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Biased Mutation Operators for Subgraph-Selection
Problems

Günther R. Raidl, Gabriele Koller, and Bryant A. Julstrom

Abstract— Many graph problems seek subgraphs of minimum
weight that satisfy a set of constraints. Examples include the
minimum spanning tree problem (MSTP), the degree-constrained
minimum spanning tree problem (d-MSTP), and the traveling
salesman problem (TSP). Low-weight edges predominate in
optimum solutions to such problems, and the performance of
evolutionary algorithms (EAs) is often improved by biasing vari-
ation operators to favor these edges. We investigate the impact
of biased edge-exchange mutation. In a large-scale empirical
investigation on Euclidean and uniform random instances, we
describe the distributions of edges in optimum solutions of the
MSTP, the d-MSTP, and the TSP in terms of the edges’ weight-
based ranks. We approximate these distributions by exponential
functions and derive approximately optimal probabilities for
selecting edges to be incorporated into candidate solutions during
mutation. A theoretical analysis of the expected running time
of a (1+1)-EA on non-degenerate instances of the MSTP shows
that, when using the derived probabilities for edge-selection in
mutation, the (1+1)-EA is asymptotically as fast as a classical
implementation of Kruskal’s minimum spanning tree algorithm.
In experiments on the MSTP,d-MSTP, and the TSP, we compare
the new edge-selection strategy to four alternative methods.
The results of a (1+1)-EA on instances of the MSTP support
the theory and indicate that the new strategy is superior to
the other methods in practice. On instances of thed-MSTP, a
more sophisticated EA with a larger population and unbiased
recombination performs better with the new biased mutation
than with alternate mutations. On the TSP, the advantages
of weight-biased mutation are generally smaller, because the
insertion of a specific new edge into a tour requires the insertion
of a second, dependent edge as well. Although we considered
Euclidean and uniform random instances only, we conjecture
that the same biasing towards low-weight edges also works well
on other instance classes structured in different ways.

Index Terms— Biased operators, mutation, graph problems,
minimum spanning tree problems, traveling salesman problem

I. I NTRODUCTION

A N undirected graphG = (V, E) consists of a non-
empty setV of vertices and a setE of unordered pairs

of vertices, called edges. In a weighted undirected graph, a
function w : E → R+ associates a numerical weight with
each edge inE. Many problems on graphs seek a subsetS of
G’s edges that satisfies a set of constraints and has minimum
total weightw(S) =

∑
e∈S w(e) over all such subsets. The

constraints thatS must satisfy characterize each problem, as
in these examples:
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• S is a Hamiltonian tour, a cycle that visits each vertex in
G exactly once (the traveling salesman problem; TSP).

• S is a path inG that connects two specified vertices (the
shortest path problem).

• S is a spanning tree (the unconstrained minimum span-
ning tree problem; MSTP).

• S is a spanning tree in which the number of edges
incident on each vertex does not exceed a boundd > 1
(the degree-constrained minimum spanning tree problem;
d-MSTP) [1], [2].

• S is a spanning tree with at leastL leaves (the leaf-
constrained minimum spanning tree problem) [3], [4].

• S augments a given subgraph so that the resulting net-
work is biconnected (the biconnectivity augmentation
problem) [5].

• S is a Steiner tree that connects a specified subset ofG’s
vertices.

Some of these problems, such as the unconstrained MSTP
and the identification of a shortest path between two vertices,
can be solved to optimality in polynomial time. Most, includ-
ing the remaining problems listed above, are NP-hard, so it is
unlikely that there can be polynomial-time algorithms that will
in general solve them exactly. In these cases, (meta-)heuristics,
including evolutionary algorithms (EAs), are often useful.

It is not surprising—and the following section verifies—
that low-weight edges predominate in solutions to problems
like these that seek constrained low-weight subgraphs. Thus,
any heuristic that builds candidate solutions to such problems
should favor edges of lower weight. Evolutionary algorithms
can apply this observation to constructing the solutions in their
initial populations and to their recombination and mutation
operators, which construct new solutions from existing ones.

Several researchers have examined such mechanisms [6],
[7], [8], [9]. Among them, Julstrom and Raidl studied weight-
biased crossover operators in EAs for the TSP and thed-
MSTP on complete graphs [10]; favoring low-weight edges
improved the performance of these algorithms. The present
authors investigated weight-biased mutation in these EAs and
derived probabilities for selecting edges that minimize the
expected time to include edges of optimum tours and trees
[11].

This article extends in several ways our work on biased
mutation in EAs for subset-selection problems on complete
graphs. The next section investigates empirically the distri-
butions of edges in optimum solutions of the MSTP, thed-
MSTP, and the TSP, in terms of the edges’ weight-based
ranks. For all three problems, the probability that an edge
of rank r appears in an optimum solution can be closely
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approximated by an exponential function ofr. Section III
analytically approximates optimal edge-selection probabilities
for typical instances of the three problems.

Section IV analyzes expected running times for a (1+1)-
EA using several different edge-selection strategies on the
unconstrained MSTP. We show that, when the EA uses the
approximately optimal mutation scheme, its expected running
time on a non-degenerate instance of the MSTP is asymptoti-
cally not worse than the time of a classical implementation of
Kruskal’s well-known minimum-spanning-tree algorithm [12].
Section V describes a variety of other strategies with which
mutation may select edges for inclusion in new solutions,
and Sect. VI describes experiments with the (1+1)-EA for the
MSTP that confirm the theoretical results.

Sections VII and VIII compare the edge-selection strategies
listed in Sect. V in more sophisticated EAs for thed-MSTP
and the TSP, respectively. These EAs use larger populations
and problem-specific recombination operators in addition to
edge-exchange-based mutation. On thed-MSTP, theoretically
approximately optimal edge-selection increases the probability
of finding optimum solutions and reduces the number of iter-
ations usually needed. On the TSP, the advantages of weight-
biased approaches are generally smaller because mutation that
(heuristically) introduces one edge into a tour necessarily
introduces a second edge as well.

II. D ISTRIBUTIONS OFEDGES IN OPTIMUM SOLUTIONS

TO THE MSTP,d-MSTP,AND TSP

It is intuitively reasonable that optimum low-weight trees,
tours, and other subgraphs in weighted graphs should con-
tain high proportions of low-weight edges. We confirm and
quantify this observation for the computationally easy MSTP
and the NP-hardd-MSTP and TSP on complete graphsG =
(V, E). Let n = |V | be the number of vertices inG, m =
|E| = n · (n− 1)/2 be the number of edges, andS be the set
of edges in a solution, so that|S| = n− 1 for the MSTP and
d-MSTP and|S| = n for the TSP.

Our sample problem instances are of two kinds, uniform
and Euclidean. In the uniform instances, edge weights are
integers chosen at random and independently from the interval
[1, 10 000]. In the Euclidean instances, vertices are distinct
points in the plane whose coordinates are random integers
from the interval[1, 10 000], and edge weights are equal to the
Euclidean distances between the points. We generated1 000
instances of each type withn = 20, 50, 100, 200, 500, and
1 000 vertices. For thed-MSTP, the degree boundd was set
to three and five in turn on the uniform instances. For the
Euclidean instances, only the cased = 3 was considered
since for such instances there always exists an unconstrained
minimum spanning tree (MST) of degree no more than five.

