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Abstract. Benders’ Decomposition (BD) is a prominent technique for tackling
large mixed integer programming problems having a certain structure by itera-
tively solving a series of smaller master and subproblem instances. We apply a
generalization of this technique called Logic-Based BD, which does not restrict
the subproblems to have continuous variables only, to a bi-level vehicle rout-
ing problem originating in the timely distribution of printed newspapers to sub-
scribers. When solving all master and subproblem instances exactly by CPLEX,
it turns out that the scalability of the approach is quite limited. The situation can
be dramatically improved when using a meaningful metaheuristic – in our case
a variable neighborhood search – for approximately solving either only the sub-
problems or both, the master as well as the subproblem instances. More generally,
it is shown that Logic-Based BD can be a highly promising framework also for
hybrid metaheuristics.

1 Introduction

Benders’ Decomposition (BD) [1] is a classical and frequently applied approach for
solving large Mixed Integer Linear Programming (MIP) problems having a special
block-diagonal structure with “complicating variables”. It essentially reformulates a
given problem by expressing it as a master problem on only a subset of all original vari-
ables – the complicating ones – and considering the contributions of all further variables
by additional inequalities, so-called Benders’ cuts. The optimization starts by solving
a restricted form of the master problem without any or with only few of these inequal-
ities. A new Benders’ cut is then identified by solving a subproblem and its dual on
the remaining variables with the master problem variables fixed to the current master
solution. Obtained Benders’ cuts are added to the master problem and the process is
iterated until no further Benders’ cuts can be derived. When the master problem and all
subproblems are solved to optimality, the finally obtained solution also is optimal for
the original problem.
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A major restriction of this original form of BD is the fact that the subproblem must
be a Linear Programming (LP) problem with only continuous variables as its dual solu-
tion is required to derive the Benders’ cuts. Some authors, however, have also general-
ized BD to other types of subproblems, such as certain kinds of continuous non-linear
ones [2]. In particular, Hooker and Ottosson [3] proposed logic-based BD, which is
applicable to a wide category of subproblems including discrete ones. This is achieved
by generalizing the LP dual to an inference dual. Constraint programming techniques
turned out to be especially useful in conjunction with logic-based BD, and this combi-
nation could be successfully applied to several problems, in particular in the planning
and scheduling domain [4].

In other works it has been shown that metaheuristics can be very useful in con-
junction with classical BD: While the LP subproblems are usually solved efficiently
by an LP-solver, the master problem typically remains a MIP, although smaller than
the original problem, and in general needs to be resolved with newly added Benders’
cuts many times. It has therefore been suggested to solve the master problem only ap-
proximately but faster by means of metaheuristics, and possibly only in the end apply
an exact method in order to obtain a guaranteed optimum. Poojari and Beasley [5] de-
scribe such an approach for solving general MIPs in which a genetic algorithm together
with a feasibility pump heuristic are applied to the master problem. The authors argue
that a population based metaheuristic like a genetic algorithm is particularly useful as
it provides multiple solutions in each iteration giving rise to more Benders’ cuts. Sim-
ilarly in spirit, Lai et al. [6, 7] propose a genetic algorithm/BD hybrid for solving the
capacitated plant location problem; results indicate a tremendous saving of computa-
tion time in comparison to classical BD. Lai et al. [8] further discuss such an approach
for a Capacitated Vehicle Routing Problem (VRP). Rei et al. [9] suggest to use local
branching for solving a MIP master problem in order to sooner find improved upper as
well as lower bounds.

It has also been recognized that BD subproblems need not necessarily always to
be solved to optimality in order to obtain useful Benders’ cuts, even when complete-
ness of the whole approach shall be retained [10]. Especially when considering difficult
subproblems in logic-based BD, this aspect becomes increasingly interesting. However,
we are not aware of any work so far where metaheuristics have been applied to discrete
BD subproblems for deriving Benders’ cuts. The major reason obviously lies in the
difficulty that it is not sufficient to find a heuristic solution to the subproblem but dual
solution information is also required for identifying Benders’ cuts that are guaranteed to
be valid for any master problem solution. In fact, suboptimal solutions to the subprob-
lem may easily yield inequalities that cut away too large portions of the search space,
possibly also a global optimum.

