A Lagrangian Relax-and-Cut Approach for the
Bounded Diameter Minimum Spanning Tree Problem

Ginther R. Raidl and Martin Gruber

Institute of Computer Graphics and Algorithms, Vienna University of Technology,
Favoritenstrasse 9—11/186, 1040 Vienna, Austria, {raidl |gruber}@ads.tuwien.ac.at

Abstract. We consider the problem of finding for a given weighted graph a minimum cost spanning tree whose diameter does
not exceed a specified upper bound. This problem is NP-hard and has several applications, e.g. when designing communication
networks and quality of service is of concern. We model the problem as an integer linear program (ILP) using so-called jump
inequalities. As the number of these constraints grows exponentially with the problem size, directly solving this ILP is no
viable option. Instead, we relax them in a Lagrangian fashion and further apply a cutting plane algorithm for only separating
violated inequalities on demand. This relax-and-cut approach yields relatively tight lower bounds also for larger problem
instances where existing exact techniques are not applicable anymore. High quality feasible solutions, i.e. upper bounds, are
obtained by a repair heuristic in combination with a powerful variable neighborhood descent strategy.
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INTRODUCTION

We are given an undirected graph G = (V, E) with node set V and edge set E; each edge (u,v) € E has associated costs
cuy > 0. Our objective is to find a spanning tree T = (V,Er), Er C E, whose diameter (i.e., the number of edges on
any path) does not exceed a specified upper bound D (4 < D < [V|— 1) and whose total costs ¢(T) = Y., ek Cuv are
minimal. This problem is known as the bounded diameter minimum spanning tree (BDMST) problem, and it has been
shown to be NP-hard [5]. Applications exist in communication network design when quality of service is of concern
and the number of intermediate nodes on communication routes should be limited, in ad-hoc wireless networks, but
also in the areas of data compression and distributed mutual exclusion algorithms.

The BDMST problem therefore already received much attention. Existing exact solution approaches primarily
utilize (mixed) integer linear programming (ILP). In particular, strong hop-indexed multi-commodity network flow
models have been described in [6, 7]. Their linear programming (LP) relaxations yield tight lower bounds, but due to
the huge number of variables, they are only applicable to relatively small instances. Recently, we described a branch-
and-cut algorithm that scales better but also has its limits w.r.t. problem size [8]. To approach larger instances, rather
simple greedy construction heuristics and more sophisticated metaheuristics have been suggested. Among the leading
metaheuristics are an ant colony optimization and an evolutionary algorithm which are both based on a special level
encoding of candidate solutions and strong local improvement procedures [9].

Related to the BDMST problem is the hop-constrained minimum spanning tree (HCMST) problem, in which a
root node is fixed and the number of hops (edges) on the paths to each other node is limited [3]. Recently, a promising
Lagrangian relax-and-cut algorithm has been described for this problem [2]. We adapt and extend this approach for the
BDMST problem and further combine it with the local improvement procedures from [9] in order to obtain reasonable
lower bounds together with high-quality feasible solutions also for larger BDMST instances in acceptable running
times. Further information on our work including detailed experimental results can be found in the master thesis of
Ferdinand Zaubzer [12], who was mainly responsible for implementing our approach.

THE JUMP MODEL FOR THE BDMST PROBLEM

We first define an extended directed graph G* = (V*,A™). The node set VT corresponds to V except that we now
have an additional artificial root node r, i.e. V™ =V U {r}. Arc set AT is derived by including for each undirected



edge (u,v) € E two reversely directed arcs (u,v) and (v,u) with the same costs ¢, = ¢y,; furthermore, the root r is
connected to each other node v € V by an arc (r,v) with costs ¢, = 0.

Let us first consider the case when the diameter bound D is even. Our model uses decision variables x,, , € {0,1},
V(u,v) € AT, indicating whether or not arc (u,v) is part of the solution. An edge of the original graph G is finally
chosen iff one of its corresponding directed arcs of G is selected. Furthermore, let AR be the set of all incidence
vectors on AT corresponding to feasible spanning arborescences (i.e. outgoing spanning trees) rooted at r.

We can now formulate the even-diameter BDMST problem as follows:

minimize Y, cuvxun (D
(u,v)EAT
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The objective is to minimize the total costs of chosen arcs (1), while vector x must describe a feasible arborescence
(2). Equation (3) additionally ensures that there is exactly one outgoing arc from the root r to the node that will form
the center of the BDMST (i.e., a node with minimum eccentricity). Constraints (4) are the so-called jump inequalities
and impose a hop-limit of H = D/2+ 1 on the paths from r to any other node v € V [2]. They work as follows: Consider
a partitioning P of V™ into H + 2 pairwise disjoint non-empty sets Sy to Sy with r € Sgy. Let o(v) denote the index
of the partition a node v is assigned to. Jump J(P) is defined as the set of arcs (u,v) € AT with 6(u) < o(v) — 1, i.e.
J(P) contains all arcs leading from a partition to a higher indexed one and skipping at least one in-between. The jump
inequality associated with this partitioning states that at least one of these arcs in J(P) must appear. Otherwise, there
would be a path connecting the root contained in Sy to a node in Sy with length H 4 1 violating the hop constraint.
Such jump inequalities must hold for all possible partitionings P(V ') of V* with r € S.

