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Abstract. Public bike sharing systems are important alternatives to
motorized individual traffic and are gaining popularity in larger cities
worldwide. In order to maintain user satisfaction, operators need to ac-
tively rebalance the systems so that there are enough bikes available for
rental as well as sufficient free slots for returning them at each station.
This is done by a vehicle fleet that moves bikes among the stations. In a
previous work we presented a variable neighborhood search metaheuris-
tic for finding effective vehicle routes and three different auxiliary proce-
dures to calculate loading operations for each candidate solution. For the
most flexible auxiliary procedure based on LP, the current work provides
a new, practically more efficient method for calculating proven optimal
loading operations based on two maximum flow computations. The dif-
ferent strategies for determining loading operations are further applied in
combination controlled by an additional neighborhood structure. Exper-
imental results indicate that this combined approach yields significantly
better results than the original variable neighborhood search.

1 Introduction

Public bicycle sharing systems are booming worldwide in many major cities as
they augment public transport very well [1, 2]. Modern systems have automated
rental stations where users can easily rent bikes and return them elsewhere. In
order to achieve a high degree of acceptance, operators need to actively rebalance
the system in order to ensure that there are enough bikes as well as parking slots
for returning them at any station at almost all times. This balancing is typically
done by a vehicle fleet with trailers. So far, drivers mostly follow their experience
and intuition when planning the transportation routes. It was not until recently
that researchers have started to consider this transportation planning problem
from an optimization point of view.

The Balancing Bicycle Sharing System (BBSS) problem is related to the
well-studied vehicle routing problem (VRP). However, there are significant dif-
ferences such as allowing multiple visits at stations and that an arbitrary number



of bikes may be loaded or unloaded at each visit. We consider the static vari-
ant of the BBSS problem in which user activities during the rebalancing pro-
cess are neglected. It can be regarded as a capacitated single commodity split
pickup and delivery VRP. So far, only few algorithms have been published for
the BBSS problem, and due to specific application characteristics, they address
significantly different variants.

Chemla et al. [2] consider the problem with only one vehicle and achieving
perfect balance as hard constraint. They describe a branch-and-cut algorithm
utilizing a relaxed mixed integer linear programming (MIP) model and a tabu
search for locally improving incumbent solutions. Benchimol et al. [3] also assume
balancing as hard constraint and focus on approximation algorithms for selected
special situations. Raviv et al. [4] propose four MIP models for different problem
variants and compare their assets and drawbacks on instances with up to 60
stations. Their objective function minimizes user dissatisfaction and ignores tour
lengths as well as the number of loading operations.

Contardo et al. [5] consider different MIP models for the dynamic scenario
where demands need to be satisfied over time. They propose a hybrid approach
using column generation and Benders decomposition that is able to handle in-
stances with up to 100 stations.

Schuijbroek et al. [6] describe the decomposition of the problem into separate
single-vehicle routing problems by solving a polynomial-size clustering problem.
They apply a clustered MIP heuristic in two versions, with and without ad-
ditional cuts. In addition, they present a constraint programming model that
represents the problem as a scheduling problem. Results on instances of up to
135 stations and five vehicles show that the approaches outperform a MIP model
operating on the full unclustered problem.

In [7], we propose a variable neighborhood search (VNS) metaheuristic for
finding effective vehicle routes that employs an auxiliary algorithm for calculat-
ing meaningful loading operations for each considered candidate set of routes.
Three alternatives have been studied for this auxiliary algorithm, with the most
precise but also slowest one being based on linear programming (LP). While
the first two methods are restricted to the so-called monotonic case, where sta-
tions may not be used as temporary buffers for the redistribution of bikes, the
LP-approach is more flexible.