Kruskal’s algorithm identified unconstrained MSTs for all
6 000 instances. Exact algorithms for thed-MSTP and the
TSP become infeasible on larger graphs, so on these prob-
lems, only the instances withn = 100 or fewer vertices
were considered. The corresponding 3-MSTP, 5-MSTP, and
TSP instances were solved to optimality by branch-and-cut
algorithms implemented using the ABACUS environment [13]
and CPLEX 8.1 as a linear programming solver.

In each instance, sorting the edges into ascending order of
their weights assigns each a rankr, 1 ≤ r ≤ m; ties are broken
arbitrarily. We consider edges’ ranks because, unlike edges’
weights, they can be compared across instances. Figure 1 plots
the empirical probabilities—the relative frequencies—pE(r)
with which an edge of rankr appears in the optimum solution.
Only the portions of the curves wherepE(r) is visibly larger
than zero are shown. Note that the probabilitiespE(r) sum
to |S|:

m∑
r=1

pE(r) = |S| . (1)

As expected, optimum solutions consist mostly of edges of
low rank; that is, of low weight. Moreover, for each kind of
problem and each fractionk ∈ (0, (n− 1)/2], the probability
pE(dkne) that the edge of rankdkne appears in the optimum
solution is approximately constant across all the problem sizes.

Table I documents further properties. For each problem type
and size, it lists the numberR of lowest-weight edges among
which γ = 50, 90, and 99 percent of the optimum solutions’
edges are found; i.e.,R is the smallest rank for which the
cumulated probabilities of the edges of that or lower rank sum
to at leastγ · |S|:

R = min

{
t :

t∑
r=1

pE(r) ≥ γ · |S|
}

. (2)

Table I also lists the proportionsk = R/n of low-weight
edges in optimum solutions. For each kind of problem and
each value ofγ, these values are nearly constant.

An effective heuristic mutation operator in EAs for graph
problems like those considered here should introduce edges
depending on the probabilities with which they appear in
optimum solutions. Toward that end, we approximate the
empirical distributionspE(r) with closed-form expressions
pA(r).

In the graphs in Figure 1,pE(r) decreases approximately
exponentially asr grows, particularly in the Euclidean in-
stances. Therefore, let

pA(r) = ar with 0 < a < 1 . (3)

The basea should be chosen so that
m∑

r=1

pA(r) =
m∑

r=1

ar =
a− am+1

1− a
= |S| . (4)

The termam+1 is negligible for problems of even moderate
size, so we neglect it to obtain

m∑
r=1

pA(r) ≈ a

1− a
⇒ a ≈ |S|

|S|+ 1
. (5)

Figure 2 plotspA(r) = ar with a = |S|/(|S| + 1) for
the 3-MSTP instances with 100 vertices. The graph illustrates
thatpA(r) approximates the empirical probabilitiespE(r) with
high accuracy. To quantify this accuracy, we calculate the
relative mean-square error

RMSE =
∑m

r=1(pA(r)− pE(r))2∑m
r=1 pE(r)2

. (6)
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Fig. 1. The empirical probabilitypE(r) that an edge appears in an optimum solution as a function of its rank, for the MSTP, 3-MSTP, 5-MSTP, and TSP
on uniform and Euclidean instances of sizen.

TheRMSE allows better comparisons of approximation qual-
ity across different problem sizes than does the standard mean-
square error. The latter never exceeds 1% on any case and
decreases rapidly with increasing problem sizen.

Table II lists theRMSEs for all the problem types and sizes;
they are always less than 9.9%. In general,pA(r) approximates
pE(r) more accurately on Euclidean instances than on uniform
ones. The approximation is most accurate on the TSP, while
the largest errors occur on the unconstrained MSTP on uniform
graphs. The approximation is conservative in that it typically
underestimates the probabilitiespE(r) of low-rank edges and
slightly overestimates the probabilities of high-rank edges.

III. A PPROXIMATING OPTIMAL EDGE-SELECTION

PROBABILITIES

Consider a subset-selection problem on a graphG for
which S∗ ⊂ E is the unique optimum solution. Uniformly
random edge-exchange mutation chooses each edge to include
in a solution with probability1/m. We apply the analysis of
Sect. II to identify non-uniform probabilities, associated with
the edges’ ranks, that are optimal in the following sense: Over
all edgese∗ in the optimum solutionS∗, the average expected
number of edge-selections untile∗ is chosen is minimal.

Let q(r) be the probability that an edge-selection scheme
chooses the edgeer whose rank isr (1 ≤ r ≤ m). The number
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TABLE I

NUMBERS R OF LOWEST-WEIGHT EDGES FOR EACH PROBLEM TYPE AND

SIZE n AMONG WHICH γ = 50%, 90%,AND 99% OF OPTIMUM

SOLUTIONS’ EDGES ARE FOUND AND FRACTIONSk = R/n.

Problem n γ = 50% γ = 90% γ = 99%

R k R k R k

MSTP/unif. 20 10 0.5 23 1.1 40 2.0
50 25 0.5 59 1.2 109 2.2

100 50 0.5 120 1.2 224 2.2
200 101 0.5 242 1.2 458 2.3
500 251 0.5 606 1.2 1151 2.3

1000 501 0.5 1216 1.2 2313 2.3
MSTP/Euc. 20 12 0.6 33 1.6 62 3.1

50 31 0.6 89 1.8 165 3.3
100 63 0.6 178 1.8 319 3.2
200 128 0.6 356 1.8 623 3.1
500 319 0.6 882 1.8 1496 3.0

1000 642 0.6 1753 1.8 2913 2.9
3-MSTP/unif. 20 11 0.6 24 1.2 41 2.0

50 27 0.5 63 1.3 113 2.3
100 54 0.5 126 1.3 228 2.3

3-MSTP/Euc. 20 12 0.6 33 1.6 63 3.1
50 31 0.6 89 1.8 165 3.3

100 63 0.6 179 1.8 324 3.2
5-MSTP/unif. 20 10 0.5 23 1.1 40 2.0

50 25 0.5 60 1.2 110 2.2
100 51 0.5 120 1.2 223 2.2

5-MSTP/Euc. 20 12 0.6 33 1.6 63 3.1
50 31 0.6 89 1.8 165 3.3

100 63 0.6 178 1.8 323 3.2
TSP/unif. 20 16 0.8 41 2.0 67 3.4

50 40 0.8 107 2.1 183 3.7
100 80 0.8 217 2.2 373 3.7

TSP/Euc. 20 15 0.8 53 2.6 107 5.3
50 37 0.7 134 2.7 297 5.9

100 73 0.7 257 2.6 587 5.9

of selections untiler is chosen the first time has a geometric
distribution with the expected value

EX (er) =
1

q(r)
. (7)

Let p(r) be the probability that the edgeer appears in
the optimum solutionS∗, and lete∗ be a specific edge from
S∗. The following theorem establishes the probabilities with
which edges should be selected fromE to achieve a minimum
waiting time for selectinge∗.

