
Metaheuristic Hybrids

Günther R. Raidl, Jakob Puchinger, and Christian Blum

Abstract Over the last years, so-called hybrid optimization approaches have be-
come increasingly popular for addressing hard optimization problems. In fact, when
looking at leading applications of metaheuristics for complex real-world scenarios,
many if not most of them do not purely adhere to one specific classical metaheuristic
model but rather combine different algorithmic techniques. Concepts from different
metaheuristics are often hybridized with each other, but they are also often combined
with other optimization techniques such as branch-and-bound and methods from the
mathematical programming and constraint programming fields. Such combinations
aim at exploiting the particular advantages of the individual components, and in fact
well-designed hybrids often perform substantially better than their “pure” counter-
parts. Many very different ways of hybridizing metaheuristics are described in the
literature, and unfortunately it is usually difficult to decide which approach(es) are
most appropriate in a particular situation. This chapter gives an overview on this
topic by starting with a classification of metaheuristic hybrids and then discussing
several prominent design templates which are illustrated by concrete examples.

Günther R. Raidl
Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria,
e-mail: raidl@ads.tuwien.ac.at

Jakob Puchinger
NICTA Victoria Laboratory, University of Melbourne, Australia,
e-mail: jakobp@csse.unimelb.edu.au

Christian Blum
ALBCOM Research Group, Universitat Politècnica de Catalunya, Barcelona, Spain,
e-mail: cblum@lsi.upc.edu

1



2 G. R. Raidl, J. Puchinger, and C. Blum

1 Introduction

Most of the other chapters of this book illustrate the existence of a large number of
different metaheuristics. Simulated annealing, tabu search, evolutionary algorithms
such as genetic algorithms and evolution strategies, ant colony optimization, particle
swarm optimization, scatter search, path relinking, the greedy randomized adaptive
search procedure, multi-start and iterated local search, and variable neighborhood
search are—among others—prominent examples. Each of them has an individual
historical background, follows certain paradigms and philosophies, and puts one or
more particular strategic concepts in the foreground.

Over the last years a large number of algorithms were reported that do not purely
follow the concepts of one single traditional metaheuristic, but they combine var-
ious algorithmic ideas, often originating from other branches of optimization and
soft-computing. These approaches are commonly referred to as metaheuristic hy-
brids or hybrid metaheuristics. Note that the lack of a precise definition of these
terms is sometimes subject to criticism. In our opinion, however, the relatively open
nature of these terms is rather helpful, as strict borderlines between related fields
of research are often a hindrance for creative thinking and the exploration of new
research directions.

The motivation behind hybridizations of different algorithmic concepts is usu-
ally to obtain better performing systems that exploit and unite advantages of the
individual pure strategies; i.e. such hybrids are believed to benefit from synergy. In
fact, today it seems that choosing an adequate combination of multiple algorithmic
concepts is the key for achieving top performance in solving most difficult prob-
lems. The vastly increasing number of reported applications of metaheuristic hy-
brids and dedicated scientific events such as the Workshops on Hybrid Metaheuris-
tics [7, 15, 12, 22], the Workshops on Matheuristics [53, 64], and the conferences on
the Integration of AI and OR Techniques in Constraint Programming for Combina-
torial Optimization Problems [74] document the popularity, success, and importance
of this specific line of research.

The idea of hybridizing metaheuristics is not new but dates back to their origins.
At the beginning, however, such combinations were not very popular since several
relatively strongly separated and sometimes competing communities of researchers
existed who tended to consider “their” favorite class of metaheuristics generally
superior to others and dogmatically followed their specific philosophies. For exam-
ple the evolutionary computation community grew up quite isolated and followed
quite strictly the biologically inspired thinking. The situation changed, according
to many researchers, with the no free lunch theorems [104] when people recog-
nized that there cannot exist a general optimization strategy which is always better
than any other. In fact, solving a specific problem most effectively almost always re-
quires a particularly tuned algorithm that is compiled of an adequate combination of
sometimes very problem specific parts often originating from different metaheuris-
tics and other algorithmic techniques. Exploiting problem specific knowledge in the
best possible ways, picking the right algorithmic components, and combining them
in the most appropriate way are key ingredients for leading optimization algorithms.



Metaheuristic Hybrids 3

Unfortunately, developing a highly effective hybrid approach is in general a dif-
ficult task and sometimes even considered an art. Nevertheless, there are several
strategies that have proven successful on many occasions, and they can provide
some guidance. In the next section, we will start with a general classification of
metaheuristic hybrids. The following sections will discuss the most prominent algo-
rithmic templates of combinations and illustrate them with selected examples from
the literature. For a more comprehensive review on hybrid metaheuristics, we rec-
ommend the book by Blum et al. [20].

2 Classification

Several classifications and taxonomies of hybrid metaheuristics can be found in the
literature. Here we primarily follow the classification from Raidl [87] that com-
bines aspects of the taxonomy introduced by Talbi [94] with the points-of-view
from Cotta [29] and Blum et al. [21]. Differentiations with regard to parallel meta-
heuristics and hybridization of metaheuristics with exact optimization techniques
are adopted from El-Abd and Kamel [37] and from Puchinger and Raidl [81], re-
spectively. Figure 1 illustrates our classification.

We primarily distinguish hybrid metaheuristics according to four criteria, namely
the kinds of algorithms that are hybridized, the level of hybridization, the order of
execution, and the control strategy.

Hybridized algorithms. First, one might combine (parts of) different metaheuris-
tic (MH) strategies, which is probably the most common approach. Second,
highly problem specific algorithms, such as entire simulations for acquiring the
quality of candidate solutions, are sometimes used in conjunction with meta-
heuristics. As a third class we consider the combination of metaheuristics with
other more general techniques coming from fields like operations research (OR)
and artificial intelligence (AI). Here, we can further distinguish between combi-
nations with exact techniques or with other heuristics and soft-computing meth-
ods. Prominent examples for exact techniques that are often very successfully
combined with metaheuristics are tree-search based methods such as branch-and-
bound (B&B), dynamic programming, linear programming (LP) and mixed inte-
ger programming (MIP) methods as well as nonlinear programming techniques,
and constraint programming (CP). For a survey dedicated to combinations of
metaheuristics with MIP techniques see [88], for an overview on combinations
of local search based methods with CP see [45], and for a review on combina-
tions of local search methods with exact techniques see [36]. Examples of other
heuristic and soft-computing techniques include neural networks, fuzzy logic,
and several statistical techniques. As a fourth class we want to mention the com-
bination of metaheuristics with a human interaction component, called human
guided search. In particular for problems where it is difficult to quantify the qual-
ity of solutions in mathematically precise ways, where candidate solutions can be



4 G. R. Raidl, J. Puchinger, and C. Blum

Fig. 1 Classification of metaheuristic (MH) hybrids based on Raidl [87].



Metaheuristic Hybrids 5

well visualized, and where human intuition and intelligence present a particular
advantage, such interactive systems are often highly effective in practice [60].

Level of hybridization. Hybrid metaheuristics can further be differentiated ac-
cording to the level (or strength) at which the individual algorithms are coupled:
High-level combinations retain in principle the individual identities of the orig-
inal algorithms and cooperate over a relatively well defined interface; there is
no direct, strong relationship of the internal workings of the algorithms. On the
contrary, algorithms in low-level combinations strongly depend on each other;
individual components or functions of the algorithms are exchanged.

Order of execution. In the simplest case, the batch execution, the individual al-
gorithms are performed in a sequential way, and results of the first algorithm
are used as input for the second. More sophisticated approaches apply the in-
dividual algorithms in an intertwined or even parallel way, and information is
exchanged more frequently, usually in a bidirectional way. Parallel metaheuris-
tics are an important research area by themselves and independent classifications
of hybrid parallel approaches have been proposed in [6, 37]. They distinguish the
following major criteria: (a) the architecture (SIMD: single instruction, multiple
data streams versus MIMD: multiple instructions, multiple data streams), (b) the
granularity of parallelization (fine- or coarse-grained), (c) the hardware (homo-
geneous or heterogeneous), (d) the memory (shared or distributed), (e) task and
data allocation (static or dynamic), and (f) whether the parallel processes run
asynchronously or are synchronized in some way.

Control strategy. Last but not least, we distinguish metaheuristic hybrids accord-
ing to their control strategy, which can be either integrative (coercive) or collab-
orative (cooperative).
In the extremely popular integrative case, one algorithm is the subordinate, em-
bedded component of another. Examples include the local improvement of can-
didate solutions by an inner optimization algorithm (as in memetic algorithms,
see also Section 3), special techniques for searching large neighborhoods (see
Section 9.1), indirect or incomplete representations relying on decoders (see Sec-
tion 5), and intelligent merging (recombination) of solutions (see Section 6).
In contrast, in collaborative approaches the individual algorithms exchange infor-
mation but are not part of each other. For example, the popular island model [26]
for parallelizing evolutionary algorithms is of this type. Collaborative approaches
can further be classified into homogeneous approaches, where several instances
of one and the same algorithm are performed (as in traditional island models),
and heterogeneous approaches. An example for the latter are asynchronous teams
(A-Teams) [95]: An A-Team consists of a collection of agents and memories con-
nected into a strongly cyclic directed network. Each of these agents is an opti-
mization algorithm that works asynchronously on the target problem, on a relax-
ation of it, i.e. a superproblem, or on a subproblem. Information is exchanged via
shared memory. Denzinger and Offermann [32] presented a similar multi-agent
approach for achieving cooperation between search algorithms following differ-



6 G. R. Raidl, J. Puchinger, and C. Blum

ent search paradigms, such as B&B and evolutionary algorithms. Especially in
collaborative combinations, another question is which search spaces are actually
explored by the individual algorithms. Implicit decomposition results from dif-
ferent initial solutions, parameter settings, or random decisions, while an explicit
decomposition is obtained when each algorithm works on its individually defined
subspace. Effectively decomposing large problems is often an important issue in
practice. Occasionally, problems decompose in a relatively natural way, see Sec-
tions 4 and 9, but most often finding a strong decomposition into weakly related
or even unrelated subproblems is a difficult task, and (self-)adaptive schemes are
sometimes applied.

