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Abstract

Logic-based Benders decomposition (BD) extends classic BD by allowing more complex

subproblems with integral variables. Metaheuristics like variable neighborhood search are

becoming useful here for faster solving the subproblems’ inference duals in order to sepa-

rate approximate Benders cuts. After performing such a purely heuristic BD approach, we

continue by exactly verifying and possibly correcting each heuristic cut to finally obtain a

proven optimal solution. On a bi-level vehicle routing problem, this new hybrid approach

exhibits shorter overall runtimes and yields excellent intermediate solutions much earlier

than the classical exact method.
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1 Introduction

In mathematical programming Benders Decomposition (BD) [1] is a prominent

technique for approaching large Mixed Integer Linear Programming (MIP) prob-
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lems having a special block-diagonal structure with complicating variables. The

problem is reformulated by expressing it as a master problem on only a subset of

the original variables – usually the complicating integer variables – and considering

the contributions of all further variables by additional inequalities, so-called Ben-

ders cuts. Following the concept of the cutting plane method, a restricted master

problem is first solved in which none or only a small set of initial Benders cuts is

considered. Obtained master problem variables are then temporarily fixed and a

subproblem is solved on all remaining – typically continuous – problem variables.

As the obtained solution is in general not necessarily feasible and optimal, dual so-

lution information is used to derive one or more new, violated Benders cuts, which

are added to the master problem. The master problem is then resolved and the pro-

cess iterated until no further violated cuts can be derived, in which case an obtained

feasible solution is optimal w.r.t. the original problem.

As pointed out, classical BD keeps integral variables in the master problem so

that the resulting subproblem is an efficiently solvable linear programming (LP)

problem and LP-duality can be exploited. Hooker and Ottosson [4,3] extended this

concept to Logic-Based BD, in which the more general inference duality replaces

LP-duality and the subproblem is not restricted to an LP; in particular, subproblem

variables may also be integral and the objective function does not necessarily have

to be linear. Constraint programming techniques turned out to be especially useful

for approaching the inference dual. Logic-based BD has already been successfully

applied to a variety of problems, in particular in scheduling and planning.

Other work has shown that metaheuristics can be useful to speed up classical

BD for MIP problems. While the subproblems are typically solved by an efficient

LP-solver, the master problem, although smaller than the original problem, remains

a MIP and in general needs to be resolved with newly added cuts many times.

Consequently, metaheuristics have been applied to the master problem instead of

an exact method, see e.g. [7,2,5]. Substantial speedups could be achieved in this

way, although proven optimal solutions are only obtained if in the end the master

problem is solved to optimality.

But also BD subproblems need not necessarily always to be solved to optimality

in order to obtain useful Benders cuts. This aspect in particular becomes interesting

in logic-based BD with its typically more complex subproblems. With the excep-

tion of our recent study [8], however, we are not aware of any work so far where

metaheuristics have been applied to discrete BD subproblems for deriving Benders

cuts. A reason may lie in the difficulty to exploit duality for identifying cuts that

are valid for any master solution.

In our recent work [8] we considered a logic-based BD for a bi-level vehi-

cle routing problem and solved the master problem as well as all subproblems by



means of Variable Neighborhood Search (VNS) [6]. A dramatic speedup and good

solutions could be achieved, but the overall approach is purely heuristic. In partic-

ular, determined Benders cuts may be invalid as they may cut off feasible solutions,

possibly including global optima. Once such a bad Benders cut has been added,

the whole approach has no chance of finding the excluded solutions anymore, in-

dependently on how much effort is further invested.

In the current work we build upon this previous approach and remedy the con-

ceptual disadvantage. By exactly verifying and possibly correcting heuristically

generated Benders cuts in the course of the optimization, we undo earlier intro-

duced invalid cuts and finally obtain a proven optimal solution, while still having

the advantage of obtaining good heuristic solutions very early.

