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Abstract. Manifold possibilities of hybridizing individual metaheuris-
tics with each other and/or with algorithms from other fields exist. A
large number of publications documents the benefits and great success
of such hybrids. This article overviews several popular hybridization ap-
proaches and classifies them based on various characteristics. In par-
ticular with respect to low-level hybrids of different metaheuristics, a
unified view based on a common pool template is described. It helps
in making similarities and different key components of existing meta-
heuristics explicit. We then consider these key components as a tool-
box for building new, effective hybrid metaheuristics. This approach of
thinking seems to be superior to sticking too strongly to the philosophies
and historical backgrounds behind the different metaheuristic paradigms.
Finally, particularly promising possibilities of combining metaheuristics
with constraint programming and integer programming techniques are
highlighted.

1 Introduction

Metaheuristics have proven to be highly useful for approximately solving difficult
optimization problems in practice. A general overview on this research area can
be found e.g. in [1], for more information see also [2, 3]. The term metaheuristic
was first introduced by Glover [4]. Today, it refers to a broad class of algorithmic
concepts for optimization and problem solving, and the boundaries are somewhat
fuzzy. Voß [5] gives the following definition:

A metaheuristic is an iterative master process that guides and modi-
fies the operations of subordinate heuristics to efficiently produce high-
quality solutions. It may manipulate a complete (or incomplete) single
solution or a collection of solutions at each iteration. The subordinate
heuristics may be high (or low) level procedures, or a simple local search,
or just a construction method.

According to Glover [2],

. . . these methods have over time also come to include any procedure
for problem solving that employs a strategy for overcoming the trap of
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local optimality in complex solution spaces, especially those procedures
that utilize one or more neighborhood structures as a means of defining
admissible moves to transition from one solution to another, or to build
or destroy solutions in constructive and destructive processes.

Simulated annealing, tabu search, evolutionary algorithms like genetic algo-
rithms and evolution strategies, ant colony optimization, estimation of distribu-
tion algorithms, scatter search, path relinking, the greedy randomized adaptive
search procedure (GRASP), multi-start and iterated local search, guided local
search, and variable neighborhood search are – among others – often listed as
examples of classical metaheuristics, and they have individual historical back-
grounds and follow different paradigms and philosophies; see e.g. [2].

Especially over the last years a large number of algorithms were reported
that do not purely follow the concepts of one single traditional metaheuristic,
but they combine various algorithmic ideas, sometimes also from outside of the
traditional metaheuristics field. These approaches are commonly referred to as
hybrid metaheuristics.

As for metaheuristics in general, there exist various perceptions of what a
hybrid metaheuristic actually is. Looking up the meaning of hybrid in the current
issue (May 2006) of the Merriam Webster dictionary yields

a) something heterogeneous in origin or composition,
b) something (as a power plant, vehicle, or electronic circuit) that has

two different types of components performing essentially the same
function,

while the current entry in Wiktionary defines this term as

a) offspring resulting from cross-breeding different entities, e.g. different
species,

b) something of mixed origin or composition.

The motivation behind such hybridizations of different algorithmic concepts
is usually to obtain better performing systems that exploit and unite advan-
tages of the individual pure strategies, i.e. such hybrids are believed to benefit
from synergy. The vastly increasing number of reported applications of hybrid
metaheuristics and dedicated scientific events such as the series of Workshops on
Hybrid Metaheuristics [6, 7] document the popularity, success, and importance
of this specific line of research. In fact, today it seems that choosing an adequate
hybrid approach is determinant for achieving top performance in solving most
difficult problems.

Actually, the idea of hybridizing metaheuristics is not new but dates back
to the origins of metaheuristics themselves. At the beginning, however, such hy-
brids were not so popular since several relatively strongly separated and even
competing communities of researchers existed who considered “their” favorite
class of metaheuristics “generally best” and followed the specific philosophies
in very dogmatic ways. For example, the evolutionary computation community
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grew up in relative isolation and followed relatively strictly the biologically ori-
ented thinking. It is mostly due to the no free lunch theorems [8] that this
situation fortunately changed and people recognized that there cannot exist a
general optimization strategy which is globally better than any other. In fact, to
solve a problem at hand most effectively, it almost always requires a specialized
algorithm that needs to be compiled of adequate parts.