Starting with the next section, we will consider several templates of implement-
ing metaheuristic hybrids, which have successfully been applied on many occasions.

3 Finding Initial or Improved Solutions by Embedded Methods

The most natural way of hybridizing two optimization algorithms is probably to
embed one algorithm into another for obtaining either promising starting solutions
or for possibly improving intermediate solutions.

Problem-specific construction heuristics are often used for finding initial solu-
tions which are then further improved by local search or metaheuristics. A fre-
quently applied and more general strategy for obtaining initial solutions is to solve a
relaxation of the original problem (e.g. the LP relaxation) and eventually repair the
obtained solution in some heuristic way. Examples of such approaches can also be
found in Section 7.

The Greedy Randomized Adaptive Search Procedure (GRASP) [40] systemat-
ically extends the principle of locally improving a starting solution by iterating a
randomized construction process, and each of the resulting solutions is then used as
a starting point for local search.

The so-called proximate optimality principle (POP) was first mentioned by
Glover and Laguna in the context of tabu search [48]. It refers to the general in-
tuition that good solutions are likely to have a similar structure and can therefore be
found close to each other in the search space. Fleurent and Glover transfered this
principle in [44] from complete to partial solutions in the context of GRASP. They
suggested that mistakes introduced during the construction process may be undone
by applying local search during (and not only at the end of) the GRASP construction
phase. They proposed a practical implementation of POP in GRASP by applying lo-
cal search at a few stages of the construction phase only. Another application of this
concept can be found in [14] for the job shop scheduling problem.

Often local search procedures or more sophisticated improvement algorithms are
applied within an outer metaheuristic for “fine-tuning” intermediate candidate so-
lutions. While the outer metaheuristic is responsible for diversification, the inner
improvement algorithm focuses on intensification. For example, most memetic al-



Metaheuristic Hybrids 7

gorithms [69] rely on this principle: The outer metaheuristic is an evolutionary al-
gorithm, and intermediate candidate solutions are locally improved. If each inter-
mediate solution is always turned into a local optimum, the evolutionary algorithm
exclusively searches the space of local optima (w.r.t. the neighborhood structure of
the inner local improvement procedure) only. Memetic algorithms are often more
successful than simple evolutionary algorithms, because intensification is typically
considered a weakness of traditional evolutionary algorithms. By adjusting how
much effort is spent in the local improvement, one can tune the balance between
intensification and diversification. Note that the inner local improvement does not
always have to be just a simple local search. Occasionally, more sophisticated strate-
gies like tabu search or even exact techniques for solving a restricted problem are
applied. This also leads to the related large neighborhood search methods, which
we will consider in Section 9.1.

Another example is Variable Neighborhood Search (VNS) [55], where each can-
didate solution undergoes some kind of local improvement and a hierarchy of differ-
ent neighborhood structures is utilized. Especially in general variable neighborhood
search, a more sophisticated variable neighborhood descent is uses as the inner lo-
cal improvement procedure.

Considering exact techniques, B&B approaches strongly rely on good upper and
lower bounds in order to prune the search tree as strongly as possible. Metaheuristic
techniques are frequently applied to obtain a promising initial solution or to improve
intermediate solutions in order to find tight(er) bounds. Sections 6 and 8 contain
several examples such as [31, 91] that also fall into this category.

4 Multi-Stage Approaches

Some optimization approaches consist of multiple sequentially performed stages,
and different techniques are applied at the individual stages.

In many complex real-world applications, the problem naturally decomposes into
multiple levels. If the decision variables associated with the lower level(s) have a
significantly weaker impact on the objective value than the higher-level variables or
if the impact of these variable sets is only loosely correlated, it is a very reasonable
approach to optimize the individual levels in a strictly sequential manner. Different
techniques can be applied at the individual levels yielding simple but often very
effective hybrid approaches.

For example, for certain vehicle routing applications where the aim is to deliver
goods to customers, it may be a meaningful approach to first partition the customers
into groups which are then independently treated by finding appropriate delivery
tours; finally, the drivers’ specific time-plans are derived from these tours. For cer-
tain job scheduling problems, it might be feasible to first assign the jobs to machines
and then independently optimize the schedules for each machine. For large com-
munication network design problems it might be wise to first optimize a possibly
redundant backbone infrastructure, then design the individual local access network



8 G. R. Raidl, J. Puchinger, and C. Blum

structures, and finally decide about the concrete cable laying and technical parame-
ters such as the capacities of the individual links.

We remark that in practice such multi-stage approaches will usually not lead to
optimal solutions, as the sequentially solved subproblems are typically not indepen-
dent. However, for many complicated real-world problems of large size, as for ex-
ample when designing a communication infrastructure for a larger city, a multi-stage
approach is the only viable choice. Furthermore, multi-stage approaches are often
very meaningful for relatively quickly finding first approximate solutions. There-
fore, they are frequently used in practice.

Multi-stage approaches are sometimes even applied when such a problem de-
composition is not so obvious but results in algorithmic advantages. Classical pre-
processing techniques, where the problem is usually reduced to a hard-to-solve core
by applying certain problem specific simplification strategies, are an example.

A more general, systematic approach is based on tools from the field of parame-
terized complexity. It offers both a framework of complexity analysis and toolkits
for algorithm design. One of the tools for algorithm design is known as problem
kernelization. The idea is to reduce a given problem instance in polynomial time
to a so-called problem kernel such that an optimal solution to the problem kernel
can, in polynomial time, be transformed into an optimal solution to the original
problem instance. In [47], Gilmour and Dras propose several different ways of using
the information given by the kernel of a problem instance for making ant colony
system more efficient for solving the minimum vertex cover problem. The most
intuitive version applies the ant colony system directly to the problem kernel and
subsequently transforms the best solution obtained for the kernel into a solution to
the original problem instance.

Multi-level refinement strategies [101] can also be considered as a special class
of multi-stage approaches. They involve a recursive coarsening to create a hierar-
chy of approximations to the original problem. An initial solution is identified for
the coarsest level and is then iteratively refined at each level—coarsest to finest—
typically by using some kind of (meta-)heuristic at each level. Solution extension
operators transfer the solution from one level to the next. In iterated multi-level al-
gorithms, solutions are not just refined but occasionally also re-coarsened, and the
refinement process is iterated. These strategies have been successfully applied on
several problems including multilevel graph partitioning, graph coloring, very large
traveling salesman problems, vehicle routing, and DNA sequencing.

Variable fixing strategies where variables of the original problem are fixed to
certain values (according to some, usually heuristic, criterion) to perform the op-
timization over a restricted search space are also related to the above mentioned
strategies. Examples of effective variable fixing strategies are the core concepts for
knapsack problems [77, 85].

Some approaches determine a set of (complete) initial solutions by a first stage
method and apply one (or even more) other technique(s) for further improving upon
them. For example, occasionally a metaheuristic is used for finding a pool of diverse
high-quality solutions, and merging is performed to identify a single final solution



Metaheuristic Hybrids 9

combining the particularly beneficial properties of the intermediate solutions. We
will consider merging in more detail in Section 6.

Tamura et al. [96] tackle a job-shop scheduling problem and start from its ILP
formulation. For each variable, they take the range of possible values and partition it
into a set of subranges, which are then indexed. The encoded solutions of a genetic
algorithm (GA) are defined so that each position represents a variable, and its value
corresponds to the index of one of the subranges. The fitness of such a chromosome
is calculated using Lagrangian relaxation in order to obtain a bound on the optimal
solution subject to constraints on the variable values which must fall within the
represented ranges. When the GA terminates, an exhaustive search of the region
identified as the most promising is carried out in a second stage.

A special kind of a sequential combination of B&B and a GA is described by
Nagar et al [70] for a two-machine flow-shop scheduling problem. Candidate so-
lutions are represented as permutations of jobs. In the first stage, B&B is executed
down to a predetermined branching depth k and suitable bounds are calculated and
recorded at each node of the explicitly stored B&B tree. During the execution of the
GA in the second stage, each partial solution up to position k is mapped onto the
corresponding tree node. If the associated bounds indicate that no path below this
node can lead to an optimal solution, the permutation undergoes a mutation that has
been specifically designed to change the early part in a favorable way.

In [99], Vasquez and Hao present a two-stage approach for tackling the 0-1
multi-dimensional knapsack problem (MKP). Given n items and m resources, each
object has an associated profit ci and resource consumptions ai, j, ∀i = 1, . . . ,n,
∀ j = 1, . . . ,m, and each resource has a capacity b j. The goal of the MKP is to choose
a subset of the n objects such that its total profit is maximized without violating the
capacity constraints. In the ILP formulation of the MKP, a binary variable xi ∈ {0,1}
is defined for each object. In the first stage of the proposed hybrid solution method
a series of LP relaxations with additional constraints is solved. They are of the form
∑

n
i=1 xi = k where k ∈ {kmin, . . . ,kmax}, i.e. the number of items to be selected is

fixed to k. Each setting of k defines an LP that is solved to optimality. In the second
stage of the process, tabu search is used to search for better solutions around the
usually non-integral optimal solutions of the kmax−kmin +1 LPs. The approach has
been improved in [100] by additional variable fixing.