The current work improves upon these methods by introducing a practically
significantly more efficient method for determining proven optimal loading oper-
ations for the general case based on two maximum flow computations. We also
investigate a unified approach where multiple strategies for determining loading
instructions are applied in combination. This is achieved by an additional neigh-
borhood structure that determines the best suited strategy. Computational tests
are performed on instances derived from real-world scenarios, indicating that the
unified approach performs significantly better. However, it is also shown that in
most cases the quality-loss of restricting the algorithm to monotonicity, i.e., not
allowing buffering, is only small.
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2 Problem Definition

Formally the BBSS problem is defined on a complete directed graph G0 =
(V0, A0), where node set V0 = V ∪ {0} consists of nodes for the rental sta-
tions V plus the vehicles’ depot 0. Each arc (u, v) ∈ A0 has associated a travel
time tu,v > 0 that includes a surcharge for parking and loading/unloading bikes.
By G = (V,A), A ⊂ A0 we denote the subgraph induced by the stations V only.

Each station v ∈ V has associated a capacity of bikes Cv ≥ 0, i.e., the number
of available parking positions, the number of bikes it initially contains pv ≥ 0,
and a target number of bikes it should contain after rebalancing qv ≥ 0. A fleet
of vehicles L = {1, . . . , |L|} is available for transporting bikes. Each vehicle l ∈ L
has a capacity of bikes Zl > 0 and starts and ends its route at the depot 0.

When serving a station, we must not only consider the traveling time given by
the corresponding arc, but also the duration needed for parking the vehicle at the
station and for performing loading operations. We can simply add the parking
time and the time needed for an average number of loading operations to the
traveling time, and therefore do not need to handle them separately anymore. In
the following sections it is assumed that the traveling times have already been
preprocessed in this sense.

A solution consists of two parts. The first part is the route for each vehicle
l ∈ L specified by an ordered sequence of visited stations rl = (r1

l , . . . , r
ρl
l ) with

ril ∈ V , i = 1, . . . , ρl and ρl representing the number of stops. Stations may
be visited multiple times by the same or different vehicles. The total time tl of
a route may never exceed a given time limit t̂. As the start and end point of
each tour is the depot 0, it is not explicitly stored but assumed to be prepended
and appended, respectively. The second part are the loading instructions yil,v,∈
{−Zl, . . . , Zl} with l ∈ L, v ∈ V , and i = 1, . . . , ρl, specifying how many bikes
are picked up if yil,v > 0 or delivered if yil,v < 0, respectively, at vehicle l’s i-th
stop at station v.

The following conditions must hold: The number of bikes available at each
station v ∈ V never exceeds Cv, for any vehicle l ∈ L its capacity Zl may never
be exceeded, and the total time tl of a tour

tl = t0,r1l +

ρl∑
i=2

tri−1
l ,ril

+ trρll ,0
(1)

may not exceed the time limit t̂.

Let av be the final number of bikes at each station v ∈ V after rebalancing.

av = pv −
∑
l∈L

ρl∑
i=1

yil,v. (2)

The primary objective is to minimize the deviation from the target number of
bikes δv = |av − qv| at each station v ∈ V , i.e., its disbalance, and secondarily
we aim at minimizing the number of loading/unloading operations as well as the
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overall time required for all routes, i.e.,

min αbal
∑
v∈V

δv + αload
∑
l∈L

ρl∑
i=1

|yil,ri
l
|+ αwork

∑
l∈L

tl, (3)

where αbal � αload, αwork ≥ 0 are scaling factors controlling the relative im-
portance of the respective terms. Note that an improvement in the balance is
always considered as better than any improvements in the secondary objectives;
throughout this paper we use αbal = 1, αload = αwork = 1/100 000. Despite this
small weight, in case of equal balance the secondary objectives become important
criteria to distinguish solutions and therefore must not be neglected. Otherwise,
e.g. obviously unnecessary stops or loading and unloading actions may occur.

A natural simplification that may be exploited is to consider monotonicity
regarding the fill levels of stations. Let Vpic = {v ∈ V | pv ≥ qv} denote pickup
stations and Vdel = {v ∈ V | pv < qv} denote delivery stations. A vehicle is
only allowed to load bikes at pickup stations and unload them at delivery sta-
tions. Depending on the excess or shortage of bikes at a station, vehicles are
only allowed to load or unload bikes at it, respectively. In this way the num-
ber of bikes decreases or increases monotonically, and consequently the order in
which different vehicles visit a station does not matter. Monotonicity simplifies
the task of finding optimal loading instructions for a given set of routes consider-
ably [7]. On the downside, enforcing monotonicity may exclude better solutions
that e.g. use stations as buffers to temporarily store bikes or to transfer bikes
between vehicles, see Fig. 1.