Several publications exist which give taxonomies for hybrid metaheuristics or
particular subcategories [9–14]. The following section tries to merge the most im-
portant aspects of these classifications and at some points extends these views.
Also, several examples of common hybridization strategies are given. In Sec-
tion 3, we turn to a unified view on metaheuristics by discussing the pool tem-
plate. It helps to extract the specific characteristics of the individual classical
metaheuristics and to interpret them as a toolbox of key components that can
be combined in flexible ways to build an effective composite system. Section 4
refers to a selection of highly promising possibilities for combining metaheuris-
tics with algorithms from two other prominent research fields in combinatorial
optimization, namely constraint programming and integer linear programming.
Finally, conclusions are drawn in Section 5.

2 Classification of Hybrid Metaheuristics

Figure 1 illustrates the various classes and properties by which we want to cate-
gorize hybrids of metaheuristics. Hereby, we combine aspects from the taxonomy
introduced by Talbi [10] with the points-of-view from Cotta [9] and Blum et al.
[11]. Classifications with particular respect to parallel metaheuristics are partly
adopted from El-Abd and Kamel [14] and Cotta et al. [12] and with respect
to the hybridization of metaheuristics with exact optimization techniques from
Puchinger and Raidl [13].

We start by distinguishing what we hybridize, i.e. which kind of algorithms.
We might combine (a) different metaheuristic strategies, (b) metaheuristics with
certain algorithms specific for the problem we are considering, such as special
simulations, or (c) metaheuristics with other more general techniques coming
from fields like operations research (OR) and artificial intelligence (AI). Promi-
nent examples for optimization methods from other fields that have been suc-
cessfully combined with metaheuristics are exact approaches like branch-and-
bound, dynamic programming, and various specific integer linear programming
techniques on one side and soft computation techniques like neural networks and
fuzzy logic on the other side.

Beside this differentiation, previous taxonomies of hybrid metaheuristics [10,
9] primarily distinguish the level (or strength) at which the different algorithms
are combined: High-level combinations in principle retain the individual iden-
tities of the original algorithms and cooperate over a relatively well defined
interface; there is no direct, strong relationship of the internal workings of the
algorithms. On the contrary, algorithms in low-level combinations strongly de-
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Fig. 1. A summarized classification of hybrid metaheuristics (MHs).
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pend on each other – individual components or functions of the algorithms are
exchanged.

Another property by which we may distinguish hybrid systems is the order of
execution. In the batch model, one algorithm is strictly performed after the other,
and information is passed only in one direction. An intelligent preprocessing of
input data or a postprocessing of the results from another algorithm would fall
into this category. Another example are multi-level problems which are solved
by considering one level after the other by dedicated optimization algorithms.
On the contrary, we have the interleaved and parallel models, in which the al-
gorithms might interact in more sophisticated ways. Parallel metaheuristics are
nowadays a large and important research field for their own, see [15]. Detailed
classifications of hybrid parallel metaheuristics can be found in [14, 12]. Following
general characterizations of parallel algorithms, we can distinguish the architec-
ture (SIMD: single instruction, multiple data streams versus MIMD: multiple
instruction, multiple data streams), the granularity of parallelism (fine- versus
coarse-grained), the hardware (homogeneous versus heterogeneous), the memory
strategy (shared versus distributed memory), the task and data allocation strat-
egy (static versus dynamic), and whether the different tasks are synchronized or
run in an asynchronous way.

We can further distinguish hybrid metaheuristics according to their control
strategy. Following [9, 13], there exist integrative (coercive) and collaborative
(cooperative) combinations.

In integrative approaches, one algorithm is considered a subordinate, embed-
ded component of another algorithm. This approach is extremely popular.

– For example, in memetic algorithms [16], various kinds of local search are
embedded in an evolutionary algorithm for locally improving candidate so-
lutions obtained from variation operators.

– Very large scale neighborhood search (VLSN) approaches are another exam-
ple [17]. They utilize certain exact techniques such as dynamic programming
to efficiently find best solutions in specifically designed large neighborhoods
within a local search based metaheuristic.

