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Abstract. We present a new approach for strongly compressing a relatively small amount of poorly structured data, as is
required when embedding fingerprint template information in images of ID-cards by means of watermarking techniques. The
approach is based on the construction of a directed tree spanning a selected part of the data points and a codebook of template
arcs used for a compact encoding of relative point positions. The selection of data points, the tree structure, and the codebook
are simultaneously optimized by a new exact branch-and-cut approach or, alternatively, a faster greedy randomized adaptive
search procedure (GRASP) to maximize compression. Experiments indicate that the new method can encode the required
information in less space than several standard compression algorithms.
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INTRODUCTION

We consider a new technique for strongly compressing a relatively small amount of weakly structured data. The
application background lies in embedding fingerprint information by means of watermarking techniques [7] in images
such as photos on ID-cards as an additional security feature. Since the amount of information that can be reliably
embedded in an ID-card’s photo without distorting it too much is heavily limited, a strong compression technique
is required for shrinking raw fingerprint information [5]. While the compression does not need to be lossless, it is
nevertheless crucial not to lose too much precision, so that checking fingerprints against the encoded information is
possible with small errors.

Fingerprint matching usually relies on image processing techniques for extracting so-called minutiae, which are
points of interest such as bifurcations, crossover, and ridge endings [6]. Typically, 15 to 60 minutiae are extracted
from a single fingerprint, and for each a discrete type, x and y coordinates and an angle are obtained as attributes. In
practice, a reasonably accurate agreement of a relatively low number of minutiae between two fingerprints indicates
a match with high probability. We focus here on the selection of a pre-specified number k of all available minutiae in
combination with their lossless encoding by means of a small codebook of template arcs and a depending directed tree
structure spanning the points. By solving an extension of the well-known minimum label spanning tree problem, we
aim at achieving the highest possible compression rate.

In the following, we introduce our approach more formally and present an exact branch-and-cut algorithm as well
as a faster heuristic method based on a greedy randomized adaptive search procedure (GRASP) [4]. Some information
on our modelling and the GRASP approach in particular can also be found in [3]. The current article extends this
previous work primarily by introducing the exact branch-and-cut method and addressing its results.

THE TREE-BASED COMPRESSION MODEL

We consider as given input data n d-dimensional points V = {v1, . . . ,vn} from a discrete domain D= {0, . . . , ṽ1−1}×
. . .×{0, . . . , ṽd−1} corresponding to the minutiae of a fingerprint (d = 4 in our case). The domain limits ṽ1, . . . , ṽd ∈N
represent the individual sizes and resolutions of the d dimensions.

We compress these data by selecting a subset of k of these n points and connecting them by an outgoing arbores-
cence, i.e., a directed spanning tree. One point forms the root node and each arc of the tree represents the relative
geometric position of its end point in dependence of its starting point. To achieve the compression, we maintain a



FIGURE 1. Illustration to the encoding of points via a directed spanning tree using a codebook of template arcs; correction
vectors are neglected.

limited, small set of appropriately chosen template arcs and instead of storing for each tree arc its lengths w.r.t. any of
the d dimensions, we encode it more tightly by a simple reference to the most similar template arc plus a correction
vector from a small domain. Thus, the set of template arcs acts as a codebook, see also Fig. 1. In order to achieve a
compression rate that is as high as possible, we optimize the selection of encoded points, the tree structure, and the set
of template arcs at the same time. The domain for the correction vectors is pre-specified, while the number of template
arcs is the objective to be minimized. As compressed data, we finally write the template arc set and the tree. The latter
is traversed in a depth-first manner, and at each step we store one bit indicating whether a new arc has been traversed
to reach a new node or backtracking took place. When following a new arc, a reference to its template arc plus the
small correction vector are additionally written.