a b e

c d

pa = 19
qa = 4

pb = 4
qb = 3

pe = 1
qe = 16

pc = 18
qc = 3

pd = 2
qd = 18

delivery stations:

pickup stations: a b c

d e

vehicle tour: (a, b, c, d, b, e)

station and vehicle capacities: 20

Fig. 1. Example where the restriction to monotonicity yields a worse solution. With
monotonicity, the best possible loading instructions are y1 = (+15,+1,+4,−16, 0,−4)
resulting in a total disbalance of 22. In the general case, node b can be used as buffer
and loading instructions y1 = (+15,−14,+15,−16,+15,−15) yield perfect balance.

3 Variable Neighborhood Search for BBSS

Our metaheuristic for BBSS follows the general variable neighborhood search
(VNS) principle [8] and is described in detail in [7]. An embedded Variable
Neighborhood Descent (VND) is used for deterministic local improvement as
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intensification, while the outer VNS relies on stochastic shaking in larger neigh-
borhoods for diversification.

An initial solution is derived by a greedy heuristic that iteratively constructs
vehicle routes by always appending a feasible station for which the possible gain
in balance divided by the additional travel time is maximal. As vehicles have to
terminate their routes empty, special attention is paid when considering pickup-
stations: It is estimated how many bikes can still be delivered after the potential
visit of a pickup-station and the possible balance gain is adjusted accordingly, i.e.,
the number of bikes that may be picked up is restricted correspondingly. Thus,
loading instructions are set in this construction heuristic in a purely greedy way,
i.e., by always picking up or delivering as many bikes such that the balance gain
is locally maximized at each station visit.

In contrast, the VNS with its embedded VND searches the space of vehicle
routes exploiting eleven different neighborhood structures only, and correspond-
ing loading instructions are always derived for each considered set of routes by an
auxiliary algorithm. Three alternatives have been investigated in [7]: a greedy
heuristic (GH), a maximum flow approach for the monotonic case (MF-MC),
and a linear programming approach for the general case (LP).

GH considers the stations in the order as they are visited in each tour and
tries to bring each station as far as possible towards balance. Due to its greedy
nature, the derived loading instructions do not necessarily provide the best pos-
sible overall balance and/or minimal number of loading/unloading activities.
MF-MC sets up a flow network according to the given routes. By computing
a maximum flow on this network, it is possible to obtain optimal loading in-
structions yielding the lowest achievable imbalance and a minimal number of
loading operations under the assumption of monotonicity. While GH is fastest,
MF-MC still is computationally very efficient, taking only about 1.8 times longer
on average in our experimental evaluation. In order to overcome the monotonic-
ity restriction, LP solves a minimum cost flow problem on a more sophisticated
network via linear programming. On average our implementation of LP with
CPLEX 12.4 needs about 90 times longer than MF-MC. This huge disadvan-
tage, unfortunately, implies that the VNS can only perform substantially less
iterations, and this aspect cannot be compensated by the higher quality of the
loading instructions. In Section 4 we will present a new, computationally sig-
nificantly more efficient approach to obtain optimal loading instructions for the
general case.

The following subsections summarize the VND/VNS neighborhood struc-
tures. We employ several classical neighborhood structures that were already
successfully applied in various VRPs together with new structures exploiting
specifics of BBSS. Concerning the classical neighborhood structures, we primar-
ily based our design on the experience from [9].

3.1 VND Neighborhood Structures

The following neighborhoods are applied in the given order and searched in a
best improvement fashion. Preliminary experiments with a dynamic reordering
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strategy did not yield any significant advantage. All considered candidate tours
are checked for feasibility, infeasible solutions are discarded. For each feasible
solution one of the above mentioned methods for deriving loading instructions is
applied. Obsolete station visits where no loading actions performed are removed
from the tours.

Remove station: Considers all single station removals to avoid unnecessary
visits.

Insert unbalanced station: Considers the insertion of any yet unbalanced
station at any possible position.

Intra-route 2-opt: The classical 2-opt neighborhood of the traveling salesman
problem applied individually to each route.