Theorem 1:The expected numberEX (e∗) of edge-selec-
tions until a specific edgee∗ ∈ S∗ is chosen for the first time
is minimized by the edge-selection probabilities

q(r) =

√
p(r)∑m

i=1

√
p(i)

. (8)

Proof: The probability thate∗ has rankr is p(r)/|S|.
The expected number of edge-selections untile∗ is chosen for
the first time is the weighted sum

EX (e∗) =
m∑

r=1

p(r)/|S|
q(r)

=
1
|S|

m∑
r=1

p(r)
q(r)

. (9)
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Fig. 2. Approximation ofpE(r) by pA(r) = ar for the Euclidean 3-MSTP
on n = 100 vertices.

TABLE II

RELATIVE MEAN -SQUARE ERRORS WHEN APPROXIMATING EMPIRICAL

PROBABILITIES pE(r) BY pA(r) = ar WITH a = |S|/(|S|+ 1).

Problem RMSE [%]

n = 20 50 100 200 500 1 000

MSTP/unif. 9.86 9.34 9.26 9.28 9.33 9.33
MSTP/Euc. 1.66 0.98 0.93 0.90 0.98 1.02
3-MSTP/unif. 7.60 6.92 6.87 – – –
3-MSTP/Euc. 1.78 0.99 0.84 – – –
5-MSTP/unif. 9.42 9.11 9.17 – – –
5-MSTP/Euc. 1.79 1.00 0.85 – – –
TSP/unif. 1.80 2.31 2.39 – – –
TSP/Euc. 0.28 0.25 0.17 – – –

Because
∑m

r=1 q(r) = 1, we can replaceq(m) by 1 −∑m−1
i=1 q(i) in (9) and write

EX (e∗) =
1
|S|

(
m−1∑
r=1

p(r)
q(r)

+
p(m)

1−∑m−1
i=1 q(i)

)
. (10)

To identify selection probabilitiesq(r) that minimize the
expectationEX (e∗), we partially differentiateEX (e∗) with
respect to eachq(r) and set these derivatives equal to zero:

∂EX (e∗)
∂q(1)

=
1
|S|

(
− p(1)

q(1)2
+

p(m)
(1−∑m−1

i=1 q(i))2

)
= 0

∂EX (e∗)
∂q(2)

=
1
|S|

(
− p(2)

q(2)2
+

p(m)
(1−∑m−1

i=1 q(i))2

)
= 0

· · ·
∂EX (e∗)
∂q(m− 1)

=

=
1
|S|

(
− p(m− 1)

q(m− 1)2
+

p(m)
(1−∑m−1

i=1 q(i))2

)
= 0 (11)

This system ofm− 1 equations can be simplified to

p(1)
q(1)2

=
p(2)
q(2)2

= · · · = p(m− 1)
q(m− 1)2

=

=
p(m)

(1−∑m−1
i=1 q(i))2

=
p(m)
q(m)2

. (12)
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Let ϕ = p(r)/q(r)2. Then

q(r) =

√
p(r)
ϕ

(13)

and since
m∑

i=1

q(i) = 1 =
1√
ϕ

m∑

i=1

√
p(i) , (14)

we conclude that

ϕ =

(
m∑

i=1

√
p(i)

)2

and q(r) =

√
p(r)∑m

i=1

√
p(i)

. (15)

A. EX (e∗) for Three Edge-Selection Strategies

The following corollary establishes the expected waiting
time until selecting an edge from the optimum solution when
approximatingp(r) as in Sect. II.

Corollary 1: Under the assumption thatp(r) is approxi-
mated well bypA(r) = ar with a = |S|/(|S|+1) according to
Eqs. (3) and (5), and when using the corresponding approxi-
mately optimal edge-selection probabilitiesqA(r), the average
expected number of edge-selections until choosing an edgee∗

from the optimum solution is

EX ∗(e∗) ≈
(√

|S|+
√
|S|+ 1

)2

. (16)

Thus,EX ∗(e∗) ≈ 4|S| and thereforeΘ(n).
Proof: The optimal edge-selection probabilitiesq(r)

from Theorem 1, when substituted into Eq. (9), yield the
following expected number of edge-selections:

EX ∗(e∗) =
1
|S|

m∑
r=1

p(r)
√

p(r)
/∑m

i=1

√
p(i)

=

=
1
|S|

(
m∑

r=1

√
p(r)

)2

. (17)

Using the approximationpA(r) = ar for p(r), we obtain

EX ∗(e∗) ≈ 1
|S|

(
m∑

r=1

√
ar

)2

=
1
|S|

(√
a− a(m+1)/2

1−√a

)2

.

(18)
Sincea(m+1)/2 is orders of magnitude smaller than

√
a even

for moderate problem sizes, we disregard it. Further, replacing
a by |S|/(|S|+ 1) according to (5), we obtain:

EX ∗(e∗) ≈ a

|S| (1−√a)2
=

=
1

(|S|+ 1)
(
1−

√
|S|
|S|+1

)2 =

=
(√

|S|+
√
|S|+ 1

)2

. (19)

By Tschebyscheff’s inequality [14], when considering the
variance of the geometric distribution, the deviation from
this expected number of needed edge-selections is less than

λ · EX ∗(e∗) for any λ > 0 with probability greater than
1− 1/λ2 = 1− o(1).

Consider the same expected value when edges are selected
according to uniform probabilities: for allr = 1, . . . , m,
qU (r) = 1/m. Since

∑m
r=1 p(r) = |S|,

EX U (e∗) =
1
|S|

m∑
r=1

p(r)
1/m

=
m

|S|
m∑

r=1

p(r) = m. (20)

Similarly, let edges’ probabilities be proportional top(r):
for all r = 1, . . . , m, qP (r) = p(r)/|S|. Then

EX P (e∗) =
1
|S|

m∑
r=1

p(r)
p(r)/|S| =

|S|
|S|

m∑
r=1

1 = m. (21)

That is, for both uniform andp(r)-proportional probabil-
ities, EX (e∗) = m, which is Θ(n2), while for the optimal
probabilities,EX ∗(e∗) is Θ(n).