This work considers a bi-level vehicle routing problem motivated by the time-
critical distribution of newspapers from a printing center via satellite depots to sub-
scribers and demonstrates how a metaheuristic may effectively be applied to the master
as well as the subproblem instances of a suitable logic-based BD. Experimental re-
sults indicate that high-quality solutions can be obtained much faster than when using
CPLEX for solving the master and subproblem instances exactly, and the scalability of
the BD to large instances is substantially improved.
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The next Sections 2 to 4 introduce the considered bi-level vehicle routing problem,
refer to related work, and present a basic MIP formulation, respectively. Section 5 de-
scribes the applied logic-based BD. All the metaheuristic enhancements are presented
in Section 6. Experimental results of the basic MIP, classical logic-based BD where all
subproblems are solved to optimality, and metaheuristic hybrid variants are discussed
in Section 7. Finally, Section 8 concludes this article with remarks on future work.

2 The Bi-Level Capacitated Vehicle Routing Problem with Time
Limits

We consider a two-level vehicle routing problem in which goods shall be transported
from a main depot to satellite depots and from there further to customers. Homogeneous
vehicle fleets exist at the main depot and each satellite depot. A global time limit is
imposed on all deliveries, i.e., each customer has to receive its goods within this time.
In contrast to the two-echelon vehicle routing problem known in the literature [11–13],
the assignment of customers to the satellite depots is pre-specified in our case.

This problem is motivated by the real-world scenario at Mediaprint, a major Aus-
trian newspaper print shop who has to distribute printed newspapers from each printing
center to subscribers within a guaranteed time. A natural assignment of subscribers
to satellite depots arises here from the fact that region-specific supplements such as
advertisements are added to the newspapers, and each region-specific version is only
distributed via a dedicated satellite depot. The real distribution scenario even comprises
three levels, but it turns out that only the first two levels, up to certain delivery points
we call customers here, can be meaningfully optimized as the lowest level corresponds
to routes of delivery agents who do not need a more serious planning or do this on their
own.

We define the Bi-Level Capacitated Vehicle Routing Problem with Time Limits
(2L-VRP-TL) as follows. Given are

– a complete, directed graph G0 = (V0, A0) with node set V0 = {0}∪V ′
0 and arc set

A0 = V0 × V0, where the special node 0 represents a main depot and V ′
0 the set of

further satellite depots;
– for each satellite depot s ∈ V ′

0 a complete, directed graph Gs = (Vs, As) with
node set Vs = {s} ∪ V ′

s , where V ′
s represents a set of customers that receive their

deliveries via satellite depot s;
– a demand qv ≥ 0 for each customer v ∈ V ′

s and a resulting total demand qs =∑
v∈V ′s

dv for each satellite depot s ∈ V ′
0 ;

– travel cost cu,v ≥ 0 and a travel time tu,v ≥ 0 for each arc (u, v) ∈
⋃

s∈V0
As

representing the fastest way to go from u to v;
– vehicle capacities Qs ≥ 0 for each vehicle starting at depot s ∈ V0; thus, we

assume a homogeneous vehicle fleet for each depot and the number of vehicles is
not limited; in our practical application, larger vehicles are used for the first level
and smaller ones for the second level;

– and a global time limit T (due time) within which all deliveries at customers have
to be performed.
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A solution R consists of a set of routes Rs in each subgraph Gs, ∀s ∈ V0, with a
route r ∈ Rs being an ordered sequence of nodes r = (ri)i=1,...,|r| with ri ∈ V ′

s . Each
vehicle starts its route at the depot s, visits the nodes as specified by r and finally has to
return to the depot again. For convenience, we also define r0 = r|r|+1 = s. Each node
except the main depot 0 has to be visited exactly once, all satellite depots within the
first-level routes R0 and all customer nodes within the second-level routes

⋃
s∈V ′0

Rs.
Thus, each set of routes Rs also defines a partitioning of V ′

s .
The cost c(r) of a route r ∈ Rs, ∀s ∈ V0, is

c(r) =

|r|+1∑
i=1

cri−1,ri , (1)

the route’s total demand is

q(r) =

|r|∑
i=1

qri , (2)

and the times needed to reach each node ri from the route’s depot s are

t(ri) =

i∑
j=1

trj−1,rj ∀i = 1, . . . , |r|. (3)