A combination of tabu search and CP for the job-shop scheduling problem is pre-
sented by Watson and Beck [102]. First an iterated simple tabu search [103] is run
for a limited time. The best resulting solutions are used for initializing a solution-
guided multi-point constructive search (SGMPCS) [13]. SGMPCS is a recent al-
gorithm combining CP tree search with the population concept of metaheuristics.
In the CP tree search, a single variable is chosen (variable-ordering heuristic) and
assigned a value (value-ordering heuristic). The domains of the remaining variables
are reduced accordingly and another variable is chosen, repeating the process as
long as unassigned variables exist or until the partial solution becomes infeasible,
in which case backtracking to the last choice-point is performed. The main idea of
SGMPCS is to perform a standard tree search that is restarted if the number of fail-
ures exceeds a certain limit. The value-ordering heuristic is partly determined by an



10 G. R. Raidl, J. Puchinger, and C. Blum

incumbent solution: If the value of the chosen variable in this solution is allowed
by its current domain, the variable is assigned that value; else another value is cho-
sen using another kind of value-ordering heuristic. SGMPCS maintains a small set
of solutions which is updated in an elitist way. The tree search is restarted with a
randomly chosen solution from the set until a stopping criterion is met.

5 Decoder Based Approaches

The hybrid metaheuristic design template considered in this section is particularly
popular for problems where solutions must fulfill certain constraints and a fast con-
struction heuristic yielding feasible solutions exists. In decoder based approaches,
a candidate solution is represented in an indirect or incomplete way and a problem
specific decoding algorithm is applied for transforming the encoded solution into
a complete feasible solution. This principle is often applied in evolutionary algo-
rithms, where encoded solutions are denoted as genotypes and the decoded counter-
parts are called phenotypes [51].

A prominent, quite generic way of indirectly representing solutions is by means
of permutations of solution attributes. The decoder is then usually a greedy construc-
tion heuristic which composes a solution by trying to add the solution attributes in
the order given by the permutation, i.e. the order of an attribute in the permutation
is the greedy criterion. Cutting and packing problems are examples where such de-
coder based methods are frequently used [59]. The overall performance obviously
depends strongly on the quality and the speed of the decoder. Such approaches are
often straightforward and relatively easy to implement, in particular as standard
metaheuristics with traditional neighborhoods for permutations can directly be ap-
plied. On the downside, more elaborate metaheuristics based on direct encodings
and tuned problem specific operators are often likely to achieve better performance,
as they might exploit problem specific features in better ways.

Especially attractive are decoder based approaches where the decoder is a more
sophisticated algorithm rather than a simple construction procedure. For example, a
mixed integer linear programming problem (MIP) can be approached by splitting the
variables into the integral and continuous parts. One can then apply a metaheuristic
to optimize the integer part only; for each candidate solution, corresponding optimal
fractional variable values are efficiently determined by solving the remaining LP.
Such approaches are described in conjunction with GRASP by Neto and Pedroso
[71] and in conjunction with tabu search by Pedroso [73].

Glover [49] proposed an alternative parametric tabu search for heuristically solv-
ing MIPs. A current search point is indirectly represented by the solution to the LP
relaxation of the MIP plus additional goal conditions that restrict the domains of a
subset of the integer variables. Instead of considering the goal conditions directly as
hard constraints when applying an LP solver, they are relaxed and brought into the
objective function similarly as in Lagrangian relaxation. In this way, the approach
can also be applied to problems where it is hard to find any feasible integer solution.



Metaheuristic Hybrids 11

The approach further uses a variety of intensification and diversification strategies
based on adaptive tabu memory in order to make the heuristic search more efficient.

Besides problem specific heuristics and LP solvers, other efficient techniques are
sometimes used as a decoder to augment incompletely represented solutions. For
example, Hu and Raidl [58] consider the generalized traveling salesman problem
in which a clustered graph is given and a shortest tour visiting exactly one node
from each cluster is requested. Their approach is based on VNS and represents a
candidate solution in two different ways: On the one hand, a permutation of clusters
is given, representing the order in which the clusters are to be visited. A dynamic
programming procedure is used as decoder to derive a corresponding optimal selec-
tion of particular nodes. On the other hand, only the unordered set of selected nodes
from each cluster is given, and the classical chained Lin-Kernighan heuristic for
the traveling salesman problem [66] is uses as a decoder to obtain a corresponding
high-quality tour. The VNS uses several types of neighborhood structures defined
for each representations.

Last but not least, decoder-based approaches have recently been used in ant
colony optimization (ACO). For example, Blum and Blesa [19] present a decoder-
based ACO for the general k-cardinality tree problem. Given an undirected graph,
this problem involves finding among all trees with exactly k edges a tree such that a
certain objective function is minimized. In contrast to a standard ACO algorithm that
constructs trees (i.e. solutions) with exactly k edges, the decoder-based approach
of [19] builds l-cardinality trees, where l > k. Subsequently, an efficient dynamic
programming algorithm is applied for finding the best k-cardinality tree that is con-
tained in the l-cardinality tree. Results show that this approach has clear advantages
over standard ACO approaches.

6 Solution Merging

The basic idea of solution merging is to derive a new, hopefully better solution from
the attributes appearing in two or more promising input solutions. The observation
that high-quality solutions usually have many attributes in common is exploited.

In the simplest form, this operation corresponds to the classical recombination
(crossover) which is considered the primary operator in GAs: Usually two parent
solutions are selected and an offspring is constructed by inheriting attributes from
both of them based on random decisions. While such an operation is computation-
ally cheap, created offspring are often worse than the respective parents, and many
repetitions are usually necessary for achieving strong improvements.

Alternatively, one can put more effort into the determination of such offspring.
An established technique is path relinking [50]. It traces a path in the search space
from one parent to a second by always exchanging only a single attribute (or more
generally by performing a move in a simple neighborhood structure towards the tar-
get parent). An overall best solution found on this path is finally taken as offspring.



12 G. R. Raidl, J. Puchinger, and C. Blum

This concept can further be extended by considering not just solutions on an
individual path between two parents, but the whole subspace of solutions defined
by the joined attributes appearing in a set of two or more input solutions. An op-
timal merging operation returns a best solution from this subspace, i.e. it identifies
a best possible combination of the ancestors’ features that can be attained without
introducing new attributes. Depending on the underlying problem, identifying such
an optimal offspring is often a hard optimization problem on its own, but due to
the limited number of different properties appearing in the parents, it can often be
solved in reasonable time in practice.

Applegate et al. [8, 9] were among the first to apply more sophisticated merging
in practice. For the traveling salesman problem, they derive a set of different tours
by a series of runs of the chained Lin-Kernighan iterated local search algorithm. The
sets of edges of all these solutions are merged and the traveling salesman problem is
finally solved to optimality on this strongly restricted graph. Solutions are achieved
that are typically superior to the best ones obtained by the iterated local search.

Besides the one-time application of merging to a set of heuristically determined
solutions in a multi-stage way, sophisticated merging can also replace classical re-
combination in evolutionary and memetic algorithms. Aggarwal et al. [1] originally
suggested such an approach for the independent set problem. The subproblem of
identifying the largest independent set in the union of two parental independent sets
is solved exactly by an efficient algorithm. Ahuja et al. [2] apply this concept to a
GA for the quadratic assignment problem. As the optimal recombination problem
is more difficult in this case, they use a matching-based heuristic that quickly finds
high-quality offspring solutions. Optimal merging is also used by Blum [17] in the
context of an evolutionary algorithm for the k-cardinality tree problem. The indi-
viduals are trees with k edges. Crossover first combines two parent trees, producing
hereby a larger l-cardinality tree. Dynamic programming is then used to reduce this
tree to the best feasible subtree with k edges.

Eremeev [38] studies the computational complexity of producing a best possi-
ble offspring from two parents for binary representations from a theoretical point of
view. He concludes that the optimal recombination problem is polynomially solv-
able for the maximum weight set packing problem, the minimum weight set parti-
tion problem, and linear Boolean programming problems with at most two variables
per inequality. On the other hand, determining an optimal offspring is NP-hard for
0/1 integer programming with three or more variables per inequality, like the knap-
sack, set covering, and p-median problems, among others.

Cotta and Troya [30] discuss merging in the light of a more general framework
for hybridizing B&B and evolutionary algorithms. They show the usefulness of ap-
plying B&B for identifying optimal offspring on various benchmarks.

For mixed integer programming, Rothberg [91] suggests a tight integration of an
evolutionary algorithm in a branch-and-cut based MIP solver. At regular intervals
the evolutionary algorithm is applied as a B&B tree node heuristic. Optimal recom-
bination is performed by first fixing all variables that are common in the selected
parental solutions and by applying the MIP solver to this reduced subproblem. Mu-
tation selects one parent, fixes a randomly chosen subset of variables, and calls the



Metaheuristic Hybrids 13

MIP solver for determining optimal values for the remaining problem. Since the
number of variables to be fixed is a critical parameter, an adaptive scheme is applied
to control it. Experimental results indicate that this hybrid is able to find signifi-
cantly better solutions than other heuristic methods for several very difficult MIPs.
This method is integrated in the commercial MIP solver CPLEX1 since version 10.

7 Strategic Guidance of Metaheuristics by Other Techniques

Many successful hybrid metaheuristics use other optimization techniques for guid-
ing the search process. This may be done by either using information gathered by
applying other algorithms such as optimal solutions to problem relaxations; or this
may be done by directly enhancing the functionality of a metaheuristic with algorith-
mic components originating from other techniques. In the following two subsections
we give examples for both variants.

