
Combining (Integer) Linear Programming
Techniques and Metaheuristics for
Combinatorial Optimization

Günther R. Raidl1 and Jakob Puchinger2

1 Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Vienna, Austria,
raidl@ads.tuwien.ac.at

2 NICTA Victoria Laboratory,
University of Melbourne, Melbourne, Australia,
jakobp@csse.unimelb.edu.au

Summary. Several different ways exist for approaching hard optimization prob-
lems. Mathematical programming techniques, including (integer) linear program-
ming based methods, and metaheuristic approaches are two highly successful streams
for combinatorial problems. These two have been established by different commu-
nities more or less in isolation from each other. Only over the last years a larger
number of researchers recognized the advantages and huge potentials of building
hybrids of mathematical programming methods and metaheuristics. In fact, many
problems can be practically solved much better by exploiting synergies between
these different approaches than by “pure” traditional algorithms. The crucial issue
is how mathematical programming methods and metaheuristics should be combined
for achieving those benefits. Many approaches have been proposed in the last few
years. After giving a brief introduction to the basics of integer linear programming,
this chapter surveys existing techniques for such combinations and classifies them
into ten methodological categories.

1 Introduction

Computationally difficult combinatorial optimization problems (COPs) frequently
appear in many highly important, practical fields. Creating good timetables, deter-
mining optimal schedules for jobs which are to be processed in a production line,
designing efficient communication networks, container loading, determining efficient
vehicle routes, and various problems arising in computational biology are a few ex-
amples. All these problems involve finding values for discrete variables such that an
optimal solution with respect to a given objective function is identified subject to
some problem specific constraints.

Most COPs are difficult to solve. In theoretical computer science, this is cap-
tured by the fact that many such problems are NP-hard [38]. Because of the inherent



2 Günther R. Raidl and Jakob Puchinger

difficulty and the enormous practical importance of NP-hard COPs, a large num-
ber of techniques for solving such problems has been proposed in the last decades.
The available techniques for solving COPs can roughly be classified into two main
categories: exact and heuristic algorithms. Exact algorithms are guaranteed to find
an optimal solution and to prove its optimality for every instance of a COP. The
run-time, however, often increases dramatically with a problem instance’s size, and
often only small or moderately-sized instances can be practically solved to proven
optimality. For larger instances the only possibility is usually to turn to heuristic
algorithms that trade optimality for run-time, i.e. they are designed to obtain good
but not necessarily optimal solutions in acceptable time.

When considering exact approaches, the following techniques have had signif-
icant success: branch-and-bound, dynamic programming, constraint programming,
and in particular the large class of integer (linear) programming (ILP) techniques
including linear programming and other relaxation based methods, cutting plane
and column generation approaches, branch-and-cut, branch-and-price, and branch-
and-cut-and-price. See e.g. [52, 59] for general introductions to these mathematical
programming techniques.

On the heuristic side, metaheuristics (MHs) have proven to be highly useful in
practice. This category of problem solving techniques includes, among others, sim-
ulated annealing, tabu search, iterated local search, variable neighborhood search,
various population-based models such as evolutionary algorithms, memetic algo-
rithms, and scatter search, and estimation of distribution algorithms such as ant
colony optimization. See Chap. 1 of this book as well as e.g. [42, 48] for more gen-
eral introductions to metaheuristics.

Looking at the assets and drawbacks of ILP techniques and metaheuristics, the
approaches can be seen as complementary to a large degree. As a matter of fact, it
appears to be natural to combine ideas from both streams. Nevertheless, such hybrid
approaches became more popular only over the last years. Nowadays, a multitude
of recent publications describe different kinds of such hybrid optimizers that are
often significantly more effective in terms of running time and/or solution quality
since they benefit from synergy. International scientific events such as the Hybrid
Metaheuristics workshop series [13, 12, 6], which started in 2004, and the First Work-
shop on Mathematical Contributions to Metaheuristics – Matheuristics 2006 further
emphasize the promise that is believed to lie in such hybrid systems. In fact, the
artificial term “matheuristics” has been established by the latter event for referring
to combinations of metaheuristics and mathematical programming methods.

In the next section, we will continue with a brief introduction of previously
suggested structural classifications of strategies for combining metaheuristics and
exact optimization techniques. Sect. 3 gives an overview on the basics of prominent
ILP techniques and introduces used notations. Various different methodologies of
utilizing ILP techniques in metaheuristics and vice versa, including annotated ref-
erences to successful examples, are then reviewed in Sects. 4 to 13. These MH/ILP
hybridization methodologies are

• MHs for finding high-quality incumbents and bounds in branch-and-bound
• relaxations for guiding metaheuristic search
• using the primal-dual relationship in MHs
• following the spirit of local search in branch-and-bound
• ILP techniques for exploring large neighborhoods
• solution merging



Combining ILP Techniques and Metaheuristics 3

Collaborative Combinations

Sequential Execution

Integrative Combinations

Incorporating Metaheuristics in Exact Algorithms

Incorporating Exact Algorithms in Metaheuristics

Parallel or Intertwined Execution

Combinations of Exact Algorithms and Metaheuristics

Fig. 1. Major structural classification of exact/metaheuristic combinations accord-
ing to [67].

• ILP techniques as decoders for indirect or incomplete representations
• multi-stage approaches
• cut and column generation by metaheuristics
• strategic guidance of search and collaboration

2 Structural Models for Combining Metaheuristics with
Exact Approaches

Overviews on various structural models of combining exact techniques and meta-
heuristics are given in [25, 67, 74].

Dumitrescu and Stützle [25] describe existing combinations which primarily fo-
cus on local search approaches that are strengthened by the use of exact algorithms.
In their survey they concentrate on integration and exclude obvious combinations
such as preprocessing.

In [67] we present a more general classification of existing approaches combining
exact and metaheuristic algorithms for combinatorial optimization in which the
following two main categories are distinguished, see also Fig. 1:

Collaborative Combinations. In a collaborative environment, the algorithms ex-
change information, but are not part of each other. Exact and heuristic al-
gorithms may be executed sequentially, intertwined, or in parallel.

Integrative Combinations. In integrative models, one technique is a subordinate em-
bedded component of another technique. Thus, there is a distinguished master
algorithm, which can be either an exact or a metaheuristic algorithm, and at
least one integrated slave.

Danna and Le Pape [21] present a similar classification of hybrid algorithms, fur-
ther including constraint programming. The authors discern a decomposition scheme
corresponding to the integrative combinations and a multiple search scheme corre-
sponding to collaborative combinations. Four kinds of optimization algorithms are
considered in particular, namely polynomial operations research algorithms, con-
straint programming, mixed integer programming, and various forms of local search



4 Günther R. Raidl and Jakob Puchinger

and metaheuristics. The main part of their article consists of examples from the lit-
erature illustrating six different collaborative schemes consisting of two of the above
mentioned algorithm classes.

A taxonomy on hybrid metaheuristics in general has been proposed by Talbi
[82]. Various hybridization schemes involving in particular evolutionary algorithms
(EAs) are described by Cotta [19]. El-Abd and Kamel [26] particularly addressed
cooperative parallel architectures.

Raidl [74] tries to unify previous classifications and taxonomies of hybrid meta-
heuristics and primarily distinguishes (a) the type of algorithms that are hybridized,
(b) the level of hybridization (high- or low-level), (c) the order of execution (batch,
interleaved, or parallel), and (d) the control strategy (integrative or collaborative).

3 Linear and Integer Programming at a Glance

This section gives a short overview of the main concepts in integer programming;
for an in-depth coverage of the subject we refer to the books on linear optimization
by Bertsimas and Tsitsiklis [11] and on combinatorial and integer optimization by
Nemhauser and Wolsey [59] and Wolsey [88].

An integer (linear) program is an optimization problem involving integer vari-
ables, an objective function linearly depending on the variables, and a set of con-
straints expressed as linear (in)equalities. We consider the form

zILP = min{cx | Ax ≥ b, x ≥ 0, x ∈ Zn}, (1)

where x is the n-dimensional integer variable column vector and c ∈ Rn an n-
dimensional row vector. Their dot-product cx is the objective function that should
be minimized. Matrix A ∈ Rm×n and the m-dimensional column vector b ∈ Rm

together define m inequality constraints.
Maximization problems can be converted into minimization problems by simply

changing the sign of c. Less-than constraints are similarly brought into greater-than-
or-equal form by changing the sign of the corresponding coefficients, and equali-
ties can be translated to pairs of inequalities. Thus, we can consider all kinds of
linear constraints by appropriate transformations. Without loss of generality, we
may therefore restrict our following considerations to minimization problems of the
form (1).

A mixed integer (linear) program (MIP) involves a combination of integer and
real-valued variables, but is otherwise defined in the same way.

3.1 Relaxations and Duality

One of the most important concepts in integer programming are relaxations, where
some or all constraints of a problem are loosened or omitted. Relaxations are mostly
used to obtain related, simpler problems which can be solved efficiently yielding
bounds and approximate (not necessarily feasible) solutions for the original problem.

The linear programming relaxation of the ILP (1) is obtained by relaxing the
integrality constraint, yielding the linear program (LP)

zLP = min{cx | Ax ≥ b, x ≥ 0, x ∈ Rn}. (2)



Combining ILP Techniques and Metaheuristics 5

Large instances of such LPs can be efficiently solved in practice using simplex-based
or interior-point algorithms. The linear programming relaxation always provides a
lower bound for the original minimization problem, i.e. zILP ≥ zLP, since the search
space of the ILP is contained in the one of the LP and the objective function remains
the same.

According to linear programming theory, we can further associate a dual problem
to each LP (2), which is defined by

wLP = max{ub | uA ≤ c, u ≥ 0, u ∈ Rm}. (3)

The dual of the dual LP is the original (primal) LP again. Important relations
between the primal problem and its dual are known as weak and strong duality
theorems, respectively:

• The value of every finite feasible solution to the dual problem is a lower bound
for the primal problem, and each value of a finite feasible solution to the primal
problem is an upper bound for the dual problem. As a consequence, if the dual
is unbounded, the primal is infeasible and vice versa.