A solution is feasible if the routes satisfy the capacity constraints

q(r) ≤ Qs ∀r ∈ Rs, s ∈ V0, (4)

and all deliveries are performed within the due time T . Since the second-level tours
may only start after the goods have been delivered to the respective satellite depots by
the first-level tours, the latter holds when

t(s) + t(v) ≤ T ∀v ∈ V ′
s , s ∈ V ′

0 . (5)

The objective is to minimize the total cost of a solution, which is the sum over all
its routes’ costs

c(R) =
∑
s∈V0

∑
r∈Rs

c(r). (6)

3 Related Work

As already mentioned, 2L-VRP-TL is related to the Two-Echelon Vehicle Routing Prob-
lem (2E-VRP) [11], in which also a two-level distribution via satellite depots is consid-
ered. Major differences are, however, that in 2E-VRP no time constraints are considered
and the assignments of customers to satellites are not fixed but shall also be optimized.
This additional degree of flexibility makes 2E-VRP even harder to solve in practice.
Perboli et al. [11] propose a flow-based MIP model, strengthening inequalities, and two
matheuristics. Experimental results are shown for instances with up to 50 customers
and four satellites.
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Crainic et al. [14] describe for the same problem multi-start heuristics based on
separating the depot-to-satellite transfer and the satellite-to-customer delivery by itera-
tively solving the two resulting routing problems. In its spirit, this concept comes close
to our logic-based Benders’ decomposition, although it is not an exact approach. Hem-
melmayr et al. [12] further describe an adaptive large neighborhood search heuristic
involving several neighborhood structures exploiting specificities of the 2E-VRP.

Already in 1989, Jacobsen and Madsen [15] addressed the Two-Echelon Location-
Routing Problem in the context of newspaper delivery, which further generalizes 2E-
VRP by the additional aspect of deciding at which locations to open facilities (corre-
sponding to depots). The authors suggest and compare three rather simple construction
heuristics. Later more sophisticated approaches include a tabu search [16], diverse MIP
models [17], and a variable neighborhood search [13].

Concerning BD and more classical (single-level) VRPs, Fisher and Jaikumar [18]
describe an approach where the master problem is a general assignment problem and
the subproblem is a traveling salesman problem with time-windows for each vehicle.
Lai et al. [8] propose the already mentioned hybrid of BD and a genetic algorithm.
Here the VRP is expressed by a multi-commodity flow formulation, the subproblems
are network flow problems that can be solved efficiently, and the remaining master
problem is approximately solved by the genetic algorithm.

For a more general introduction that presents BD and Lagrangian relaxation from a
metaheuristic design perspective see [19].

4 MIP Model for 2L-VRP-TL

The above introduced 2L-VRP-TL can be modeled by the following MIP using vari-
ables

– xu,v ∈ {0, 1}, ∀(u, v) ∈ As, s ∈ V0 indicating the arcs used for realizing the
routes and

– tv ≥ 0, ∀v ∈ Vs, s ∈ V0 corresponding to the above defined t(v), i.e., the time
needed make the delivery at v from starting at the respective depot s.

(2L-VRP-TL)

minimize
∑
s∈V0

∑
(u,v)∈As

cu,v xu,v (7)

s.t. (x(As), t(V
′
s )) ∈ VRP(Gs) ∀s ∈ V0 (8)

ts + tv ≤ T ∀v ∈ Vs, s ∈ V ′
0 (9)

0 ≤ tv ≤ T ∀v ∈ V ′
s , s ∈ V0 (10)

xu,v ∈ {0, 1} ∀(u, v) ∈ As, s ∈ V0 (11)

In (8) VRP(Gs) represents a valid formulation for the classical capacitated vehicle
routing problem including the calculation of the corresponding traveling times t(v) on
graph Gs expressed on the variables x(As) and tv(Vs). Equations (9) limit the total
times for the deliveries at all customers to T .
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VRP(Gs), for s ∈ V0, can be expressed in different ways, for simplicity we use here
the following compact Miller-Tucker-Zemlin-based formulation, see e.g. [20], although
significantly fore effective (but much more complex) approaches exist. Additionally
used variables are

– gv ≥ 0, v ∈ Vs corresponding to the total demand of the nodes in the tour starting
from s up to (and including) v.