Replace station: Considers the replacement of each single station by another
yet unbalanced station.

Intra or-opt: Considers all solutions in which sequences of one, two, or three
consecutive stations are moved to a different place within the same route.

2-opt* inter-route exchange: Considers all feasible exchanges of arbitrarily
long end segments of two routes.

Intra-route 3-opt: A restricted form of the well-known 3-opt neighborhood,
individually applied to each route: For any partitioning of a route into three
nonempty subsequences rl =(a,b,c), the routes (b,a,c) and (a,c,b) are con-
sidered.

3.2 VNS Neighborhoods Structures

Shaking selects solutions randomly from the following neighborhood, which are
all parameterized by δ, yielding a total of 24 specific neighborhoods. In contrast
to the VND, created routes that violate the time budget are repaired by removing
stations from the end. The neighborhoods are again applied in the given order,
and each derived candidate solution is locally improved by the VND before
deciding upon its acceptance.

Move sequence: Select a sequence of one to min(δ, ρl) stations at random,
delete it, and reinsert it at a random position of a different route. If the
original route contains less than δ stations, the whole route is inserted at
the target route. Both, source and target routes are selected randomly. δ ∈
{1, . . . , 5, ρl}.

Exchange sequence: Exchange two randomly selected segments of length one
to min(δ, ρl) between two randomly chosen routes. δ ∈ {1, . . . , 5, ρl}.

Remove stations: Consider all stations of all routes and remove each station
with probability δ ∈ {10%, 14%, 18%, 22%, 26%, 30%}.

Destroy and recreate (D&R): Select a random position in a randomly cho-
sen route, remove all nodes from this position up to the end, and recreate a
new end segment by applying a randomized version of the greedy construc-
tion heuristic. The randomization is done in the typical GRASP-like way [10]
with the threshold parameter set to δ ∈ {0%, 4%, 8%, 12%, 16%, 20%}.

6



σ

τ

a1

d4

c7

a5
pa

qb

a9

b3 b11pb

pc

pd

qa

qc

qd

Ca Ca

Cb

Z1
Z1

Z1 Z2 Z2

tour r1

tour r2

Fig. 2. Exemplary flow network for vehicle routes r1 = (a, b, a, c) and r2 = (d, a, b).

4 Maximum Flow Based Method for the General Case

Similarly as in [2, 7], we set up a flow network, which is illustrated in Fig. 2. By
t(ril) we denote the time when vehicle l makes its i-th stop at station ril . Let
G

f
= (V

f
, A

f
) be a directed multi-graph with node set V

f
= {σ, τ} ∪ Vt, where

σ and τ are source and target nodes, respectively, and Vt = {vj | v = ril , j =
t(ril), i = 1, . . . , ρl, l ∈ L}; i.e., we have a node vj for each station v and time j
when some vehicle makes a stop at v. Let V first = {vjmin ∈ Vt | jmin = min{j |
vj ∈ Vt}}, i.e., the nodes representing the first visits of all stations among all
routes, and V last = {vjmax ∈ Vt | jmax = max{j | vj ∈ Vt}}, i.e., the nodes
representing the last visits of all stations. Arc set A

f
= Aσ ∪ Aτ ∪ AR ∪ AV

consists of:

– Aσ = {(σ, vj) | vj ∈ V first} with capacities pv.
– Aτ = {(vj , τ) | vj ∈ V last} with capacities qv.
– AR =

⋃
l∈LAR,l with AR,l = {(uj , vk) | u = ril , v = ri+1

l , j = t(ril), k =

t(ri+1
l ), i = 1, . . . , ρl − 1}, ∀l ∈ L, i.e., arcs representing the flow induced

by the vehicles. Capacities are Zl. Note that multiple arcs exist between two
nodes if two (or more) vehicles leave and arrive at the same stations exactly
at the same time.

– AV =
⋃
v∈V Av, Av = {(vj1 , vj2), . . . , (vjmax−1 , vjmax)} with (vj1 , . . . , vjmax)

being the sequence of nodes representing visits of station v sorted according
to time. These arcs model the bikes staying at a station, capacities are Cv.