• If the primal has a finite optimal solution z∗LP, than its dual has the same optimal
solution w∗LP = z∗LP and vice versa.

The complementary slackness conditions follow from the strong duality theorem:
Suppose x and u are feasible solutions for (2) and (3), respectively; then they are
optimal if and only if the following conditions hold:

u(Ax− b) = 0 and (4)

x(c− uA) = 0. (5)

In case of an integer linear problem, we have to differentiate between the notions
of weak and strong duals. A weak dual of an ILP (1) is any maximization problem
w = max{w(u) | u ∈ SD} such that w(u) ≤ cx for all x ∈ {Ax ≥ b, x ≥ 0, x ∈ Zn}.
An obvious weak dual of (1) is the dual (3) of its LP relaxation (2). A strong dual
w is a weak dual that further has an optimal solution u∗ such that w(u∗) = cx∗

for an optimal solution x∗ of (1). For solving ILPs, weak duals which are iteratively
strengthened during the course of the optimization process are often utilized.

Another standard relaxation technique for ILPs, which often yields significantly
tighter bounds than the LP relaxation, is Lagrangian relaxation [33, 34]. Consider
the ILP

zILP = min{cx | Ax ≥ b, Dx ≥ d, x ≥ 0, x ∈ Zn}, (6)

where constraints Ax ≥ b are “nice” in the sense that the problem can be efficiently
solved when the m′ “complicating” constraints Dx ≥ b are dropped. Simply drop-
ping these constraints of course yields a relaxation, however, the resulting bound will
usually be weak due to the total ignorance of part of the inequalities. In Lagrangian
relaxation, constraints Dx ≥ d are replaced by corresponding additional terms in
the objective function:

zLR(λ) = min{cx + λ(d−Dx) | Ax ≥ b, x ≥ 0, x ∈ Zn}. (7)

Vector λ ∈ Rm′ is the vector of Lagrangian multipliers, and for any λ ≥ 0, zLR(λ) ≤
zILP, i.e. we have a valid relaxation of the ILP. We are now interested in finding



6 Günther R. Raidl and Jakob Puchinger

a specific vector λ yielding the best possible bound, which leads to the Lagrangian
dual problem

z∗LR = max
λ≥0

{zLR(λ)}. (8)

It can be shown that this Lagrangian dual is a piecewise linear and convex function,
and usually, it can be well solved by iterative procedures like the subgradient method.
A more elaborate algorithm that has been reported to converge faster on several
problems is the volume algorithm [10], whose name is inspired by the fact that
primal solutions are also considered, whose values come from approximating the
volumes below active faces of the dual problem.

Given a solution λ to the Lagrangian dual problem (8) and a corresponding
optimal solution x∗ to the Lagrangian relaxation (7) which is also feasible to the
original problem (6), i.e. Dx∗ ≥ d, the following complementary slackness condition
holds: x∗ is an optimal solution to the original problem (6) if and only if

λ(d−Dx∗) = 0. (9)

It can be shown that the Lagrangian relaxation always yields a bound that is
at least as good as the one of the corresponding linear relaxation, providing the
Lagrangian dual problem is solved to optimality.

A third general-purpose relaxation technique for ILPs is surrogate relaxation [40].
Here, some or all constraints are scaled by surrogate multipliers and cumulated
into a single inequality by addition of the coefficients. Similar as in Lagrangian
relaxation, the ultimate goal is to find surrogate multipliers yielding the overall best
bound. Unfortunately, this surrogate dual problem has not such nice properties as
the Lagrangian dual problem and solving it is often difficult. However, if one is
able to determine optimal surrogate multipliers, the bound obtained for the ILP is
always at least as good as (and often better than) those obtained from linear and
Lagrangian relaxation.

3.2 Cutting Plane Approach

When modeling COPs as ILPs, an important goal is to find a strong formulation, for
which the LP relaxation provides a solution which lies in general not too far away
from the integer optimum. For many COPs it is possible to strengthen an existing
ILP formulation significantly by including further inequalities. Often, the number of
such constraints grows exponentially with the problem size. This, however, means
that already solving the LP relaxation by standard techniques might be too costly in
practice due to the exponentially sized LP. Dantzig et al. [23] proposed the cutting
plane approach for this purpose, which usually only considers a small subset of all
constraints explicitly and nevertheless is able to determine an optimal solution to
the whole LP.

This cutting plane approach starts with a small subset of initial inequalities and
solves this reduced LP. Then, it tries to find inequalities that are not satisfied by
the obtained solution but are valid for the original problem (i.e. contained in the full
LP). These violated constraints are called cuts or cutting planes. They are added
to the current reduced LP, and the LP is resolved. The whole process is iterated
until no further cuts can be found. If the algorithm is able to provide a proof that



Combining ILP Techniques and Metaheuristics 7

no further violated inequality exists, the finally obtained solution is also optimal
with respect to the original full LP. The subproblem of identifying cuts is called
separation problem, and it is of crucial importance to solve it efficiently, since many
instances of it must usually be solved until the cutting plane approach terminates
successfully.

Note that from a theoretical point of view it is possible to solve any ILP using
a pure cutting plane approach with appropriate classes of cuts. There exist generic
types of cuts, such as the Chvatal-Gomory cuts [88], which guarantee such a result.
In practice, however, it may take a long time for such a cutting plane approach to
converge to the optimum, partly because it is often a hard subproblem to separate
effective cuts. The cutting plane method is therefore often combined with other
methods, as we will see below.

3.3 Column Generation Approach

Instead of considering many inequalities, it is often also a reasonable option to for-
mulate a problem in a strong way via a large number of variables, which correspond
to columns in the coefficient matrix. The (delayed) column generation approach
starts with a small subset of these variables and solves the corresponding restricted
LP. Then, the algorithm tries to identify one or more not yet considered variables,
whose inclusion might lead to an improved solution. This subproblem is called pric-
ing problem, and for a minimization problem a variable is suitable in this sense if and
only if it has negative reduced costs. After including such newly found variables in
the restricted LP, the LP is resolved and the process iterated until it can be proven
that no further variables with negative reduced costs exist, i.e. all variables price out
correctly. An optimal solution for the original complete LP is then obtained. Column
generation can be seen as the dual of the cutting plane approach, since inequalities
correspond to variables in the dual LP.

A classical example where column generation is highly successful is the cutting
stock problem [39]. A decision variable is defined for each possible cutting pattern,
clearly yielding an exponential number of variables, and the pricing problem corre-
sponds to the classical knapsack problem, which can be solved in pseudo-polynomial
time. For a thorough review on column generation, we refer to [55].

A general technique for obtaining possibly strengthened ILP formulations is
the Dantzig-Wolfe decomposition. It transforms original variables into linear com-
binations of extreme points and extreme rays of the original search space, yielding
a potentially exponential number of variables. The resulting problems are usually
solved by column generation.

3.4 Branch-and-Bound Methods

By solving the LP relaxation of an ILP problem, we usually only get a lower bound
on the optimal integer solution value, and the solution will in general also contain
fractional values. For hard COPs, this typically also holds for strengthened formu-
lations and when cutting plane or column generation procedures have been applied,
although the obtained bound might be much better. The standard way of continuing
in order to finally determine an integer solution is branch-and-bound (B&B). This
is a divide-and-conquer approach that solves an ILP by recursively splitting it into



8 Günther R. Raidl and Jakob Puchinger

disjoint subproblems. Bounds are calculated for the subproblems, and only those
potentially holding an optimal solution are kept for further processing, whereas the
others are pruned from the B&B tree.

The main idea in LP-based B&B is to use an LP relaxation of the ILP being
solved in order to derive a lower bound for the objective function. A standard way for
branching is to pick one of the fractional variables, say xi with its current LP-value
x∗i , and define as first subproblem the ILP with the additional inequality xi ≤ bx∗i c
and as second subproblem the ILP with inequality xi ≥ dx∗i e. For these subproblems
with the additional branching constraints, the LP is resolved, eventually leading to
increased lower bounds. Usually, primal heuristics are also applied to each subprob-
lem in order to possibly obtain an improved feasible solution and a corresponding
global upper bound.

Combining B&B with cutting plane algorithms yields the highly effective class
of branch-and-cut algorithms which are widely used in commercial ILP-solvers. Cuts
are generated at the nodes of the B&B tree to tighten the bounds of the LP relax-
ations or to exclude infeasible solutions.

The combination of B&B with column generation results in branch-and-price
algorithms, where new columns may be generated at each node in order to optimally
solve their corresponding LP relaxations.

Finally, branch-and-cut-and-price refers to the combination of all of the above
methods, often resulting in highly specialized and most powerful optimization algo-
rithms.

We now turn to the different methodologies of hybridizing these ILP techniques
(and some further mathematical programming approaches) with metaheuristics.

4 Metaheuristics for Finding High-Quality Incumbents
and Bounds in B&B

Almost any effective B&B approach depends on some heuristic for deriving a promis-
ing initial solution, whose objective value is used as original upper bound. Further-
more, and as already mentioned, heuristics are typically also applied to some or all
subproblems of the B&B tree in order to eventually obtain new incumbent solutions
and corresponding improved upper bounds. In order to keep the B&B tree relatively
small, good upper bounds are of crucial interest. Therefore, metaheuristics are often
also applied for these purposes.

However, when performing a relatively expensive metaheuristic at each node of a
large B&B tree in a straight-forward, independent way, the additional computational
effort often does not pay off. Different calls of the metaheuristic might perform more
or less redundant searches in similar areas of the whole search space. A careful
selection of the B&B tree nodes for which the metaheuristic is performed and how
much effort is put into each call is therefore crucial.

As an example, Woodruff [89] describes a chunking-based selection strategy to
decide at each node of the B&B tree whether or not reactive tabu search is called.
The chunking-based strategy measures a distance between the current node and
nodes already explored by the metaheuristic in order to bias the selection toward
distant points. Reported computational results indicate that adding the metaheuris-
tic improves the B&B performance.



