
Enhancing Genetic Algorithms by a Trie-Based
Complete Solution Archive

Günther R. Raidl and Bin Hu

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Favoritenstraße 9–11/1861, 1040 Vienna, Austria
{raidl|hu}@ads.tuwien.ac.at

Abstract. Genetic algorithms (GAs) share a common weakness with
most other metaheuristics: Candidate solutions are in general revisited
multiple times, lowering diversity and wasting precious CPU time. We
propose a complete solution archive based on a special binary trie struc-
ture for GAs with binary representations that efficiently stores all eval-
uated solutions during the heuristic search. Solutions that would later
be revisited are detected and effectively transformed into similar yet un-
considered candidate solutions. The archive’s relevant insert, find, and
transform operations all run in time O(l) where l is the length of the so-
lution representation. From a theoretical point of view, the archive turns
the GA into a complete algorithm with a clear termination condition and
bounded run time. Computational results are presented for Royal Road
functions and NK landscapes, indicating the practical advantages.

Key words: genetic algorithms, solution archive, revisits, tries

1 Introduction

Genetic algorithms (GAs) [7] are population-based metaheuristics for solving
difficult optimization problems. This popular class of evolutionary algorithms
often is able to find good approximate solutions within a huge search space in
relatively short computation times. However, a drawback of GAs is that they
usually do not keep track of the search history, and already evaluated solutions
are often revisited. This in particular holds when the used selection pressure is
rather high, the population size only moderate, or the variation operators do not
introduce much innovation. In the extreme case, the population’s diversity drops
strongly and the GA gets stuck by creating almost only duplicates of a small
set of leading candidate solutions, called super-individuals. In such a situation of
premature convergence, it becomes very obvious that the heuristic search is not
performing well anymore, and something must be changed in the GA’s setup.
However, also in scenarios which are believed to be rather well-configured, so-
lutions are sometimes revisited and evaluated multiple times. Especially when
the evaluation function is costly in terms of running time, such reconsidera-



generate a new solution

continue with the solution pass the solution back insert the solution into the trie

check whether the solution is in the
trie already

No

Yes

classical GA trie

forward solution to
the trie

transform the solution into
a not yet contained one

Fig. 1. Cooperation between GA and trie.

tions of the same candidate solutions may degrade performance substantially;
re-evaluation in a general sense is a clear waste of precious computation time1.

Various kinds of population management strategies have been suggested in
literature to counteract premature convergence and to ensure a reasonable di-
versity in the population. They also reduce the number of revisits but are in
general not able to completely avoid them. Rejecting new candidate solutions
that are already contained in the current population of a steady-state GA of-
ten improves the situation and increases performance; it is therefore considered
a good default strategy by many researchers. See e.g. [15] for a study in this
respect. Nevertheless, revisits are obviously not entirely avoided in this way.

We consider a complete solution archive based on a memory-efficient trie data
structure for GAs with binary solution representations in order to (a) efficiently
detect already evaluated candidate solutions and to (b) efficiently transform
them by typically small adaptations into yet unconsidered candidate solutions.
Figure 1 illustrates how this archive is attached to the GA. In principle, this
archive turns the GA into a complete optimization approach, which from a the-
oretical point of view is guaranteed to find an optimal solution in bounded time.

The computational overhead introduced by the archive is relatively low: The
essential operations of inserting a new candidate solution, checking whether or
not a new candidate solution is already contained in the archive, and transform-
ing an already contained solution can all be performed in time O(l), where l is
the number of bits the binary solution representation has. Thus, the asymptotic
time complexity of each iteration of the GA is not increased.

2 Related Work

Roland [17], for example, has shown that diversity loss through duplicates is a
serious weakness in the steady-state GA model. He also proposed a simple way
of removing duplicates by using a hash table to store all solutions currently in
the population [16]. Going even further, Mauldin [12] compares newly generated
solutions to all members of the population by their Hamming distance in order
to select solutions for removal, hereby maintaining even higher diversity. Many

1 with the exception of dynamic or stochastic scenarios where multiple evaluations
might be intended to acquire updated or more reliable objective values.



similar approaches can be found in literature, however, they only take into ac-
count solutions of the current population and do not maintain a memory for the
search history.

