by

forbidding the current RMP solution x.

Note that in contrast to LD and CG, BD directly yields an optimal solution670

to an original MIP and not only to a relaxation of it; it is therefore not necessary

to further embed it in a branch-and-bound to obtain an exact approach.

As an example consider a special variant of the abstract network design

problem (12)–(16) from Section 5, called the local access network design prob-

lem (Randazzo & Luna, 2001). Each customer needs to be connected to the

dedicated root node by a simple path and in addition to the fixed costs ce for

installing a link e also capacity-dependent costs c′e arise. This problem can be

modeled by the following multi-commodity flow formulation:

min
∑
e∈E

cexe +
∑

(i,j)∈ED

c′(i,j)
∑
k∈C

fki,j (23)

s.t.
∑

(0,j)∈ED

fk0,j = bk ∀k ∈ C (24)

∑
(i,k)∈ED

fki,k = bk ∀k ∈ C (25)

∑
(i,j)∈ED

fki,j −
∑

(j,i)∈ED

fkj,i = 0 ∀i ∈ V \ {0, k}, k ∈ C (26)

fki,j ≤ bkx(i,j) ∀k ∈ C, (i, j) ∈ ED (27)

xe ∈ {0, 1} ∀e ∈ E (28)

fki,j ≥ 0 ∀k ∈ C, (i, j) ∈ ED (29)

The model sends for each customer k ∈ C an individual commodity of size

bk > 0 (corresponding to the required capacity) from the root 0 to node k. For

this purpose, arc set ED is defined to contain two reversely directed arcs for each675

edge in E, and for each such arc and each commodity k ∈ C a flow variable

fki,j is used. Equations (24)–(26) are the classical flow conservation constraints.

Inequalities (27) link the design variables xe with the flow variables so that a

flow may only occur over edges that are part of the solution.
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We perform BD by considering variables x as the “complicating” ones and

obtain as reformulated master problem

zMP = min{z | z ≥ cTx+ wT (b−Ax) ∀w ∈W, x ∈ {0, 1}|E|}, (30)

where Ax + Bf ≥ b corresponds to the flow conservation and linking con-

straints (24)–(27). Thus, we have to select a minimum cost subset of edges

only constrained by the Benders’ cuts z ≥ cTx + wT (b − Ax). The respective

Benders’ subproblem becomes

zSP(x) = min{c′T f | Bf ≥ b−Ax, f ≥ 0}. (31)

Due to the fixed x, the flow variables for different commodities k ∈ C are680

here not linked anymore, and this subproblem decouples into |C| independent

problems of finding a minimum cost path from the root to each customer k ∈ C.

Some of these problems may be infeasible as the root and respective customers

might not be connected in the given solution x. Feasibility cuts based on extreme

rays of the dual are then identified for moving towards feasibility. For example,685

such a Benders’ cut might enforce to have at least a certain number α of edges

from a specific subset E′ ⊆ E selected, i.e.,
∑
e∈E′ xe ≥ α.

Randazzo & Luna (2001) present a comparison of a Lagrangean relaxation-

based branch-and-bound, a branch-and-cut, and the above sketched BD ex-

tended with certain strengthening constraints. In their experiments, BD was690

the only algorithm able to solve to optimality all instances within a day, leading

to the conclusion that it is the most robust method. More generally, differ-

ent classes of Benders’ cuts can be derived for this and related problems, and

they have specific, partly complementary impacts on the overall performance

(Magnanti et al., 1986; Costa, 2005). It is thus important to carefully choose a695

suitable set of Benders’ cuts that are actually added in each iteration.

In classical BD as introduced above, the subproblem must be an LP involv-

ing only continuous variables. However, BD has also been generalized to certain

kinds of non-linear problems (Geoffrion, 1972). Hooker & Ottosson (2003) pro-

posed logic-based BD, an approach that is applicable to an even wider class of700
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subproblems including in particular also discrete ones. This is achieved by gen-

eralizing the LP dual to an inference dual. Constraint programming techniques

turn out to be especially useful for handling discrete subproblems.