Combining ILP Techniques and Metaheuristics 9

5 Relaxations for Guiding Metaheuristic Search

An optimal solution for a relaxation of the original problem often indicates in which
areas of the original problem’s search space good or even optimal solutions might
lie. Solutions to relaxations are therefore frequently exploited in (meta-)heuristics.
In the following, we study different possibilities for such approaches.

5.1 Creating Promising Initial Solutions

Sometimes an optimal solution to a relaxation can be repaired by a problem-specific
procedure in order to make it feasible for the original problem and to use it as
promising starting point for a subsequent metaheuristic (or exact) search. Often,
the linear programming (LP) relaxation is used for this purpose, and only a simple
rounding scheme is needed.

For example, Raidl and Feltl [75] describe a hybrid genetic algorithm (GA) for
the generalized assignment problem, in which the LP relaxation of the problem is
solved, and its solution is exploited by a randomized rounding procedure to create an
initial population of promising integral solutions. These solutions are, however, often
infeasible; therefore, randomized repair and improvement operators are additionally
applied, yielding an even more meaningful initial population for the GA.

Plateau et al. [64] combine interior point methods and metaheuristics for solv-
ing the multidimensional knapsack problem (MKP). In a first step an interior point
method is performed with early termination. By rounding and applying several
different ascent heuristics, a population of different feasible candidate solutions
is generated. This set of solutions is then used as initial population for a path-
relinking/scatter search. Obtained results show that the presented combination is a
promising research direction.

5.2 Guiding Repairing, Local Improvement, and Variation
Operators

Beside initialization, optima of LP relaxations are often exploited for guiding local
improvement or the repairing of infeasible candidate solutions. For example, in [73]
the MKP is considered, and variables are sorted according to increasing LP-values. A
greedy repair procedure considers the variables in this order and removes items from
the knapsack until all constraints are fulfilled. In a greedy improvement procedure,
items are considered in reverse order and included in the knapsack as long as no
constraint is violated.

Many similar examples for exploiting LP solutions, also including a biasing of
variation operators like recombination and mutation in EAs, exist.

5.3 Exploiting Dual Variables

Occasionally, dual variable values are also exploited. Chu and Beasley [15] make
use of them in their GA for the MKP by calculating so-called pseudo-utility ratios
for the primal variables and using them in similar ways as described above for the
primal solution values. These pseudo-utility ratios tend to give better indications of
the likeliness of the corresponding items to be included in an optimal solution; see
[76] for more details on GA approaches for the MKP.



10 Günther R. Raidl and Jakob Puchinger

5.4 Variable Fixing: Reduction to Core Problems

Another possibility of exploiting the optimal solution of an LP relaxation is more
direct and restrictive: Some of the decision variables having integral values in the LP-
optimum are fixed to these values, and the subsequent optimization only considers
the remaining variables. Such approaches are sometimes also referred to as core
methods, since the original problem is reduced and only its “hard core” is further
processed. Obviously, the selection of the variables in the core is critical.

The core concept has originally been proposed for the 0–1 knapsack problem [9]
and also led to several very successful exact algorithms such as [63]. Puchinger et
al. [72] extend this approach for the MKP and investigated several variants for choos-
ing approximate cores. Considering binary decision variables x1, . . . , xn ∈ {0, 1}, the
basic technique first sorts all variables according to some specific efficiency measure
and determines the so-called split-interval, which is the subsequence of the vari-
ables starting with the first and ending with the last fractional variable. Different
efficiency measures are studied, and it is shown that the above already mentioned
pseudo-utility ratios, which are determined from dual variable values, are in general
a good choice for the MKP. The split interval is finally extended to an approximate
core by adding δ > 0 further variables on each side of the center of the split-interval.
Empirical investigations in [72] indicate that already with δ = 0.1n, high quality
solutions with average optimality gaps less than 0.1% can be achieved when solving
the remaining core problem to proven optimality. Applying an EA and relaxation
guided variable neighborhood search to the reduced problem instances yields signif-
icantly better solutions in shorter time than when applying these metaheuristics to
the original instances.

Staying with the MKP, another example for exploiting the LP relaxation within
metaheuristics is the hybrid tabu search algorithm from Vasquez and Hao [86]. Here,
the search space is reduced and partitioned via additional constraints fixing the total
number of items to be packed. Bounds for these constraints are calculated by solving
modified LP relaxations. For each remaining part of the search space, tabu search
is independently applied, starting with a solution derived from the LP relaxation of
the partial problem. The approach has further been improved in [87] by additional
variable fixing. To our knowledge, this method is currently the one yielding the best
results on a commonly used library of MKP benchmark instances.

5.5 Exploiting Lagrangian Relaxation

Also other relaxations besides the LP relaxation are occasionally successfully ex-
ploited in conjunction with metaheuristics. The principal techniques for such com-
binations are similar. A successful example is the hybrid Lagrangian GA for the
prize collecting Steiner tree problem from Haouaria and Siala [47]. They perform a
Lagrangian decomposition on a minimum spanning tree formulation of the problem
and apply the volume algorithm for solving the Lagrangian dual. After termina-
tion, the genetic algorithm is started and exploits results obtained from the volume
algorithm in several ways:

• Graph reduction: The volume algorithm creates a sequence of intermediate span-
ning trees as a by-product. All edges appearing in these intermediate trees are
marked, and only this reduced edge set is further considered by the GA; i.e. a



Combining ILP Techniques and Metaheuristics 11

core of edges is derived from the intermediate primal results when solving the
Lagrangian dual.

• Initial population: A subset of diverse initial solutions is created by a Lagrangian
heuristic, which greedily generates solutions based on the reduced costs appear-
ing as intermediate results in the volume algorithm.

• Objective function: Instead of the original objective function, an alternate one
is used, which is based on the reduced costs that are finally obtained by the
volume algorithm. The idea is to guide the search into regions of the search
space, where also better solutions with respect to the original objective function
can presumably be found.

Pirkwieser et al. [62] described a similar combination of Lagrangian decomposi-
tion and a GA for the knapsack constrained maximum spanning tree problem. By
Lagrangian relaxation, the problem is decomposed into a minimum spanning tree
and a 0–1 knapsack problem. Again, the volume algorithm is employed to solve the
Lagrangian dual. While graph reduction takes place as before, the objective func-
tion remains unchanged. Instead, final reduced costs are exploited for biasing the
initialization, recombination, and mutation operators. In addition, the best feasible
solution obtained from the volume algorithm is used as a seed in the GA’s ini-
tial population. Results indicate that the volume algorithm alone is already able to
find solutions of extremely high quality also for large instances. These solutions are
polished by the GA, and in most cases proven optimal solutions are finally obtained.

6 Using the Primal-Dual Relationship in Metaheuristics

Using the primal-dual relationship in metaheuristics is a relatively recent approach;
only a few papers have been published in this area. One idea is to take advantage
of the complementary slackness conditions (5) or (9). Starting from a feasible dual
solution u we try to find a primal feasible solution x satisfying these conditions with
respect to u. On the other hand, if one searches in the dual as well as in the primal
space, one may be able to give meaningful performance guarantees for heuristically
obtained primal feasible solutions.

6.1 Generating Tight Bounds

Hansen et al. [44] present a primal-dual variable neighborhood search (VNS) for the
simple plant location problem (SPLP). Since the tackled instances are too big to
be solved by linear programming techniques, the authors propose to first perform a
variable neighborhood decomposition search to the SPLP yielding a primal feasible
solution. An initial, possibly infeasible, dual solution is then devised by exploiting the
complementary slackness conditions. This solution is locally improved by applying
variable neighborhood descent (VND), which also reduces a potential infeasibility.
An exact dual solution is required to derive a correct lower bound for the SPLP. It
is obtained by applying the recently developed sliding simplex method. The authors
further use the generated bounds to strengthen a B&B algorithm exactly solving the
SPLP. The presented computational experiments show the efficiency of the proposed
approach, which is able to solve previously unsolved instances to proven optimality.



12 Günther R. Raidl and Jakob Puchinger

6.2 Integrating Primal and Dual Solution Approaches

Rego [77] describes a metaheuristic framework, called relaxation adaptive memory
programming (RAMP), which combines principles of Lagrangian and surrogate re-
laxation with those of adaptive memory programming (AMP) [81]. He further pro-
poses a primal-dual extension PD-RAMP and a specific implementation of PD-
RAMP based on Lagrangian and surrogate constraint relaxation on the dual side
and scatter search and path-relinking on the primal side.

Lagrangian and surrogate relaxation are combined into a cross-parametric re-
laxation method, which uses subgradient optimization to generate good surrogate
constraints. Dual solutions are projected into the primal space by applying con-
structive and improvement heuristics. The approach yields primal solutions as well
as dual bounds and may therefore be able to prove optimality or give performance
guarantees for generated solutions. Using AMP for projecting solutions from the
dual to the primal space yields the RAMP framework. The authors propose to use
frequency based tabu search or a method were tabu search and path-relinking are
combined. The primal-dual RAMP approach switches back and forth between a re-
laxation method and a path-relinking in the primal space, both updating the same
reference set. The author describes preliminary computational experiments, where
PD-RAMP is dominating the performance of the best known methods from the
literature for different variants of the generalized assignment problem.

7 Following the Spirit of Local Search in B&B

Most metaheuristics are based on the principle of local search, i.e. starting from
an initial solution, a certain neighborhood around it is investigated, and if a better
solution can be identified, it becomes the new incumbent solution; this process is
repeated. Thus, the central idea is to focus the search for better solutions on regions
of the search space nearby already identified, good solutions.

In comparison, most B&B algorithms choose the next B&B tree node to be pro-
cessed by a best-first strategy: a node with smallest lower bound is always selected,
since it is considered to be most promising to contain an optimal solution. This ap-
proach is often the best strategy for minimizing the total number of nodes that need
to be explored until finding an optimum and proving its optimality. However, good
complete solutions and thus also tight upper bounds are often found late during
this search. The best-first node selection strategy typically “hops around” on the
search tree and in the search space, and does not stay focused on subregions. When
no strong primal heuristic is applied for determining promising complete solutions,
the best-first strategy is often combined with an initial diving, in which a depth-
first strategy is followed at the beginning until some feasible solution is obtained. In
depth-first search, the next node to be processed is always one that has been most
recently been created by branching.