B. Approximately Optimal Edge-Selection Probabilities

The preceding observations lead to the following result.
Theorem 2:Under the assumption as in Corollary 1 that

p(r) is approximated well bypA(r) = aR with a = |S|/(|S|+
1), optimal edge-selection probabilitiesq(r) that minimize
EX (e∗) can be closely approximated by

qA(r) ≈
( |S|
|S|+ 1

) r
2

(√
|S|+ 1
|S| − 1

)
. (22)

Proof: Replacingp(r) by the approximationpA(r) = ar

in Eq. (8) of Theorem 1 yields a closed-form expression for
the optimal edge-selection probabilitiesqA(r):

qA(r) =

√
pA(r)∑m

i=1

√
pA(i)

=
√

ar

∑m
i=1

√
ai

=
√

ar

√
a−a(m+1)/2

1−√a

=

=
(1−√a) ar/2

√
a− a(m+1)/2

(23)

Again,a(m+1)/2 is negligible compared to
√

a, and we ignore
it. Again, we replacea with |S|/(|S| + 1) according to (5);
thus

qA(r) ≈ (1−√a) ar/2

√
a

= a
r
2

(
1√
a
− 1

)
=

=
( |S|
|S|+ 1

) r
2

(√
|S|+ 1
|S| − 1

)
. (24)

Fig. 3 plots the probabilitiesqA(r), qU (r), and qP (r) for
instances of the 3-MSTP onn = 100 vertices.

IV. EXPECTEDRUNNING TIMES OF A (1+1)-EA FOR THE

MSTP USING DIFFERENTEDGE-SELECTION STRATEGIES

This section develops the expected times that a (1+1)-
EA requires to find an unconstrained MST on a complete
graph G = (V, E), using five different edge-selection and
replacement strategies in mutation.

Neumann and Wegener [15] investigated simple randomized
local search (RLS) and an unbiased (1+1)-EA for the MSTP



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 11, NOVEMBER 1111 6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600

q(
r)

  [
%

]

rank r of edge

qA(r)
qU(r)
qP(r)

Fig. 3. Edge-selection probabilitiesqA(r) (approximately optimal),qU (r)
(uniform), andqP (r) (proportional topA(r)) for instances of the 3-MSTP
on n = 100 vertices.

on general (including incomplete) graphs. Their algorithms
encoded candidate subgraphs as bit-strings that indicated the
inclusion or exclusion of each edge inG; large penalties in the
fitness functions encouraged, first, the formation of connected
subgraphs, then their pruning to trees. The neighbor operator
of the RLS algorithm flipped one or two randomly chosen bits.
The EA’s mutation operator flipped each bit independently
with probability 1/m (m = |E|). The expected times of
both algorithms to find MSTs wereO(m2(log n+log wmax)),
where n = |V | and wmax is the largest edge weight inG.
Neumann and Wegener also showed that MSTP instances exist
for which their algorithms’ expected times areΩ(n4 log n).

We assume here that all edge weights in each graph are
distinct, so that each MST is unique. Furthermore, we restrict
our analysis tonon-degenerate MSTswith the following prop-
erties:

1) The diameter of the MST is bounded byO(
√

n); this
holds for randomly created spanning trees with over-
whelming probability [16], [17].

2) The approximately optimal edge-selection probability
qA(r) of each edge from the MST is not less than
the uniform selection probability1/m. This assumption
is fulfilled by most randomly created spanning trees
as long as they are not too small, as our empirical
investigations in Sect. II documented. For example, for a
MST on n = 100 nodes, all edges must have ranks less
than6.41n, which happens in≈ 85.3% of all cases. For
a MST onn = 10 000 nodes, edge ranks must be less
than15.65n, which happens with probability≈ 99.8%.

Consider a standard (1+1)-EA for the MSTP that encodes
spanning trees directly as edge-sets [8]; these edge-sets can be
implemented efficiently by, for example, hash tables. The EA’s
initial solution is an unbiased random spanning tree, generated
via a random walk in the target graph as described by Broder
[18]. The expected time of this step isO(n log n) for almost
all graphs, including complete graphs. Each iteration of the EA
applies mutation to its current solution to create one offspring.
The offspring replaces the incumbent solution if it represents a
valid spanning tree of weight no greater than the incumbent’s.

In the EA, we compare the following five mutation strate-
gies, in whichT ⊆ E is the algorithm’s current spanning tree.

• Naive edge-replacement(NA): Edges e ∈ E − T and
e′ ∈ T are chosen uniformly at random;e replacese′ in
T . This operator may yield solutions that are not spanning
trees; such solutions are never accepted.

• Uniform-uniform edge-replacement(UU): Again, an edge
e = (u, v) ∈ E − T is chosen for inclusion at random.
The edgee′ to be removed is randomly chosen from the
path inT that connectsu andv, so that the offspring is
always a spanning tree.

• Uniform-greedy edge-replacement(UG): UG-mutation is
identical to UU-mutation, except that the edgee′ to be
removed is always the edge of largest weight on the path
from u to v; ties are broken arbitrarily.

• Biased-uniform edge-replacement(BU): An edgee ∈ E
is chosen according to the theoretically derived proba-
bility qA(r) from Sect. III. If e is already contained in
T , the solution is not modified. Otherwise, an edgee′ is
chosen at random from the path that connectse’s vertices
(as in UU) and replaced bye.

• Biased-greedy edge-replacement(BG): The biased selec-
tion of an edgee ∈ E from BU is combined with the
greedy choice from UG of the edgee′ to be removed.

While NA can be implemented so that its timetNA
mut is Θ(1),

the other methods run in linear time in the worst case, when
T is a path. The diameter of a random spanning tree onG,
however, isΘ(

√
n) with overwhelming probability [16], [17],

and thus, on non-degenerate instances, these mutation variants
are expected to run in timestUU

mut, tUG
mut, tBU

mut, and tBG
mut that

are allO(
√

n).
To identify the expected times the (1+1)-EA, with each

mutation operator, requires to find the MST on an average
instance of the MSTP, we begin by describing the expected
number of edges that the EA’s initial tree and the MST have
in common.

Lemma 1:Let G be a complete weighted graph. The num-
ber of edges in which a random spanning tree onG and a
specified target tree differ is at least2n/3 with probability
1− o(1).

Proof: Each edge inG appears in a random spanning
tree with probability

n− 1
n(n− 1)/2

=
2
n

.

Of the n − 1 edges in the target spanning tree, the expected
number that also appear in a random tree is then

(n− 1)
2
n

= 2
n− 1

n
, and lim

n→∞
2
n− 1

n
= 2. (25)

Thus the expected number of edges in which a random
spanning tree differs from the target is(n− 1)− (2− o(1)) =
n−3+ o(1), and by Markov’s inequality [14], the probability
that there are at least2n/3 such edges is at least1 − (6 −
o(1))/n = 1− o(1) for largen.

To derive the total expected running time, we make use of
the following observation based on two results of Neumann
and Wegener [15].

Lemma 2:For a non-minimum spanning treeT of weight
w(T ) and the MSTT ∗ of weight w(T ∗), there always exists
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a set ofn−1 goodedge-exchanges inT such that the average
weight decrease of these edge-exchanges is at least(w(T )−
w(T ∗))/(n− 1).

Proof: The proof is constructive. Letz = |T ∗−T |. There
exists a bijectionα : T ∗ − T → T − T ∗ such thatα(e) lies on
the cycle created by includinge in T and the weight ofα(e)
is not less than the weight ofe [19]. The total weight decrease
when all z edge-exchanges described by the bijectionα are
applied toT is w(T )− w(T ∗).