2 Bi-Level Capacitated Vehicle Routing Problem with Time

Limits

We study the new approach exemplarily on the Bi-Level Capacitated Vehicle Rout-

ing Problem with Time Limits (2L-VRP-TL), in which goods shall be transported

from a main depot via satellite depots to customers [8]. A global time limit is im-

posed on all deliveries, and the assignment of customers to satellite depots is pre-

specified. In practice this problem appears in the distribution of newspapers from a

printing shop to subscribers. An assignment of subscribers to satellite depots is here

naturally given as region-specific newspapers with individual supplements must be

considered and each region-specific version is to be distributed via its dedicated

satellite depot.

Formally, we are given

• a complete, directed graph G0 = (V0, A0) with node set V0 = {0} ∪ V ′
0 and arc

set A0 = V0 ×V0, where the special node 0 represents the main depot and V ′
0 the

set of satellite depots;

• for each satellite depot s ∈ V ′
0 an individual, complete, directed graph Gs =

(Vs, As) with node set Vs = {s} ∪ V ′
s , where V ′

s represents the set of customers

that receive their deliveries via satellite depot s;

• a demand qv ≥ 0 for each customer v ∈ V ′
s and a resulting total demand qs =

∑

v∈V ′

s

qv for each satellite depot s ∈ V ′
0 ;

• travel cost cu,v ≥ 0 and a travel time tu,v ≥ 0 for each arc (u, v) ∈
⋃

s∈V0
As

representing the fastest way to go from u to v; fixed cost for the usage of a vehicle

can be incorportated in arc costs c0,v;

• vehicle capacities Qs ≥ 0, s ∈ V0; we assume a homogeneous vehicle fleet for

each depot and the number of vehicles is not limited;



• and the global time limit T (due time) within which all deliveries at the customers

have to take place.

A solution R consists of a set of routes Rs in each subgraph Gs, ∀s ∈ V0, with

a route r ∈ Rs being an ordered sequence of nodes r = (ri)i=1,...,|r| with ri ∈ V ′
s .

Each route starts at the depot s, visits the nodes as specified by r and finally ends

at s again; for convenience, we define r0 = r|r|+1 = s. Each node except the main

depot 0 has to be visited exactly once.

By c(r) and q(r) we denote the total cost and total demand of route r ∈
Rs, ∀s ∈ V0, respectively. Note that q(r) ≤ Qs must hold. Furthermore, let

t(ri) be the time needed to reach node ri from the depot s, ∀i = 1, . . . , |r|. As

second-level tours may only start after the goods have been delivered to the respec-

tive satellite depots by the first-level tours and all deliveries have to be performed

within the due time, t(s) + t(v) ≤ T must hold ∀v ∈ V ′
s , s ∈ V ′

0 . The objective is

to minimize a solution’s total cost c(R) =
∑

s∈V0

∑

r∈Rs
c(r).

3 Logic-Based BD for 2L-VRP-TL

We decompose 2L-VRP-TL into a master problem essentially corresponding to

the first-level of transporting the goods from the main depot to the satellite depots

and |V ′
0 | subproblems corresponding to the transportation from each satellite depot

to the respective customers. In the master problem, the cost contributions of the

subproblems are considered by Benders cuts.

We use variables xu,v ∈ {0, 1}, ∀(u, v) ∈ As, s ∈ V0 for indicating the arcs

used in the routes, tv ≥ 0, ∀v ∈ Vs, s ∈ V0 for the times t(v), and cs ≥ 0 for the

total cost of the subproblem tours in Gs for each satellite depot s ∈ V0. The master

problem can then be expressed as follows.