In the last years, several more sophisticated concepts have been proposed with
the aim to intensify B&B-search in an initial phase to neighborhoods of promising
incumbents in order to quickly identify high quality heuristic solutions. In some
sense, we can consider these strategies to “virtually” execute a metaheuristic. We
will review some of these strategies in the following.



Combining ILP Techniques and Metaheuristics 13

7.1 Guided Dives

Danna et al. [22] describe guided dives, which are a minor, but effective modifica-
tion of the already mentioned simple diving by temporarily switching to depth-first
search. Consider a classical branching in LP-based B&B over a fractional variable,
as described in Sect. 3.4. The subproblem to be processed next in case of guided
dives is always the one in which the branching variable is allowed to take the value
it has in a current incumbent solution. Diving is therefore biased towards the neigh-
borhood of the given incumbent. Instead of performing only a single dive at the
beginning, guided dives are repeatedly applied in regular intervals during the whole
optimization. While this strategy is trivial to implement, experimental results indi-
cate significant advantages over standard node selection strategies.

7.2 Local Branching

Fischetti and Lodi [31] propose local branching, an exact approach introducing the
spirit of classical k-OPT local search in a generic branch-and-cut based MIP solver.
They consider general MIPs with 0–1 variables. Let x = (x1, . . . , xn) be the vector of
all variables and B ⊆ {1, . . . , n} be the index set of the 0–1 variables. The following
local branching constraint is used for defining a k-OPT neighborhood around a given
incumbent solution x = (x1, . . . , xn):

∆(x, x) :=
X

j∈S
(1− xj) +

X

x∈B\S
(xj) ≤ k, (10)

where S = {j ∈ B | xj = 1} being the index set of 0–1 variables set to 1 in the
incumbent solution. Note that ∆(x, x) resembles the classical Hamming distance
between x and x.

In the main algorithm, the whole problem is partitioned into the k-OPT neigh-
borhood of an initial solution x and the rest by branching according to inequal-
ity (10) and the reverse constraint ∆(x, x) ≥ k + 1, respectively. The MIP solver
is then enforced to completely solve the k-OPT neighborhood before considering
the rest.

If an improved solution x′ has been found in the k-OPT neighborhood, a new
subproblem ∆(x, x′) ≤ k is split off from the rest and solved in the same way;
this process is repeated until no further improvements can be achieved. Finally, the
remaining problem corresponding to all not yet considered parts of the search space
is processed in a standard way.

This basic mechanism is extended by introducing time limits, automatically
modifying the neighborhood size k, and adding diversification strategies in order
to improve performance. Furthermore, an extension of the branching constraint for
general integer variables is also proposed. Reported results on various benchmark
MIP instances using CPLEX3 as MIP solver indicate the advantages of the approach
in terms of an earlier identification of high-quality heuristic solutions.

Hansen et al. [46] present a variant of the local branching approach in which
they follow more closely the standard VNS strategy [45] when switching between
neighborhoods. Improved results are reported.

3 http://www.ilog.com



14 Günther R. Raidl and Jakob Puchinger

Another variant of the original local branching scheme is described by Fischetti et
al. [32]. They consider in particular problems in which the set of variables partitions
naturally into two levels, with the property that fixing the values of the first-level
variables yields a substantially easier subproblem.

Lichtenberger [53] describes an extended local branching framework in which sev-
eral k-OPT neighborhoods induced by a set of candidate solutions can be processed
in a pseudo-simultaneous (intertwined) way. This allows the “virtual” implementa-
tion of population-based metaheuristics like EAs on top of a B&B-based MIP solver.
The framework was tested on the MKP. In order to keep the computational effort for
processing the k-OPT neighborhoods reasonably low, an additional variable fixing
strategy is applied.

7.3 The Feasibility Pump

Sometimes, it is already hard to identify any feasible initial solution for a MIP.
For this purpose, Fischetti et al. [30] suggest an algorithm called feasibility pump.
The method starts by solving the LP relaxation yielding a fractional solution x∗.
A (usually infeasible) integer solution x is derived by simple rounding. From it, the
nearest feasible point in the polytope defined by the LP relaxation is determined by
solving a linear program with the Hamming distance ∆(x, x) as objective function.
When the obtained solution is integral, a feasible solution for the original MIP has
been found; otherwise, the process is repeated.

7.4 Relaxation Induced Neighborhood Search

Danna et al. [22] further suggest an alternative approach called relaxation induced
neighborhood search (RINS) in order to explore the neighborhoods of promising MIP
solutions more intensively. The main idea is to occasionally devise a sub-MIP at a
node of the B&B tree that corresponds to a special neighborhood of an incumbent
solution: First, variables having the same values in the incumbent and in the current
solution of the LP relaxation are fixed. Second, an objective cutoff based on the
objective value of the incumbent is set. Third, a sub-MIP is solved on the remaining
variables. The time for solving this sub-MIP is limited. If a better incumbent could
be found during this process, it is passed to the global MIP-search which is resumed
after the sub-MIP termination. In the authors’ experiments, CPLEX is used as MIP
solver, and RINS is compared to standard CPLEX, local branching, combinations
of RINS and local branching, and guided dives. Results indicate that RINS often
performs best. The current version 10 of CPLEX also includes RINS as a standard
strategy for quickly obtaining good heuristic solutions.

8 ILP Techniques for Exploring Large Neighborhoods

A common approach in more sophisticated local search based metaheuristics is to
search neighborhoods by means of clever exact algorithms. If the neighborhoods
are chosen appropriately, they can be relatively large and nevertheless an efficient
search for the best neighbor is still reasonable. Such techniques are known as very
large-scale neighborhood (VLSN) search [3]. Probably most of today’s combinations



Combining ILP Techniques and Metaheuristics 15

of local search based metaheuristics and ILP techniques follow this approach. In the
following, we present some examples.

In Dynasearch [17, 18] exponentially large neighborhoods are explored by dy-
namic programming. A neighborhood where the search is performed consists of all
possible combinations of mutually independent simple search steps, and one Dy-
nasearch move corresponds to a set of independent moves that are executed in
parallel in a single local search iteration. Independence in the context of Dynasearch
means that the individual moves do not interfere with each other; in this case, dy-
namic programming can be used to find the best combination of independent moves.
Dynasearch is restricted to problems where the single search steps are independent,
and to our knowledge it has so far only been applied to problems where solutions
are represented by permutations. Ergun and Orlin [28] investigated several such
neighborhoods in particular for the traveling salesman problem.

For a class of partitioning problems, Thompson et al. [84, 85] suggest the concept
of a cyclic exchange neighborhood, which is based on the transfer of single elements
between an unrestricted number of subsets in a cyclic manner. A 2-exchange move
can be seen as the simplest case of a cyclic exchange having length two. To efficiently
determine a best cyclic exchange for a current solution, a weighted, directed graph
is constructed, in which each arc represents a possible transfer of a single element
and the arc’s weight corresponds to the induced difference in the objective value
of the solution. A best cyclic exchange can then be derived by finding a smallest
negative-cost subset-disjoint cycle in this graph. The authors consider exact and
heuristic methods for this purpose.

Puchinger et al. [71] describe a combined GA/B&B approach for solving a real-
world glass cutting problem. The GA uses an order-based representation, which
is decoded using a greedy heuristic. The B&B algorithm is applied with a certain
probability enhancing the decoding phase by generating locally optimal subpatterns.
Reported results indicate that the approach of occasionally solving subpatterns to
optimality often increase the overall solution quality.

Büdenbender et al. [14] present a tabu search hybrid for solving a real-world
direct flight network design problem. Neighborhoods are created by fixing a large
subset of the integer variables corresponding to the performed flights and allowing
the other variables to be changed. CPLEX is used to solve the reduced problems
corresponding to these neighborhoods. Diversification is performed by closing flights
frequently occurring in previously devised solutions.

Prandtstetter and Raidl [65] apply variable neighborhood search to the car se-
quencing problem and also use CPLEX for searching large neighborhoods. A subset
of the scheduled cars is selected, removed from the schedule, and reinserted in an
optimal way. The neighborhoods differ in the technique used to choose the cars and
their number. Results indicate that this approach can compete well with leading al-
gorithms from a competition organized by the French Operations Research Society
ROADEF in 2005.

Hu et al. [49] propose a VNS metaheuristic for the generalized minimum span-
ning tree problem. The approach uses two dual types of representations and asso-
ciated exponentially large neighborhoods. Best neighbors are identified by means
of dynamic programming algorithms, and – in case of the so-called global subtree
optimization neighborhood – by solving an ILP formulation with CPLEX. Exper-
imental results indicate that each considered neighborhood contributes well to the



16 Günther R. Raidl and Jakob Puchinger

whole success, and the algorithm obtains significantly better solutions than previous
metaheuristics.

Puchinger and Raidl [68] suggest a new variant of VNS: relaxation guided vari-
able neighborhood search. It is based on the general VNS scheme and a new VND
algorithm. The ordering of the neighborhood structures in this VND is determined
dynamically by solving relaxations of them. The objective values of these relax-
ations are used as indicators for the potential gains of searching the corresponding
neighborhoods. The proposed approach has been tested on the MKP. Computa-
tional experiments involving several ILP-based neighborhoods show that relaxation
guided VNS is beneficial to the search, improving the obtained results. The concept
is more generally applicable and seems to be promising for many other combinatorial
optimization problems approached by VNS.

9 Solution Merging

In evolutionary algorithms (EAs), recombination is a traditionally essential operator.
Its purpose is to derive a new candidate solution from two (or more) selected parental
solutions by merging their attributes. Usually, this is done in a simple way, which
is heavily based on random decisions. While such an operation is computationally
cheap, created offspring is often worse than respective parent solutions, and many
repetitions are typically necessary for achieving improvements.