More formally, we are given a complete directed graph G = (V,A) with the node set V corresponding to the n given
points and arc set A = {(i, j) | i, j ∈V ∧ i 6= j}. A solution to our problem consists of

1. a vector of template arcs R = (r1, . . . ,rm) ∈ Dm of arbitrary size m representing the codebook, and
2. a rooted, outgoing tree T = (VT ,AT ) with VT ⊆V and AT ⊆ A connecting precisely |VT |= k nodes, in which each

tree arc (i, j) ∈ AT has associated
• a template arc index κi, j ∈ {1, . . . ,m} and
• and a correction vector δi, j ∈ D′ from a pre-specified, small domain D′ ⊆ D.

The essential condition for a solution to be feasible is

v j = (vi + rκi, j +δi, j) mod ṽ ∀(i, j) ∈ AT , (1)

i.e., each tree arc must correspond to the sum of its referenced template arc plus its correction vector. The modulo-
calculation is performed in order to always stay within a finite ring, so there is no need for negative values and we
do not have to explicitly consider domain boundaries. The major objective now is to find a feasible solution that is
minimal with respect to the number of template arcs m, i.e., the codebook size.

REFORMULATION AS A MINIMUM LABEL k-NODE SUBTREE PROBLEM

We approach this goal by first deriving a (large) set Rcand of possibly useful candidate template arcs and then select
the actual codebook as a smallest subset for which a feasible solution exists. The candidate set Rcand is determined in
such a way that an optimal (minimal) codebook is guaranteed to be contained but obviously redundant template arcs
are avoided. For an arbitrary arc r ∈ D, let Z(r)⊆ A be the subset of arcs from A for which r can be used as template
so that corresponding correction vectors from the limited domain D′ exist in order to fulfill condition (1). In particular,
an arc r is considered redundant and not included in Rcand when it cannot be used for any arc in A, i.e. Z(r) = /0, or
it is dominated by some other arc r′, i.e. Z(r) ⊂ Z(r′). Furthermore, from all candidate arcs with exactly the same
Z(r), only one is kept. We developed a dynamic programming procedure using a k-d tree data structure for efficiently
determining Rcand.

Having Rcand now available, our problem is related to the NP-hard minimum label spanning tree (MLST) problem
introduced in [1], in which an undirected graph is given, each edge has associated a label of a discrete label set, and
a spanning tree whose edges induce a smallest possible subset of the labels is sought. Some more recent work on
the MLST problem includes [8, 10]. In our problem, the labels correspond to the candidate template arcs Rcand, and
differences are that we have to consider the directed case, multiple labels (i.e., candidate template arcs) for each arc in



A, and that not all but only k nodes need to be connected. We therefore refer to our problem as minimum label k-node
subtree (k-MLST) problem.

A BRANCH-AND-CUT APPROACH

For allowing the optimization to also choose as root of the tree a best suited point, we extend V to V ′ by including
a new artificial root node 0 and extend A to A′ by introducing arcs (0, i), ∀i ∈ V . For each candidate template arc
r ∈ Rcand, we define a variable yr ∈ {0,1} indicating whether or not the arc is part of the codebook R. Furthermore, we
use variables xa ∈ {0,1}, ∀a ∈ A′, indicating which arcs belong to the solution tree, and variables zi ∈ {0,1}, ∀i ∈V ,
indicating the k points from V covered by the tree. Let Y (a), ∀a ∈ A, be the set of all template arcs that may be used
for representing a, i.e., Y (a) = {r ∈ Rcand | a ∈ Z(r)}.

Now, we can model the k-MLST problem by the following integer linear program (ILP):

min m = ∑
r∈Rcand

yr (2)

s.t. ∑
r∈Y (a)

yr ≥ xa ∀a ∈ A (3)

∑
i∈V

zi = k (4)

∑
a∈A

xa = k−1 (5)

∑
i∈V

x(0,i) = 1 (6)

∑
a∈δ−(S)

xa ≥ zi ∀i ∈V, ∀S⊆V, i ∈ S, 0 /∈ S. (7)

Inequality (3) ensures that for each tree arc a ∈ A at least one valid template arc r is selected for representing it.
Precisely k nodes from V must be connected according to (4). Equality 5 forces the number of tree arcs to be k− 1
(excluding the arc from the artificial root), while (6) guarantees a single node to be directly connected to the artificial
root. Finally, we use the connectivity constraints (7), where δ−(S) represents the ingoing cut of node set S, to ensure
the existence of a path from the root 0 to any node i ∈V for which zi = 1, i.e., which is selected for connection.