– Also, any decoder-based metaheuristic, in which a master algorithm acts on
an implicit or incomplete representation of candidate solutions and a decoder
is used to obtain corresponding actual solutions, falls into this category. Such
a decoder can be virtually any kind of algorithm ranging from a simple prob-
lem specific heuristic to sophisticated exact optimization techniques or other
OR/AI methods. For example in the cutting and packing domain, a com-
mon approach is to represent a candidate solution as a permutation of the
items that need to be cut out or packed, and an actual solution is derived
by considering the items in more or less sophisticated assignment heuris-
tics in the given order, see e.g. [18]. Weight-coding [19] and problem space
search [20] are further examples of indirect, relatively generally applicable
representations based on decoders.

– Merging solutions: In population based methods such as evolutionary algo-
rithms or scatter search, a traditional variation operator is recombination.
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It derives a new solution by combining features of two (or more) parent so-
lutions. Especially in classical genetic algorithms, this operator is based on
pure random decisions and therefore works without exploiting any problem
specific knowledge. Occasionally, this procedure is replaced by more powerful
algorithms like path-relinking [21] or by exact techniques based on branch-
and-bound or integer linear programming that identify a best combination
of parental features, see e.g. [22, 23].

In collaborative combinations, algorithms exchange information, but are not
part of each other. For example, the popular island model [24] for paralleliz-
ing evolutionary algorithms falls into this category. We can further classify the
traditional island model as a homogeneous approach since several instances of
the same metaheuristic are performed. In contrast, Talukdar et al. [25, 26] sug-
gested a heterogeneous framework called asynchronous teams (A-Teams). An
A-Team is a problem solving architecture consisting of a collection of agents
and memories connected into a strongly cyclic directed network. Each of these
agents is an optimization algorithm and can work on the target problem, on a
relaxation of it, i.e. a superclass, or on a subclass. The basic idea of A-Teams is
having these agents work asynchronously and autonomously on a set of shared
memories. Denzinger and Offermann [27] presented a similar multi-agent based
approach for achieving cooperation between search-systems with different search
paradigms, such as evolutionary algorithms and branch-and-bound.

In particular in collaborative combinations, a further question is which search
spaces are actually explored by the individual algorithms. According to [14] we
can distinguish between an implicit decomposition resulting from different initial
solutions, different parameter values etc., and an explicit decomposition in which
each algorithm works on an explicitly defined subspace. Effectively decomposing
large problems is in practice often an issue of crucial importance. Occasionally,
problems can be decomposed in very natural ways, but in most cases finding
an ideal decomposition into relatively independent parts is difficult. Therefore,
(self-)adaptive schemes are sometimes also used.

3 A Unified View on Hybrid Metaheuristics

The success of all these hybrid metaheuristics tells us that it is usually a bad
idea to approach a given (combinatorial) optimization problem with a view that
is too restricted to a small (sub-)class of metaheuristics, at least when the pri-
mary goal is to solve the problem as well as possible. There is nothing to say
against the analogy to real-world phenomena, by which several metaheuristics
are explained with or even derived from, for example evolutionary algorithms,
ant colony optimization, or simulated annealing. However, one should avoid to
focus too strongly on such philosophies, hereby losing the view on particular
strengths and benefits of other algorithmic concepts.

Instead of perceiving the various well-known metaheuristics as relatively in-
dependent optimization frameworks and occasionally considering hybridization
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Algorithm Pool Template

Initialize pool P by an external procedure;
while termination=FALSE do

S ← OF (P );
if |S| > 1 then

S′ ← SCM (S)
else

S′ ← S;
S′′ ← IM (S′);
P ← IF (S′′);

Apply a post-optimizing procedure to P .

Fig. 2. The pool template from Voß [30, 31]. P : Pool; IF/OF : Input/Output Function;
IM : Improvement Method; SCM : Solution Combination Method.

for achieving certain benefits, it might be advantageous to change the point-
of-view towards a unified design concept. All the existing metaheuristics share
some ideas and differ among each other by certain characteristic key components.
Making these key components explicit and collecting them yields a toolbox of
components from which we can choose in the design of an optimization algorithm
as it seems to be most appropriate for the target problem at hand.