As an alternative, one can put more effort into the determination of a new
solution that is constructed entirely or mainly of attributes appearing in the parents.
An established example from the domain of metaheuristics following this idea is path-
relinking [43]. In the search space, this approach traces a path from one parent to
another by always only exchanging a single attribute (or, more generally, performing
a simple move towards the second parent). An overall best solution found on this
path is finally taken as result.

This concept can further be extended by considering not just solutions on an
individual path between two parents, but the whole subspace of solutions made up
of parental properties only. An optimal merging operation returns a best solution
from this set. Identifying such a solution often is a hard optimization problem on its
own, but due to the limited number of different properties appearing in the parents,
it can often be solved in reasonable time in practice.

Merging has already been successfully applied multiple times. Applegate et al. [7]
were one of the first and describe such an approach for the traveling salesman prob-
lem. They derive a set of diverse tours by a series of runs of an iterated local search
algorithm. The edge-sets of these solutions are merged and the traveling salesman
problem is finally solved to optimality on this strongly restricted graph. In this way
a solution is achieved that is typically superior to the best solution of the iterated
local search.

Klau et al. [50] follow a similar idea and combine a memetic algorithm with
integer programming to heuristically solve the prize-collecting Steiner tree problem.
The proposed algorithmic framework consists of three parts: extensive preprocess-
ing, a memetic algorithm, and an exact branch-and-cut algorithm applied as post-
optimization procedure to the merged final solutions of the memetic algorithm.

Besides the one-time application of merging to a set of heuristically determined
solutions, merging can also replace the classical crossover operator in EAs. Aggarwal



Combining ILP Techniques and Metaheuristics 17

et al. [1] originally suggested such an approach for the independent set problem and
called it optimized crossover. The subproblem of combining two independent sets
to obtain the largest independent set in their union can be solved by an efficient
algorithm.

Ahuja et al. [2] extend this concept to genetic algorithms for the quadratic
assignment problem. They present a matching-based optimized crossover heuristic
that finds an optimized child quickly in practice. This technique can also be applied
to other assignment-type problems, as it relies on the structure of the problem rather
than the objective function.

Cotta et al. [20] discuss the concept of merging in the light of a framework for
hybridizing B&B with EAs. The authors recall the theoretical concepts on formal
analysis (formae are generalized schemata), such as the dynastic potential of two
chromosomes x and y, which is the set of individuals that only carry information
contained in x and y. Based on these concepts the idea of dynastically optimal re-
combination is developed. This results in an operator exploring the potential of the
recombined solutions using B&B, providing the best possible combination of the
ancestors’ features that can be attained without introducing implicit mutation. Ex-
tensive computational experiments on different benchmark sets show the usefulness
of the approach.

Marino et al. [56] present an approach where a GA is combined with an exact
method for the linear assignment problem (LAP) to solve the graph coloring prob-
lem. The LAP algorithm is incorporated into the crossover operator and generates
an optimal permutation of colors within a cluster of nodes, thereby preventing the
offspring from being less fit than its parents. The algorithm does not outperform
other approaches, but provides comparable results. The main conclusion is that solv-
ing the LAP in the crossover operator strongly improves the performance of the GA
in comparison to the GA using a classical crossover.

Clements et al. [16] propose a column generation approach in order to solve a
production-line scheduling problem. Each feasible solution of the problem consists of
a line-schedule for each production line. First, the squeaky wheel optimization (SWO)
heuristic is used to generate feasible solutions to the problem. SWO is a heuristic
using a greedy algorithm to construct a solution, which is then analyzed in order
to find the problematic elements. Higher priorities, indicating that these elements
should be considered earlier by the greedy algorithm, are assigned to them and
the process restarts until a termination condition is reached. SWO is called several
times in a randomized way in order to generate a set of diverse solutions. In the
second phase, the line-schedules contained in these solutions are used as columns of
a set-partitioning formulation for the problem, which is solved by a general purpose
MIP solver. This process always provides a solution which is at least as good as,
but usually better than the best solution devised by SWO. Reported results indicate
that SWO performs better than a tabu search algorithm.

From a more theoretical point, Eremeev [27] studies the computational complex-
ity of producing the best possible offspring in an optimized crossover for 0–1 ILPs.
By means of efficient reductions of the merging subproblem, he shows the polyno-
mial solvability for the maximum weight set packing problem, the minimum weight
set partition problem, and for a version of the simple plant location problem.

For general mixed integer programming, Rothberg [79] describes a tight integra-
tion of an EA in a branch-and-cut based MIP solver. In regular intervals, a certain
number of iterations of the EA is performed as B&B tree node heuristic. Recom-



18 Günther R. Raidl and Jakob Puchinger

bination follows the idea of solution merging by first fixing all variables that are
common in selected parental solutions. The values of the remaining variables are
then determined by applying the MIP solver to the reduced subproblem. Mutation
is performed by selecting one parent, fixing a randomly chosen set of variables, and
again solving the resulting reduced subproblem by the MIP solver. Since the num-
ber of variables to be fixed is a critical parameter, an adaptive scheme is used to
control it. Performed experiments indicate that this hybrid approach is able to find
significantly better solutions than other heuristic methods for several very difficult
MIPs. The method is now also integrated in version 10 of the commercial MIP solver
CPLEX.

Last but not least, it should be pointed out that there exists a strong relation
between large neighborhood search and solution merging. In fact, solution merging
can also be seen as exploring a large neighborhood defined by two or more parental
solutions.

10 ILP Techniques as Decoders for Indirect or
Incomplete Representations

Often, candidate solutions are only indirectly or incompletely represented in meta-
heuristics, and an “intelligent” decoding function is applied for determining an ac-
tual, complete solution. This in particular holds for many GAs. Sometimes, ILP
techniques are successfully used for the decoding step.

It is relatively straight-forward to approach a MIP by splitting it into the integer
and the continuous variable parts. One can then apply a metaheuristic to optimize
the integer part only; before evaluating a solution, a linear programming solver is
applied in order to augment the integer part with an optimal choice of continuous
variable values. Such approaches are described in conjunction with GRASP by Net
and Pedroso [60] and in conjunction with tabu search by Pedroso [61].

Glover [41] suggests a parametric tabu search for heuristically solving MIPs.
This approach also makes use of an underlying LP-solver to obtain complete solution
candidates. The current search point is indirectly represented by the LP relaxation
of the MIP plus additional goal conditions that restrict the domains of a subset of
the integer variables. These goal conditions are, however, not directly considered as
hard constraints when applying the LP-solver, but are relaxed and brought into the
objective function similarly as in Lagrangian relaxation. In this way, the approach
can also be applied to problems where it is hard to find any feasible integer solutions
(constraint satisfaction problems). Glover suggests a variety of intensification and
diversification strategies based on adaptive tabu memory for making the heuristic
search more efficient.

A more problem-specific example is the hybrid GA presented by Staggemeier
et al. [80] for solving a lot-sizing and scheduling problem minimizing inventory and
backlog costs of multiple products on parallel machines. Solutions are represented as
product subsets for each machine at each period. Corresponding optimal lot sizes are
determined when the solution is decoded by solving a linear program. The approach
outperforms a MIP formulation of the problem directly solved by CPLEX.



Combining ILP Techniques and Metaheuristics 19

11 Multi-Stage Approaches

Some optimization approaches consist of multiple sequentially performed stages, and
different techniques are applied at the individual phases.

In many real-world applications, the problem naturally decomposes into multiple
levels, and if the decision variables associated to the lower level(s) have a signifi-
cantly weaker impact on the objective value than the higher-level variables, it is a
reasonable approach to optimize the individual levels in a strictly sequential man-
ner. Metaheuristics and ILP techniques can be considered and in combination be
applied at the individual levels.

Multi-stage approaches are sometimes even applied when such a problem de-
composition is not so obvious. For example, in Sect. 9, we considered approaches,
where a metaheuristic is used to derive a set of heuristic solutions and an exact
technique is used for merging them. Further examples are variable fixing strategies
as described in Sect. 5.4.

Tamura et al. [83] tackle a job-shop scheduling problem and start from its ILP
formulation. For each variable, they take the range of possible values and partition it
into a set of subranges, which are then indexed. The encoded solutions of a GA are
defined so that each position represents a variable, and its value corresponds to the
index of one of the subranges. The fitness of such a chromosome is calculated using
Lagrangian relaxation in order to obtain a bound on the optimal solution subject
to the constraints that the values of the variables fall within the represented ranges.
When the GA terminates, an exhaustive search of the region identified as the most
promising is carried out to produce the final solution.

Lin et al. [54] propose an exact algorithm for generating the minimal set of affine
functions that describes the value function of the finite horizon partially observed
Markov decision process. In the first step a GA is used to generate a set Γ of
witness points, which is as large as possible. In the second step a component-wise
domination procedure is performed in order to eliminate redundant points in Γ .
The set generated so far does not, in general, fully describe the value function.
Therefore, a MIP is solved to generate the missing points in the final third step of
the algorithm. Reported results indicate that this approach requires less time than
some other numerical procedures.

Another kind of sequential combination of B&B and a GA has been described by
Nagar et al. [58] for a two-machine flowshop scheduling problem in which solution
candidates are represented as permutations of jobs. Prior to running the GA, B&B
is executed down to a predetermined depth k and suitable bounds are calculated
and recorded at each node of the explicitly stored B&B tree. During the execution
of the GA each partial solution up to position k is mapped onto the corresponding
tree node. If the associated bounds indicate that no path below this node can lead to
an optimal solution, the permutation is subjected to a mutation operator that has
been specifically designed to change the early part of the permutation in a favorable
way.

12 Cut and Column Generation by Metaheuristics

In cutting plane and column generation based methods, which we addressed in
Sects. 3.2 and 3.3, the dynamic separation of cutting planes and the pricing of



20 Günther R. Raidl and Jakob Puchinger

columns, respectively, is sometimes done by means of (meta-)heuristics in order to
speed up the whole optimization process. We consider these hybrid approaches in
the following in more detail.