Looking more generally onto the field of heuristic search techniques, the
popular tabu search (TS) [5] metaheuristic actually is based on the concept
of maintaining a memory, usually called tabu list, that keeps track of the search
progress in order to avoid cycling. Different kinds of memories are used, but
typically only attributes of recently performed moves are recorded and used to
forbid moves into parts of the search space. Usually, these tabu lists also have
restricted length, and an appropriate choice of this length parameter often is a
non-trivial task. Too long tabu lists may restrict the search too strongly, while
too short lists will not effectively avoid cycles. The trend goes towards adaptive
parameter control mechanisms, as e.g. in reactive tabu search [2]. Of course all
these attribute-based TS approaches are not guaranteed to entirely avoid revisits.

Only very few TS approaches exist where entire solutions are directly or indi-
rectly recorded in a memory and precisely those moves that would yield revisits
are forbidden during the remaining search. The reverse elimination method [5] is
one such example to realize what may be called strict tabu search. It is, however,
relatively slow as at iteration n it requires a computation of order O(n) to check
whether or not a move is allowed. Therefore, Battiti and Tecchiolli [2] suggest to
use classical hashing methods, see e.g. [1], or a digital tree [9] instead, by which
the essential insertion and find operations can be performed in (expected) time
O(l), thus only depending on the size of the binary representation.

Battiti and Tecchiolli [2], however, further argue that such strict TS ap-
proaches might not work well in general as they often converge very slowly for
problems where the local optima are surrounded by large basins of attractions,
i.e., by large sets of candidate solutions that converge to the local optimum when
performing local search. This slow convergence is related to a slow “basin fill-
ing” effect. Well-tuned attribute-based approaches in which larger parts of the
search space are temporarily disallowed are therefore typically more effective. In
addition, global optima might even become unreachable because of the creation
of barriers consisting of already visited solutions. We believe that these negative
aspects also require careful attention in the context of an archive-enhanced GA.
However, the possible implications are obviously substantially less critical, as in
contrast to TS a GA also includes other mechanisms for diverting the search and
jumping over barriers (i.e., recombination and mutation).

Focusing again on evolutionary algorithms, solution archives have been used
in general for several different purposes. Sometimes, elite solutions are explicitly
stored in order to re-use them later in some way for improving search per-
formance, see e.g. [4]. In particular in evolutionary algorithms for multiobjec-
tive optimization, explicit solution archives are frequently used for storing non-
dominated pareto-optimal solutions [3]. The idea of caching objective values of
visited solutions in order to avoid re-evaluations when they are revisited is quite
natural in particular when the evaluation function is costly. For example Louis
and Li [11] suggest to store solutions in a binary tree in such cases. Among



others, Kratica [10] and Ronald [16] described similar caching approaches us-
ing hash tables. Depending on the time effort of the objective function and the
frequency of revisits, the total computation time can be lowered substantially.
However, revisits are not prevented (or rejected) in these methods.

Aiming at completely avoiding revisits in a GA targeted towards continuous
optimization problems, Yuen and Chow [19] proposed to use an archive based
on a k-d tree data structure for storing all visited solution. When encountering a
revisit, the corresponding solution is mutated in a special way in order to always
derive a new, yet unvisited solution. This approach actually comes closest to
the concept we pursue in the current work. Differences are, however, that we
concentrate on a discrete binary search space and our trie-based approach is
extended by certain features (e.g., randomization) in order to avoid a strong
biasing when modifying already visited solutions.

More detailed, preliminary results of the current work can be found in the
master thesis of Sramko [18], which has been supervised by the first author of
the current work. In a follow-up master thesis by Zaubzer [20], the trie-based
archive has been applied to a memetic algorithm for the multidimensional knap-
sack problem. Here, the knapsack constraints make the situation more compli-
cated. Substantial problem-specific extensions have thus been considered for the
archive in order to only produce candidate solutions on the boundary of the fea-
sible region. Depending on the test instances and configuration, some benefits
could be observed when using this archive. However, due to the strong repair
and local improvement procedures embedded in this memetic algorithm, general
advantages turned out to be rather small. Nevertheless, also this work gives a
clear indication that the basic idea of enhancing a GA by a trie-based complete
solution archive might be promising for many kinds of problems.

3 Trie-Based Solution Archive

We propose a solution archive for GAs based on a binary trie. This archive is,
in principle, more generally applicable to metaheuristics for problems in which
solutions are encoded as binary strings.