In case the diameter bound D is odd, a BDMST has a center edge instead of a single center node. We define further
variables z,,,, € {0,1}, ¥(u,v) € E, indicating which edge forms this center, and adapt our model as follows:

minimize Z Cuy  Xuy + Z Cuy* Zuy (5)
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The objective function (5) is extended by also considering the costs of the center edge. Now, two arcs must lead from
the root node to two center nodes (7), and these two nodes must be incident to the center edge (8). The arborescence
condition (6) and the jump inequalities (9) remain unchanged, but now H = (D+1)/2.

LAGRANGIAN RELAXATION AND THE RELAX-AND-CUT ALGORITHM

We approach the described formulations by relaxing the jump inequalities in a Lagrangian fashion. Thus, these
constraints are removed and the objective function is augmented by corresponding penalty terms. For the even diameter
case this yields

minimize Z Cuy Xuy+ Z Ap (1— Z xuﬁv)z Z Oy Xy + Z Ap, (10)
(u,v) €A+ PEP(V+) (u)ed (P) (u,v)eA+ PEP(V+)

where 04, = cuy — Xpep(v+)|uv)es(p) A are the reduced arc costs. For any setting of Lagrange factors Ap > 0, the
optimal solution value of the relaxed problem corresponds to a lower bound of our original BDMST problem, and our
aim is to find Lagrange factors that maximize this lower bound.



Considering a specific choice of Lagrange factors, the relaxed problem is not NP-hard anymore but can be solved
efficiently. When D is even, we temporarily increase the reduced costs of all arcs incident to the root by a sufficiently
large value M and apply Edmonds’ algorithm to find a minimum spanning arborescence [4]. Due to the large arc
costs, the root node will only have one outgoing arc and condition (3) will be satisfied. In case of an odd diameter,
our subproblem involves finding a minimum cost triangle tree, i.e. an arborescence with two arcs emerging from the
root node plus the (undirected) central edge connecting the two target nodes. We iteratively try each edge (u,v) € E
as center, temporarily shrink it with r into a new “super” root node inducing base costs ¢, + 0., + 0.,, and apply
Edmonds’ algorithm to obtain the remaining arborescence. The overall cheapest triangle tree is returned. Of course,
this approach is significantly more expensive than the method for the even diameter case. It can, however, be sped up
substantially by processing the potential center edges in decreasing base cost order and aborting Edmonds’ algorithm
as soon as a lower bound of the total costs exceeds the so far best solution’s costs. An alternative for handling the odd
diameter case is to also relax equations (7) and (8) in a Lagrangian fashion. Then, only a simple minimum arborescence
must be found as subproblem, but the obtainable lower bound is in general weaker.

Knowing now how to solve the Lagrangian subproblems efficiently, the next challenge is to find suitable Lagrange
factors Ap yielding a largest possible lower bound. As this task is a concave piecewise linear optimization problem, a
subgradient algorithms is traditionally used for this purpose [1].

There is, however, a fundamental remaining problem: The number of jump inequalities depends exponentially on
|V|, and therefore it is in practice not possible to directly consider all of them in our objective function. Instead, we
apply the principle of relax-and-cut [11] similarly as it has been described for the HCMST in [2]. Our algorithm
only considers a very restricted pool of partitionings P'(V*) C P(V') and corresponding jump inequalities. New
jump inequalities that are violated by the current solution after solving the relaxed problem for a particular set of
Lagrange factors are determined by a separation procedure and added to the pool P'(V ™). On the other hand, when
P'(V1) exceeds a given size, jump constraints that have not been violated for at least a certain number of iterations
are removed. The separation of violated jump inequalities is based on the detection of paths that exceed the hop limit,
which is straight-forward. An initial pool of jump inequalities is derived by a dual ascent heuristic. In contrast to [2],
we found that a non-delayed relax-and-cut scheme [11] is more efficient in our case than a delayed approach.

FINDING PRIMAL SOLUTIONS

Lagrangian relaxation is primarily a technique for obtaining lower bounds; feasible solutions to the original problem
corresponding to upper bounds are often not directly obtained. In our case, the relax-and-cut algorithm occasionally
finds solutions that are also feasible for the original BDMST problem. Usually, these solutions are, however, only of
moderate quality when compared to final solutions of the leading metaheuristics. Therefore, we decided to incorporate
local improvement strategies from [9] into our relax-and-cut. More precisely, a so-called variable neighborhood
descent (VND) algorithm is performed on the trees obtained as intermediate results in regular intervals. VND is
an extension of local search in which several different neighborhood structures are utilized in a systematic way [10] in
order to obtain a solution that is locally optimal w.r.t. all these neighborhood structures.

First of all, eventually infeasible solutions containing paths from the root longer than [D/2] + 1 arcs are repaired and
improved by a greedy heuristic that reconnects nodes in the order of their original depths to their locally best feasible
predecessors. Then, VND is applied with a best improvement strategy using the following neighborhood structures [9]:

Arc exchange neighborhood: Neighboring solutions are all feasible arborescences that differ from the current solu-
tion in exactly one arc.