(VRP(Gs))∑
v∈Vs

xu,v = 1 ∀u ∈ V ′
s (12)

∑
u∈Vs

xu,v = 1 ∀v ∈ V ′
s (13)

∑
v∈V ′s

xs,v =
∑
u∈V ′s

xu,s (14)

gv − gu +Qs(1− xu,v) ≥ qv ∀(u, v) ∈ As, u 6= s, v 6= s (15)
gv + qv(1− xs,v) ≥ qv ∀(s, v) ∈ As (16)
tv − tu + (T + tu,v)(1− xu,v) ≥ tu,v ∀(u, v) ∈ As, u 6= s, v 6= s (17)
tv + tu,v(1− xs,v) ≥ tu,v ∀(s, v) ∈ As (18)
0 ≤ gu ≤ Qs ∀u ∈ V ′

s (19)

Inequalities (12) and (13) state that any node other than s must have exactly one
ingoing and one outgoing arc. Equality (14) ensures that every tour must finish at s or
more precisely that s has the same number of ingoing and outgoing arcs. Inequalities
(15) and (16) are the Miller-Tucker-Zemlin constraints that calculate the amounts of
goods delivered up to node v. The domains of variables gv (19) ensure that the capac-
ity Qs of a vehicles is not exceeded. Likewise inequalities (17) and (18) are used to
calculate the traveling times up to each node v as defined above.

We can further strengthen VRP(Gs) by the following inequalities from [20]:

Qs

∑
u∈V ′s

xu,s ≥
∑
v∈V ′s

qv (20)

∑
u,v∈U, u 6=v

xu,v ≤ |U | −
⌈∑

u∈U qu

Qs

⌉
∀U ⊆ V ′

s (21)

In our implementation we initially provide inequalities (21) for subsets U of cardinality
two and three, but do not separate the more general ones as cuts.

5 Logic-Based Benders’ Decomposition for 2L-VRP-TL

Hooker [3] generalized classical BD to logic-based BD by replacing the LP dual with
a so-called inference dual. Benders’ cuts need not to be linear inequalities anymore but
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are more general functions. Benders’ subproblems may then involve discrete variables
and nonlinear functions.

We apply this approach here and decompose the above MIP model for 2L-VRP-TL
into a master problem corresponding to the first-level VRP augmented with Benders’
cuts and a Benders’ subproblem that decouples into a set of |V ′

0 | independent second-
level VRPs. More specifically, our master problem is

(MP)

minimize
∑

(u,v)∈A0

cu,v xu,v +
∑
s∈V ′0

cs (22)

s.t. (x(A0), t(V
′
0)) ∈ VRP(G0) (23)

cs ≥ βtks (ts) k ∈ Ks, s ∈ V ′
0 (24)

0 ≤ ts ≤ T ∀s ∈ V ′
0 (25)

0 ≤ cs ∀s ∈ V ′
0 (26)

xu,v ∈ {0, 1} ∀(u, v) ∈ A0 (27)

It only considers the first-level decision variables xu,v and ts associated with G0 and
new variables cs representing (upper bounds for) the total cost of the second-level tours
in Gs for each satellite depot s. Inequalities (24) are the Benders’ cuts relating cs with
ts in order to ultimately ensure feasibility and optimality.

The associated Benders’ subproblem to be solved for deriving Benders’ cuts as-
sumes the above master problem variables ts to be fixed to some current values tks and
becomes for each s ∈ V ′

0

(SPs(t
k
s))

minimize
∑

(u,v)∈As

cu,v xu,v (28)

s.t. (x(As), t(V
′
s )) ∈ VRP(Gs) (29)

0 ≤ tv ≤ T − tks ∀v ∈ V ′
s (30)

xu,v ∈ {0, 1} ∀(u, v) ∈ As (31)

Thus, a minimum cost VRP-solution on Gs with delivery times at most T − tks shall be
found for each s ∈ V ′

0 .
In general, Benders’ algorithm starts by solving MP with none or only a small set

of initial Benders’ cuts. This yields values for the MP variables, i.e., tks , for which
the subproblem and its dual are solved in order to derive one or more cuts. These are
added to the MP and the whole process is iterated until no further violated cuts exist. It
has been shown that when the master problem as well as the duals and the associated
inference duals are always solved to optimality, an optimal solution for the original
problem will be obtained [3].