To make the edge-exchanges independent of the number of
edges inT , extend the set ofz edge-exchanges thatα specifies
with n − z − 1 dummy exchanges specified by the bijection
α′(e) = e, ∀e ∈ T ∩ T ∗. These exchanges replace an edge
that is in bothT and T ∗ by itself and so do not modifyT
and w(T ). From α and α′ together, we obtainn − 1 good
edge-exchanges with an average weight decrease of at least
(w(T )− w(T ∗))/(n− 1).

The next result establishes an upper bound on the expected
number of good edge-exchanges we must perform.

Lemma 3:The expected number of good edge-exchanges
required to transform a random spanning tree into the non-
degenerate MST isO(n log n).

Proof: The proof imitates that of Theorem 2 in [15]. It
begins by replacing each edge weightw(e) in G = (V,E)
with the edge’s rankr(e). Note that the MST based on the
ranks will also be the MST based on the original weights.
Assume that each of then−1 good edge-exchanges is equally
likely. Let r(T ) =

∑
e∈T r(e) and r(T ∗) =

∑
e∈T∗ r(e). A

good edge-exchange decreases the differencer(T )−r(T ∗) on
average by(r(T ) − r(T ∗))/(n − 1), which corresponds to a
factor not larger than1 − 1/n. This holds independently of
previous good edge-exchanges. Afterρ good edge-exchanges,
the expected value of the differencer(T )− r(T ∗) is at most
(1− 1/n)ρ · (r(T )− r(T ∗)).

Since r(T ) ≤ (n − 1) · m, where m is the largest edge
rank, andr(T ∗) ≥ 1, we obtain the upper bound(1− 1/n)ρ ·
n · m. If ρ = d(ln 2) · n · (log(n · m) + 1)e, this bound is
at most 1/2. By Markov’s inequality, the probability that the
bound is less than 1 is at least 1/2. Sincer(T )− r(T ∗) is an
integer, the probability of having found the MST is at least 1/2.
Repeating these arguments, the expected number of good steps
until the MST is found is bounded by2ρ = O(n log(n ·m)) =
O(n log n).

So far, we have assumed that each good edge-exchange is
equally likely. This does not hold under biased edge-selection.
If good edge-exchanges often involve the inclusion of edges
whose selection probability is less than the uniform selection
probability1/m, the required number of good edge-exchanges
may be considerably larger. Since we consider only non-
degenerate MSTs, whose edges have selection probabilities
qA(r) of at least1/m, and since the proof does not rely
on the specifically chosen dummy edge-exchanges (every
edge-exchange that does not change the current tree can be
considered a dummy edge-exchange), the assumption that a
good edge-exchange decreasesr(T ) − r(T ∗) by a factor not
larger than1− 1/n is still valid.

To obtain an upper bound for the expected optimiza-
tion time, we multiply the required number of good edge-

exchanges by the expected waiting time for each such ex-
change.

Recall that the set of edges to be inserted by alln − 1
good edge-exchanges is identical toT ∗, and letpI(e∗) be the
average probability of selecting a specific edgee∗ ∈ T ∗ for
insertion. When choosing an edge uniformly at random from
E − T , as in NA, UU, and UG,

pNA
I (e∗) = pUU

I (e∗) = pUG
I (e∗) =

=
1

m− n + 1
= Θ(1/n2). (26)

When choosing the edge to be inserted according to the ap-
proximately optimal edge-selection strategy, as in BU and BG,

pBU
I (e∗) = pBG

I (e∗) ≈ 1
EX ∗(e∗)

= Θ(1/n) (27)

according to corollary 1.
Assume an edgee∗ ∈ T ∗ has been selected for insertion

into T , and an edgee′ is to be selected for removal fromT .
If e∗ is already contained inT , no matter which edge will
be chosen fore′, the treeT will remain unchanged: Either
e′ = e∗ and a (good) dummy edge-exchange is performed,
or the resulting edge set is not a spanning tree and therefore
not accepted by the (1+1)-EA. In case of the NA-variant, the
probability of performing the dummy edge-exchange is

pNA
R (e∗) = 1/(n− 1) = Θ(1/n). (28)

In the other variants, the edge to be removed is alwayse′ = e∗,
so that

pUU
R (e∗) = pUG

R (e∗) = pBU
R (e∗) = pBG

R (e∗) = 1. (29)

If e∗ = (u, v) is not yet in T , there exists exactly one
edgee′′ 6∈ T ∗ on the path connectingu andv whose removal
results in a good edge-exchange. The probability of choosing
this edge ase′ depends on the edge-exchange strategy. When
choosing an edge uniformly fromT as in the NA-case,

pNA
R (e′′) = 1/(n− 1) = Θ(1/n). (30)

When choosing an edge uniformly from the path connecting
u and v, as in UU and BU, the probability depends on the
length of the path, which isn− 1 = O(n) in the worst case.
However, if we assume thatT is non-degenerate, as it is with
overwhelming probability in the average case, the diameter
and the expected length of the path areO(

√
n). Thus,

pUU
R (e′′) = pBU

R (e′′) = Ω(1/
√

n). (31)

When the edge to be removed is greedily selected as in UG and
BG, the maximum possible weight decrease is achieved; the
(1+1)-EA either performs a good edge-exchange or an edge-
exchange resulting in an even larger weight decrease, which
we may consider an alternate good edge-exchange. Therefore,

pUG
R (e′′) = pBG

R (e′′) = 1. (32)

Note thatpR(e′′) ≤ pR(e∗) for all mutation variants. These
observations lead to the following result.
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Theorem 3:Excluding preprocessing, the total expected
time for the (1+1)-EA to find the MST for average case in-
stances is bounded above depending on its mutation operator:

EX (tNA
MST) = O(n3 log n) (33)

EX (tUU
MST) = O(n3 log n) (34)

EX (tUG
MST) = O(n5/2 log n) (35)

EX (tBU
MST) = O(n2 log n) (36)

EX (tBG
MST) = O(n3/2 log n) (37)

Proof: Since there are alwaysn− 1 good mutations, the
probability of performing a good mutation (or an even better
one) is bounded below by(n−1) ·pI(e∗) ·pR(e′′). This yields
the expected waiting time

EX (t1) = O

(
tmut

n · pI(e∗) · pR(e′′)

)
. (38)

for performing a good mutation. Therefore, an upper bound for
the total expected waiting time to find the MST when starting
from a random spanning tree is

EX (tMST) = O(EX (t1) · n log n) =

= O

(
tmut · log n

pI(e∗) · pR(e′′)

)
. (39)

ReplacingpI(e∗), pR(e′′), andtmut by the specific complexi-
ties above yields the five results.

With BU and BG, the (1+1)-EA must begin by sorting the
graph’s edges and determining their ranks. This takes time that
is O(n2 log n) and dominates the EA’s running time for these
two mutation variants. Note that a classical implementation of
Kruskal’s algorithm in which all edges are initially sorted also
has timeO(n2 log n), and there exist randomized algorithms
that identify a MST in expected times that areO(n2) [20].