12.1 Heuristic Cut Separation

In cutting plane and branch-and-cut algorithms, effective techniques are needed for
deriving cuts, i.e. inequalities that are satisfied by feasible integer solutions but
violated by the current solution to the LP relaxation. Although heuristic separation
routines are commonly applied for this purpose, more sophisticated metaheuristics
have only rarely been used.

An example is the work from Augerat et al. [8], who present a constructive
algorithm, a randomized greedy method, and a tabu search for separating capacity
constraints to solve a capacitated vehicle routing problem. The ILP formulation
includes an exponential number of capacity constraints ensuring that for any given
subset of customers S at least d d(S)

C
e vehicles are needed to satisfy the demand in S

(d(S) corresponds to the sum of the demands of the customers in set S and C is the
capacity of one vehicle). A combination of a cutting plane algorithm and branch-
and-bound is used to solve the problem optimally. The presented results indicate
that using tabu search for identifying violated valid inequalities is promising and
the use of metaheuristics in separation procedures is worth investigating.

Another example concerns the acceleration of Benders decomposition by local
branching, as described by Rei et al. [78]. Benders decomposition is a promising
solution approach in particular for MIPs with diagonal block structure. The ba-
sic principle is to project the MIP into the space of complicating integer variables
only; real variables and the constraints involving them are replaced by correspond-
ing constraints on the integer variables. These constraints, however, are not directly
available but need to be dynamically separated in a cutting plane algorithm-like ap-
proach. According to the classical method, an optimal solution to the relaxed master
problem (including only the already separated cuts) is needed and a linear program
involving this solution must be solved in order to separate a single new cut. Rei et
al. [78] improved this method by introducing phases of local branching on the origi-
nal problem in order to obtain multiple feasible heuristic solutions. These solutions
provide improved upper bounds on one hand, but also allow the derivation of multi-
ple additional cuts before the relaxed master problem needs to be resolved. Tests on
certain multicommodity flow formulations of a capacitated network design problem
indicate the advantages over the traditional Benders decomposition approach.

12.2 Heuristic Column Generation

In column generation approaches and branch-and-price algorithms, it is important
to have fast algorithms available for repeatedly solving the pricing subproblem, i.e.
identifying a variable (column) with negative reduced costs. For many hard prob-
lems, however, this subproblem is also hard. Fast heuristics are therefore sometimes
used for approaching the pricing problem. Note that it is fine when pricing in a
column with negative reduced costs even when it is not one with minimum reduced
costs. However, at the end of column generation it is necessary to prove that no
further column with negative reduced costs exists, i.e. the pricing problem must



Combining ILP Techniques and Metaheuristics 21

finally be solved exactly. Otherwise, no quality guarantees can be given for the final
solution of the whole column generation or branch-and-price algorithm, and they
must be considered to be heuristic methods only.

Most heuristic approaches for solving pricing problems are relatively simple con-
struction methods. More sophisticated metaheuristics have so far been used less
frequently. Filho and Lorena [29] apply a heuristic column generation approach to
graph coloring. A GA is used to generate initial columns and to solve the pricing
problem, which corresponds to the weighted maximum independent set problem, at
every iteration. Column generation is performed as long as the GA finds columns
with negative reduced costs. The master problem is solved using CPLEX. Some
encouraging results are shown.

Puchinger and Raidl [66, 69] describe a branch-and-price approach for the three-
stage two-dimensional bin packing problem. The pricing problem corresponds to
the NP-hard three-stage two-dimensional knapsack problem with additional side-
constraints coming from a special branching technique. Fast column generation is
performed by applying a hierarchy of four methods: (a) a greedy heuristic, (b) an
EA, (c) solving a restricted form of the pricing problem using CPLEX, and finally
(d) solving the complete pricing problem using CPLEX. From this hierarchy, a
strategy is always only applied when all lower level methods have been tried and
were not successful in finding a column with negative reduced costs. Computational
experiments on standard benchmark instances document the benefits of this fine-
grained approach. The combination of all four pricing algorithms in the proposed
branch-and-price framework yields the best results in terms of the average objective
value, the average run-time, and the number of instances solved to proven optimality.

13 Strategic Guidance of Search and Collaboration

Last but not least, we consider approaches where metaheuristics are applied in order
to explicitly guide ILP techniques and collaborative combinations where metaheuris-
tics as well as ILP techniques provide each other mutual guidance.

13.1 Guidance of ILP Search

In principle, any metaheuristic that provides incumbent solutions to a B&B-based
approach might already be considered to fall into this class of approaches; see also
Sect. 4. Two more sophisticated methods, which go beyond this, are the following.

French et al. [35] suggest an EA/B&B hybrid to solve general ILPs. This hybrid
algorithm combines the generic B&B of the MIP solver XPRESS-MP4 with a steady-
state EA. It starts with a B&B phase, in which information from the B&B tree
nodes is collected in order to derive candidate solutions which are added to the
originally randomly initialized EA-population. When a certain criterion is fulfilled,
the EA takes over for a certain time using the augmented initial population. After
termination of the EA, its best solutions are passed back and grafted onto the B&B
tree. Full control is given back to the B&B-engine after the newly added nodes had
been examined to a certain degree. Reported results on instances of the maximum

4 http://www.dashoptimization.com/



22 Günther R. Raidl and Jakob Puchinger

satisfiability problem show that this hybrid approach yields better solutions than
B&B or the EA alone.

Kotsikas and Fragakis [51] determine improved node selection strategies within
B&B for solving MIPs by using genetic programming. After running B&B for a
certain amount of time, information is collected from the B&B tree and used as a
training set for genetic programming, which is performed to find a node selection
strategy more appropriate for the specific problem at hand. The following second
B&B phase then uses this new node selection strategy. Reported results show that
this approach has potential, but needs to be enhanced in order to be able to compete
with today’s state-of-the-art node selection strategies.

13.2 Mutual Guidance

Several systems have been proposed where different optimization techniques, includ-
ing metaheuristics and ILP methods, run in parallel or in an intertwined way and
communicate with each other in order to provide mutual guidance.

Denzinger and Offerman [24] described a multi-agent based approach called
TECHS (TEams for Cooperative Heterogenous Search). It consists of teams of one
or more agents using the same search paradigm. Communication between the agents
is controlled by so-called send- and receive-referees, in order to filter exchanged data.
Each agent is in a cycle between searching and processing received information. In
order to demonstrate the usefulness of TECHS, a system with multiple GA and
B&B agents is considered for job-shop scheduling. GA and B&B agents exchange
only positive information (solutions), whereas B&B agents can also exchange neg-
ative information (closed subtrees) among each other. Computational experiments
show that this cooperation results in finding better solutions given a fixed time-limit
and in finding solutions comparable to the ones of the best individual system alone
in less total time.

Gallardo, Cotta, and Fernández [36] present another EA/B&B hybrid evaluated
on the MKP. The algorithms are executed in an intertwined way and are cooperating
by exchanging information. The EA provides bounds for B&B, while B&B provides
best and partial solutions to the EA. In more detail, the EA is executed first until
a certain convergence criterion is reached, yielding an initial bound. Then B&B is
performed until it obtains an improved solution. Next, control is again given back
to the EA, which possibly incorporates the new incumbent solution as well as some
promising partial solutions from the ongoing B&B search into its population. Control
is switched between the algorithms until a run-time limit is reached. Experimental
results show that the collaborative approach yields better results than the individual
techniques executed on their own.

In [37], the same authors described a refined variant of their approach, which
uses beam search as truncated B&B. The method is also applied to the shortest
common supersequence problem, where the results are again very encouraging.

Another cooperative approach involving a memetic algorithm and branch-and-
cut has been described by Puchinger et al. [70] for the MKP. Both methods are
performed in parallel and exchange information in a bidirectional asynchronous way.
In addition to promising primal solutions, the memetic algorithm also receives dual
variable values of certain LP relaxations and uses them for improving its repair and
local improvement functions by updating the items’ pseudo-utility ratios (see also
Sect. 5.3).



Combining ILP Techniques and Metaheuristics 23

The MALLBA project [4, 5] and its follow-up TRACER facilitate the direct de-
velopment of parallel hybrid algorithms over local and wide area networks. It consists
of a library of skeletons for combinatorial optimization, hiding complex paralleliza-
tion and hybridization implementation details from the user. Several skeletons of
exact and heuristic methods such as B&B, dynamic programming, tabu search, and
GAs are available.

14 Conclusions

We have surveyed a multitude of examples where more powerful optimization sys-
tems were constructed by combining mathematical programming techniques and
metaheuristics. Many very different ways exist for such hybridizations, and we have
classified them into ten major methodological categories. The probably most tradi-
tional approach is to use some metaheuristic for providing high-quality incumbents
and bounds to a B&B-based exact method. On the other hand, quickly solved re-
laxations or the primal-dual relationship are often used for guiding or narrowing the
search in metaheuristics. A relatively new and highly promising stream are those
methods in which B&B is modified in some way in order to follow the spirit of
local search based metaheuristics. A nowadays frequently and successfully applied
approach is large neighborhood search by means of ILP techniques. When extend-
ing this concept towards searching the neighborhood defined by the common and
disjoint properties of two or more parental solutions, we come to solution merging
approaches. Then, we have considered ILP techniques as decoders for indirect or
incomplete representations. Furthermore, some problems are naturally approached
by multi-stage approaches. So far less frequently applied, but in the opinion of the
authors highly promising hybrid approaches are those where metaheuristics are uti-
lized within more complex branch-and-cut and branch-and-price algorithms for cut
separation and column generation, respectively. Last but not least we have con-
sidered collaborative hybrid systems in which one method provides some kind of
strategic guidance for the other or even mutual guidance is achieved. As noted,
some approaches from the literature can be considered to fall into several of the
methodological categories we have identified.

