
Evolutionary Computation:
An Overview and Recent Trends

Günther Raidl∗

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Favoritenstraße 9–11/1861, 1040 Vienna, Austria
raidl@ads.tuwien.ac.at

1 Introduction

Evolutionary computation is a steadily increasing research discipline covering com-
puter algorithms that are inspired by principles of natural evolution. The three main
mechanisms that drive evolution forward are reproduction, mutation, and natural
selection (i.e., the Darwinian principle of survival of the fittest). In the biological
world these mechanisms enable life-forms to adapt to a particular environment over
successive generations. The camel’s hump, the eagle’s eye, the dolphin’s sonar, the
human brain – they all can be seen as solutions to environmental problems that
were generated by evolution. Evolutionary algorithms adopt these mechanisms of
natural evolution in simplified ways and breed progressively better solutions to a
wide variety of complex optimization and design problems.

A classical genetic algorithm, as it has been introduced by Holland [9], is shown
in Fig. 1. It maintains a population of encoded candidate solutions to a given
optimization problem. The initial solutions are usually created either at random
or by simple construction heuristics. A stochastic selection process, which chooses
better solutions with higher probabilities, is applied to obtain a set of parents. A
new generation of candidate solutions is then derived by recombining these parents
and mutating the offsprings. During recombination, new solutions are created out
of the properties (genetic information) contained in the parents. Mutation typically
performs just small random modifications.

Beside of genetic algorithms, evolution strategies [15], and evolutionary program-
ming [8] emerged almost independently. Despite their superficial differences, these

∗This work has been supported by the Austrian Science Fund (FWF) under grant P16263-N04.

1



procedure Genetic Algorithm
begin

t← 0;
initialize(P (t));
evaluate(P (t));
while (not termination-condition) do

t← t + 1;
Qs(t)← select(P (t− 1));
Qr(t)← recombine(Qs(t));
P (t)← mutate(Qr(t));
evaluate(P (t));

done
end

Figure 1: Pseudo-code of a canonical genetic algorithm as introduced by Holland [9].

approaches follow the same spirit and share the same basic template. Differences
lie mainly in the way how candidate solutions are represented and how selection,
recombination, and mutation are actually implemented. While in original genetic
algorithms solutions were often encoded as binary vectors, evolution strategies were
mainly applied to continuous parameter optimization and represented solution candi-
dates directly as vectors of real values. Evolutionary programming originally utilized
finite state machines for representing solutions.

A fourth class of evolutionary algorithms, which is actually an offspring of genetic
algorithms, became popular when Koza introduced genetic programming [10]. Here,
candidate solutions are tree structures representing executable computer programs.
Such a candidate program is evaluated by interpreting it and assigning a fitness
value according to how well the program solves the problem at hand. First exemplary
applications included symbolic regression and toy problems like following an artificial
food path on a grid.

Nowadays the distinction between these approaches is blurring, particularly as far as
representation and operators are concerned. Most researchers agree that candidate
solutions should be represented in whatever way best suits the problem at hand.
For example for real-valued parameter optimization problems, the parameter values
are usually directly stored (in contrast to using a binary encoding), and a normal-
distribution-based mutation, which was originally a particular feature of evolution
strategies, is applied, even when the general framework conforms to a classical ge-
netic algorithm. In addition, several further approaches have emerged that adopt
other mechanisms from nature; for example, ant colony optimization [6] mimicks the
behavior of a colony of ants finding the shortest path from the nest to a location
containing food, particle swarm optimization is motivated by the social behavior of
organisms such as bird flocking and fish schooling [4], and artificial immune system
methods are based on principles of immune system defenses against viruses [5].

There are several advantages distinguishing evolutionary algorithms (EAs) from
other optimization and problem solving techniques:

2



• Simple EAs do not require any in-depth mathematical understanding of the
problems to which they are applied.

• Consequently, such EAs are relatively cheap and quick to implement.

• EAs are open to changes of the problem and can in general cope well with
additional constraints, noisy, inaccurate, and incomplete data.

• Unlike many other methods, when EAs are implemented on parallel hardware
they make efficient use of the available power in a very natural way.