Node swap neighborhood: This neighborhood contains all solutions that are obtained by exchanging in the tree
structure the position of a node with one of its direct successors.

Level change neighborhood: Neighboring solutions are obtained by increasing or decreasing the depth of a node by
one. The node as well as all its former direct successors are reconnected in a locally optimal way by choosing
cheapest arcs.

Center exchange neighborhood: In neighboring solutions, the center nodes are replaced by other nodes. Former
center nodes are newly connected by cheapest possible arcs.

Improved primal solutions also have a positive impact on the subgradient algorithm: As it updates the Lagrange
factors in dependence of an estimation of the optimal solution value, tighter upper bounds (which are obtained from
the improved primal solutions) speed up the convergence.



EXPERIMENTAL RESULTS

We tested the described approach on standard BDMST benchmark instances including pure random and Euclidean
instances involving sparse and complete graphs with even diameter bounds D € {4,6,8,10}. Detailed results can be
found in the master thesis of Zaubzer [12]. For smaller instances with up to 30 nodes and 200 edges and known
optima, the algorithm was almost always able to find these optimal solutions. For larger complete graphs on 81 nodes
the percentage gaps between lower and upper bounds ranged between 10% and 16%. Tests with odd diameter bounds
are ongoing work.

CONCLUSIONS AND FUTURE WORK

In this work we proposed a Lagrangian relax-and-cut algorithm based on a strong ILP formulation for the BDMST
problem. Besides lower bounds high quality feasible solutions can be found also for problem instances that are too
large to be solved by today’s leading exact techniques. An essential feature is the integration of the relax-and-cut
method with the variable neighborhood descent metaheuristic for improving candidate solutions. Both algorithms
benefit from each other: VND is started with promising initial solutions obtained from the Lagrangian relaxation,
while relax-and-cut benefits from the improved upper bounds.

In currently ongoing work we investigate even more sophisticated hybrid strategies: For example, the ant colony
optimization from [9] is performed with the subgradient algorithm in an intertwined way and the (intermediate)
reduced costs of the Lagrangian relaxation are exploited in the solution construction process of the ant colony
optimization as heuristic information. Such concepts of hybridizing ILP techniques with metaheuristics are also highly
promising for other combinatorial optimization problems.

ACKNOWLEDGMENTS

This work is supported by the Austrian Science Fund under grant 811378 and by the Austrian Exchange Service
(Acciones Integradas, grant 13/2006). We further thank Ferdinand Zaubzer who primarily implemented and tested the
described algorithms as part of his master thesis.

REFERENCES

1. J. E. Beasley. Lagrangian relaxation. In C. R. Reeves, editor, Modern Heuristic Techniques for Combinatorial Problems,
pages 243-303. John Wiley & Sons, Inc., New York, 1993.

2. G.Dahl, T. Flatberg, N. Foldnes, and L. Gouveia. Hop-constrained spanning trees: The jump formulation and a relax-and-cut
method. Technical report, University of Oslo, Centre of Mathematics for Applications (CMA), Oslo, Norway, 2005.

3. G.Dahl L. Gouveia, and C. Requejo. On formulations and methods for the hop-constrained minimum spanning tree problem.
In Handbook of Optimization in Telecommunications, chapter 19, pages 493-515. Springer, 2006.

4. J. Edmonds. Optimum branchings. Journal of Research of the National Bureau of Standards B, 71B:233-240, 1967.

5. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman,
New York, 1979.

6. L. Gouveia and T. L. Magnanti. Network flow models for designing diameter-constrained minimum spanning and Steiner
trees. Networks, 41(3):159-173, 2003.

7. L. Gouveia, T. L. Magnanti, and C. Requejo. An intersecting tree model for odd-diameter-constrained minimum spanning and
Steiner trees. Annals of Operations Research, 146(1):19-39, 2006.

8. M. Gruber and G. R. Raidl. Heuristic cut separation in a branch&cut approach for the bounded diameter minimum spanning
tree problem. In Proc. of the Int. Symposium on Applications and the Internet, Turku, Finland, to appear 2008.

9. M. Gruber, J. van Hemert, and G. R. Raidl. Neighborhood searches for the bounded diameter minimum spanning tree
problem embedded in a VNS, EA, and ACO. In M. Keijzer et al., editors, Proc. of the Genetic and Evolutionary Computation
Conference 2006, volume 2, pages 1187-1194, 2006.

10. P. Hansen and N. Mladenovi¢. An introduction to variable neighborhood search. In S. Vo8, S. Martello, I. Osman, and
C. Roucairol, editors, Meta-heuristics, Advances and Trends in Local Search Paradigms for Optimization, pages 433—458.
Kluwer Academic Publishers, 1999.

11. A.Lucena. Non delayed relax-and-cut algorithms. Annals of Operations Research, 140(1):375-410, 2005.

12. F. Zaubzer. Lagrangian relax-and-cut and hybrid methods for the bounded diameter and the hop constrained minimum
spanning tree problems. Master’s thesis, Vienna University of Technology, May 2008.