Although a lot of experience already exists with such hybrid systems, it is usu-
ally still a tough question which algorithms and kinds of combinations are most
promising for a new problem at hand. Despite the many successful examples of hy-
brids, the reader should also keep in mind that a more complex system does not
automatically perform better than a simpler “pure” algorithm. Many less successful
trials of combining mathematical programming techniques and metaheuristics also
exist, but they are usually not published. The primary advice the authors are able
to give for developing superior hybrid systems is to carefully study the literature
looking for most successful approaches to similar problems and to adopt and even-
tually recombine (hybridize) their key-features. We hope that this chapter provides
a good starting point and some references for this purpose.



24 Günther R. Raidl and Jakob Puchinger

Acknowledgements

This work is partly supported by the European RTN ADONET under grant 504438
and the “Hochschuljubiläumsstiftung” of Vienna, Austria, under contract number
H-759/2005.

National ICT Australia is funded by the Australian Government’s Backing Aus-
tralia’s Ability initiative, in part through the Australian Research Council.

References

1. C. Aggarwal, J. Orlin, and R. Tai. Optimized crossover for the independent set
problem. Operations Research, 45:226–234, 1997.

2. R. Ahuja, J. Orlin, and A. Tiwari. A greedy genetic algorithm for the quadratic
assignment problem. Computers & Operations Research, 27:917–934, 2000.

3. R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very large-
scale neighborhood search techniques. Discrete Applied Mathematics, 123(1-
3):75–102, 2002.

4. E. Alba, F. Almeida, M. Blesa, C. Cotta, M. Dı́az, I. Dorta, J. Gabarró,
J. González, C. León, L. Moreno, J. Petit, J. Roda, A. Rojas, and F. Xhafa.
MALLBA: Towards a combinatorial optimization library for geographically dis-
tributed systems. In Proceedings of the XII Jornadas de Paralelismo, pages
105–110. Editorial U.P.V., 2001.

5. E. Alba, F. A. M., Blesa, C. Cotta, M. Dı́az, I. Dorta, J. Gabarró, J. G. C., León,
L. Moreno, J. Petit, J. Roda, A. Rojas, and F. Xhafa. MALLBA: A library of
skeletons for combinatorial optimisation. In B. Monien and R. Feldman, editors,
Euro-Par 2002 Parallel Processing, volume 2400 of Lecture Notes in Computer
Science, pages 927–932. Springer, Berlin, Germany, 2002.

6. F. Almeida, M. J. Blesa Aguilera, C. Blum, et al., editors. Hybrid Metaheuristics
– Third International Workshop, HM 2006, volume 4030 of Lecture Notes in
Computer Science. Springer, Berlin, Germany, 2006.

7. D. Applegate, R. Bixby, V. Chvátal, and W. Cook. On the solution of the trav-
eling salesman problem. Documenta Mathematica, Extra Volume ICM III:645–
656, 1998.

8. P. Augerat, J. Belenguer, E. Benavent, A. Corberan, and D. Naddef. Separat-
ing capacity constraints in the CVRP using tabu search. European Journal of
Operational Research, 106(2):546–557, 1999.

9. E. Balas and E. Zemel. An algorithm for large zero-one knapsack problems.
Operations Research, 28:1130–1154, 1980.

10. F. Barahona and R. Anbil. The volume algorithm: Producing primal solutions
with a subgradient method. Mathematical Programming, Series A, 87(3):385–
399, 2000.

11. D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific, 1997.

12. M. J. Blesa Aguilera, C. Blum, A. Roli, et al., editors. Hybrid Metaheuristics
– Second International Workshop, HM 2005, volume 3636 of Lecture Notes in
Computer Science. Springer, Berlin, Germany, 2005.

13. C. Blum, A. Roli, and M. Sampels, editors. Hybrid Metaheuristics – First
International Workshop, HM 2004. Proceedings, Valencia, Spain, 2004.



Combining ILP Techniques and Metaheuristics 25

14. K. Büdenbender, T. Grünert, and H.-J. Sebastian. A hybrid tabu search/branch-
and-bound algorithm for the direct flight network design problem. Transporta-
tion Science, 34(4):364–380, 2000.

15. P. C. Chu and J. E. Beasley. A genetic algorithm for the multidimensional
knapsack problem. Journal of Heuristics, 4:63–86, 1998.

16. D. Clements, J. Crawford, D. Joslin, G. Nemhauser, M. Puttlitz, and M. Savels-
bergh. Heuristic optimization: A hybrid AI/OR approach. In A. Davenport and
C. Beck, editors, Proceedings of the Workshop on Industrial Constraint-Directed
Scheduling, 1997. Held in conjunction with the Third International Conference
on Principles and Practice of Constraint Programming (CP97).

17. R. K. Congram. Polynomially Searchable Exponential Neighbourhoods for Se-
quencing Problems in Combinatorial Optimisation. PhD thesis, University of
Southampton, Faculty of Mathematical Studies, UK, 2000.

18. R. K. Congram, C. N. Potts, and S. L. van de Velde. An iterated dynasearch
algorithm for the single-machine total weighted tardiness scheduling problem.
INFORMS Journal on Computing, 14(1):52–67, 2002.

19. C. Cotta. A study of hybridisation techniques and their application to the design
of evolutionary algorithms. AI Communications, 11(3–4):223–224, 1998.

20. C. Cotta and J. M. Troya. Embedding branch and bound within evolutionary
algorithms. Applied Intelligence, 18:137–153, 2003.

21. E. Danna and C. Le Pape. Two generic schemes for efficient and robust coop-
erative algorithms. In M. Milano, editor, Constraint and Integer Programming,
pages 33–57. Kluwer Academic Publishers, 2003.

22. E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neigh-
borhoods to improve MIP solutions. Mathematical Programming, Series A,
102:71–90, 2005.

23. G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson. Solution of a large scale
traveling salesman problem. Operations Research, 2:393–410, 1954.

24. J. Denzinger and T. Offermann. On cooperation between evolutionary algo-
rithms and other search paradigms. In W. Porto et al., editors, Proceedings
of the 1999 Congress on Evolutionary Computation (CEC), volume 3, pages
2317–2324. IEEE Press, 1999.

25. I. Dumitrescu and T. Stuetzle. Combinations of local search and exact algo-
rithms. In G. R. Raidl et al., editors, Applications of Evolutionary Computation,
volume 2611 of Lecture Notes in Computer Science, pages 211–223. Springer,
Berlin, Germany, 2003.

26. M. El-Abd and M. Kamel. A taxonomy of cooperative search algorithms. In
Blesa Aguilera et al. [12], pages 32–41.

27. A. Eremeev. On complexity of optimized crossover for binary representations. In
D. V. Arnold, T. Jansen, M. D. Vose, and J. E. Rowe, editors, Theory of Evolu-
tionary Algorithms, number 06061 in Dagstuhl Seminar Proceedings, Dagstuhl,
Germany, 2006. Internationales Begegnungs- und Forschungszentrum für Infor-
matik (IBFI), Schloss Dagstuhl, Germany.

28. O. Ergun and J. B. Orlin. A dynamic programming methodology in very large
scale neighborhood search applied to the traveling salesman problem. Discrete
Optimization, 3(1):78–85, 2006.

29. G. R. Filho and L. A. N. Lorena. Constructive genetic algorithm and column
generation: an application to graph coloring. In L. P. Chuen, editor, Proceed-
ings of APORS 2000, the Fifth Conference of the Association of Asian-Pacific
Operations Research Societies within IFORS, 2000.



26 Günther R. Raidl and Jakob Puchinger

30. M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical
Programming, 104(1):91–104, 2005.

31. M. Fischetti and A. Lodi. Local Branching. Mathematical Programming, Se-
ries B, 98:23–47, 2003.

32. M. Fischetti, C. Polo, and M. Scantamburlo. Local branching heuristic for
mixed-integer programs with 2-level variables, with an application to a telecom-
munication network design problem. Networks, 44(2):61–72, 2004.

33. M. L. Fisher. The Lagrangian Relaxation Method for Solving Integer Program-
ming Problems. Management Science, 27(1):1–18, 1981.

34. A. Frangioni. About Lagrangian methods in integer optimization. Annals of
Operations Research, 139(1):163–193, 2005.

35. A. P. French, A. C. Robinson, and J. M. Wilson. Using a hybrid genetic algo-
rithm/branch and bound approach to solve feasibility and optimization integer
programming problems. Journal of Heuristics, 7:551–564, 2001.

36. J. E. Gallardo, C. Cotta, and A. J. Fernández. Solving the multidimensional
knapsack problem using an evolutionary algorithm hybridized with branch and
bound. In Mira and Álvarez [57], pages 21–30.

37. J. E. Gallardo, C. Cotta, and A. J. Fernández. On the hybridization of memetic
algorithms with branch-and-bound techniques. IEEE Transactions on Systems,
Man and Cybernetics, Part B, 37(1):77–83, 2007.

38. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York, 1979.

39. P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting
stock problem. Operations Research, 9:849–859, 1961.

40. F. Glover. Surrogate constraints. Operations Research, 16(4):741–749, 1968.
41. F. Glover. Parametric tabu-search for mixed integer programming. Computers

& Operations Research, 33(9):2449–2494, 2006.
42. F. Glover and G. Kochenberger, editors. Handbook of Metaheuristics, volume 57

of International Series in Operations Research & Management Science. Kluwer
Academic Publishers, 2003.

43. F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and path
relinking. Control and Cybernetics, 39(3):653–684, 2000.

44. P. Hansen, J. Brimberg, N. Mladenović, and D. Urosević. Primal-dual variable
neighborhood search for the simple plant location problem. INFORMS Journal
on Computing, to appear.

45. P. Hansen and N. Mladenović. An introduction to variable neighborhood search.
In S. Voß, S. Martello, I. Osman, and C. Roucairol, editors, Meta-heuristics:
advances and trends in local search paradigms for optimization, pages 433–438.
Kluwer Academic Publishers, 1999.

46. P. Hansen, N. Mladenović, and D. Urosević. Variable neighborhood search and
local branching. Computers & Operations Research, 33(10):3034–3045, 2006.