(MP) minimize
∑

(u,v)∈A0

cu,v xu,v +
∑

s∈V ′

0

cs (1)

s.t. (x(A0), t(V
′
0)) ∈ VRP(G0) (2)

cs ≥ βtks (ts) k ∈ Ks, s ∈ V ′
0 (3)

0 ≤ ts ≤ tubs ∀s ∈ V ′
0 (4)

0 ≤ cs ∀s ∈ V ′
0 (5)

xu,v ∈ {0, 1} ∀(u, v) ∈ A0 (6)

VRP(Gs) (in Eq. (2) with s = 0) represents a valid formulation for the classical

capacitated vehicle routing problem including the calculation of the corresponding

traveling times t(v) on graph Gs expressed on the variables x(As) and t(V ′
s ). In

our proof-of-concept implementation, we used for this purpose a rather simple,



compact MIP formulation based on Miller-Tucker-Zemlin inequalities for avoiding

subtours, see [8] for details. Inequalities (3) are the Benders cuts relating cs with

ts in order to ensure optimality. Feasibility w.r.t. the time limit T is ensured by

calculating an upper bound tubs for each satellite depot s ∈ V ′
0 by assuming that in

the second level each customer is directly served from its satellite depot with an

own vehicle (4).

The associated subproblems for finding second-level routes assume the above

master problem variables ts to be fixed to some current values tks and become for

each s ∈ V ′
0

(SPs(t
k
s)) minimize

∑

(u,v)∈As

cu,v xu,v (7)

s.t. (x(As), t(V
′
s )) ∈ VRP(Gs) (8)

0 ≤ tv ≤ T − tks ∀v ∈ V ′
s (9)

xu,v ∈ {0, 1} ∀(u, v) ∈ As (10)

Thus, a minimum cost VRP-solution on Gs with delivery times not exceeding

T − tks needs to be found for each s ∈ V ′
0 .

The Benders algorithm starts by solving a restricted MP with only a small set

of initial Benders cuts derived from simple lower bounds on subproblem costs and

yields values for the MP variables, i.e., tks . For them, the subproblems SPs(t
k
s) are

solved, yielding respective solutions with costs ĉks and latest starting times t̂ks =
maxv∈V ′

s
tv ≥ tks . The fixed times tks and determined subproblem costs ĉks allow for

deriving logic-based Benders cuts of the form

cs ≥ βtks (ts) =

{

ĉks if ts ≥ tks

0 else.
(11)

New cuts are added to the MP and the whole process is iterated until no further vio-

lated cuts exist. An important aspect is to store the data (tks , ĉ
k
s , t̂

k
s) together with the

respective solutions for all solved subproblems in order to avoid unnecessary future

recalculations of subproblems SPs(ts) with tks ≤ ts ≤ t̂ks . Occasionally, a merg-

ing of entries with overlapping valid time intervals is possible and corresponding

dominated cuts can be removed.

Exact MIP-based BD

In the exact variant of the approach, all master problem instances as well as

all subproblems are solved to optimality via a MIP-solver. For this purpose, the

non-linear Benders cuts (11) are further translated into a pair of linear inequalities

that also make use of additional Boolean variables; for details we again refer to [8].

Theory of logic-based BD proves that an optimal overall solution is obtained once

no further violated Benders cut can be found.



Heuristic VNS-based BD

For speeding up above method we replace the exact solving of the master and

subproblem instances by a VNS heuristic. This VNS is based on well-known in-

gredients: Clarke and Wright’s savings algorithm is adapted in a straight-forward

way to only merge routes when the result is feasible w.r.t. the time limits. This con-

struction heuristic is further randomized to be able to obtain different promising

solutions for performing restarts. The VNS considers the neighborhood structures

intra-route 2-opt, intra-route or-opt, and inter-route 2-opt*, searching them in this

order and following a first-improvement strategy. Infeasible solutions are always

discarded.

4 Heuristically Boosted Exact Logic-Based BD

The VNS-based BD, although often yielding reasonably good solutions, has in

general the disadvantage that Benders cuts derived from not necessarily optimal

subproblem solutions may cut away actually feasible regions of the search space.