The inference dual of subproblem (SPs(t
k
s)) is



8 G. Raidl, T. Baumhauer, and B. Hu

(DSPs(t
k
s))

maximize βs (32)

s.t. (x(As), t(V
′
s )) ∈ VRP(Gs) ∧ (tv ≤ T − tks ∀v ∈ V ′

s )

{0,1}|As|,[0,T ]|V
′
s |

−−−−−−−−−−−−→
∑

(u,v)∈As

cu,v xu,v ≥ βs (33)

i.e., to find the best possible lower bound βs on the cost
∑

(u,v)∈As
cu,v xu,v that can

be inferred from the constraints, assuming the fixed tks .
The heart of Logic-based Benders’ decomposition is now to derive from this result a

more general function βtks (ts) that gives a valid lower bound on the optimal value of the
cost

∑
(u,v)∈As

cu,v xu,v for any given value of ts, ideally with βtks (t
k
s) corresponding

to the optimal solution value of SPs(t
k
s). This function βtks (ts) then directly yields a

corresponding Benders’ cut (24).
Fortunately, in our case the situation is relatively simple. We can observe that in-

creasing or decreasing tks results in stronger or weaker constraints for SPs, respectively,
and consequently the subproblem’s cost will weakly monotonically increase with tks .
Consider a current SPs(t

k
s) and assume it is bounded and non-empty and thus has an

optimal solution. Let cks be this solution’s cost. From the previous observations we can
define a Benders’ cut

cs ≥ βtks (ts) =

{
cks if ts ≥ tks
0 else.

(34)

Intuitively this means that the costs are at least cks or we need more than T − tks time for
the subproblem, i.e., cs ≥ cks ∨ ts < tks . As we want to solve the MP by a MIP-solver,
this logic-based Benders’ cut is translated into the following pair of linear inequalities

cs ≥ cks χk (35)

ts ≤ (tks − ε) (1− χk) (36)

with χk ∈ {0, 1} being a new decision variable that is also added to MP and ε being a
small constant to ensure cs ≥ cks in case of ts = tks .

In general, it might happen that SPs(t
k
s) is infeasible. Then, DSPs(t

k
s) is unbounded

and a feasibility cut – in contrast to above optimality cut – needs to be derived, which
is a condition that cuts away the current tks from MP. In our case, however, we avoid
infeasible subproblems by initially determining a minimum time required for each sub-
problem SPs, s ∈ V ′

0 to be solvable and limiting ts correspondingly. As we can safely
assume that the triangle inequality holds for travel times, a minimum time solution is
achieved by visiting each customer by an individual vehicle directly from the depot,
i.e.,

ts ≤ T −max
v∈V ′s

ts,v ∀s ∈ V ′
0 . (37)

To start with a more meaningful initial MP, general lower bounds for the subproblem
costs cs are determined by solving SPs(0) and requiring cs ≥ cks ∀s ∈ V ′

0 .
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To avoid unnecessary recalculations, we store all solved subproblems with their
optimal solutions (tks , x

k, cks , t̂
k
s), ∀k ∈ Ks, s ∈ V ′

0 , with

t̂ks = T −
∑

(u,v)∈As, v 6=s

tu,v xu,v (38)

being the latest possible time for ts for which this subproblem solution xk would still
be feasible and optimal; note that tks ≤ t̂ks . A new subproblem SPs(t

l
s) only needs to be

processed if there is no stored solution with tks ≤ tls ≤ t̂ks .
When solving SPs(t

l
s), a possibly existing record (tks , x

k, cks , t̂
k
s) with the largest

tks less than tls yields a lower bound on the costs and a possibly existing record
(tk
′

s , x
k′ , ck

′

s , t̂
k′

s ) with the smallest tks larger than tls yields an upper bound, i.e.,

cks ≤ cls ≤ ck
′

s (39)

can be added as strengthening inequalities, and xk
′

can be used as initial heuristic solu-
tion to speed up the optimization.