On the other side, most researchers agree that simple evolutionary algorithms usually
cannot compete with more sophisticated optimization algorithms that are tailored
towards a specific problem and exploit certain features of it. This led to the develop-
ment of many hybrid approaches, were an evolutionary algorithm is combined with
problem-specific variation operators, “intelligent” encodings, and/or clever local im-
provement or repair algorithms. In fact, most of today’s state-of-the-art EA-based
approaches for important practical problems are relatively complex, problem-specific
hybrid systems. The possibility of effectively combining an EA-framework with other
techniques is therefore often perceived as another important strength.

For introductory books to evolutionary computation, see [7, 2]. A more exten-
sive survey can be found in [1]. Newer concepts in evolutionary computation are
overviewed in [4].

2 Recent Trends

During the last years research in evolutionary computation and the application of
EAs to real-world problems, have steadily and significantly expanded. The following
paragraphs summarize some most remarkable trends from the author’s perspective.

Extended hybrid architectures. In particular with respect to solving discrete
optimization problems, classical simple EAs are known to be typically less efficient
than other state-of-the-art algorithms that are specifically tailored to the problems.
As already mentioned above, EAs are therefore often combined with problem-specific
algorithms. Beside this, also hybrids of EAs and other metaheuristics such as local
search, simulated annealing, tabu search, guided local search, variable neighbor-
hood search, and variable depth search are nowadays widely used, and for many
hard combinatorial optimization problems, such approaches are today’s leading al-
gorithms for finding superior solutions to large problem instances in limited time.
Such combinations are also called memetic algorithms [13]. Typically, the EA’s pri-
mary responsibility is to take care of diversification and coverage of all major areas of
the search space, while the embedded other metaheuristic is mainly responsible for
intensification of the search, thus, the fine-tuning of the most promising candidate
solutions.

3



Some highly promising work has also been done in combining EAs with exact op-
timization techniques including dynamic programming, branch-and-bound, and the
large palette of (integer) linear programming techniques. In these hybrid systems,
the exact technique may work as a subordinate of the EA in order to solve smaller
subproblems, the EA may act as subordinate of the exact technique (e.g., to obtain
better bounds), or both strategies can run in a parallel or interleaved way, exchang-
ing information and stimulating each other. In the latter two strategies, the exact
approach’s property of being, in principle, able to prove optimality or to provide a
quality guarantee can be retained. See [14] for an overview to this research direction.

Application domains. New applications where EAs prove to be well-suited tools
are continously found. In particular bioinformatics, image analysis, signal process-
ing, telecommunication, hardware optimization, and artificial music and art rep-
resent currently booming application domains. Dedicated workshops, such as the
European EvoWorkshops or the different tracks at the leading conferences in evolu-
tionary computation document this (see below).

Multiobjective optimization. In real-world optimization applications, it is of-
ten hard to formulate the optimization goal as a scalar function. Typically, there
are several criteria or objectives, and not unusually, these objectives stay in conflict
with each other. As an example, in the design of an automobile an engineer may
wish to maximize crash resistance for safety and minimize weight for fuel economy.
Simply combining the different associated objective functions in a linear way is usu-
ally unsatisfactory. Instead, one is interested in a so-called Pareto optimal set of
solutions, i.e., any solution that cannot be improved with respect to one objective
without worsening the situation with respect to the other objectives. Special strate-
gies are therefore needed to deal with such multiobjective optimization problems.
Since EAs work on populations of candidate solutions, they represent a promising
basic framework for multiobjective optimization. In the last few years many variants
and extensions of classical EAs have been developed and were demonstrated to be
superior techniques for this purpose. For an overview on evolutionary multiobjective
optimization, see [3].

Estimation of distribution algorithms (EDAs). In this relatively new class
of EAs, a probabilistic model is used to represent promising solutions. A new gen-
eration of candidate solutions is derived by sampling the probabilistic model. These
solutions are evaluated, and a selected subset is used to update and refine the prob-
abilistic model. The simplest form of an EDA is the univariate marginal distribution
algorithm (UMDA). In it, the variables representing a solution are considered in-
dependent and the probabilistic model is a vector of associated probabilities. More
sophisticated EDAs also consider dependencies among the variables and use, for ex-
ample, Bayesian networks as probabilistic models. For several problems, EDAs have
shown to be able to outperform classical simple EAs. See [12] for an overview.