Solutions lying in these wrongly excluded regions have no chance of being found

in any future step. We address this limitation by continuing after performing the

VNS-based BD with a resolving phase, in which all heuristically generated cuts are

exactly verified and possibly replaced by correct counterparts. In more detail, we

consider the following two variants.

Variant A – Resolve master after verifying all heuristic cuts

We iterate over all heuristically derived Benders cuts in the order as they were

introduced in the VNS-based BD phase and for each exactly resolve the corre-

sponding subproblem SPs(t
k
s) by the MIP-approach. If the obtained exact solution

value differs from the previously found heuristic one, the cut is corrected by set-

ting ĉks to the new, optimal value. Only after verifying/correcting all heuristic cuts,

we exactly resolve the master problem and follow the exact BD approach, possibly

performing a few more master iterations, until a proven optimal solution is reached.

Variant B – Resolve master after every corrected cut

As before we iterate over all heuristic Benders cuts and verify each by resolving

the corresponding subproblem. If a cut is corrected due to a better optimal solu-

tion value, however, we now immediately go back to the VNS-based BD phase,

resolving the master problem as well as possibly separating further Benders cuts

heuristically. When this heuristic BD phase terminates again, we continue with

exactly verifying/correcting the remaining heuristic cuts. Only after all cuts are

known to be exact, we finally follow the exact BD approach again until a proven
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Fig. 1. Performance charts for three instances.

optimal solution is reached. We do not expect this variant to have an overall shorter

running time than variant A. However, a significant practical advantage is that the

incumbent solution is more continuously improved over time, as benefits gained by

corrected heuristic cuts are immediately realized by resolving the master problem.

5 Experimental Results

Benchmark instances have been created as described in [8]. We present here repre-

sentative snapshots of computational results, a more detailed table is available at

https://www.ads.tuwien.ac.at/w/Research/Problem_Instances. CPLEX

in version 12.1 was used for solving the MIPs. We compare the pure MIP-based

BD to the above two heuristically boosted variants A and B. Remember that the

pure heuristic BD from [8] corresponds to the first phase of the latter.

Figure 1 displays the objective values of obtained so far best feasible solutions

over the whole optimization time for three different random Euclidean instances

with |Vs| ∈ {15, 16}, s ∈ V0 nodes. All approaches were performed until guaran-

teed optimality had been achieved.

First of all, we observe that in all cases, variants A and B required significantly

less total time than the pure MIP-based BD. Surprisingly, variant B is frequently

even faster than variant A, which can be explained by the smaller number of exactly

solved master problem and subproblem instances, partly due to merged heuristic

cuts. Over all our tests, we observed a median runtime reductions of 17.8% (variant

A) and 18.9% (variant B). But even more importantly, the figures show clearly

that good heuristic solutions could be obtained almost immediately, and especially

in variant B, they were indeed continuously improved over time until reaching an

optimum. In contrast, the pure MIP-based BD already required a long time to come

up with any feasible solution. For larger instances, an exact solving soon becomes

too time-demanding. Nevertheless, our hybrid variants still deliver good heuristic

solutions relatively quickly, and variant B is usually able to continue with finding

further improved solutions in short time intervals.

https://www.ads.tuwien.ac.at/w/Research/Problem_Instances


6 Conclusions

Solving in a logic-based BD the master problem as well as all subproblems heuris-

tically, e.g., by a VNS, can speed up the whole approach dramatically, however

at the expense of losing completeness. Here we have extended this pure heuris-

tic approach by continuing with exactly verifying and possibly correcting heuristic

cuts and obtain in the end a proven optimal solution again. This hybrid led to

overall shorter running times than the pure exact BD and in particular yields excel-

lent heuristic solutions during the course of the optimization much earlier, which

are especially in variant B more continuously improved. The approach is generic

in the sense that it is promising also for other problems where logic-based BD is

applicable and effective (meta-)heuristics like VNS can be devised for separating

approximate Benders cuts.
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