7.1 Using Information Gathered by Other Algorithms

Guiding metaheuristics using information gathered by applying other algorithms
is often a very successful approach that is commonly used. Problem relaxations,
where some or all constraints of a problem are loosened or omitted, are often used
to efficiently obtain bounds and approximate (not necessarily feasible) solutions
to the original problem. The gathered information can be utilized for guiding the
search, since an optimal solution to a relaxation often indicates in which parts of the
original problem’s search space good or even optimal solutions might be found.

Sometimes an optimal solution to a relaxation can be repaired by a problem spe-
cific procedure in order to make it feasible for the original problem and to use it
as a promising starting point for a subsequent metaheuristic (or exact) search; see
also Section 3. For example, Raidl [86] applies this idea in a GA for the MKP. The
MKP’s LP relaxation is solved and a randomized rounding procedure derives an
initial population of diverse solutions from the LP-optimum. Furthermore, the LP-
optimum is also exploited for guiding the repair of infeasible candidate solutions and
for local improvement. The variables are sorted according to increasing LP values.
The greedy repair procedure considers the variables in this order and removes items
from the knapsack until all constraints are fulfilled. In the greedy improvement pro-
cedure, items are considered in reverse order and included in the knapsack as long as
no constraint is violated. Many similar examples for exploiting LP solutions—also
including the biasing of variation operators such as recombination and mutation in
evolutionary algorithms—exist.

1 http://www.ilog.com



14 G. R. Raidl, J. Puchinger, and C. Blum

Plateau et al. [78] combine interior point methods and metaheuristics for solving
the MKP. In a first step an interior point method is performed with early termina-
tion. By rounding and applying several different ascent heuristics, a population of
different feasible candidate solutions is generated. This set of solutions is then the
initial population for a path relinking/scatter search.

Puchinger and Raidl [83] suggest a new variant of VNS: relaxation guided vari-
able neighborhood search. It is based on the general VNS scheme and a new em-
bedded variable neighborhood descent (VND) strategy utilizing different types of
neighborhood structures. For a current incumbent solution, the order in which the
neighborhoods are searched is determined dynamically by first solving relaxations
of them. The objective values of these relaxations are used as indicators for the
potential gains of searching the corresponding neighborhoods, and more promis-
ing neighborhoods are searched first. The proposed approach has been tested on
the MKP but is more generally applicable. Computational experiments involving
several types of ILP-based neighborhoods show that the adaptive neighborhood or-
dering is beneficial for the heuristic search, improving obtained results.

Occasionally, dual variable information of LP solutions is also exploited. Chu
and Beasley [25] make use of it in their GA for the MKP by calculating so-called
pseudo-utility ratios for the primal variables and using them in similar ways as de-
scribed above for the primal solution values. For the MKP, these pseudo-utility ra-
tios tend to be better indicators for the likeliness of the corresponding items to be
included in an optimal integer solution than the primal variable values and several
other measures, see [85].

Other relaxations besides the LP relaxation are occasionally also exploited in
conjunction with metaheuristics. A successful example is the hybrid Lagrangian GA
for the prize collecting Steiner tree problem from Haouari and Siala [56]. It is based
on a Lagrangian decomposition of a minimum spanning tree-like ILP formulation
of the problem. The volume algorithm, which is a special variant of subgradient
search [11], is used for solving the Lagrangian dual. After its termination, the GA
is started and exploits results obtained from the volume algorithm in several ways:
(a) The volume algorithm creates a sequence of intermediate spanning trees as a by-
product. All edges appearing in these intermediate trees are marked, and only this
reduced edge set is further considered by the GA; i.e. a core of edges is derived from
the intermediate primal results when solving the Lagrangian dual. (b) A subset of di-
verse initial solutions is created by a Lagrangian heuristic, which greedily generates
solutions based on the reduced costs appearing as intermediate results in the volume
algorithm. (c) Instead of the original objective function, an alternate one, based on
the reduced costs that are obtained by the volume algorithm, is used. The idea is to
focus the search even stronger on promising regions of the search space, where also
better solutions with respect to the original objective function can presumably be
found.

Pirkwieser et al. [76] describe a similar combination of Lagrangian decomposi-
tion and a GA for the knapsack constrained maximum spanning tree problem. The
problem is decomposed into a minimum spanning tree and a 0–1 knapsack problem.
Again, the volume algorithm is employed to solve the Lagrangian dual. While graph



Metaheuristic Hybrids 15

reduction takes place as before, the objective function remains unchanged. Instead,
final reduced costs are exploited for biasing the initialization, recombination, and
mutation operators. In addition, the best feasible solution obtained from the volume
algorithm is used as a seed in the GA’s initial population. Results indicate that the
volume algorithm alone is already able to find solutions of extremely high quality
even for large instances. These solutions are polished by the GA, and in most cases
proven optimal solutions are finally obtained.

Dowsland et al. [34] propose an approach where bounding information avail-
able from partial solutions is used to guide an evolutionary algorithm. An indirect,
order-based representation of candidate solutions is applied. Phenotypes are derived
by a specific decoding procedure which is a construction heuristic that is also able
to calculate upper bounds for intermediate partial solutions (considering a maxi-
mization problem). Given a certain target value, which is e.g. the objective value of
the so far best solution, a bound point is determined for each candidate solution in
the population: It is the first position in the genotype for which the corresponding
partial solution has a bound that is worse than the target value. A modified one-
point crossover is then guided by this bound information: The crossover point must
be chosen in the part of the first chromosome before its bound point. In this way,
recombinations definitely leading to worse offspring are avoided. The authors suc-
cessfully tested this concept on a relatively simple pallet loading problem and a
more complex two-dimensional packing problem with non-identical pieces.

7.2 Enhancing the Functionality of Metaheuristics

One of the basic ingredients of an optimization technique is a mechanism for ex-
ploring the search space. An important class of algorithms tackles an optimization
problem by exploring the search space along a so-called search tree. This class of
algorithms comprises approximate as well as complete techniques. An example of
a complete method belonging to this class is B&B. An interesting heuristic deriva-
tive of breadth-first B&B is beam search [72]. While B&B (implicitly) considers
all nodes at a certain level in the search tree, beam search restricts the search to a
certain number of nodes based on bounding information.

One relatively recent line of research deals with the incorporation of algorithmic
components originating from deterministic B&B derivatives such as beam search
into construction-based metaheuristics. Examples are the so-called Beam-ACO al-
gorithms [16, 18] and approximate and non-deterministic tree search (ANTS) pro-
cedures [62, 63]. Note that Beam-ACO can be seen as a generalization of ANTS.
In Beam-ACO, artificial ants perform a probabilistic beam search in which the ex-
tension of partial solutions is done in the ACO fashion rather than deterministically.
The existence of an accurate—and computationally inexpensive—lower bound for
the guidance of the ACO’s search process is crucial for the success of Beam-ACO.

Another successful example concerns the use of CP techniques for restricting the
search performed by an ACO algorithm to promising regions of the search space.



16 G. R. Raidl, J. Puchinger, and C. Blum

The motivation for this type of hybridization is as follows: Generally, ACO algo-
rithms are competitive with other optimization techniques when applied to problems
that are not overly constrained. However, when highly constrained problems such
as scheduling or timetabling are considered, the performance of ACO algorithms
generally degrades. Note that this is usually also the case for other metaheuristics.
The reason is to be found in the structure of the search space: When a problem
is not overly constrained, it is usually not difficult to find feasible solutions. The
difficulty rather lies in the optimization part, namely the search for good feasible
solutions. On the other side, when a problem is highly constrained the difficulty is
rather in finding any feasible solution. This is where CP comes into play, because
these problems are the target problems for CP applications. Meyer and Ernst [67]
introduced the incorporation of CP into ACO in an application to the single machine
job scheduling problem.

8 Strategic Guidance of Other Techniques by Metaheuristics

Many metaheuristics are based on the principle of local search, i.e. starting from
an initial solution, a certain neighborhood around it is investigated, and if a better
solution can be identified, it becomes the new incumbent solution; this process is
repeated. Thus, the central idea is to focus the search for better solutions on regions
of the search space nearby already identified good solutions.

In comparison, most B&B algorithms choose the next B&B tree node to be pro-
cessed by a best-first strategy: assuming minimization, a node with smallest lower
bound is always selected, since it is considered to be most promising for leading to
an optimal solution. This approach is often the best strategy for minimizing the total
number of nodes that need to be explored until finding an optimum and proving its
optimality. However, good complete solutions—and thus also tight upper bounds—
are often found late during this search. The best-first node selection strategy typ-
ically “hops around” in the search tree and in the search space, and does not stay
focused on subregions. When no strong primal heuristic is applied for determining
promising complete solutions, the best-first strategy is often combined with an ini-
tial diving, in which a depth-first strategy is followed at the beginning until some
feasible solution is obtained. In depth-first search, the next node to be processed is
always the one that has been most recently created by branching.

In the last years, several more sophisticated concepts have been proposed with
the aim to intensify B&B-search in an initial phase to neighborhoods of promising
incumbents in order to quickly identify high-quality approximate solutions. In some
sense, we can consider these strategies to “virtually” execute a metaheuristic.