In fact, this unified point-of-view is not new. Vaessens et al. [28] already
presented a template for representing various kinds of local search based ap-
proaches, in particular threshold algorithms, tabu search, variable depth search,
and even population based methods such as genetic algorithms. They also ad-
dressed multi-level approaches such as genetic local search, where a local search
algorithm is applied within a genetic algorithm.

Calégary et al. [29] provided a taxonomy and united view on evolutionary
algorithms and exemplarily discussed them with genetic algorithms, ant colony
optimization, scatter search, and an emergent colonization algorithm.

Greistorfer and Voß [30, 31] introduced a pool template by which they in-
tend to cover even more different classes of metaheuristics, but especially also
population based approaches. It is shown in Figure 2 and follows the definition
of metaheuristics as given by Voß in [5] and cited in Section 1. To interpret,
for example, simulated annealing in terms of this template, we set |S| = 1 and
|P | = 2. The latter choice seems to be unusual at first glace. However, it covers
the fact that we always have a current solution in the pool for which one or
more neighbors are evaluated and additionally store the overall so-far best solu-
tion. The output function OF always simply returns the current solution. The
improvement method IM includes the random choice of a neighboring solution
and its evaluation, while the input function IF finally applies the Metropolis
criterion (or some other condition) in order to either accept the new solution or
to retain the previous one. The temperature update can also be considered to be
part of the input function. Obviously, also other derivatives of local search like
tabu search, guided local search, iterated local search, variable neighborhood de-
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scent/search, but also population-based approaches such as genetic algorithms,
evolution strategies, scatter search, and particle swarm optimization can be in-
terpreted as instances of this template in straight-forward ways. Multi-level al-
gorithms like memetic algorithms, where some local search procedure is applied
to created candidate solutions are also supported via the improvement method
IM which might include complete other optimization procedures. The template
even matches estimation of distribution algorithms such as an ant colony opti-
mization: The pheromone matrix – or more generally the statistical model – is
considered as an additional memory structure, the output function covers the
derivation of new solution candidates in dependence of this additional memory,
and the input function also includes the memory’s update. Examples for so-
lution combination methods (SCM ) are the classical recombination techniques
from genetic algorithms, path relinking, and the merging approaches addressed
in the previous section.

Interpreting metaheuristics as instances of such a common template yields a
decomposition of the algorithms. In case of the pool template, we obtain indivi-
dual input and output functions, improvement methods, and eventually solution
combination methods. Some of these parts may use auxiliary functions and data
structures. From the perspective of functionality, a subset of these parts obtained
from the decomposition of the different metaheuristics represents the algorithms’
the key components that have been pointed out before. They can be considered
to form a joined toolbox from where we can select the most promising parts and
combine them in order to build effective (hybrid) optimization approaches tai-
lored to the specific characteristics of the problems at hand. Table 1 summarizes
important key components provided by popular metaheuristics.

Some software libraries for metaheuristics, such as HotFrame [32] and EAlib
[33], partly support this way of thinking by their object oriented structure and
allow flexible combinations of key components when implementing problem-
specific optimization algorithms; see also [34].

4 Some Promising Hybridization Possibilities with Other
Prominent Combinatorial Optimization Techniques

The previous section mainly addressed low-level hybrids between different types
of metaheuristics. Most existing hybrid metaheuristics probably fall into this
category. To some degree, the described point-of-view can also be extended to-
wards hybrids of metaheuristics with other OR and AI techniques. In fact, it is
often a bad idea to prematurely restrict the possible choices in the design of an
optimization algorithm too early to metaheuristic techniques only.

In particular constraint programming (CP) and integer linear programming
(ILP) shall be mentioned here as two research fields with long histories and
also much success in solving difficult combinatorial optimization problems; see
[35] and [36] for introductory textbooks to the two fields, respectively. As meta-
heuristics, the methods from these fields also have their specific advantages and
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Table 1. Some key components of popular metaheuristics.