Step 1 – minimizing disbalance: In the first step, we calculate the maximum
(σ, τ)-flow on this network. As argued in [2, 7] the value of this maximum flow
corresponds to the maximum achievable reduction of disbalance. In the ideal case
all arcs Aσ ∪ Aτ are fully saturated in the solution, indicating that the target
values qv can be achieved at all visited stations v. Loading instructions yil,v are

obtained by taking the flow differences among successive arcs (uj , vk) ∈ AR for
each vehicle and each stop.

However, these loading instructions may be infeasible if an arc (σ, vj) ∈ Aσ
is not saturated. In this case, there are actually more bikes at station v than
assumed in the flow network, and delivering bikes to this station may exceed the
station’s capacity.
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Flows on Gf after step 1

Support graph G′
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Fig. 3. Example where the arc (σ, b3) is not saturated after the first maximum flow
computation and therefore the solution is infeasible. In step 2 the remaining commodi-
ties of (σ, b3) must be rooted through G′

f
. (Flow and capacity values on several arcs

are omitted for better readability.)

Step 2 – saturating arcs Aσ: To repair the above situation, we perform a sec-
ond stage maximum flow computation, modifying the loading instructions to
become feasible while the total imbalance remains unchanged. The basic idea is
to increase the capacities of the Aτ arcs and push additional flow through the
network in order to saturate all arcs Aσ. Let f(uj , vk) denote the flow on an arc
(uj , vk). We derive from G

f
= (V

f
, A

f
) a support graph G′

f
= (V

f
, A′

f
) with the

same node set but a modified arc set A′
f

= A′
σ ∪A′

τ ∪A′
R ∪A′

V with:

– A′
σ = {(σ, vj) ∈ Aσ | f(σ, vj) < pv} with capacities Cv − f(σ, vj).

– A′
τ = {(vj , τ) ∈ Aτ} with capacities Cv − f(vj , τ).

– A′
R contains arcs (uj , vk) ∈ AR with residual capacities Zl − f(uj , vk) and

corresponding reverse arcs (vk, uj) with capacities f(uj , vk).

– A′
V contains arcs (vj , vk) ∈ AV with residual capacities Cv − f(vj , vk) and

corresponding reverse arcs (vk, vj) with capacities f(vj , vk).

Subsequently, we perform a second maximum flow computation on G′
f
, which

always saturates every arc in A′
σ since pv ≤ Cv, ∀v ∈ V holds. By modifying the

original flows on AR with the new flows f ′(uj , vk) on (uj , vk) ∈ A′
R, we obtain

corrected flows f
corr

(uj , vk) = f(uj , vk) + f ′(uj , vk) − f ′(vk, uj), ∀(uj , vk) ∈
AR. Loading instructions derived from these flows are feasible and optimal with
respect to the achievable balance. Figure 3 shows an example of G′

f
.
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Fig. 4. Example of how the flow values can be adjusted in order to decrease the number
of loading operations by 8.

Step 3 – minimizing the number of loading operations: While we cannot do better
with respect to balance, we so far neglected the second term of the objective
function (3) which aims at avoiding unnecessary loading operations. In order
to further optimize this aspect, we adjust the corrected flow values f

corr
on G

f

in a way that we do not change the overall flow, but the load is shifted from
transportation arcs AR (which influence the loading instructions) to arcs AV
and Aτ . We aim at reaching the final number of bikes at each station as early as
possible so that the number of loading operations is minimized. The algorithm
works as follows:

(1) Consider all nodes in Vt according to the visiting times:

(2) The next node vj ∈ Vt either has an outgoing arc a = (vj , τ) ∈ Aτ or
a = (vj , vk) ∈ AV , j < k.

(3) Find a path P in G
f

from vj that does not contain arc a and either ends in
a node vk, j < k or in node τ . If no such path exists, continue at (2).