Note that there are exponentially many connectivity constraints (7) since one exists for every possible subset of
nodes from V including node i, ∀i ∈V . Directly solving the ILP would therefore only be feasible for extremely small
problem instances. Instead, we apply branch-and-cut [9] and initially omit the connectivity constraints. At each node
of the branch-and-bound tree a cutting plane algorithm is performed and only violated connectivity constraints are
identified (separated) and included.

The separation procedure utilizes Cherkassky and Goldberg’s implementation of the push-relabel method for the
maximum flow problem [2] to perform the required minimum cut computations. The branch-and-cut algorithm has
been implemented using CPLEX in version 10.

A GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE

Based on a greedy construction heuristic for the classical MLST problem [1], we first developed a greedy heuristic for
our k-MLST problem. Starting from an empty set of selected labels and an empty graph, we iteratively add a label r
(template arc) and its induced arcs Z(r) from A until the obtained graph contains a feasible k-node arborescence. The
decision on which label to take next is, however, now significantly more difficult than in case of the undirected MLST
problem, and we based it on the calculation of upper bounds on the numbers of further labels required to obtain a
feasible tree. Having reached a feasible solution, it is finally checked for redundant labels that can be removed without
destroying the solution’s feasibility. Advanced data structures are used in this procedure in order to avoid repeated
time-consuming depth-first searches. The method is fast, but the results are of only moderate quality.

Significantly better solutions, i.e., higher compression rates, can be achieved by extending the greedy heuristic to a
greedy randomized adaptive search procedure (GRASP) [4]. The constructive heuristic is iterated and the next label
is always selected at random from a restricted set of labels chosen according to the greedy criterion. All the candidate
solutions are then further improved by a local search that considers three different neighborhood structures, and the
overall best solution is the final result.



EXPERIMENTAL RESULTS

Our branch-and-cut implementation is able to solve the k-MLST problem associated with practical fingerprint in-
stances depending on the number of input minutiae n = |V |, parameter k, and the correction vector domains usually
within a few minutes up to half an hour on a standard desktop PC. Compared to storing k minutiae in an uncompressed
way, our encoded solutions only required about 80–90% of the space. While this does not look as a substantial saving
at the first glance, one has to keep in mind that minutiae data in general have very low structure. Comparisons with
other compression tools including compress, gzip, and bzip2 indicated that these methods almost never achieve factors
less than 95% (unnecessary meta-information already removed) and often even increase the required space.

The running times of GRASP are in the order of seconds to very few minutes (depending on the neighborhood
structures and number of iterations), and it achieves optimal compression in about 95% of the instances. In the
remaining cases, usually only one more label (template arc) is required. GRASP therefore is a meaningful option
for practical purposes.

CONCLUSIONS AND FUTURE WORK

The proposed approach is highly promising for the considered fingerprint template compression application. The
proposed branch-and-cut algorithm is able to achieve provably best compression rates for all practically-sized instances
under our model, while the alternative heuristic GRASP method is significantly faster and also exhibits excellent
compression.

Further investigations on larger sets of test instances and with different minutiae matching algorithms are necessary,
in particular also in order to get a more detailed understanding on how many minutiae must be encoded to achieve
reasonably few false matches and non-matches. Further tuning should allow to shorten running times of both, branch-
and-cut and GRASP. An alternative optimization approach based on branch-and-price as well as certain improvements
in the representation model (e.g. allowing Steiner nodes) are considered in currently ongoing work.

Last but not least, the proposed compression approach is not restricted to the application of fingerprint template
compression. It seems to be a viable option also in several other applications where the aim is to store a relatively
small amount of data in a highly compact way and running times for compression are not too critical. Obviously, the
decoding of the compressed data can always be done efficiently in time Θ(k).
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