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Abstract—Many graph problems seek subgraphs of minimum
weight that satisfy a set of constraints. Examples include the
minimum spanning tree problem (MSTP), the degree-constrained
minimum spanning tree problem (d-MSTP), and the traveling
salesman problem (TSP). Low-weight edges predominate in
optimum solutions to such problems, and the performance of
evolutionary algorithms (EAs) is often improved by biasing vari-
ation operators to favor these edges. We investigate the impact
of biased edge-exchange mutation. In a large-scale empirical
investigation on Euclidean and uniform random instances, we
describe the distributions of edges in optimum solutions of the
MSTP, the d-MSTP, and the TSP in terms of the edges’ weight-
based ranks. We approximate these distributions by exponential
functions and derive approximately optimal probabilities for
selecting edges to be incorporated into candidate solutions during
mutation. A theoretical analysis of the expected running time
of a (1+1)-EA on non-degenerate instances of the MSTP shows
that, when using the derived probabilities for edge-selection in
mutation, the (1+1)-EA is asymptotically as fast as a classical
implementation of Kruskal’'s minimum spanning tree algorithm.
In experiments on the MSTP,d-MSTP, and the TSP, we compare
the new edge-selection strategy to four alternative methods.
The results of a (1+1)-EA on instances of the MSTP support
the theory and indicate that the new strategy is superior to
the other methods in practice. On instances of thel-MSTP, a
more sophisticated EA with a larger population and unbiased
recombination performs better with the new biased mutation
than with alternate mutations. On the TSP, the advantages
of weight-biased mutation are generally smaller, because the
insertion of a specific new edge into a tour requires the insertion

S is a Hamiltonian tour, a cycle that visits each vertex in
G exactly once (the traveling salesman problem; TSP).
S is a path inG that connects two specified vertices (the
shortest path problem).

S is a spanning tree (the unconstrained minimum span-
ning tree problem; MSTP).

S is a spanning tree in which the number of edges
incident on each vertex does not exceed a bodind 1

(the degree-constrained minimum spanning tree problem;
d-MSTP) [1], [2].

S is a spanning tree with at leadt leaves (the leaf-
constrained minimum spanning tree problem) [3], [4].

S augments a given subgraph so that the resulting net-
work is biconnected (the biconnectivity augmentation
problem) [5].

S is a Steiner tree that connects a specified subsétof
vertices.

Some of these problems, such as the unconstrained MSTP
and the identification of a shortest path between two vertices,
can be solved to optimality in polynomial time. Most, includ-
ing the remaining problems listed above, are NP-hard, so it is
unlikely that there can be polynomial-time algorithms that will
in general solve them exactly. In these cases, (meta-)heuristics,
including evolutionary algorithms (EAs), are often useful.

It is not surprising—and the following section verifies—

of a second, dependent edge as well. Although we consideredthat low-weight edges predominate in solutions to problems

Euclidean and uniform random instances only, we conjecture
that the same biasing towards low-weight edges also works well
on other instance classes structured in different ways.

Index Terms—Biased operators, mutation, graph problems,
minimum spanning tree problems, traveling salesman problem

I. INTRODUCTION

N undirected graphG = (V,E) consists of a non-
empty setl” of vertices and a seb’ of unordered pairs

like these that seek constrained low-weight subgraphs. Thus,
any heuristic that builds candidate solutions to such problems
should favor edges of lower weight. Evolutionary algorithms
can apply this observation to constructing the solutions in their
initial populations and to their recombination and mutation
operators, which construct new solutions from existing ones.
Several researchers have examined such mechanisms [6],
[71, [8], [9]. Among them, Julstrom and Raidl studied weight-
biased crossover operators in EAs for the TSP anddthe
MSTP on complete graphs [10]; favoring low-weight edges

of vertices, called edges. In a weighted undirected graphjmaproved the performance of these algorithms. The present
function w : E — RT associates a numerical weight withauthors investigated weight-biased mutation in these EAs and
each edge ir. Many problems on graphs seek a subsetf derived probabilities for selecting edges that minimize the
G's edges that satisfies a set of constraints and has minimaxpected time to include edges of optimum tours and trees
total weightw(S) = Y. 5 w(e) over all such subsets. The[11].
constraints thas must satisfy characterize each problem, as This article extends in several ways our work on biased
in these examples: mutation in EAs for subset-selection problems on complete
graphs. The next section investigates empirically the distri-
G. R. Raidl and G. Koller are with the Institute of Computer Graphics arldutions of edges in optimum solutions of the MSTP, the
Algorithms, Vienna University of Technology, 1040 Vienna, Austria (e-maipSTP, and the TSP, in terms of the edges’ weight-based
{raidl, koller} @ads.tuwien.ac. ). nks. For all three problems, the probability that an edge
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approximated by an exponential function of Section Il In each instance, sorting the edges into ascending order of
analytically approximates optimal edge-selection probabiliti¢iseir weights assigns each arank < r < m; ties are broken
for typical instances of the three problems. arbitrarily. We consider edges’ ranks because, unlike edges’