Tries are a class of data structures that are typically used to efficiently store a
possibly very large set of strings [6]. Applications lie e.g. in language dictionaries
for spell checking and translation or the indexing of documents for allowing
a fast search. Different variants of tries exist, but they all have in common
that the computational complexity of the essential insert and find operations
only depends linearly on the string-length of the respective key, i.e., it is in
O(l). In comparison, balanced binary search trees would require O(l log n) time
for these operations and typically also require significantly more memory. Hash
tables are w.r.t. insert and find in the expected case similarly efficient as binary
tries, i.e., they also only require O(l) time, but they do not allow an efficient
implementation of a transform operation that modifies an already stored solution
into a similar new one. It shall also be remarked that digital trees [9] exhibit
strong similarities to binary tries.



x

level 1

level 2

level 3

x

/

/

0

1

root

Fig. 2. Trie T containing solu-
tions 010 and all with x1 = 1.

root

x

level 1

level 2

level 3

x

/

x

x

/ x

0

1

0

root

Fig. 3. Pruning the subtrie containing solu-
tions 010 and 011.

3.1 Basic trie structure

The basic version of our binary trie is simple. It is a binary tree T of maximum
height l. Each trie node ti at level i = 1, . . . , l has identical structure: It consists
of two entries ti.next[0] and ti.next[1] which are either pointers referring to
successor nodes at the next level or are set to the flags complete or empty. The
root node t1 refers to the whole binary space {0, 1}l and each other trie node
ti, i > 1, to a well-defined part of it: Considering binary vectors (i.e., candidate
solutions) x = (x1, x2, . . . , xl) ∈ {0, 1}l, entries ti.next[0] and ti.next[1] of a node
ti always partition the corresponding space into the two subspaces containing
those vectors with xi = 0 and xi = 1, respectively. Thus, the i-th bit of a vector
x decides whether to go “left” or “right” at level i. An entry of empty means
that none of the vectors lying in the corresponding subspace is yet contained
in the trie, while an entry complete indicates the case that all corresponding
vectors are contained (i.e., these solutions have already been visited by the GA).
Figure 2 shows an exemplary trie containing the solution 010 and all solutions
with x1 = 1 (‘x’ denotes the complete-flag and ‘/’ the empty-flag).

To check whether or not a solution x is stored in T , the search algorithm
steps down the trie beginning at the root and follows ti.next[xi] in each level
i. If a complete-flag is encountered during this process, x is contained in T ; if
empty is encountered, x has not yet been inserted.

Adding new, not yet contained solutions works similarly, but new trie nodes
must eventually be created when encountering an empty flag, and after consid-
ering the last bit a corresponding complete-flag is stored.

An important principle to keep the trie small is to prune a subtrie when all
solutions corresponding to it have been added, i.e., if ti.next[0] = ti.next[1] =
complete, the respective pointer to ti in the previous level is replaced by a com-
plete-flag; see Fig. 3, where 011 has additionally been inserted. The special sit-
uation that the root pointer becomes complete thus indicates that all solutions
of the whole search space have been added, and the GA can be terminated
returning its best found solution as (proven) optimum.

3.2 Avoiding revisits by transforming solutions

One of the most important features of our solution archive is the ability to
transform an already contained solution x, which would lead to a revisit in the



GA, into a typically similar but yet unconsidered solution x′. By “similar” we
mean that the Hamming distance between x and x′ is low. Considering the
example of Fig. 2, if the GA’s variation operators yield x = 010 again, this
solution can be modified to x′ = 011, which is then inserted in T leading to the
situation shown in Fig. 3.

More generally, the basic idea of the transformation is to go back to some
previous node at the search path of x whose alternate branch p.next[1 − xi] 6=
complete, i.e., contains at least one yet unconsidered solution. Here, at this de-
viation position, we set xi = 1− xi and go down this alternate subtrie following
the remaining bits of x whenever possible, i.e., unless we encounter a complete-
flag in which case we choose again the alternate branch that must contain at
least one unconsidered solution. We distinguish two algorithm variants w.r.t. the
selection of the deviation position:

Deepest Position Transformation (DPT): In this basic variant the last
(deepest possible) deviation position is always chosen. While this method
probably is the most straight-forward one, it has the disadvantage of a strong
biasing towards modifying bits at higher positions while keeping bits at lower
positions unchanged. In fact, only when large portions of the search space
have already been covered, bits at lower positions will be considered.