(4) Let P ′ be the alternate path from vj to the end node of P starting with a
and otherwise including only arcs from Av ∪ Aτ . The goal is to adjust the
flows fcorr on all arcs in P and P ′ by a common value ∆ where

– flow values on arcs of P are decreased by ∆ and must not become neg-
ative or less than qv, and

– flow values on arcs of P ′ are increased by ∆ and may not exceed their
capacity limits.
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If P and P ′ do not end at τ , we use ∆ directly as the adjustment value.
If the paths end at τ , the situation becomes more complicated since ad-
justments modify the balance of some stations. Let (ui, τ) be the last arc
in P and (vj , τ) the last arc in P ′. Let bal(P ) = f

corr
(ui, τ) − qu and

bal(P ′) = f
corr

(vj , τ)− qv. We have to consider the following four cases.
(a) If bal(P ) ≥ 0 and bal(P ′) ≥ 0, adjust by min(∆, bal(P )).
(b) If bal(P ) ≥ 0 and bal(P ′) < 0, adjust by min(∆,max(bal(P ), bal(P ′))).
(c) If bal(P ) < 0 and bal(P ′) ≥ 0, do not adjust.
(d) If bal(P ) < 0 and bal(P ′) < 0, adjust by min(∆, bal(P ′)).

(5) Repeat (3) and (4) until no further adjustments are possible. If any adjust-
ments were found, restart the algorithm from (1), else continue at (2).

An example of this procedure is given in Fig. 4. First the arc (a1, a5) is considered
and we can find improvements on paths P = 〈a1, b3, a5〉 and P ′ = 〈a1, a5〉.
Increasing the flow on arcs of P ′ and decreasing the flow on arcs of P by 2
does not change the final balance of any stations, but reduces the number of
loading operations by 4. The second improvement can be found on arc (a5, a9)
and paths P = 〈a5, c7, τ〉 and P ′ = 〈a5, a9, τ〉. Increasing the flow on arcs of P ′

and decreasing the flow on arcs of P by 2 now changes the balance at stations
a and c. However, shifting the two excessive bikes from c to a is cost-neutral in
terms of final balance, but reduces the number of loading operations by 4.

Note that the restart at step (5) is necessary since adjustments on paths
from a station v with later visiting times may have an impact on paths from
an earlier station u by enabling adjustments that were not possible when u was
considered. It can be shown that loading instructions derived from the resulting
flows after this procedure are optimal with respect to balance and the number
of loading operations as long as the route is local optimal with respect to the
VND neighborhoods, i.e., it does not contain any unnecessary stops that can be
removed without increasing the disbalance.

5 Combined Approach

Experiments with the new maximum flow based method for the general case
indicated a substantial speedup in comparison to the LP-based method. Nev-
ertheless, also this strategy is still significantly slower than the simple greedy
method. Experiments shown in the next section indicate that it remains ques-
tionable whether the advantage of potentially better solutions outweighs the
disadvantage of higher running times. We therefore also investigated algorithms,
where the individual strategies for determining loading instructions (except the
LP-based method which is now clearly dominated) are applied in combination.

The following approach turned out to work particularly well: We start with
the fast greedy method as default strategy and introduce an additional VND
neighborhood structure, inserted at the fourth position: All available strategies
for determining loading instructions are applied and their results are compared.
The best strategy, which is the one yielding the best solution or in case of ties
the fastest one, is remembered and from now on also applied as default strategy

10



for all successively created candidate solutions until the solution for which this
strategy was found best is discarded in a VNS iteration due to a better non-
descending solution. In this latter case, the default strategy is reset to the fast
greedy method.

6 Computational Results

We tested our approach on benchmark instances1 from [7]. These instances are
based on real-world data provided by Citybike Wien2 running a bike-sharing
system with currently 92 stations. The instances are characterized by the number
of stations |V | ∈ {10, 20, 30, 60, 90}, the number of vehicles |L| ∈ {1, 2, 3, 5},
and the shift length t̂ ∈ {120, 240, 480}. 30 instances are considered for each
combination of a subset of practically meaningful configurations. The algorithms
have been implemented using GCC 4.6 and each test run was performed on
a single core of an Intel Xeon E5540 machine with 2.53 GHz. Each run was
terminated when no improvement could be achieved within the last 5 000 VNS
iterations or after one hour of CPU time. In the first case we consider the heuristic
search as converged, major further improvements would be highly unlikely. For
all maximum flow calculations we use the push-relabel method by Cherkassky
and Goldberg [11], while CPLEX 12.4 is used in the LP approach.