Ant colony optimization OF : derivation of new solution candidates by consid-
ering a pheromone matrix;
SCM : implicitly via pheromone matrix;
IF : includes update of pheromone matrix

Genetic algorithms OF , IF : selection techniques;
SCM : crossover operators;
IM : mutation operators, repair schemes, decoding
functions

Guided local search IM , IF : augmentation of evaluation function to es-
cape local optima

GRASP initialization, OF : creation of meaningful solutions
from scratch by a randomized greedy heuristic

Iterated local search IM : perturbation of a solution for diversification

Multi start approaches initialization, OF : creation of (random) solutions
from scratch for diversification

Path relinking SCM : more sophisticated method for combining so-
lutions

Pilot method IF : more sophisticated evaluation and acceptance
criterion

Scatter search IF : diversification generation methods, subset gen-
eration methods;
IM : improvement methods;
SCM : solution combination methods;
OF : reference set update methods

Simulated annealing IF : acceptance criterion, annealing schedule

Tabu search IM , IF : consideration and maintenance of tabu list,
aspiration criteria

Variable depth search IM : search of a more sophisticated neighborhood

Variable neighborhood descent IM : search of multiple neighborhoods

Variable neighborhood search IM : shaking in different neighborhoods for diversifi-
cation

Very large neighborhood search IM : efficient search of a large neighborhood

limits. Especially in the last years, combinations between such techniques and
metaheuristics have shown to be often extremely successful and promising.

An overview on hybrids of local search based approaches and constraint pro-
gramming is given in [37]. Basic concepts include:

– CP can be used as preprocessing for reducing the search space.
– CP techniques can be used to more efficiently search neighborhoods, espe-

cially under the existence of difficult problem-specific constraints.
– Special large neighborhoods can sometimes be defined by introducing ap-

propriate artificial constraints, and CP is again used for efficiently searching
these neighborhoods.



10 Günther R. Raidl

– In constructive heuristics like GRASP or ant colony optimization, CP can
be utilized to make better choices in the selection of the next solution com-
ponent to be added.

An overview on promising combinations of metaheuristics and integer linear
programming (ILP) techniques is given in [13]. Basic concepts include:

– Solving a linear programming or Lagrangian relaxation of the problem often
yields valuable information that can be effectively exploited in construction
heuristics or variation operators.

– As CP, also ILP has been used to search large neighborhoods.
– ILP can be used for merging solutions.
– Exact ILP techniques are often based on tree search, and good upper and

lower bounds are of crucial importance. While for a minimization problem
lower bounds are obtained via relaxations, heuristics are important for ob-
taining upper bounds. Metaheuristics can here be very beneficial.

– In cutting plane techniques such as branch-and-cut inequalities need to be
identified which are violated by the current solution to the linear program-
ming (LP) relaxation, but which are valid for the integer optimum. These
inequalities are then added to the system and the LP is resolved, yielding
an improved bound. The identification of such violated inequalities often is
a hard problem for its own, which can be approached by metaheuristics.

– Column generation techniques such as branch-and-price start with a small,
restricted set of variables. When having solved this reduced problem, vari-
ables being part of the model but currently not included are identified whose
insertion enable a further improvement of the current solution; the whole
process is repeated. The task of finding such variables is often difficult and
metaheuristics have been successfully used for solving it [38].

– Last but not least, some promising concepts such as local branching [39]
exist which bring the idea of local search based metaheuristics into linear
programming based branch-and-bound: Specific neighborhood-defining in-
equalities are added to subproblems and branching is controlled in order to
perform a “virtual” metaheuristic within tree search.

5 Conclusions

Manifold possibilities of hybridizing individual metaheuristics with each other
and/or with algorithms from other fields exist. A large number of publications
documents the great success and benefits of such hybrids. Based on several previ-
ously suggested taxonomies, a unified classification and characterization of mean-
ingful hybridization approaches has been presented. Especially with respect to
low-level hybrids of different metaheuristics, a unified view based on a common
pool template can be advantageous. It helps in making different key components
of existing metaheuristics explicit. We can then consider these key components
as a toolbox and build an effective (hybrid) metaheuristic for a problem at hand
by selecting and combining the most appropriate components. This approach of
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thinking seems to be superior to sticking too strongly to the philosophies and
historical backgrounds behind the different metaheuristic paradigms. Finally,
particularly promising possibilities of combining metaheuristics with constraint
programming and integer programming techniques were pointed out.
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