Section IV analyzes expected running times for a (1+1jveights, they can be compared across instances. Figure 1 plots
EA using several different edge-selection strategies on ttiee empirical probabilities—the relative frequencigsg{r)
unconstrained MSTP. We show that, when the EA uses théth which an edge of rank appears in the optimum solution.
approximately optimal mutation scheme, its expected runni@nly the portions of the curves whepg;(r) is visibly larger
time on a non-degenerate instance of the MSTP is asymptdkian zero are shown. Note that the probabilitigsr) sum
cally not worse than the time of a classical implementation & |S]:

Kruskal’s well-known minimum-spanning-tree algorithm [12].

Section V describes a variety of other strategies with which ZPE (r) =
mutation may select edges for inclusion in new solutions,

and Sect. VI describes experiments with the (1+1)-EA for the As expected, optimum solutions consist mostly of edges of
MSTP that confirm the theoretical results. low rank; that is, of low weight. Moreover, for each kind of

Sections VIl and VIII compare the edge-selection strategi@soblem and each fractiokh € (0, (n — 1)/2], the probability
listed in Sect. V in more sophisticated EAs for tieMSTP pr([kn]) that the edge of rankkn| appears in the optimum
and the TSP, respectively. These EAs use larger populati@®ution is approximately constant across all the problem sizes.
and problem-specific recombination operators in addition to Table | documents further properties. For each problem type
edge-exchange-based mutation. On dWASTP, theoretically and size, it lists the numbek of lowest-weight edges among
approximately optimal edge-selection increases the probabilpich v = 50, 90, and 99 percent of the optimum solutions’
of finding optimum solutions and reduces the number of iteedges are found; i.eR is the smallest rank for which the
ations usually needed. On the TSP, the advantages of weightmulated probabilities of the edges of that or lower rank sum
biased approaches are generally smaller because mutation hat leasty - |S|:

(heuristically) introduces one edge into a tour necessarily

|51 )

t
introduces a second edge as well. R = min {t . ZPE(T) > - |5|} . )
II. DISTRIBUTIONS OFEDGES INOPTIMUM SOLUTIONS . - . .
TO THE MSTP,d-MSTP,AND TSP Table | also lists the proportions = R/n of low-weight

It witivel ble that opfi | ht t edges in optimum solutions. For each kind of problem and
is intuitively reasonable that optimum low-weight trees ¢ach value ofy, these values are nearly constant.

tours, and other subgraphs in weighted graphs should con An effective heuristic mutation operator in EAs for graph
tain high proportions of low-weight edges. We confirm ang

. . . . roblems like those considered here should introduce edges
qguantify this observation for the computationally easy MST 9

epending on the probabilities with which they appear in
and the NP-hard-MSTP and TSP on complete graptis= ; Ut T h i h
(V.E). Letn — |V| be the number of vertices if¥, m — optimum solutions. Toward that end, we approximate the

| — - (n— 1)/2 be the number of edges, adbe the set empirical distributionspg(r) with closed-form expressions
. A(r).

of edges in a solution, so tha$| = n — 1 for the MSTP and

d-MSTP and|5] = n for the TSP. . .. _exponentially asr grows, particularly in the Euclidean in-
Our sample problem instances are of two kinds, umforrqances Therefore, let

and Euclidean. In the uniform instances, edge weights are

integers chosen at random and independently from the interval pa(r)=a" with0<a<1. 3

[1,10000]. In the Euclidean instances, vertices are distinct

points in the plane whose coordinates are random integdf2€ Pase: should be chosen so that

from the interval[1, 10 000], and edge weights are equal to the , m+1

Euclidean distances between the points. We generated ZPA(T) - Za - ﬁ =15 )

instances of each type with = 20, 50, 100, 200, 500, and =

1000 vertices. For thé-MSTP, the degree bound was set The terma™*! is negligible for problems of even moderate

to three and five in turn on the uniform instances. For thgze, so we neglect it to obtain

Euclidean instances, only the cade= 3 was considered

since for such instances there always exists an unconstrained ZPA(T) ~ = ~ Bl

minimum spanning tree (MST) of degree no more than five. —l —a S| +1°
Kruskal's algorithm identified unconstrained MSTs for all

6000 instances. Exact algorithms for theMSTP and the

TSP become infeasible on larger graphs, so on these prgb- . gy .
lems, only the instances with = 100 or fewer vertices hi atp(r) approximates the empirical probabilitigs () with

h accuracy. To quantify this accuracy, we calculate the
were considered. The corresponding 3-MSTP, 5-MSTP, an (?atlve meanysquar(zz errofry y
TSP instances were solved to optimality by branch-and- cut

algorithms implemented using the ABACUS environment [13] St (pa(r) —pe(r))?
! . RMSE — A . ©6)
and CPLEX 8.1 as a linear programming solver. Yot pe(r)?