V. SELECTION STRATEGIES FOREDGE-INSERTION IN

MUTATION

Assume an evolutionary algorithm that seeks a constrained
subgraph of minimum total weight in a complete graphG, as
in the problems listed in the introduction. The EA’s mutation
operator inserts a new edge into a feasible solution and
guarantees the offspring’s feasibility by applying a problem-
dependent repair such as the removal of another edge in case
of the MSTP. In the experiments the next sections describe,
we compare the following strategies for selecting a new edge
to be inserted.

Uniform Edge-Selection (UNIF)

This method corresponds to the edge-selection strategy used
in the UU and UG mutation variants of Sect. IV. The new edge
is randomly chosen with probabilityqU (r) = 1/m from E.

Approximately Optimal Edge-Selection (OPTEX)

The new edge is selected according to the approximately
optimal selection probabilitiesqA(r), as in the BU and BG
mutation strategies of Sect. IV.

To perform this edge-selection efficiently in practice, we de-
rive a random edge-rankR ∈ {1, 2, . . . ,m} from a uniformly
distributed random numberU ∈ [0, 1).

In order to ensure thatR has the approximate probability
densityqA(r) of Theorem 2, we use the corresponding cumu-
lative distribution functionF (r):

F (r) =
r∑

i=1

qA(i) ≈
r∑

i=1

a
i
2

(
1√
a
− 1

)

=
√

a− a(r+1)/2

1−√a

(
1√
a
− 1

)

= 1− ar/2 = 1−
( |S|
|S|+ 1

) r
2

. (40)

The inverse ofF (r) is

r =
2 log(1− F (r))

log |S| − log(|S|+ 1)
. (41)

R can be calculated fromU by settingF (r) = U in (41) and
rounding:

R =
⌊

2 log(1− U)
log |S| − log(|S|+ 1)

⌋
mod m + 1 . (42)

Finding the modulus and adding one ensures thatR will be a
valid edge rank.

Proportional Edge-Selection (PROPP)

Each edge is selected with probabilityqP (r) = p(r)/|S| ≈
ar/|S|. This operator’s implementation uses a uniform random
number U transformed by the inverse of the distribution
function:

F (r) =
r∑

i=1

ai

|S| = 1−
( |S|
|S|+ 1

)r

. (43)

This yields

R =
⌊

log(1− U)
log |S| − log(|S|+ 1)

⌋
mod m + 1 . (44)

Normal-Distribution-Based Edge-Selection (Nβ)

This edge-selection strategy is based on normal distributions
as proposed in [21]. The rank of a selected edge is

R = b|N · β · n|c mod m + 1 , (45)

whereN is a normally distributed random number with mean
zero and standard deviation one.β controls the bias towards
low-cost edges.

Inverse-Weight-Proportional Edge-Selection (INVW)

The probability of each edgee ∈ E is inversely proportional
to its weight w(e). Greffenstette used this technique for
choosing edges during recombination in a genetic algorithm
for the TSP [6]. This selection can be implemented efficiently
by applying binary search to an array of cumulated weights
wc(ei) =

∑i
j=1 w(ej), i = 1, . . . ,m.
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VI. EMPIRICAL RESULTS FOR THE(1+1)-EA ON THE

MSTP

To support the theoretical results from Sect. IV and to
compare the approximately optimal edge-selection strategy to
the others presented in the previous section, we performed the
following experiments with the (1+1)-EA.

Fifty uniform instances and fifty Euclidean instances of the
MSTP were randomly created onn = 20, 50, 100, 200,
500, and1 000 vertices. We applied the (1+1)-EA to all these
instances, using each strategy for selecting a new edge with
both uniform and greedy selection of the edge to be removed.
For the normal-distribution-based edge-selection Nβ , β was
set to 0.75, 1, 1.5, 2, and 3. A run was terminated when either
the MST was found or107 iterations had been performed.

Table III lists the median numbers of iterations until termi-
nation. In addition, Table IV shows the corresponding error
probabilities in percent for the hypothesis that on average
OPTEX yields a smaller number of iterations than each of the
other edge-selection strategies. These error probabilities were
determined by paired one-sided Wilcoxon rank-sum tests.

For all mutation variants, greedy edge removal allows the
EA to use substantially fewer iterations. When using OPTEX,
it was always able to find the MST in fewer than107 iterations;
the increase in the number of iterations with respect to the
problem size is only moderate. This could be expected; the
derived upper bounds for the expected number of iterations
are O(n2 log n) and O(n3/2 log n) for uniform random and
greedy edge removal, respectively.

As the small error probabilities in Table IV indicate, OPTEX
speeds up the EA in comparison to the other edge-selection
strategies, in most cases with high statistical significance. It
always outperforms UNIF, N3, and INVW with error prob-
abilities less than 0.1%. On the smaller instances, PROPP,
N0.75, N1, and N1.5 were occasionally better than OPTEX,
in particular on uniform instances. This sometimes poorer
performance of OPTEX on uniform instances can be explained
by the error resulting from the approximationpA(r) of the
probabilities pE(r) with which an edge of a certain rank
appears in the optimum solution. On uniform instances,pA(r)
tends to underestimatepE(r) for r < n and overestimate
pE(r) for r ≥ n; note Figs. 1 and 2.

Generally, OPTEX is almost always superior on Euclidean
instances and on large uniform instances.

VII. E XPERIMENTS ON THE3-MSTP

We now evaluate biased mutation in more sophisticated EAs
for two NP-hard problems, thed-MSTP and the TSP. We
consider thed-MSTP first, with the maximum degreed set
to three.

The EA is the steady-state algorithm described in [21], and
it represents candidate spanning trees as sets of edges. Random
spanning tree generation based on Kruskal’s algorithm fills the
population with feasible initial solutions [22]. The EA selects
parents for crossover in binary tournaments with replacement,
and crossover builds an offspring degree-constrained spanning
tree from the union of the parents’ edge-sets. Only if neces-
sary, edges not appearing in the parents are added in order

to satisfy the degree-constraint. Each (feasible) offspring is
always generated by applying crossover to two parents, then
mutating the resulting tree.

Mutation selects an edge to be included in a tree according
to one of Sect. V’s five strategies. To guarantee that offspring
satisfy the degree constraint, the following two special cases
extend the simple edge-exchange mutation from the uncon-
strained MSTP.

• If the insertion of the selected edge violates the degree
constraint at both of its end-vertices, the edge is not
suitable for insertion and is therefore discarded; another
edge is selected.

• If the new edge violates the degree constraint at one of
its end-vertices, the edge to be removed must be the other
edge incident to this vertex in the introduced cycle.

In all other cases, the edge to be removed is always chosen
according to the U-variant; i.e., at random from all edges on
the induced cycle, excluding the newly inserted edge. The
greedy variant, which always removes the edge of highest
weight, is not useful here; in preliminary experiments, this
approach almost always led to premature convergence at
poor, locally optimum solutions. On the unconstrained MSTP,
greedy selection of the edge to be removed exploits the fact
that a targeted edge could not belong to an optimum solution;
this condition does not hold in thed-MSTP.