Danna et al. [31] describe guided dives, which are a minor, but effective modifica-
tion of the already mentioned simple diving by temporarily switching to depth-first
search. The branch to be processed next in case of guided dives is always the one
in which the branching variable is allowed to take the value it has in an incumbent
solution. Diving is therefore biased towards the neighborhood of this solution. In-



Metaheuristic Hybrids 17

stead of performing only a single dive at the beginning, guided dives are repeatedly
applied at regular intervals during the whole optimization process. This strategy is
trivial to implement, and experimental results indicate significant advantages over
standard node selection strategies.

Fischetti and Lodi [42] propose local branching, an exact approach introducing
the spirit of classical k-OPT local search in a generic branch-and-cut based MIP
solver. The whole problem is partitioned into a k-OPT neighborhood of an initial
solution and the remaining part of the search space by applying a local branching
constraint and its inverse, respectively. The MIP solver is then forced to completely
solve the k-OPT neighborhood before considering the remainder of the problem.
If an improved solution has been found in the k-OPT neighborhood, a new sub-
problem corresponding to the k-OPT neighborhood of this new incumbent is split
off and solved in the same way; otherwise, a larger k may be tried. The process is
repeated until no further improvement can be achieved. Finally, the remaining prob-
lem corresponding to all parts of the search space not yet considered is processed in
a standard way.

Hansen et al. [55] present a variant of local branching in which they follow the
classical VNS strategy, especially for adapting the neighborhood parameter k. Im-
proved results are reported. Another variant of the original local branching scheme
is described by Fischetti et al. in [43]. They consider problems in which the set of
variables can be naturally partitioned into two levels and fixing the values of the
first-level variables yields substantially easier subproblems; cf. Section 4.

Danna et al. [31] further suggest an approach called relaxation induced neighbor-
hood search (RINS) for exploring the neighborhoods of promising MIP solutions
more intensively. The main idea is to occasionally devise a sub-MIP at a node of
the B&B tree that corresponds to a special neighborhood of an incumbent solution:
First, variables having the same values in the incumbent and in the current solution
of the LP relaxation are fixed. Second, an objective cutoff based on the objective
value of the incumbent is set. Third, a sub-MIP is solved on the remaining vari-
ables. The time for solving this sub-MIP is limited. If a better incumbent could be
found during this process, it is passed to the global MIP-search which is resumed
after the sub-MIP’s termination. In the authors’ experiments, CPLEX is the MIP
solver, and RINS is compared to standard CPLEX, local branching, combinations
of RINS and local branching, and guided dives. Results indicate that RINS often
performs best. CPLEX includes RINS as a standard strategy for quickly obtaining
good heuristic solutions since version 10.

The nested partitioning method proposed by Shi and Ólafsson [92] is another
example where a metaheuristic provides strategic guidance to another technique.
At each iteration the search focuses on a part of the search space called the most
promising region. The remaining part of the search space is called the surrounding
region. The most promising region may, for example, be characterized by a number
of fixed variables. At each step, the most promising region is divided into a fixed
number of subregions. This may be done, for example, by choosing one of the free
variables and creating a subregion for each of the variable’s possible domain value.
Each of the subregions as well as the surrounding region is then sampled. The best



18 G. R. Raidl, J. Puchinger, and C. Blum

objective function value obtained for each region is called the promising index. The
region with the best index becomes the most promising region of the next iteration.
The next most promising region is thus nested within the last one. When the sur-
rounding region is found to be the best, the method backtracks to a larger region.
The approach may be divided into four main steps: partitioning, sampling, selecting
a promising region, and backtracking. Each of these steps may be implemented in a
generic fashion, but can also be defined in a problem specific way. In particular the
sampling phase may benefit from the use of metaheuristics instead of performing a
naive random sampling. In a sense, metaheuristics can be seen as enhancements for
guiding the search process of the method. In [5], for example, ant colony optimiza-
tion is applied for sampling, whereas in [93] local search is used for this purpose.

A very different paradigm is followed in constraint-based local search [98]. It
combines the flexibility of CP concepts such as rich modeling, global constraints,
and search abstractions with the efficiency of local search. The Comet programming
language allows the modelling of combinatorial optimization problems in a rela-
tively natural way. It also provides the necessary abstractions for specifying meta-
heuristics and nondeterministic, local and hybrid search. The concept of differential
objects is an important aspect of Comet: Constraints maintain their violation and
objective functions their evaluation. They can both return information on the possi-
ble consequences of local search moves by automatically propagating changes using
so-called invariants. The separation of the model and search allows the specification
of generic search procedures such as tabu search, variable neighborhood search,
and hybrid evolutionary search [98]. The authors describe applications of various
hybrid metaheuristics to problems ranging from car sequencing and graph coloring
to scheduling. For example, a tabu search algorithm for the job shop scheduling
problem is presented, combining local search with complete enumeration as well
as limited backtracking search. Several subsequent publications show the strong re-
search interests in this direction and address issues such as distributed search [68]
and visualization [33].

9 Decomposition Approaches

Problem decomposition approaches are another category of powerful techniques for
combining different optimization techniques. Usually, a very hard-to-solve prob-
lem is decomposed into parts which can be dealt with more effectively. Some of
the multi-stage approaches which we discussed in Section 4 already follow this ba-
sic idea. Large neighborhood search, heuristic cut and column generation in mixed
integer programming, and constraint propagation by means of metaheuristics are
three other prominent instances of successful decomposition techniques, which we
consider in the following in more detail.



Metaheuristic Hybrids 19

9.1 Exploring Large Neighborhoods

A common approach in more sophisticated local search based metaheuristics is to
search neighborhoods not by naive enumeration but by clever, more efficient algo-
rithms. If the neighborhoods are chosen appropriately, they can be quite large and
nevertheless an efficient search for a best neighbor is still possible in short time.
Such techniques are known as very large-scale neighborhood (VLSN) search [3];
see also [24] for a recent survey. Many of today’s combinations of local search based
metaheuristics with dynamic programming or MIP techniques follow this scheme.
In the following, we present some examples.

In Dynasearch [27, 28] exponentially large neighborhoods are explored by dy-
namic programming. A neighborhood where the search is performed consists of all
possible combinations of mutually independent simple search steps, and one Dy-
nasearch move corresponds to a set of such simple steps that are executed in parallel
in a single local search iteration. The required independence in the context of Dy-
nasearch means that the individual simple moves do not interfere with each other; in
this case, dynamic programming can be used to find a best combination. Ergun and
Orlin [39] investigated several such neighborhoods in particular for the traveling
salesman problem.

Particular types of large neighborhoods that can also be efficiently searched by
dynamic programming are cyclic and path exchange neighborhoods [3, 4]. They
are often applied in the context of problems where items need to be partitioned into
disjoint sets. Examples of such problems are vehicle routing, capacitated minimum
spanning tree, and parallel machine scheduling. In these neighborhoods, a series
of items is exchanged between an arbitrary number of sets in a cyclic or path-like
fashion, and a best move is determined by a shortest path-like algorithm.

Pesant and Gendreau [75] describe a generic framework for combining CP and
local search. They view and model the original problem as well as the (large) neigh-
borhoods as CP problems. Each of the neighborhoods is solved via a CP-based B&B
that preserves solution feasibility. The framework allows for a relatively generic
problem modeling while providing the advantages of local search. The authors solve
a physician scheduling problem as well as the travelling salesman problem with time
windows, and they approach them by tabu search in which large neighborhoods are
searched by means of the CP-based B&B.

Puchinger et al. [84] describe a hybrid GA for a real-world glass cutting prob-
lem in which large neighborhoods are searched by means of B&B. The GA uses an
order-based representation which is decoded using a greedy heuristic. B&B is ap-
plied with a certain probability, enhancing the decoding phase by generating locally
optimal subpatterns. Reported results indicate that occasionally solving subpatterns
to optimality often increases the overall solution quality.

Quite often, large neighborhoods are described in the form of MIPs and a
MIP-solver is applied for finding a good—or the best—neighbor. For example,
Büdenbender et al. [23] present a tabu search hybrid for solving a real-world di-
rect flight network design problem. Neighborhoods are created by fixing a large
subset of the integer variables corresponding to the performed flights and allowing



20 G. R. Raidl, J. Puchinger, and C. Blum

the other variables to be changed. CPLEX is used to solve the reduced problems
corresponding to these neighborhoods. Diversification is achieved by closing flights
frequently occurring in previously devised solutions. Other examples for MIP-based
large neighborhood search can be found in Duarte et al. [35], where an iterated lo-
cal search framework is applied to a real-world referee assignment problem, and in
Prandtstetter and Raidl [79] where several different MIP-based neighborhoods are
searched within a VNS framework for a car sequencing problem.

Hu et al. [57] propose a VNS for the generalized minimum spanning tree prob-
lem. The approach uses two dual types of representations and exponentially large
neighborhood structures. Best neighbors are identified by means of dynamic pro-
gramming algorithms, and—in case of the so-called global subtree optimization
neighborhood—by solving an ILP formulation with CPLEX. Experimental results
indicate that each considered neighborhood structure contributes to the overall ex-
cellent performance.

Variable neighborhood decomposition search (VNDS) [54] is a variant of VNS
obtained by selecting the neighborhoods so as to obtain a problem decomposition.
VNDS follows the usual VNS scheme, but the neighborhood structures and the local
search are defined on subproblems rather than on the original problem. Given a solu-
tion, all but k attributes (usually variables) are kept fixed. For each k, a neighborhood
structure Nk is defined. Local search only regards changes on the variables belong-
ing to the subproblem it is applied to. Successful applications of VNDS include
the edge-weighted k-cardinality tree problem [97] and supply chain management
planning problems [61].