Random Position Transformation (RPT): To substantially reduce the
above mentioned biasing, a random choice from all feasible deviation posi-
tions is made in the RPT algorithm variant. Otherwise, this method behaves
in the same way as DPT.

A more detailed pseudo-code covering both transformation variants is given
in Algorithm 1. We first search for x, then go back to the deviation point and
go down once more in order to insert the transformed solution. The algorithm
can be implemented in time O(l).

3.3 Randomized trie structure

Using the basic trie structure where trie nodes on level i are always bounded to
the bits on the i-th position has a significant weakness. Especially when using
DPT for handling duplicates, we already observed that there is a strong bias
towards some genes being changed much more frequently than others. In par-
ticular, bits at higher positions are always tried to be modified first. This bias
typically results in repeated, rigid patterns when visualizing visited solutions in
the search space. In general, when an intensive search around an incumbent solu-
tion has been performed and the trie is already moderately filled, the transform
operation might need to flip not just the single bit at the deviation point but
more bits in the course of finding a yet unconsidered solution, resulting in larger
Hamming distances. As DPT considers the positions always in the strictly same
order, this effect is significantly amplified, and transformed solutions with larger
distances, i.e., less similar solutions, are created earlier and/or more frequently.
This behavior can be compared with the well-known effect of primary clustering
in hash tables when using linear probing as collision handling strategy.



Algorithm 1: Transform Solution

Input: solution x = (x1, . . . , xl); algorithm variant var ∈ {DPT, RPT}
p = root ; devpoints = ()
// search for x storing possible deviation positions in devpoints
i = 1
while i ≤ l and p 6= complete do

if p.next[1− xi] 6= complete then
devpoints = devpoints ∪ (i, p)

p = p.next[xi]
i = i + 1

if var = DPT then
(i, p) = last entry of devpoints // go back to last feasible deviation position

else
(i, p) = random entry from devpoints // go back to a random dev. position

xi = 1− xi // actually deviate by flipping bit i
while i ≤ l do

if p.next[xi] == complete then
xi = 1− xi

if p.next[xi] == empty then
p.next[xi]=new trie node (empty , empty)

q = p
p = p.next[xi]
i = i + 1

q.next[xi] = complete // insert transformed x in T
prune trie nodes of type (complete, complete) bottom up
return x

The described RPT variant reduces these weaknesses substantially, but it is
still not able to avoid a biasing entirely. As an alternative or additional improve-
ment, we consider the randomization of the trie structure itself. The idea is to
use individual, in general different bit orders on different search paths of the trie.
Trie nodes at depth i are no longer related to the bit at position i, i.e., xi, but a
deterministic pseudo random (or hash) function is used to calculate the specific
bit position j related to a given trie node ti in dependence of the whole path
from the root to ti. Fig. 4 illustrates this randomized trie variant. One must be
careful in the choice of the underlying pseudo random function. For example,
classical Park-Miller random number generators are unsuitable as there are cor-
relations between input and output data. We used the “pseudo data-encryption
standard” algorithm ran4 [14].

4 Computational Results

We present test results on two classes of standard benchmark problems from the
binary domain: The Royal Road functions and NK fitness landscapes.

A more-or-less standard steady-state GA was used, which derives in each
iteration one new solution by performing tournament selection with replacement,



level 1

level 2

level 3

/

/

/

x /

/

/

/ x

/level 4

level 5

x4

x3

x5

x1

x2

x5

x2

x1

x3

x3

x1

x /

root

Fig. 4. Solutions 01100, 10011, 01111 in a trie with randomized structure. Nodes are
labeled by their related bits of the solution vector.

Table 1. Considered GA variants.

algorithm trie transformation trie structure

std not used – –
tdb used deepest position basic
trb used random position basic
tdr used deepest position randomized
trr used random position randomized

always applying single point crossover, and mutating each bit with probability
1/l. This new solution always replaces the population’s worst solution. When the
archive is attached, classical mutation is turned off and replaced by the transform
operation of the archive in the case already visited solutions are obtained from
crossover. Initial solutions were randomly created, the population size was 100,
and the tournament selection group size 10. We compare the GA-variants and
trie configurations summarized in Table 1.

In case the solution archive is not used (variant std), a classical duplicate
elimination strategy as described in [16] is applied in the GA, i.e., a newly derived
solution is only accepted in the population if it is different to all other solutions
therein and discarded otherwise. The necessary duplicate-checks are efficiently
performed by means of a hash table. Tests without any duplicate elimination
and without the suggested archive yielded consistently clearly worse results, and
we therefore do not include them here. All experiments were performed on a
Pentium 4, 2.8 GHz PC with 1GB RAM.