Finally, when the solution xl to SPs(t
l
s) has cost cl that were already encountered

at an earlier instance SPs(t
k
s), i.e., ∃k ∈ Ks | cls = cks , the corresponding records can

be merged to

(min(tks , t
l
s), x

k, cks , t̂
k
s) if t̂ks ≥ t̂ls (40)

(min(tks , t
l
s), x

l, cks , t̂
l
s) else, (41)

and the already existing Benders’ cut cs ≥ βtks (ts) is adapted (lifted) accordingly with-
out introducing a new cut.

6 Metaheuristic Improvements

The subproblems as well as the master problem we obtain in above decomposition are
much smaller than the original 2L-VRP-TL, and therefore there might be hope that
they can be solved to proven optimality in practice. However, all these are still NP-hard
problems, and we pay the decomposition by usually having to solve many instances of
the master and subproblems.

For generally improving scalability to larger instances, we can turn the exact BD
approach into a faster approximate one by solving the subproblems and/or the master
problem only approximately. When we terminate the MIP-solver on each of these in-
stances early after reaching a solution with costs that are guaranteed to not exceed a
specified optimality gap of p% and we obtain a feasible final solution, we can be sure
that this solution’s cost also does not exceed an optimal value by more than p%.

While this might be a practical approach in some cases, the MIP-solver will often
still require too much time to obtain approximate solutions with reasonable quality guar-
antees. In fact, experiments indicated in our scenario that only very moderate speedups
could be achieved when allowing a gap of 5%. Suitable metaheuristics appear to be a
more promising alternative.
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6.1 Heuristic BD

We might consider virtually any well-working metaheuristic for the VRP with time-
windows which is not too slow to approach our master and subproblem. For our proof-
of-concept experiments here, we decided to apply the following previous work for the
periodic VRP with time-windows [21]:

– One initial solution is created by Clarke and Wright’s savings algorithm [22], which
is adapted in a straight-forward way to only merge feasible routes w.r.t. the time
limits.

– A set of ninit further, diverse initial solutions is derived by applying a randomized
variant of the savings algorithm. The savings of combining two tours is accepted as
the currently best savings if its value multiplied by a uniformly distributed random
value within [0.7, 1.3] is greater than the previously best known savings.

– The best initial solution undergoes variable neighborhood descent [23] using the
following neighborhood structures in this order: intra-route 2-opt, intra or-opt (se-
quences of one, two, or three stations are moved to another position), and inter-
route 2-opt* (exchange of all feasible end-segments among two routes); for details
see [21]. A first-improvement strategy is applied and the procedure only stops after
reaching a locally optimal solution w.r.t. all these neighborhoods. Each candidate
solution is checked for feasibility concerning the time limits and only feasible so-
lutions are accepted.

In the BD, this metaheuristic can directly replace the exact resolution of the master
and subproblems by the MIP-solver. However, we must take care in the bookkeeping
of already known solutions (tks , x

k, cks , t̂
k
s) as they are not necessarily optimal anymore.

On the one hand, a later identified solution for a time tls may dominate earlier solutions
tks < tls even with lower cost, i.e., cks < cls. Thus, existing entries need to be verified
and must possibly be removed together with the corresponding cuts. On the other hand,
it may also happen that a newly found solution (tls, x

l, cls, t̂
l
s) has higher cost than an

already known solution (tks , x
k, cks , t̂

k
s) with t̂ks ≥ tls. In this case, no new violated cut

can be derived, we may just store (tks+ε, x
l, cls, t̂

l
s) and the corresponding cut if t̂ls ≥ t̂ks

for possible future use.

7 Computational Experiments

We compare the performance of directly solving the MIP model (7)–(11) for 2L-VRP-
TL, the MIP-based exact BD approach, and two variants of the heuristic BD on a set of
synthetic Euclidean instances and instances based on the TSPlib3.

All algorithms have been implemented with GCC 4.6. Each test run was performed
on a single core of an Intel Xeon E5540 machine with 2.53 GHz. CPLEX version 12.1
was used for solving the MIPs.