9.2 Cut and Column Generation by Metaheuristics

Cutting plane algorithms [105] are a powerful tool for solving complex MIPs. They
start with a relaxation of the original problem in which most of the constraints—
especially the integrality constraints—are omitted. This relaxation is solved, and
then a separation algorithm is applied for finding further constraints that are ful-
filled by an optimal solution to the original problem but are violated by the current
solution to the relaxed problem. If such constraints, called cuts, could be identified,
they are added to the relaxed LP, which is then solved again. This process is iterated
until no further cuts can be found. If the final solution is infeasible, either a heuristic
repair procedure may be applied, or the cutting plane algorithm is embedded in a
B&B framework yielding an exact branch-and-cut algorithm.

Often, the subproblem of separating a cut (i.e. finding a valid inequality violated
by the current LP solution) is difficult to solve by itself. In such cases, heuristics are
often applied, and also fast metaheuristics have already been successfully used.

One example is the work from Augerat et al. [10], which uses a hierarchy con-
sisting of a simple constructive heuristic, a randomized greedy method, and a tabu
search for separating capacity constraints within a branch-and-cut algorithm for a
capacitated vehicle routing problem. Another more recent example is the branch-



Metaheuristic Hybrids 21

and-cut algorithm for the diameter bounded minimum spanning tree problem by
Gruber and Raidl [52], in which local search and tabu search techniques are used
for separating so-called jump cuts.

One more example concerns the acceleration of Benders decomposition by local
branching, as described by Rei et al. [89]. The basic principle of Benders decom-
position is to project a MIP into the space of complicating integer variables only;
real variables and the constraints involving them are replaced by corresponding con-
straints on the integer variables. These constraints, however, are not directly avail-
able but need to be dynamically generated. According to the classical method, an
optimal solution to the relaxed master problem (including only the already separated
cuts) is needed and an LP involving this solution must be solved in order to separate
a single new cut. Rei et al. [89] improved this method by introducing phases of local
branching on the original problem in order to obtain multiple feasible heuristic so-
lutions. These solutions provide improved upper bounds on one hand, but also allow
the derivation of multiple additional cuts before the relaxed master problem needs
to be solved again.

Column generation algorithms can be seen as dual to cutting plane algorithms.
Instead of starting with a reduced set of constraints and dynamically extending it,
the set of variables (which correspond to columns in the matrix notation of the MIP)
is restricted, and further variables are iteratively added. Hereby, the essential sub-
problem, called pricing problem, is to identify variables whose inclusion will yield
an improvement. Again, the pricing problem is often difficult by itself, and applying
fast (meta-)heuristics is sometimes a meaningful option. If column generation is per-
formed within an exact LP-based B&B framework, the approach is called branch-
and-price.

Filho and Lorena [41] apply a heuristic column generation approach to graph
coloring. A GA is used to generate initial columns and to solve the pricing problem
at every iteration. Column generation is performed as long as the GA finds columns
with negative reduced costs. The master problem is solved using CPLEX. Puchinger
and Raidl [80, 82] describe an exact branch-and-price approach for the three-stage
two-dimensional bin packing problem. Fast column generation is performed by ap-
plying a hierarchy of four methods: (a) a greedy heuristic, (b) an evolutionary algo-
rithm, (c) solving a restricted form of the pricing problem using CPLEX, and finally
(d) solving the complete pricing problem using CPLEX.

9.3 Using Metaheuristics for Constraint Propagation

In CP the mechanism of constraint propagation is used to reduce the domains of
the variables at each node of the B&B search tree. Similarly to cut generation in
mixed integer programming, the search space is reduced by deducing consequences
from the current state of the search. Usually specialized and standard combinatorial
algorithms are used [65].



22 G. R. Raidl, J. Puchinger, and C. Blum

Galinier et al. [46] present a tabu search procedure to speed up filtering for gen-
eralized all-different constraints. That is:

SomeDifferent(X ,D,G) = {(a1, . . . ,an) | ai ∈ Di∧ai 6= a j∀(i, j) ∈ E(G)}

is defined over a set of variables X = {x1, . . . ,xn} with domains D = {D1, . . . ,Dn}
and an underlying graph G = (X ,E) [90]. The satisfiability of the constraint can be
tested by solving a special graph coloring problem. Tabu search is first applied to
see if it can color the graph. If it does not find a solution, an exact method is applied.
In a second step a similar tabu search procedure is used to determine a large set of
variable/value combinations that are feasible. Finally an exact filtering is applied to
the remaining variable/value pairs checking if some of them can be excluded from
the variable domains. Computational experiments show that the hybrid approach is
comparable to the state-of-the-art on data from a real-world work-force management
problem and is significantly faster on random graph instances for the SomeDifferent
constraint. The authors suppose that the idea of combining fast metaheuristics with
exact procedures can speed up filtering procedures for other NP-hard constraints as
well.

10 Summary and Conclusions

We have reviewed a large number of different possibilities for combining tradi-
tional metaheuristic strategies with each other or with algorithmic techniques com-
ing from other fields. All these possibilities have their individual pros and cons, but
the common underlying motivation is to exploit the advantages of the individual
techniques in order to obtain a more effective hybrid system, benefiting from syn-
ergy. In fact, history clearly shows that the concentration on a single metaheuristic is
rather restrictive for advancing the state-of-the-art when tackling difficult optimiza-
tion problems. Thus, designing hybrid systems for complex optimization problems
is nowadays a natural process.

On the downside, metaheuristic hybrids are usually significantly more complex
than classical “pure” strategies. The necessary development and tuning effort may
be substantially higher than when using a straightforward out-of-the-box strategy.
One should further keep in mind that a more complex hybrid algorithm does not
automatically perform better—an adequate design and appropriate tuning is always
mandatory, and the effort increases with the system’s complexity. Einstein’s advice
of “keeping things as simple as possible, but not simpler” therefore is especially
true also for metaheuristic hybrids.

We started by presenting a classification of metaheuristic hybrids in which we
pointed out the different basic characteristics. Then we discussed several commonly
used design templates. Note that these templates are not meant as a clear catego-
rization of existing hybrid approaches: Many of the referenced examples from the



Metaheuristic Hybrids 23

literature can be argued to follow more than one design template, and occasionally
the boundaries are fuzzy.

Finding initial or improved solutions by embedded methods might be the most
commonly applied approach. Multi-stage combinations are sometimes straightfor-
ward for problems that naturally decompose into multiple levels and are also other-
wise popular as they are typically easier to tune than more intertwined hybrids.
The concept of decoder-based metaheuristics is also quite popular, as they can of-
ten be implemented quickly, once an appropriate construction heuristic is available.
Solution merging was the next design template we discussed and for which numer-
ous successful examples exist. Then we considered cases where metaheuristics are
strategically guided by other techniques. In particular, solutions to relaxations of
the original problem are frequently exploited in various ways. The reverse, strate-
gic guidance of other techniques by metaheuristics, has been particularly successful
in the field of mixed integer programming, where such strategies can help to find
good approximate solutions early within an exact B&B-based method. Last but not
least, there are several different decomposition approaches: Exploring large neigh-
borhoods by specialized algorithms has become particularly popular over the last
years, and occasionally metaheuristics are applied to solve separation or pricing
problems in more complex MIP approaches and propagation subproblems in CP.

As an important final advice for the development of well-performing metaheuris-
tic hybrids, the authors would like to recommend (1) the careful search of the litera-
ture for the most successful optimization approaches for the problem at hand or for
similar problems, and (2) the study of clever ways of combining the most interesting
features of the identified approaches. We hope this chapter provides a starting point
and some useful references for this purpose.

Acknowledgements Günther R. Raidl is supported by the Austrian Science Fund (FWF) under
grant 811378 and by the Austrian Exchange Service (Acciones Integradas, grant 13/2006).
NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council through the ICT
Centre of Excellence program.
Christian Blum is supported by grants TIN2005-08818 (OPLINK) and TIN2007-66523 (FOR-
MALISM) of the Spanish government, and by the EU project FRONTS (FP7-ICT-2007-1). He
also acknowledges support from the Ramón y Cajal program of the Spanish Ministry of Science
and Technology.

References

1. Aggarwal, C., Orlin, J., Tai, R.: Optimized crossover for the independent set problem. Oper-
ations Research 45, 226–234 (1997)

2. Ahuja, R., Orlin, J., Tiwari, A.: A greedy genetic algorithm for the quadratic assignment
problem. Computers & Operations Research 27, 917–934 (2000)

3. Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood
search techniques. Discrete Applied Mathematics 123(1-3), 75–102 (2002)



24 G. R. Raidl, J. Puchinger, and C. Blum

4. Ahuja, R.K., Orlin, J., Sharma, D.: Multi-exchange neighborhood search algorithms for the
capacitated minimum spanning tree problem. Mathematical Programming 91(1), 71–97
(2001)

5. Al-Shihabi, S.: Ants for sampling in the nested partition algorithm. In: Blum et al. [22], pp.
11–18

6. Alba, E. (ed.): Parallel Metaheuristics: A New Class of Algorithms. John Wiley (2005)
7. Almeida, F., Blesa Aguilera, M.J., Blum, C., Moreno Vega, J.M., Pérez, M.P., Roli, A., Sam-

pels, M. (eds.): Proceedings of HM 2006 – Third International Workshop on Hybrid Meta-
heuristics, Lecture Notes in Computer Science, vol. 4030. Springer (2006)

8. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: On the solution of the traveling sales-
man problem. Documenta Mathematica Extra Volume ICM III, 645–656 (1998)

9. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A
Computational Study. Princeton Series in Applied Mathematics. Princeton University Press
(2007)