4



A particularly well-known and often applied variant of EDAs are ant colony opti-
mization (ACO) algorithms [6]. They are often combined with problem-specific local
search and have been successfully applied to a variety of combinatorial optimization
problems such as vehicle routing or routing in networks.

Genetic Programming. Since its beginning in the early 90s, much progress has
also been made with respect to genetic programming. This class of genetic algo-
rithms that uses programs encoded as tree-structures as candidate solutions has
shown to be able to automatically produce results that are competitive to patented
or patentable human inventions [11]. Such successful applications are reported for
the design of electronic circuits for analog filters and controllers, the development of
quantum algorithms, and certain problems in bioinformatics.

Theory. Research in the theory of evolutionary computation has also made sig-
nificant progress. Today, various theoretical models and results help to understand
under which conditions an EA works well or is supposed to perform only poorly. The
spectrum of algorithms which could be rigorously analyzed, including the derivation
of tight bounds for the expected run-times and the expected quality of obtained
solutions, has significantly increased. Nevertheless, there are still many open ques-
tions, and despite the achievements, theory is today unfortunately still far away
from precisely predicting or fully describing the expected behavior of a more com-
plex hybrid EA when applied to a hard problem from real world. See e.g. [16] for
recent theoretical results.

3 Scientific Events

The largest scientific conference in the area of evolutionary computation is the Ge-
netic and Evolutionary Computation Conference (GECCO), which is annually held
in the United States and receives a continuously growing number of submissions
(this year about 560). The second largest annual conference is the IEEE Congress
on Evolutionary Computation (CEC). It has so far been held in the United States
and Asia and will be organized in Edinburgh, U.K., this year. A smaller interna-
tional event dedicated to theoretical developments in evolutionary computation is
the Foundations of Genetic Algorithms Conference (FOGA).

In Europe, we have the bi-annual conference Parallel Problem Solving from Na-
ture (PPSN) and the annual EuroGP/EvoCOP/EvoWorkshops event. The latter
is a collection of two conferences dedicated to genetic programming (EuroGP) and
metaheuristics for combinatorial optimization (EvoCOP) and a series of smaller
workshops oriented towards specific application domains.

All the mentioned events peer-review submitted papers and publish accepted papers
in their proceedings.

5



References

[1] T. Bäck, D. B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Compu-
tation. Oxford University Press, New York, 1997.

[2] T. Bäck, D. B. Fogel, and Z. Michalewicz. Evolutionary Computation 1 + 2.
Institute of Physics Publishing, 2000.

[3] C. A. C. Coello, D. A. V. Veldhuizen, and G. B. Lamont. Evolutionary Al-
gorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers,
2002.

[4] D. Corne, M. Dorigo, and F. Glover. New Ideas in Optimisation. McGraw-Hill,
Berkshire, England, 1999.

[5] L. N. de Castro and J. I. Timmis. Artificial Immune Systems: A New Compu-
tational Intelligence Approach. Springer, 2002.

[6] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, 2004.

[7] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer,
2003.

[8] L. Fogel. Artificial Intelligence Through Simulated Evolution. John Wiley and
Sons, 1966.

[9] J. H. Holland. Adaption in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, 1975.

[10] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. The MIT Press, Cambridge, MA, 1992.

[11] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and G. Lanza.
Genetic Programming IV: Routine Human-Competitive Machine Intelligence.
Kluwer Academic Publishers, 2003.

[12] P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms: A New
Tool for Evolutionary Computation. Springer, 2001.

[13] P. Moscato. Memetic algorithms: A short introduction. In D. Corne et al.,
editors, New Ideas in Optimization, pages 219–234. McGraw Hill, 1999.

[14] J. Puchinger and G. R. Raidl. Combining metaheuristics and exact algorithms
in combinatorial optimization: A survey and classification. In Proceedings of
the First International Work-Conference on the Interplay Between Natural and
Artificial Computation, LNCS. Springer, to appear 2005.

[15] H. P. Schwefel. Numerical Optimization of Computer Models. John Wiley, 1981.

[16] A. Wright, M. Vose, K. De Jong, and L. Schmitt, editors. Foundations of
Genetic Algorithms Conference 2005 (FOGA-8), LNCS. Springer, to appear
2005.

6