Each offspring replaces the worst solution in the population
except when it is identical to an existing solution; duplicates
are discarded to maintain diversity.

We considered 50 random Euclidean instances of sizes
n = 50, 100, and 200. For all these instances, we determined
optimum solutions by branch-and-cut, again using ABACUS
[13] and CPLEX 8.1. The EA’s population size was2 n, and
the EA terminated if an optimum solution had been reached
or the number of evaluations exceeded5 000n.

We performed 50 runs on each instance with each mutation
variant. Table V shows, for each sizen and each operator, the
percentage of runs that identified optimum solutions and the
average number of evaluations over all runs.

In all but the uniform case withn = 200, OPTEX solved
the largest number of instances to optimality. In that one
case, PROPP, N0.75, and N1 solved one more instance. With
respect to average numbers of required iterations, OPTEX
again outperformed the other mutation variants in every case
but one. For uniform instances of sizen = 50, N1 gave
better results. Table VI shows error probabilities for the
hypotheses that on average, OPTEX yields smaller numbers
of iterations than each other mutation method; again, these
values were calculated by paired one-sided Wilcoxon rank-
sum tests. In most cases, these error probabilities are less than
0.1%, indicating high significance.

VIII. E XPERIMENTS ON THETSP

The EA framework used for thed-MSTP was also applied to
the TSP. The EA represented candidate tours as permutations
of the vertices. It applied unbiased random initialization, stan-
dard edge recombination crossover (ERX) [23], and mutation
biased according to the five edge-selection strategies.
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TABLE III

MEDIAN NUMBERS OF ITERATIONS REQUIRED TO FIND THEMST BY THE (1+1)-EA.

Mutation Uniform random choice of edge to be removed (U) Greedy choice of edge to be removed (G)
n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000 n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000

Uniform random instances
UNIF 2 008 24 513 186 378 1 055 184 > 107 > 107 544 5 077 24 566 112 391 815 387 3 535 240
OPTEX 359 2 022 6 561 24 344 119 389 396 044 90 322 853 2 083 6 340 14 360
PROPP 290 1 571 8 099 25 789 164 687 499 716 60 268 740 2 029 7 764 18 124
N0.75 198 2 921 48 129 510 473 > 107 > 107 47 433 4 221 33 599 1 011 781 3 413 491
N1 195 1 631 9 681 86 262 755 918 > 107 51 234 885 4 797 48 964 370 644
N1.5 321 1 831 6 881 27 355 164 353 575 404 78 290 722 1 909 6 778 19 572
N2 525 2 339 7 552 24 988 129 466 445 749 113 370 950 2 128 6 087 16 950
N3 598 3 570 12 272 37 362 183 666 564 766 187 633 1 503 3 496 10 021 20 738
INVW 581 4 412 18 345 86 950 446 253 > 107 111 684 2 132 6 238 22 821 59 729

Euclidean instances
UNIF 1 324 20 294 106 648 845 683 9 772 113 > 107 536 4 676 23 945 107 050 766 805 3 800 496
OPTEX 292 1 826 7 933 23 342 175 904 643 915 110 422 1 094 2 836 8 774 19 924
PROPP 301 5 420 25 388 108 910 666 924 2 934 556 106 557 1 667 6 122 24 578 50 717
N0.75 2 159 985 295 > 107 > 107 > 107 > 107 432 90 346 2 453 202 > 107 > 107 > 107

N1 545 33 516 413 170 2 894 652 > 107 > 107 154 3 509 33 062 110 399 1 524 522 > 107

N1.5 373 4 988 24 649 161 841 1 411 807 > 107 106 599 1 859 8 439 28 952 112 709
N2 401 2 882 16 379 64 448 336 576 1 707 227 121 452 1 158 2 997 9 763 35 700
N3 541 2 981 11 663 37 254 227 970 844 947 206 624 1 649 3 759 10 558 25 222
INVW 790 6 350 39 911 181 224 1 785 180 > 107 209 1 455 5 484 18 841 93 982 286 671

TABLE IV

THE (1+1)-EA FOR THEMSTP: ERROR PROBABILITIESperr [%] OF THE HYPOTHESIS THAT ON AVERAGEOPTEX YIELDS A SMALLER NUMBER OF

ITERATIONS THAN THE OTHER MUTATION METHODS.

Mutation Uniform random choice of edge to be removed (U) Greedy choice of edge to be removed (G)
n = 20 n = 50 n = 100 n = 200 n = 500 n = 1000 n = 20 n = 50 n = 100 n = 200 n = 500 n = 1 000

Uniform random instances
UNIF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PROPP 82.3 97.2 0.2 26.0 0.0 0.3 100.0 99.7 98.0 38.3 0.0 0.0
N0.75 100.0 0.1 0.0 0.0 0.0 0.0 100.0 5.5 0.0 0.0 0.0 0.0
N1 100.0 91.5 0.1 0.0 0.0 0.0 100.0 99.7 32.3 0.0 0.0 0.0
N1.5 63.7 78.3 15.1 5.0 0.0 0.0 97.6 88.8 99.7 67.8 4.8 0.0
N2 0.0 0.2 0.1 5.2 15.6 4.5 0.0 0.0 0.5 22.7 33.2 0.0
N3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
INVW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Euclidean instances
UNIF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PROPP 8.3 0.0 0.0 0.0 0.0 0.0 52.1 0.0 0.0 0.0 0.0 0.0
N0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N1 0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.0 0.0 0.0 0.0 0.0
N1.5 0.3 0.0 0.0 0.0 0.0 0.0 80.2 0.0 1.0 0.0 0.0 0.0
N2 0.0 0.0 0.0 0.0 0.0 0.0 8.3 0.8 2.8 13.7 6.3 0.0
N3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
INVW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

In comparison to thed-MSTP, incorporating specific edge-
selection techniques into mutation in an EA for the TSP
is more complex. A commonly used mutation operator for
permutations is inversion. This operator can be modified to
include a specific new edge selected by one of the above
strategies: Invert the substring beginning after the selected
edge’s first vertex and ending with the selected edge’s second
vertex. For example, letT = (a, b, c, d, e, f, g, h) be the tour
to be mutated, and let(c, f) be the edge selected for insertion.
The mutated tour is(a, b, c, f, e, d, g, h).

Note, however, that mutation for the TSP necessarily in-
cludes a second edge in addition to the selected one (in the

above example, the edge(d, g)). This second edge cannot be
chosen according to the edge-selection strategy, but depends
on the first edge and the current tour. Furthermore, two edges
that directly depend on the pair of inserted edges are removed
((c, d) and (f, g) in the example). These side-effects strongly
influence the performance of biased mutation.

The experiments were performed on 50 random Euclidean
instances of each sizen = 20, 40, and 60, using a population
of 2 n tours. The EA halted when it reached an optimum
solution or performed5 000n evaluations.