10. Augerat, P., Belenguer, J., Benavent, E., Corberan, A., Naddef, D.: Separating capacity con-
straints in the CVRP using tabu search. European Journal of Operational Research 106(2),
546–557 (1999)

11. Barahona, F., Anbil, R.: The volume algorithm: Producing primal solutions with a subgradi-
ent method. Mathematical Programming, Series A 87(3), 385–399 (2000)

12. Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G.,
Sampels, M. (eds.): Proceedings of HM 2007 – Fourth International Workshop on Hybrid
Metaheuristics, Lecture Notes in Computer Science, vol. 4771. Springer (2007)

13. Beck, J.C.: Solution-guided multi-point constructive search for job shop scheduling. Journal
of Artificial Intelligence Research 29, 49–77 (2007)

14. Binato, S., Hery, W.J., Loewenstern, D., Resende, M.G.C.: A GRASP for job shop schedul-
ing. In: C.C. Ribeiro, P. Hansen (eds.) Essays and Surveys on Metaheuristics, pp. 59–79.
Kluwer Academic Publishers (2001)

15. Blesa Aguilera, M.J., Blum, C., Roli, A., Sampels, M. (eds.): Proceedings of HM 2005 – Sec-
ond International Workshop on Hybrid Metaheuristics, Lecture Notes in Computer Science,
vol. 3636. Springer (2005)

16. Blum, C.: Beam-ACO: Hybridizing ant colony optimization with beam search: An applica-
tion to open shop scheduling. Computers and Operations Research 32(6), 1565–1591 (2005)

17. Blum, C.: A new hybrid evolutionary algorithm for the k-cardinality tree problem. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference 2006, pp. 515–522. ACM
Press (2006)

18. Blum, C.: Beam-ACO for simple assembly line balancing. INFORMS Journal on Computing
20(4), 618–627 (2008)

19. Blum, C., Blesa, M.: Combining ant colony optimization with dynamic programming for
solving the k-cardinality tree problem. In: Proceedings of IWANN 2005 – 8th International
Work-Conference on Artificial Neural Networks, Computational Intelligence and Bioin-
spired Systems, no. 3512 in Lecture Notes in Computer Science, pp. 25–33. Springer (2005)

20. Blum, C., Blesa Aguilera, M.J., Roli, A., Sampels, M. (eds.): Hybrid Metaheuristics –
An Emerging Approach to Optimization, Studies in Computational Intelligence, vol. 114.
Springer (2008)

21. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Computing Surveys 35(3), 268–308 (2003)

22. Blum, C., Roli, A., Sampels, M. (eds.): Proceedings of HM 2004 – First International Work-
shop on Hybrid Metaheuristics. Valencia, Spain (2004)

23. Büdenbender, K., Grünert, T., Sebastian, H.J.: A hybrid tabu search/branch-and-bound algo-
rithm for the direct flight network design problem. Transportation Science 34(4), 364–380
(2000)

24. Chiarandini, M., Dumitrescu, I., Stützle, T.: Very large-scale neighborhood search: Overview
and case studies on coloring problems. In: Blum et al. [20], pp. 117–150

25. Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem.
Journal of Heuristics 4, 63–86 (1998)



Metaheuristic Hybrids 25

26. Cohoon, J., Hegde, S., Martin, W., Richards, D.: Punctuated equilibria: A parallel genetic
algorithm. In: J. Grefenstette (ed.) Proceedings of the Second International Conference on
Genetic Algorithms, pp. 148–154. Lawrence Erlbaum Associates (1987)

27. Congram, R.K.: Polynomially searchable exponential neighbourhoods for sequencing prob-
lems in combinatorial optimisation. Ph.D. thesis, University of Southampton, Faculty of
Mathematical Studies, UK (2000)

28. Congram, R.K., Potts, C.N., van de Velde, S.L.: An iterated Dynasearch algorithm for the
single-machine total weighted tardiness scheduling problem. INFORMS Journal on Com-
puting 14(1), 52–67 (2002)

29. Cotta, C.: A study of hybridisation techniques and their application to the design of evolu-
tionary algorithms. AI Communications 11(3–4), 223–224 (1998)

30. Cotta, C., Troya, J.M.: Embedding branch and bound within evolutionary algorithms. Ap-
plied Intelligence 18, 137–153 (2003)

31. Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods to im-
prove MIP solutions. Mathematical Programming, Series A 102, 71–90 (2005)

32. Denzinger, J., Offermann, T.: On cooperation between evolutionary algorithms and other
search paradigms. In: W. Porto, et al. (eds.) Proceedings of the 1999 Congress on Evolution-
ary Computation (CEC), vol. 3, pp. 2317–2324. IEEE Press (1999)

33. Dooms, G., Van Hentenryck, P., Michel, L.: Model-driven visualizations of constraint-based
local search. In: C. Bessiere (ed.) Principles and Practice of Constraint Programming –
CP 2007, 13th International Conference, Lecture Notes in Computer Science, vol. 4741, pp.
271–285. Springer (2007)

34. Dowsland, K.A., Herbert, E.A., Kendall, G., Burke, E.: Using tree search bounds to enhance
a genetic algorithm approach to two rectangle packing problems. European Journal of Oper-
ational Research 168(2), 390–402 (2006)

35. Duarte, A.R., Ribeiro, C.C., Urrutia, S.: A hybrid ILS heuristic to the referee assignment
problem with an embedded MIP strategy. In: Bartz-Beielstein et al. [12], pp. 82–95

36. Dumitrescu, I., Stuetzle, T.: Combinations of local search and exact algorithms. In: G.R.
Raidl, et al. (eds.) Applications of Evolutionary Computation, Lecture Notes in Computer
Science, vol. 2611, pp. 211–223. Springer (2003)

37. El-Abd, M., Kamel, M.: A taxonomy of cooperative search algorithms. In: Blesa Aguilera
et al. [15], pp. 32–41

38. Eremeev, A.V.: On complexity of optimal recombination for binary representations of solu-
tions. Evolutionary Computation 16(1), 127–147 (2008)

39. Ergun, O., Orlin, J.B.: A dynamic programming methodology in very large scale neighbor-
hood search applied to the traveling salesman problem. Discrete Optimization 3(1), 78–85
(2006)

40. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal of
Global Optimization 6, 109–133 (1995)

41. Filho, G.R., Lorena, L.A.N.: Constructive genetic algorithm and column generation: An ap-
plication to graph coloring. In: L.P. Chuen (ed.) Proceedings of APORS 2000, the Fifth Con-
ference of the Association of Asian-Pacific Operations Research Societies within IFORS.
Singapore (2000)

42. Fischetti, M., Lodi, A.: Local Branching. Mathematical Programming, Series B 98, 23–47
(2003)

43. Fischetti, M., Polo, C., Scantamburlo, M.: Local branching heuristic for mixed-integer pro-
grams with 2-level variables, with an application to a telecommunication network design
problem. Networks 44(2), 61–72 (2004)

44. Fleurent, C., Glover, F.: Improved constructive multistart strategies for the quadratic assign-
ment problem using adaptive memory. INFORMS Journal on Computing 11, 198–204 (1999)

45. Focacci, F., Laburthe, F., Lodi, A.: Local search and constraint programming: LS and CP
illustrated on a transportation problem. In: M. Milano (ed.) Constraint and Integer Program-
ming. Towards a Unified Methodology, pp. 293–329. Kluwer Academic Publishers (2004)

46. Galinier, P., Hertz, A., Paroz, S., Pesant, G.: Using local search to speed up filtering algo-
rithms for some NP-hard constraints. In: Perron and Trick [74], pp. 298–302



26 G. R. Raidl, J. Puchinger, and C. Blum

47. Gilmour, S., Dras, M.: Kernelization as heuristic structure for the vertex cover problem. In:
M. Dorigo, et al. (eds.) Proceedings of ANTS 2006 – 5th International Workshop on Ant
Colony Optimization and Swarm Intelligence, Lecture Notes in Computer Science, vol. 4150,
pp. 452–459. Springer (2006)

48. Glover, F.: Surrogate constraints. Operations Research 16(4), 741–749 (1968)
49. Glover, F.: Parametric tabu-search for mixed integer programming. Computers and Opera-

tions Research 33(9), 2449–2494 (2006)
50. Glover, F., Laguna, M., Martı́, R.: Fundamentals of scatter search and path relinking. Control

and Cybernetics 39(3), 653–684 (2000)
51. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Learning. Addison-Wesley

(1989)
52. Gruber, M., Raidl, G.R.: (Meta-)heuristic separation of jump cuts for the bounded diameter

minimum spanning tree problem. In: Hansen et al. [53]
53. Hansen, P., Maniezzo, V., Fischetti, M., Stuetzle, T. (eds.): Proceedings of Matheuristics

2008: Second International Workshop on Model Based Metaheuristics. Bertinoro, Italy
(2008)

54. Hansen, P., Mladenovic, N., Perez-Britos, D.: Variable neighborhood decomposition search.
Journal of Heuristics 7(4), 335–350 (2001)

55. Hansen, P., Mladenović, N., Urosević, D.: Variable neighborhood search and local branching.
Computers and Operations Research 33(10), 3034–3045 (2006)

56. Haouari, M., Siala, J.C.: A hybrid Lagrangian genetic algorithm for the prize collecting
Steiner tree problem. Computers & Operations Research 33(5), 1274–1288 (2006)

57. Hu, B., Leitner, M., Raidl, G.R.: Combining variable neighborhood search with integer linear
programming for the generalized minimum spanning tree problem. Journal of Heuristics
14(5), 473–479 (2008)