3 https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
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7.1 Instances

The synthetic Euclidean instances can be divided into four subtypes:

– instances where the first-level VRP and the second-level VRPs are equally large,
i.e. |V0| = |Vs|, ∀s ∈ V ′

0 ,
– instances with a larger first-level VRP, i.e. |V0| > |Vs|, ∀s ∈ V ′

0 ,
– instances with larger second-level VRPs, i.e. |V0| < |Vs|, ∀s ∈ V ′

0 , and
– instances where each of the second-level VRPs has different size,

i.e. |Vs| = d0.5|V0|e+ 1, . . . , b1.5|V0|c.

For the first-level VRP, satellites are randomly placed on a 201×201 grid with the depot
node being located at the center. Each second-level VRP is constructed essentially in
the same way considering a separate grid of the same size: The satellite is assumed
to be at the center, and all customers are placed randomly at the grid. Traveling times
are rounded Euclidean distances, and traveling costs are derived from these times by
adding uniform random perturbations of 20%. Demands are chosen randomly from
{1, . . . , 100}. The vehicle capacity and the global time limit were selected manually in
a way that the instances are non-trivial.

For the TSPlib instances we applied a clustering that roughly simulates the pro-
cess of opening satellite depots in real-world. Given the basic nodes which represent
customers, we added satellites manually at plausible locations and then assigned each
customer node to the closest satellite. As a result, the sizes of the second-level VRPs dif-
fer to a certain degree. Customer demands are chosen randomly from {1, . . . , 10}while
traveling times and costs, vehicle capacity and the global time limit are determined in
the same way as above. All instances are available online4.

7.2 Results

Tables 1 and 2 compare the following algorithm variants: directly solving the MIP
model (7)–(11) (“pure MIP”), the MIP-based exact BD, the BD variant where the sub-
problems are solved heuristically, and the fully heuristic BD variant where the master
problem as well as the subproblems are solved heuristically. Synthetic instances are
specified by the size of the master problem (|V0|) and the size of the subproblems (|Vs|).
For the TSPlib problems we only list |V0| since the subproblems have different sizes.

Table 1 shows the objective values of final solutions and the required CPU times.
Best values are printed bold for each instance. For the exact BD variants, we list the
gaps between lower and upper bounds after reaching the time limit of one hour. For the
variants where we use heuristics, 30 independent runs were performed in order to obtain
average objective values of final solutions and standard deviations. The time limit was
set to 10min. Table 2 displays for the BD variants further information on the number of
added Benders’ cuts and the number of times the master problem is (re-)solved.

First of all, we observe that the pure MIP approach is only viable for small instances
where the size of the sub-VRPs is at most 15. For larger instances the gaps are soon too
large for the solutions to be meaningful. The exact MIP-based BD performs better on

4 https://www.ads.tuwien.ac.at/w/Research/Problem Instances
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Table 2. Numbers of generated cuts and master problem resolves of the BD variants.

Synthetic instances
BD using MIP heur. BD for subp. fully heuristic BD

|V0| |Vs| #cuts #resolves #cuts #resolves #cuts #resolves
5 5 4.0 3.0 4.0 3.0 4.0 3.0
5 3 1.0 2.0 1.0 2.0 1.0 2.0
3 5 3.0 3.0 3.0 3.0 3.0 3.0
5 4...7 3.0 2.0 3.0 2.0 3.0 2.0
9 9 10.0 3.0 3.0 2.0 7.0 3.0
9 5 5.0 3.0 5.0 3.0 4.0 3.0
5 9 3.0 2.0 3.0 2.0 3.0 2.0
9 6...13 10.0 4.0 9.0 3.0 9.4 3.3
15 15 32.0 7.0 30.3 7.1 27.6 6.6
15 9 34.0 6.0 34.9 7.0 22.0 4.1
8 15 12.0 5.0 10.2 5.0 10.2 5.0
15 9...22 13.0 2.0 28.0 6.8 25.8 6.3
25 25 16.0 2.0 - - 87.9 11.5
25 14 12.0 2.0 31.7 1.0 104.9 14.5
13 25 - - 41.9 8.5 39.6 7.9
25 14...37 - - 47.4 2.1 105.4 12.9
35 35 - - - - 125.9 12.3
35 19 17.0 2.0 29.0 3.2 165.4 13.2
18 35 - - - - 56.2 11.1
35 19...52 - - - - 182.8 16.9
50 50 - - - - 138.4 8.4
50 27 - - - - 251.4 22.3
26 50 - - - - 76.9 12.3
50 27...75 - - - - 113.4 4.1