Tables VII and VIII list the results of these trials. In contrast
to thed-MSTP, they do not in general show significant differ-
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TABLE V

RESULTS OF THEEA FOR THE3-MSTPWITH EACH MUTATION :

PERCENTAGE OF RUNS THAT FOUND OPTIMUM SOLUTIONS(%-hits ) AND

AVERAGE NUMBERS OF ITERATIONS(iter ).

Mutation n = 50 n = 100 n = 200

%-hits iter %-hits iter %-hits iter

Uniform random instances
UNIF 54 173 522 2 498 396 0 1 000 000
OPTEX 96 46 265 64 281 021 5 963 850
PROPP 88 53 203 46 325 680 6 971 200
N0.75 78 69 740 48 350 353 6 974 948
N1 96 35 979 60 284 833 6 975 521
N1.5 88 53 781 40 342 982 4 976 387
N2 86 60 941 32 398 460 4 971 030
N3 76 83 164 32 390 116 0 1 000 000
INVW 76 83 127 26 411 267 0 1 000 000

Euclidean instances
UNIF 98 57 900 66 360 199 8 990 999
OPTEX 100 11 698 100 49 088 96 230 771
PROPP 100 16 877 88 118 942 78 411 953
N0.75 48 149 643 20 432 160 6 967 138
N1 68 96 968 46 314 193 46 715 735
N1.5 94 25 005 82 166 909 64 503 273
N2 100 15 007 90 92 152 76 404 871
N3 98 16 216 94 87 970 66 468 987
INVW 98 24 980 86 169 252 46 824 540

TABLE VI

THE EA FOR THE3-MSTP: ERROR PROBABILITIESperr [%] OF THE

HYPOTHESIS THAT ON AVERAGEOPTEX YIELDS SMALLER NUMBERS OF

ITERATIONS THAN THE OTHER MUTATION METHODS.

Mutation Uniform random instances Euclidean instances
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

UNIF 0.0 0.0 0.0 0.0 0.0 0.0
PROPP 6.1 0.0 45.9 8.5 8.3 0.1
N0.75 7.0 0.0 39.4 0.0 0.0 0.0
N1 89.8 13.8 36.1 0.0 0.0 0.0
N1.5 4.9 0.0 31.3 0.0 0.0 0.2
N2 0.1 0.0 28.9 17.2 7.3 1.6
N3 0.0 0.0 0.0 2.4 15.3 0.1
INVW 0.0 0.0 0.0 0.0 0.0 0.0

ences among the edge-selection methods. The only exception
with high statistical significance is that OPTEX performs
better than unbiased mutation whenn = 20.

IX. CONCLUSION

We empirically analyzed the rank-based probabilitiespE(r)
with which edges appear in optimum solutions of Euclidean
and uniform random instances of the MSTP of sizes 20 to
1 000, of the 3-MSTP and the 5-MSTP of sizes 20 to 100, and
of the TSP of sizes 20 to 100. These probabilities are closely
approximated by exponential functionspA(r) with absolute
mean square errors less than 1% and relative mean square
errors less than 10%.

Based on this approximation, we derived probabilitiesqA(r)
for selecting edges to be incorporated into candidate solutions
of an EA during mutation such that the average expected num-
ber of edge-selections until choosing an edge of an optimum

TABLE VII

RESULTS OF THEEA FOR THETSPWITH EACH MUTATION ON

EUCLIDEAN INSTANCES: PERCENTAGE OF RUNS THAT FOUND OPTIMUM

SOLUTIONS (%-hits ) AND AVERAGE NUMBERS OF ITERATIONS(iter ).

Mutation n = 20 n = 40 n = 60

%-hits iter %-hits iter %-hits iter

UNIF 86 18 349 30 150 169 4 298 993
OPTEX 88 14 955 30 145 812 10 276 288
PROPP 92 11 213 18 165 133 8 278 601
N0.75 84 19 805 12 176 786 4 294 130
N1 88 14 756 14 172 602 4 288 515
N1.5 90 14 069 30 144 882 6 282 637
N2 90 12 720 36 130 448 4 295 192
N3 88 13 899 22 159 152 6 283 035
INVW 86 16 958 22 159 466 4 289 819

TABLE VIII

THE EA FOR THETSP: ERROR PROBABILITIESperr [%] OF THE

HYPOTHESIS THAT ON AVERAGEOPTEX NEEDS A SMALLER NUMBER OF

ITERATIONS THAN THE OTHER MUTATION METHODS.

Mutation n = 20 n = 40 n = 60

UNIF 0.0 30.5 10.8
PROPP 93.5 15.1 38.8
N0.75 93.8 2.4 11.1
N1 98.1 5.9 13.3
N1.5 97.3 68.6 26.0
N2 67.9 87.3 11.1
N3 10.8 19.1 24.6
INVW 13.7 19.1 11.7

solution is minimized. Using these probabilities, the expected
number of edge-selections until each edge in an optimum
solution is chosen is asymptotically linear in the number of
vertices instead ofΘ(n2) with uniform selection.

Next, we analyzed a (1+1)-EA, with five variants of edge-
exchange mutation, for the unconstrained MSTP. The edge
to be inserted was selected either at random or according to
the probabilitiesqA(r). The edge to be removed is chosen
uniformly or greedily. We obtained upper bounds for expected
running times of the (1+1)-EA on non-degenerate instances.
When using the approximately optimal edge-selection strategy
for choosing the edge to be inserted, the expected running
time is dominated by the initial sorting of the edges to
determine ranks, and the (1+1)-EA is, on a non-degenerate
instance, asymptotically as fast, as a classical implementation
of Kruskal’s MST algorithm.

The edge-selection strategies were further compared to
proportional, normal-distribution-based, and inverse-weight-
proportional schemes on uniform and Euclidean MSTP in-
stances with up to 1 000 vertices. The results support the theory
and indicate that the new approximately optimal edge-selection
scheme is in practice superior to the other methods.

Although we considered Euclidean and uniform random
instances only, we conjecture that the same biasing towards
low-weight edges also works well on other instance classes
structured in different ways. A preliminary study on the “hard
and misleading” instances from [1] supports this.

We further considered EAs with larger populations and re-
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combination operators without specific biases for two NP-hard
graph problems, the 3-MSTP and the TSP. With approximately
optimal edge-selection probabilities, the EA for the 3-MSTP
identified optimum solutions significantly more often and with
fewer iterations. On the TSP, however, mutation that introduces
one new edge introduces a second edge as well. While the first
edge may be chosen according to specific probabilities, the
second edge depends on the first edge and on the current tour,
and two strongly dependent edges are removed. These side-
effects overwhelm the differences between the various edge-
selection strategies.

More generally, we conclude that for various problems, a
detailed study of probabilities with which features appear in
optimum or nearly optimum solutions may allow the deriva-
tion of theoretically well-justified biasing schemes. Mutation
operators that are biased in this way are likely to find (near-
)optimum solutions more often and more quickly. While we
focused here on certain subset-selection problems, the basic
idea is generally applicable. Future work will consider biased
recombination operators and other application areas.
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