58. Hu, B., Raidl, G.R.: Effective neighborhood structures for the generalized traveling salesman
problem. In: J. van Hemert, C. Cotta (eds.) Evolutionary Computation in Combinatorial
Optimisation – EvoCOP 2008, Lecture Notes in Computer Science, vol. 4972, pp. 36–47.
Springer (2008)

59. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2004)
60. Klau, G.W., Lesh, N., Marks, J., Mitzenmacher, M.: Human-guided search: Survey and re-

cent results. submitted to Journal of Heuristics (2007)
61. Lejeune, M.A.: A variable neighborhood decomposition search method for supply chain

management planning problems. European Journal of Operational Research 175(2), 959–
976 (2006)

62. Maniezzo, V.: Exact and approximate nondeterministic tree-search procedures for the
quadratic assignment problem. INFORMS Journal on Computing 11(4), 358–369 (1999)

63. Maniezzo, V., Carbonaro, A.: An ANTS heuristic for the frequency assignment problem.
Future Generation Computer Systems 16, 927–935 (2000)

64. Maniezzo, V., Hansen, P., Voss, S. (eds.): Proceedings of Matheuristics 2006: First Interna-
tional Workshop on Mathematical Contributions to Metaheuristics. Bertinoro, Italy (2006)

65. Marriott, K., Stuckey, P.J.: Introduction to Constraint Logic Programming. MIT Press (1998)
66. Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the traveling salesman

problem. Complex Systems 5, 299–326 (1991)
67. Meyer, B., Ernst, A.: Integrating ACO and constraint propagation. In: M. Dorigo, et al.

(eds.) Proceedings of ANTS 2004 – Fourth International Workshop on Ant Colony Optimiza-
tion and Swarm Intelligence, Lecture Notes in Computer Science, vol. 3172, pp. 166–177.
Springer (2004)

68. Michel, L., See, A., Van Hentenryck, P.: Distributed constraint-based local search. In: F. Ben-
hamou (ed.) Principles and Practice of Constraint Programming – CP 2006, 12th Interna-
tional Conference, Lecture Notes in Computer Science, vol. 4204, pp. 344–358. Springer
(2006)

69. Moscato, P.: Memetic algorithms: A short introduction. In: D. Corne, et al. (eds.) New Ideas
in Optimization, pp. 219–234. McGraw Hill (1999)



Metaheuristic Hybrids 27

70. Nagar, A., Heragu, S.S., Haddock, J.: A meta-heuristic algorithm for a bi-criteria scheduling
problem. Annals of Operations Research 63, 397–414 (1995)

71. Neto, T., Pedroso, J.P.: GRASP for linear integer programming. In: J.P. Sousa, M.G.C. Re-
sende (eds.) Metaheuristics: Computer Decision Making, Combinatorial Optimization Book
Series, pp. 545–574. Kluwer Academic Publishers (2003)

72. Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. International Journal of Produc-
tion Research 26, 297–307 (1988)

73. Pedroso, J.P.: Tabu search for mixed integer programming. In: C. Rego, B. Alidaee (eds.)
Metaheuristic Optimization via Memory and Evolution, Operations Research/Computer Sci-
ence Interfaces Series, vol. 30, pp. 247–261. Springer (2005)

74. Perron, L., Trick, M.A. (eds.): Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems – CPAIOR 2008, 5th International Confer-
ence, Lecture Notes in Computer Science, vol. 5015. Springer (2008)

75. Pesant, G., Gendreau, M.: A constraint programming framework for local search methods.
Journal of Heuristics 5(3), 255–279 (1999)

76. Pirkwieser, S., Raidl, G.R., Puchinger, J.: Combining Lagrangian decomposition with an
evolutionary algorithm for the knapsack constrained maximum spanning tree problem. In:
C. Cotta, J. van Hemert (eds.) Evolutionary Computation in Combinatorial Optimization –
EvoCOP 2007, Lecture Notes in Computer Science, vol. 4446, pp. 176–187. Springer (2007)

77. Pisinger, D.: Core problems in knapsack algorithms. Operations Research 47, 570–575
(1999)

78. Plateau, A., Tachat, D., Tolla, P.: A hybrid search combining interior point methods and
metaheuristics for 0–1 programming. International Transactions in Operational Research 9,
731–746 (2002)

79. Prandtstetter, M., Raidl, G.R.: An integer linear programming approach and a hybrid vari-
able neighborhood search for the car sequencing problem. European Journal of Operational
Research 191(3) (2008)

80. Puchinger, J., Raidl, G.R.: An evolutionary algorithm for column generation in integer pro-
gramming: An effective approach for 2D bin packing. In: X. Yao, et al. (eds.) Parallel Prob-
lem Solving from Nature – PPSN VIII, Lecture Notes in Computer Science, vol. 3242, pp.
642–651. Springer (2004)

81. Puchinger, J., Raidl, G.R.: Combining metaheuristics and exact algorithms in combinatorial
optimization: A survey and classification. In: Proceedings of the First International Work-
Conference on the Interplay Between Natural and Artificial Computation, Part II, Lecture
Notes in Computer Science, vol. 3562, pp. 41–53. Springer (2005)

82. Puchinger, J., Raidl, G.R.: Models and algorithms for three-stage two-dimensional bin pack-
ing. European Journal of Operational Research 183, 1304–1327 (2007)

83. Puchinger, J., Raidl, G.R.: Bringing order into the neighborhoods: Relaxation guided variable
neighborhood search. Journal of Heuristics 14(5), 457–472 (2008)

84. Puchinger, J., Raidl, G.R., Koller, G.: Solving a real-world glass cutting problem. In: J. Got-
tlieb, G.R. Raidl (eds.) Evolutionary Computation in Combinatorial Optimization – Evo-
COP 2004, Lecture Notes in Computer Science, vol. 3004, pp. 162–173. Springer (2004)

85. Puchinger, J., Raidl, G.R., Pferschy, U.: The core concept for the multidimensional knap-
sack problem. In: J. Gottlieb, G.R. Raidl (eds.) Evolutionary Computation in Combinatorial
Optimization – EvoCOP 2006, Lecture Notes in Computer Science, vol. 3906, pp. 195–208.
Springer (2006)

86. Raidl, G.R.: An improved genetic algorithm for the multiconstrained 0–1 knapsack prob-
lem. In: D.B. Fogel, et al. (eds.) Proceedings of the 1998 IEEE International Conference on
Evolutionary Computation, pp. 207–211. IEEE Press (1998)

87. Raidl, G.R.: A unified view on hybrid metaheuristics. In: Almeida et al. [7], pp. 1–12
88. Raidl, G.R., Puchinger, J.: Combining (integer) linear programming techniques and meta-

heuristics for combinatorial optimization. In: Blum et al. [20], pp. 31–62
89. Rei, W., Cordeau, J.F., Gendreau, M., Soriano, P.: Accelerating Benders decomposition by

local branching. INFORMS Journal on Computing (2008). In press



28 G. R. Raidl, J. Puchinger, and C. Blum

90. Richter, Y., Freund, A., Naveh, Y.: Generalizing AllDifferent: The SomeDifferent constraint.
In: F. Benhamou (ed.) Principles and Practice of Constraint Programming, 12th International
Conference, CP 2006, Lecture Notes in Computer Science, vol. 4204, pp. 468–483. Springer
(2006)

91. Rothberg, E.: An evolutionary algorithm for polishing mixed integer programming solutions.
INFORMS Journal on Computing 19(4), 534–541 (2007)

92. Shi, L., Ólafsson, S.: Nested partitions method for global optimization. Operations Research
48(3), 390–407 (2000)

93. Shi, L., Ólafsson, S., Chen, Q.: An optimization framework for product design. Management
Science 47(12), 1681–1692 (2001)

94. Talbi, E.G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5), 541–565 (2002)
95. Talukdar, S., Baeretzen, L., Gove, A., de Souza, P.: Asynchronous teams: Cooperation

schemes for autonomous agents. Journal of Heuristics 4, 295–321 (1998)
96. Tamura, H., Hirahara, A., Hatono, I., Umano, M.: An approximate solution method for com-

binatorial optimisation. Transactions of the Society of Instrument and Control Engineers
130, 329–336 (1994)

97. Urosevic, D., Brimberg, J., Mladenovic, N.: Variable neighborhood decomposition search
for the edge weighted k-cardinality tree problem. Computers & Operations Research 31(8),
1205–1213 (2004)

98. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. The MIT Press (2005)
99. Vasquez, M., Hao, J.K.: A hybrid approach for the 0–1 multidimensional knapsack prob-

lem. In: B. Nebel (ed.) Proceedings of the 17th International Joint Conference on Artificial
Intelligence, IJCAI 2001, pp. 328–333. Morgan Kaufman, Seattle, Washington (2001)

100. Vasquez, M., Vimont, Y.: Improved results on the 0–1 multidimensional knapsack problem.
European Journal of Operational Research 165(1), 70–81 (2005)

101. Walshaw, C.: Multilevel refinement for combinatorial optimisation: Boosting metaheuristic
performance. In: Blum et al. [20], pp. 261–289

102. Watson, J.P., Beck, J.C.: A hybrid constraint programming / local search approach to the
job-shop scheduling problem. In: Perron and Trick [74], pp. 263–277

103. Watson, J.P., Howe, A.E., Whitley, L.D.: Deconstructing Nowicki and Smutnicki’s i-TSAB
tabu search algorithm for the job-shop scheduling problem. Computers & Operations Re-
search 33(9), 2623–2644 (2006)

104. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation 1(1), 67–82 (1997)

105. Wolsey, L.A.: Integer Programming. Wiley-Interscience (1998)