Similarly as with LD and CG, there are several possibilities for metaheuris-

tics to come into play with BD:705

• Although smaller than the original problem, the RMP is frequently still

difficult to solve, especially when already many Benders’ cuts have been

added. Metaheuristics may provide good approximate RMP solutions in

much shorter time, and these solutions may be sufficient in order to achieve

substantial speedups of the overall approach. If finally, when the meta-710

heuristic cannot identify an improved master solution, the RMP is solved

to optimality and no further Benders’ cuts can be identified, the whole

approach is still complete. Poojari & Beasley (2009) describe such an

approach for solving general MIPs in which a genetic algorithm together

with a feasibility pump heuristic are applied to the RMP. The authors715

argue that a population based metaheuristic like a genetic algorithm is

particularly useful as it provides multiple solutions in each iteration giv-

ing rise to more Benders’ cuts. Similarly in spirit, Lai et al. (2010); Lai

& Sohn (2012) propose a genetic algorithm/BD hybrid for solving the ca-

pacitated plant location problem; results indicate a tremendous saving of720

computation time in comparison to classical BD. Lai et al. (2012) further

discuss such an approach for a vehicle routing problem. Rei et al. (2008)

suggest to use local branching, cf. Section 2.8, for solving a MIP master

problem in order to sooner find improved upper as well as lower bounds.

• Initial solutions obtained by some (meta-)heuristic may be used to derive725

an initial set of Benders’ cuts in order to start with a more meaningful

first RMP. For example, Easwaran & Üster (2009) apply a tabu search to

warm-start a BD approach for a supply chain network design problem.

• Subproblems need not necessarily always to be solved to optimality in or-

der to obtain useful Benders’ cuts, even when completeness of the whole730
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approach shall be retained (Zakeri et al., 1999). Especially when con-

sidering difficult subproblems in logic-based BD, constraint programming

and metaheuristics have a great potential for speeding up the overall ap-

proach by providing helpful cuts much faster. For example Hooker (2007)

describes a constraint programming based BD that substantially outper-735

forms pure MIP as well as constraint programming approaches on a large

class of planning and scheduling problems. Cordeau et al. (2001) solve

an aircraft routing and crew scheduling problem by applying BD and use

CG-based heuristics for the RMP as well as the integer subproblem.

Raidl et al. (2014) proposed an exact logic-based BD approach for a bi-740

level capacitated vehicle routing problem and sped it up considerably by

first solving all instances of the master problem as well as all subproblems

by means of a fast variable neighborhood search heuristic. Invalid Benders’

cuts possibly cutting off feasible solutions might be created. In a second

phase, all these heuristically generated Benders’ cuts are verified by re-745

solving the corresponding subproblems exactly by means of MIP, yielding

possibly corrected cuts that replace the invalid ones. When finally also

the master problem is solved exactly and no further Benders’ cuts can be

derived, a proven optimal solution is obtained.

7. Conclusions750

Hybrid metaheuristics have shown to be successful advanced approaches for

solving a wide range of practically relevant problems. On many occasions they

are leading methods when dealing with large, complex combinatorial problems

that cannot be solved to proven optimality in reasonable time. When designed

appropriately HMs can significantly benefit from the advantages of the under-755

lying basic strategies and exploit synergy.

The design of successful hybrids, however, usually is not trivial, and one

should be aware that a more complex system is not necessarily always better.

In fact, the principle of “keeping things as simple as possible but not simpler”
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still holds also in this context. To develop an “as good as possible” heuristic760

optimization software for a new complex problem typically requires a consid-

erable amount of experience, research of existing work on related problems,

testing, comparing, and fine-tuning. This review intended to give an overview

on the most successful design patterns of HMs and particularly focused on

decomposition-based hybrids with origins in mathematical programming.765

Decomposition approaches, in general, are particularly useful to address

large problems possibly consisting of several dependent, difficult subproblems.

Lagrangian decomposition, Dantzig-Wolfe decomposition with its column gen-

eration , and Benders’ decomposition are well-known and frequently applied

methods. The great potential they have when extended and combined with770

metaheuristics, however, has only been recognized more widely over the last

decade. Besides, e.g., just providing initial approximate solutions for primal

bounds, we have seen that far more possibilities exist for fruitful combinations.

Metaheuristics are able to substantially enhance the applicability of these clas-

sical decomposition techniques – and vice versa.775

More work is necessary to get an even better understanding of the condi-

tions under which the individual design patterns are best suited. From the

author’s point of view, exploiting dual information in metaheuristics provided

by Lagrangian relaxations and column generation approaches as well as meta-

heuristic approaches for solving separation problems in column generation and780

Benders’ subproblems in logic-based Benders’ decompositions may be particu-

larly fruitful for future research.
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Büdenbender, K., Grünert, T., & Sebastian, H.-J. (2000). A hybrid tabu

search/branch-and-bound algorithm for the direct flight network design prob-825

lem. Transportation Science, 34 , 364–380.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., zcan, E., & Qu,

R. (2013). Hyper-heuristics: a survey of the state of the art. Journal of the

Operational Research Society , 64 , 1695–1724.

Chu, P. C., & Beasley, J. E. (1998). A genetic algorithm for the multidimensional830

knapsack problem. Journal of Heuristics, 4 , 63–86.
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