4.1 Results on Royal Road functions

Royal Road functions were specifically designed for evaluating GAs with their
crossover operators by Mitchell et al. [13]. They are defined for binary strings
x ∈ {0, 1}l on a set of hierarchically created schemas S = {s1, s2, . . . , sn}, and
the objective is to maximize

∑
s∈S o(s)σs(x), where o(s) is the order of schema

s (i.e., the number of defined bits) and σs(x) is the binary indicator-function



Table 2. Results on Royal Road functions.

instance std tdb trb tdr trr
b r avg sd avg sd avg sd avg sd avg sd

3 4 36.00 0.00 36.00 0.00 36.00 0.00 36.00 0.00 36.00 0.00
4 4 48.00 0.00 48.00 0.00 48.00 0.00 48.00 0.00 48.00 0.00
5 4 60.00 0.00 60.00 0.00 60.00 0.00 59.30 4.95 60.00 0.00
6 4 62.88 18.71 64.32 16.58 68.52 11.94 68.28 12.94 68.64 11.51
3 8 96.00 0.00 96.00 0.00 96.00 0.00 96.00 0.00 96.00 0.00
4 8 124.40 14.39 126.80 8.49 124.40 14.39 125.60 11.88 128.00 0.00
5 8 103.50 45.41 115.40 43.22 115.20 42.89 110.60 42.64 125.30 44.01
6 8 73.80 35.16 92.64 36.95 81.72 51.38 77.76 38.06 81.84 44.88
3 16 206.28 45.43 215.76 41.31 217.68 40.12 226.98 32.60 219.54 38.92
4 16 148.08 43.99 160.08 55.48 166.16 63.70 168.00 66.07 153.44 55.26
5 16 106.50 37.95 100.00 38.69 104.50 38.61 93.00 32.09 102.30 41.46
6 16 70.44 30.52 79.44 41.81 74.16 29.34 74.52 29.50 82.68 35.01

Table 3. Royal Road functions: Averages over all instances and Wilcoxon rank sum
tests for each pair of GA-variants.

alg avg time transforms .vs std .vs tdb .vs trb .vs tdr .vs trr

std 92.96 0.02s – – 0.9953 0.9942 0.9677 0.9996
tdb 99.54 0.03s 312 0.0047 – 0.3854 0.2901 0.6849
trb 99.36 0.05s 297 0.0058 0.6150 – 0.3609 0.7099
tdr 98.67 0.03s 307 0.0323 0.7102 0.6394 – 0.9122
trr 100.15 0.05s 301 0.0004 0.3154 0.2904 0.0879 –

yielding 1 if x matches s and 0 otherwise. For details on S we refer to [13]; let
b be the order of the smallest basic building blocks in S and r = l/b be the
number of them.

Table 2 lists results on differently parameterized Royal Road functions. All
runs are terminated after 1000 iterations. Average final solution values (avg) and
corresponding standard deviations (sd) of 100 independent runs are printed for
each test case. Best values are marked bold.

Table 3 additionally lists the following total results over all considered Royal
Road functions: Average objective values, average elapsed CPU-times when
the best solutions were identified, the number of solution transformations (i.e.,
avoided revisits), and for each pair of GA variants the error probability of a one-
sided Wilcoxon rank sum test for the assumption that one GA-variant performs
better than the other.

We can observe that the GA without the trie archive performs worst in
general. Among the different trie-variants, performance differences are rather
small, but using the random deviation transformation and the randomized trie
structure leads to noticeable improvements.

4.2 Results on NK landscapes

Introduced by Kauffman [8], NK landscapes serve as another popular benchmark
suit for GAs with binary representations. The goal is to maximize the function

F (x) =
1
N

N∑
i=1

fi(xi1 , xi2 , . . . , xiK
)



Table 4. Results on NK landscapes (random neighbors) over N ∈ {20, 50, 100, 300},
10s CPU-time limit.