Table 1 shows average results of our VNS with the five methods for deriving
loading instructions: GH, MF-MC, and LP from [7] and the two new meth-
ods denoted by MF-GC (for “maximum flow based, general case”) and COMB
(for “combined approach”). For each algorithm variant and each instance class
we list the number of instances (runs) for which the algorithm variant yielded
the best results (#best), the mean objective value of the finally best solutions
(obj), the corresponding standard deviation (sd), and the median run time until
the best solutions have been found (time). Note that objective values must be
compared with care due to the small scaling factor for the secondary objectives
(α = 1/100 000). In case of two solutions achieving the same balance, objective
value differences may be very small, but they might nevertheless indicate prac-
tically important differences in the lengths of routes or the number of loading
instructions. Thus, we consider #best to be a better indicator for analyzing per-
formance differences than objective value differences. Maximum #best-values
are printed bold for each instance class. Note that in comparison to the results
published in [7], all former methods exhibit slightly better average objective
values due to some small but significant improvements in the implementation.

As one might expect, we observe that in general GH is clearly the fastest
variant while LP is slowest. On average over the larger instances for which the
runs were terminated by the time limit of one hour, GH could perform 110
times more iterations than LP. MF-MC increased the running time over GH
per iteration on average by about 120% and MF-GC by about 290%. They
are thus substantially faster than LP but still considerably slower than GH. In

1 available at https://www.ads.tuwien.ac.at/w/Research/Problem Instances
2 http://www.citybikewien.at/
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contrast, the combined strategy increases the average runtime only moderately
by about 20%. Thus, the number of iterations COMB could perform for the
larger instances where it has been terminated by the run time limit was not
dramatically lower than the iteration number of GH.

Concerning the total number of instances on which an algorithm performed
best (sum of all #best) COMB is the clear winner with 755 instances, followed
by GH and MF-GC with the same value of 709 instances, and closely behind MF-
MC with 704 instances. Final objective values give a similar picture although
observed differences are generally very small. Wilcoxon signed-rank tests indicate
the statistical significance of the superiority of COMB over all other approaches
and that LP is dominated by all other approaches with error probabilities of less
than 3%.

It is relatively hard to derive more detailed conclusions of the performances
w.r.t. the parameters |V |, |L|, and t̂, but we can observe the general tendency
that LP can only compete on small instances, while GH, MF-MC, MF-GC, and
COMB perform comparably well over the whole range of benchmark instances.

7 Conclusions and Future Work

We presented a new method for calculating proven optimal loading instructions
for given routes to be used within a heuristic VNS framework for obtaining ap-
proximate solutions for the static problem of balancing a bicycle sharing system.
This method, called MF-GC, is not restricted by monotonicity and is based on
two sequential maximum-flow calculations and a final phase for minimizing the
number of loading operations. The experiments performed have shown that this
new method is in practice substantially faster than LP. The VNS with MF-GC is
therefore able to perform much more iterations than with LP in reasonable time,
and consequently significantly better final solutions are obtained. Nevertheless,
the greedy heuristic calculation of loading instructions is still a very strong com-
petitor, since it is even faster and yields results that are typically very close
to optimal, despite the fact that it produces only monotonic solutions. These
results also show, that only infrequently significant advantages can be gained
by exploiting non-monotonicity, i.e., by using stations as buffers or transferring
bikes from one vehicle to another.

Finally, we applied the strategies GH, MF-MC, and MF-GC in combination,
controlled by an additionally introduced VND-neighborhood structure. This ap-
proach turned out to exploit the benefits of the individual strategies in a bene-
ficial way – it applies the more expensive MF-MC and MF-GC only on a more
regular basis when an advantage could already be gained in a predecessor solu-
tion. This approach performed best with high statistical significance, although
objective value differences still remain small.

In future work we want to investigate further large neighborhood structures
that might be based on ejection chains or mixed integer programming. Fur-
thermore the underlying problem definition needs to be extended to cover the
dynamic case, in which bikes rented and brought back during the rebalancing
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process are also considered. As these demands are not exactly known in advance,
this extended problem variant becomes a stochastic online problem.
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