instances with sub-VRPs with up to 15 nodes. However, on larger instances it is often
not able to solve all subproblems of the first major iteration in time, and we therefore
do not get any feasible solution for the master problem. For instances with sub-VRPs
of size 25 or more, this even holds when terminating CPLEX early with an optimality
gap limit of 15%. We remark that this rather bad behavior is particularly due to the
relatively weak Miller-Tucker-Zemlin formulation, and one can expect to improve the
situation by using a more state-of-the-art exact VRP solver. When using the heuristic
approach for the BD subproblems, they are solved in a relatively short time to very
reasonable quality so that a feasible solution to the master problem can be obtained
most of the time. However, on the larger instances it proves to be difficult nonetheless
to solve the master problem via MIP and in some cases it was not possible to solve it
even once within the time limit. The fully heuristic BD works well on small instances
where optimal solutions are reliably reached in short times. On larger instances it has
excellent scalability and produces by far the best results.

Comparing the different subtypes of synthetic instances, we clearly see that the
most challenging ones are those where the master problem and the subproblems are
equally large. The pure MIP approach and the exact BD approach are able to solve
instances with small subproblems in comparison faster since they can concentrate on
the master problem. This is expressed by the low number of Benders’ cuts that are
added and thus the low number of times that the master problem has to be (re-)solved,
see Table 2. Instances where subproblems have different sizes are usually also easier to
solve. The reason here is that the master problem often is easier: In the first-level VRP,
the satellites of larger subproblems typically need to be visited earlier than satellites



14 G. Raidl, T. Baumhauer, and B. Hu

of smaller subproblems. In Table 2 we also observe that for larger instances, the fully
heuristic BD variant is able to perform much more iterations, i.e., more Bender’s cuts
are added and the master problem is more often resolved within the same time limit.

8 Conclusions

Logic-based BD is a promising extension of classical BD to tackle far more problems
from practice because subproblems are not restricted to LPs anymore. Its application
to our 2L-VRP-TL is relatively intuitive and Benders’ cuts can be derived from primal
subproblem solutions and its inference dual in a rather straight-forward way.

Applying the logic-based BD with CPLEX for exactly solving all master and sub-
problem instances turned out to be beneficial for some mid-size instances in comparison
to solving the original MIP formulation directly. Problematic, however, are the long run-
ning times for solving the Benders’ subproblems, preventing the approach from find-
ing feasible solutions to larger 2L-VRP-TL instances at all. By just aiming for good
approximate solutions and using a variant of variable neighborhood search to heuris-
tically solve the master and subproblem instances, we could dramatically improve the
scalability and obtain by far the best results on the considered instances.

More generally, it was shown that logic-based BD may be a fruitful framework also
for metaheuristics. While previous work already documented the usefulness of meta-
heuristics for approximately solving the master problem in classic BD approaches, our
work goes beyond and applies a metaheuristic especially to more complex subproblems
(and their inference duals) as they appear in logic-based BD. The general technique
seems to be promising also for other classes of problems and deserves further research.

Our implementation for 2L-VRP-TL only is a first proof-of-concept. It is obvious
that it can be improved on the one hand by utilizing a tighter MIP-formulation for
VRP(Gs), e.g., based on multi-commodity flows, or even a more sophisticated branch-
and-cut. On the other hand a more advanced metaheuristic may also be chosen for
VRP(Gs). The principles of the logic-based BD and the combination with the meta-
heuristic, however, stay the same.

Future work should in particular investigate a combined application of heuristic and
exact methods for solving the Benders’ subproblems. For example, one can first solve
the subproblems heuristically yielding approximate Benders’ cuts and a heuristic so-
lution quickly. In a second phase, the existing Benders’ cuts are iteratively validated
by solving corresponding subproblems exactly, exploiting the already known heuris-
tic solutions. Possibly found improved subproblem solutions yield new exact Benders’
cuts that replace the dominated heuristic cuts. When resolving the master problem and
validating all Benders’ cuts in this way, an exact solution is obtained in the end.
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