std tdb trb tdr trr
K avg sd avg sd avg sd avg sd avg sd

1 0.7090 0.0285 0.7089 0.0288 0.7086 0.0288 0.7092 0.0286 0.7089 0.0288
2 0.7351 0.0220 0.7354 0.0217 0.7364 0.0219 0.7361 0.0217 0.7365 0.0216
5 0.7603 0.0222 0.7623 0.0222 0.7611 0.0219 0.7609 0.0219 0.7633 0.0211
6 0.7628 0.0232 0.7631 0.0239 0.7641 0.0227 0.7645 0.0226 0.7649 0.0225
7 0.7595 0.0223 0.7583 0.0217 0.7592 0.0211 0.7607 0.0216 0.7600 0.0219
8 0.7567 0.0241 0.7583 0.0249 0.7582 0.0244 0.7597 0.0232 0.7608 0.0245
9 0.7545 0.0219 0.7526 0.0239 0.7557 0.0212 0.7560 0.0244 0.7571 0.0228

10 0.7505 0.0231 0.7522 0.0247 0.7507 0.0269 0.7543 0.0248 0.7528 0.0267

Table 5. NK landscapes (random neighbors): Averages over all instances and Wilcoxon
rank sum tests for each pair of GA-variants, 10s absolute time limit.

alg avg sd time transforms .vs std .vs tdb .vs trb .vs tdr .vs trr

std 0.7485 0.0290 3.47s – – 0.6851 0.9420 1.0000 1.0000
tdb 0.7489 0.0295 3.53s 52215 0.3149 – 0.8358 0.9999 1.0000
trb 0.7492 0.0294 3.69s 49602 0.0580 0.1643 – 0.9994 1.0000
tdr 0.7502 0.0294 3.48s 54003 0.0000 0.0001 0.0006 – 0.8472
trr 0.7506 0.0298 3.79s 50718 0.0000 0.0000 0.0000 0.1529 –

with x ∈ {0, 1}N . Each subfunction fi takes gene xi and K neighboring genes
xi1 , xi2 , . . . , xiK

into account and returns a value in [0, 1] according to a random
value table. Hence there are N tables of size 2K+1 from which the values are
read out. With increasing K, the coupling between particular genes rises and the
problem becomes more complex. Two variants exist for choosing the neighboring
genes xi1 , xi2 , . . . , xiK

: the adjacent neighbors version, where these genes are the
closest ones to xi, and the random neighbors version, where they are selected
randomly distributed among all x1, . . . , xN . We examine the NP-hard latter one.

Parameter N was set to 20, 50, 100 and 300 and K to 1, 2, 5, 6, 7, 8, 9 and
10. For each combination, we performed 50 independent runs and each run was
terminated after 10s. Since the final solution values for different N but the same
K are relatively similar, we decided to present here only accumulated results
grouped by K due to space reasons. Table 4 shows these average final solution
values and corresponding standard deviations for the standard GA and the four
trie-enhanced variants. Though the average objective values here are close, the
advantage of the trie is very obvious. In particular, the GA variant using the ran-
dom deviation transformation together with the randomized trie structure was
able to generate best average results most of the time. This becomes even more
evident in Table 5 where average values over all K together with pairwise error
probabilities of Wilcoxon rank sum tests are presented analogously to Table 3.

5 Conclusions and Future Work

In this paper we suggested the use of a complete solution archive based on a
binary trie data structure for genetic algorithms using classical binary string



representations. The archive stores all solutions visited during the optimization
process in a relatively compact way and provides the essential insert and find
operations in time O(l), i.e., independently of the number of already visited so-
lutions. In contrast to classical objective value caching strategies, the archive
further provides a new transform operation, which changes already visited can-
didate solutions effectively into in general similar but yet unvisited solutions.
This procedure also runs in time O(l). Randomized variants of this transforma-
tion procedure and the trie structure itself were proposed in order to minimize
a biasing towards genes in certain positions being changed more frequently than
others. From a theoretical point-of-view, a nice property is that the solution
archive turns the GA into a complete optimization approach with a well-defined
termination condition and bounded runtime.

Tests were performed on Royal Road functions and NK fitness landscapes.
Although differences are not too large, we could observe that the use of the
archive in general led to significantly better results and only moderate runtime
increases. Especially the randomization of the transform operation and the trie
structure also proved to be advantageous. More generally, we consider the pro-
posed solution archive particularly promising for problems with expensive objec-
tive functions and relatively small search spaces, where solutions would otherwise
be frequently revisited. There, the additional computational effort introduced by
the archive becomes neglectable and the advantages can be expected to increase.