47. M. Haouaria and J. C. Siala. A hybrid Lagrangian genetic algorithm for the prize
collecting Steiner tree problem. Computers & Operations Research, 33(5):1274–
1288, 2006.

48. H. Hoos and T. Stützle. Stochastic Local Search – Foundations and Applications.
Morgan Kaufmann, 2004.

49. B. Hu, M. Leitner, and G. R. Raidl. Combining variable neighborhood search
with integer linear programming for the generalized minimum spanning tree
problem. Journal of Heuristics, to appear.



Combining ILP Techniques and Metaheuristics 27

50. G. Klau, I. Ljubić, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, G. Raidl, and
R. Weiskircher. Combining a memetic algorithm with integer programming to
solve the prize-collecting Steiner tree problem. In K. Deb et al., editors, Genetic
and Evolutionary Computation – GECCO 2004, volume 3102 of Lecture Notes
in Computer Science, pages 1304–1315. Springer, Berlin, Germany, 2004.

51. K. Kostikas and C. Fragakis. Genetic programming applied to mixed integer pro-
gramming. In M. Keijzer et al., editors, Genetic Programming – EuroGP 2004,
volume 3003 of Lecture Notes in Computer Science, pages 113–124. Springer,
Berlin, Germany, 2004.

52. E. Lawler and D. Wood. Branch and bounds methods: A survey. Operations
Research, 4(4):669–719, 1966.

53. D. Lichtenberger. An extended local branching framework and its application to
the multidimensional knapsack problem. Master’s thesis, Vienna University of
Technology, Institute of Computer Graphics and Algorithms, Vienna, Austria,
March 2005.

54. A. Z.-Z. Lin, J. Bean, and C. C. White. A hybrid genetic/optimization algo-
rithm for finite horizon partially observed Markov decision processes. Journal
on Computing, 16(1):27–38, 2004.

55. M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Oper-
ations Research, 53(6):1007–1023, 2005.

56. A. Marino, A. Prügel-Bennett, and C. A. Glass. Improving graph colouring with
linear programming and genetic algorithms. In K. Miettinen, M. M. Makela, and
J. Toivanen, editors, Proceedings of EUROGEN 99, pages 113–118, Jyväskyiä,
Finland, 1999.

57. J. Mira and J. Álvarez, editors. Artificial Intelligence and Knowledge Engi-
neering Applications: A Bioinspired Approach, volume 3562 of Lecture Notes in
Computer Science. Springer, Berlin, Germany, 2005.

58. A. Nagar, S. S. Heragu, and J. Haddock. A meta-heuristic algorithm for a bi-
criteria scheduling problem. Annals of Operations Research, 63:397–414, 1995.

59. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
John Wiley & Sons, 1988.

60. T. Neto and J. P. Pedroso. GRASP for linear integer programming. In J. P.
Sousa and M. G. C. Resende, editors, Metaheuristics: Computer Decision Mak-
ing, Combinatorial Optimization Book Series, pages 545–574. Kluwer Academic
Publishers, 2003.

61. J. P. Pedroso. Tabu search for mixed integer programming. In C. Rego and
B. Alidaee, editors, Metaheuristic Optimization via Memory and Evolution, vol-
ume 30 of Operations Research/Computer Science Interfaces Series, pages 247–
261. Springer, Berlin, Germany, 2005.

62. S. Pirkwieser, G. R. Raidl, and J. Puchinger. Combining Lagrangian decompo-
sition with an evolutionary algorithm for the knapsack constrained maximum
spanning tree problem. In C. Cotta and J. van Hemert, editors, Evolutionary
Computation in Combinatorial Optimization – EvoCOP 2007, volume 4446 of
Lecture Notes in Computer Science, pages 176–187. Springer, Berlin, Germany,
2007.

63. D. Pisinger. An expanding-core algorithm for the exact 0–1 knapsack problem.
European Journal of Operational Research, 87:175–187, 1995.

64. A. Plateau, D. Tachat, and P. Tolla. A hybrid search combining interior point
methods and metaheuristics for 0–1 programming. International Transactions
in Operational Research, 9:731–746, 2002.



28 Günther R. Raidl and Jakob Puchinger

65. M. Prandtstetter and G. R. Raidl. A variable neighborhood search approach
for solving the car sequencing problem. In P. Hansen et al., editors, Proceedings
of the 18th Mini Euro Conference on Variable Neighborhood Search, Tenerife,
Spain, 2005.

66. J. Puchinger and G. R. Raidl. An evolutionary algorithm for column generation
in integer programming: an effective approach for 2D bin packing. In X. Yao
et al., editors, Parallel Problem Solving from Nature – PPSN VIII, volume 3242
of Lecture Notes in Computer Science, pages 642–651. Springer, Berlin, Ger-
many, 2004.

67. J. Puchinger and G. R. Raidl. Combining metaheuristics and exact algorithms
in combinatorial optimization: A survey and classification. In Proceedings of
the First International Work-Conference on the Interplay Between Natural and
Artificial Computation, Part II, volume 3562 of Lecture Notes in Computer
Science, pages 41–53. Springer, Berlin, Germany, 2005.

68. J. Puchinger and G. R. Raidl. Bringing order into the neighborhoods: Relaxation
guided variable neighborhood search. Journal of Heuristics, to appear.

69. J. Puchinger and G. R. Raidl. Models and algorithms for three-stage two-
dimensional bin packing. European Journal of Operational Research, to appear.

70. J. Puchinger, G. R. Raidl, and M. Gruber. Cooperating memetic and branch-
and-cut algorithms for solving the multidimensional knapsack problem. In Pro-
ceedings of MIC 2005, the 6th Metaheuristics International Conference, pages
775–780, Vienna, Austria, 2005.

71. J. Puchinger, G. R. Raidl, and G. Koller. Solving a real-world glass cutting
problem. In J. Gottlieb and G. R. Raidl, editors, Evolutionary Computation in
Combinatorial Optimization – EvoCOP 2004, volume 3004 of Lecture Notes in
Computer Science, pages 162–173. Springer, Berlin, Germany, 2004.

72. J. Puchinger, G. R. Raidl, and U. Pferschy. The core concept for the multidimen-
sional knapsack problem. In J. Gottlieb and G. R. Raidl, editors, Evolutionary
Computation in Combinatorial Optimization – EvoCOP 2006, volume 3906 of
Lecture Notes in Computer Science, pages 195–208. Springer, Berlin, Germany,
2006.

73. G. R. Raidl. An improved genetic algorithm for the multiconstrained 0–1 knap-
sack problem. In D. B. Fogel et al., editors, Proceedings of the 1998 IEEE
International Conference on Evolutionary Computation, pages 207–211. IEEE
Press, 1998.

74. G. R. Raidl. A unified view on hybrid metaheuristics. In Almeida et al. [6],
pages 1–12.

75. G. R. Raidl and H. Feltl. An improved hybrid genetic algorithm for the gen-
eralized assignment problem. In H. M. Haddadd et al., editors, Proceedings of
the 2003 ACM Symposium on Applied Computing, pages 990–995. ACM Press,
2004.

76. G. R. Raidl and J. Gottlieb. Empirical analysis of locality, heritability and
heuristic bias in evolutionary algorithms: A case study for the multidimensional
knapsack problem. Evolutionary Computation Journal, 13(4):441–475, 2005.

77. C. Rego. RAMP: A new metaheuristic framework for combinatorial optimiza-
tion. In C. Rego and B. Alidaee, editors, Metaheuristic Optimization via Memory
and Evolution, pages 441–460. Kluwer Academic Publishers, 2005.

78. W. Rei, J.-F. Cordeau, M. Gendreau, and P. Soriano. Accelerating Benders
decomposition by local branching. Technical Report C7PQMR PO2006-02-X,
HEC Montréal, Canada, 2006.



Combining ILP Techniques and Metaheuristics 29

79. E. Rothberg. An evolutionary algorithm for polishing mixed integer program-
ming solutions. INFORMS Journal on Computing, to appear.

80. A. T. Staggemeier, A. R. Clark, U. Aickelin, and J. Smith. A hybrid genetic algo-
rithm to solve a lot-sizing and scheduling problem. In B. Lev, editor, Proceedings
of the 16th triannual Conference of the International Federation of Operational
Research Societies, Edinburgh, U.K., 2002.

81. E. D. Taillard, L.-M. Gambardella, M. Gendreau, and J.-Y. Potvin. Adaptive
memory programming: A unified view of meta-heuristics. European Journal of
Operational Research, 135:1–16, 2001.

82. E.-G. Talbi. A taxonomy of hybrid metaheuristics. Journal of Heuristics,
8(5):541–565, 2002.

83. H. Tamura, A. Hirahara, I. Hatono, and M. Umano. An approximate solution
method for combinatorial optimisation. Transactions of the Society of Instru-
ment and Control Engineers, 130:329–336, 1994.

84. P. Thompson and J. Orlin. The theory of cycle transfers. Technical Report
OR-200-89, MIT Operations Research Center, Boston, MA, 1989.

85. P. Thompson and H. Psaraftis. Cycle transfer algorithm for multivehicle routing
and scheduling problems. Operations Research, 41:935–946, 1993.

86. M. Vasquez and J.-K. Hao. A hybrid approach for the 0–1 multidimensional
knapsack problem. In B. Nebel, editor, Proceedings of the 17th International
Joint Conference on Artificial Intelligence, IJCAI 2001, pages 328–333, Seattle,
Washington, 2001. Morgan Kaufman.

87. M. Vasquez and Y. Vimont. Improved results on the 0–1 multidimensional
knapsack problem. European Journal of Operational Research, 165:70–81, 2005.

88. L. A. Wolsey. Integer Programming. Wiley-Interscience, 1998.
89. D. L. Woodruff. A chunking based selection strategy for integrating meta-

heuristics with branch and bound. In S. Voss et al., editors, Metaheuristics:
Advances and Trends in Local Search Paradigms for Optimization, pages 499–
511. Kluwer Academic Publishers, 1999.