Further investigations and tests on more types of problems are necessary. In
future work, we intend to study the application of trie-based solution archives
in particular on hybrid GAs including e.g. local search or repair components
for more complex optimization problems. This also includes problems where so-
lutions are represented in other ways than binary strings. For them, the trie
must be adapted appropriately. Constraints of a problem might further impose
additional challenges on the trie and in particular its solution transform op-
erator. For the multidimensional knapsack problem, some positive preliminary
results have already been obtained [20]. Furthermore, we are currently working
on archive-extended approaches for generalized network design problems where
two dual representations are used at the same time. We also believe that it is
promising to consider such trie-based solution archives for other metaheuristics
besides GAs.

Last but not least, a particularly interesting aspect is the possibility to addi-
tionally calculate lower bounds (when considering a minimization problem) for
individual subtries and to prune them (i.e., mark as completed) when this lower
bound exceeds the objective value of the so far best solution. In this way, our
approach becomes related to the well-known concept of branch-and-bound.

Acknowledgements

We thank Andrej Sramko, who helped in the implementation of the described
concepts and did the testing as part of his master thesis [18]. This work is further
supported by the Austrian Science Fund (FWF) under contract nr. P20342-N13.



References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms.
Addison-Wesley, 1985.

2. R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal on Com-
puting, 6:126–140, 1994.

3. K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, 2008.
4. V. B. Gantovnik, C. M. Anderson-Cook, Z. Grdal, and L. T. Watson. A genetic

algorithm with memory for mixed discrete-continuous design optimization. Com-
puters and Structures, 81:2003–2009, 2003.

5. F. Glover. Tabu search - part II. ORSA Journal on Computing, 2(1):4–32, 1990.
6. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, 1997.
7. J. Holland. Adaptation In Natural and Artificial Systems. University of Michigan

Press, 1975.
8. S. A. Kauffman. The Origins of Order: Self-Organization and Selection in Evolu-

tion. Oxford University Press, 1993.
9. D. E. Knuth. The Art of Computer Programming Vol. III: Sorting and Searching.

Addison-Wesley, 1973.
10. J. Kratica. Improving performances of the genetic algorithm by caching. Computers

and Artificial Intelligence, 18(3):271–283, 1999.
11. S. J. Louis and G. Li. Combining robot control strategies using genetic algorithms

with memory. In Lecture Notes in Computer Science, Evolutionary Programming
VI, pages 431–442. Springer, 1997.

12. M. L. Mauldin. Maintaining diversity in genetic search. In AAAI, pages 247–250,
1984.

13. M. Mitchell, S. Forrest, and J. H. Holland. The royal road for genetic algorithms:
Fitness landscapes and GA performance. In F. J. Varela and P. Bourgine, editors,
Towards a Practice of Autonomous Systems: Proceedings of the First European
Conference on Artificial Life, pages 245–254. MIT Press, 1992.

14. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press, 2nd
edition, 1992.

15. G. R. Raidl and J. Gottlieb. On the importance of phenotypic duplicate elimination
in decoder-based evolutionary algorithms. In S. Brave and A. S. Wu, editors, Late
Breaking Papers at the 1999 Genetic and Evolutionary Computation Conference,
pages 204–211, Orlando, FL, 1999.

16. S. Ronald. Complex systems: Mechanism of adaption. In R. Stonier and X. H. Yu,
editors, Complex Systems: Mechanism of Adaptation, pages 133–140, Amsterdam,
1994. IOS Press.

17. S. Ronald. Duplicate genotypes in a genetic algorithm. In D. B. Fogel, H. P.
Schwefel, T. Bck, and X. Yao, editors, IEEE World Congress on Computational
Intelligence (WCCI 98), pages 793–798, 1998.

18. A. Sramko. Enhancing a genetic algorithm by a complete solution archive based on
a trie data structure. Master’s thesis, Vienna University of Technology, Institute
of Computer Graphic s and Algorithms, Vienna, Austria, February 2009.

19. S. Y. Yuen and C. K. Chow. A non-revisiting genetic algorithm. In IEEE Congress
on Evolutionary Computation (CEC 2007), pages 4583–4590. IEEE Press, 2007.

20. S. Zaubzer. A complete archive genetic algorithm for the multidimensional knap-
sack problem. Master’s thesis, Vienna University of Technology, Institute of Com-
puter Graphics and Algorithms, Vienna, Austria, May 2008.