In the graphs in Figure lpgz(r) decreases approximately

®)

Figure 2 plotspa(r) = a” with a = |S|/(]S| + 1) for
the 3-MSTP instances with 100 vertices. The graph illustrates
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Fig. 1. The empirical probabilityz (r) that an edge appears in an optimum solution as a function of its rank, for the MSTP, 3-MSTP, 5-MSTP, and TSP
on uniform and Euclidean instances of size

The RMSE allows better comparisons of approximation qual-  1ll. A PPROXIMATING OPTIMAL EDGE-SELECTION

ity across different problem sizes than does the standard mean- PROBABILITIES

square error. The latter never exceeds 1% on any case and . )

decreases rapidly with increasing problem size Consider a subset-selection problem on a gr&phfor

which §* C F is the unique optimum solution. Uniformly
Table Il lists theRMSE:s for all the problem types and sizes;random edge-exchange mutation chooses each edge to include

they are always less than 9.9%. In genepal,r) approximates in a solution with probabilityl /m. We apply the analysis of
pr(r) more accurately on Euclidean instances than on uniforect. Il to identify non-uniform probabilities, associated with
ones. The approximation is most accurate on the TSP, while edges’ ranks, that are optimal in the following sense: Over
the largest errors occur on the unconstrained MSTP on unifoath edgese* in the optimum solutiors™, the average expected
graphs. The approximation is conservative in that it typicalljumber of edge-selections untit is chosen is minimal.
underestimates the probabilitipg (r) of low-rank edges and Let ¢(r) be the probability that an edge-selection scheme
slightly overestimates the probabilities of high-rank edges. chooses the edgge whose rank is (1 < r < m). The number
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TABLE | 100 : : : : :
NUMBERS R OF LOWESFWEIGHT EDGES FOR EACH PROBLEM TYPE AND \ Pe(r) —
SIZE n AMONG WHICH v = 50%, 90%,AND 99% OF OPTIMUM 80 |\ Pa(n) —
SOLUTIONS EDGES ARE FOUND AND FRACTIONS: = R/n. \\\
Problem n v = 50% v =90% v =99% < 60 \\
R k| R k| R & w0l i
MSTP/unif. 20 10 0.5 23 1.1 40 2.0
50 25 05 59 1.2 109 2.2 20 + 4
100 50 05 120 1.2 224 2.2 _
200 101 05 242 1.2 458 2.3 0 1 1 e 1
500 || 251 05| 606 1.2| 1151 2.3 0 100 200 300 400 500 600
1000 || 501 0.5 1216 1.2| 2313 2.3 rank r of edge
MSTP/Euc. 20 12 0.6 33 1.6 62 3.1
50 31 06 89 1.8 165 3.3 Fig. 2. Approximation ofpg(r) by p4(r) = a” for the Euclidean 3-MSTP
100 63 06| 178 18| 319 32 onn =100 vertices.
200 || 128 0.6 356 1.8 623 3.1
500 || 319 0.6 882 1.8| 1496 3.0 TABLE Il

1000 || 642 0.6| 1753 1.8| 2913 29
3-MSTP/unif. 20 11 0.6 24 1.2 41 2.0
50 27 05 63 13| 113 23

RELATIVE MEAN -SQUARE ERRORS WHEN APPROXIMATING EMPIRICAL
PROBABILITIESpg () BY pa(r) = a” WITH a = |S]/(|S] + 1).

100 || 54 05| 126 13| 228 23 Problem RMSE [%]
3-MSTP/Euc.| 20| 12 06| 33 16| 63 31 n=20 50 100 200 500 1000
50 || 31 06| 89 1.8| 165 33 MSTP/uni. 9.86 9.34 926 928 933 038
100 || 63 06| 179 18| 324 3.2 MSTP/Euc. 166 098 093 090 098 1.02
5-MSTP/unif. | 20 || 10 05| 23 11| 40 20 3-MSTP/unif. 760 6.92 6.87 - - -
50| 25 05| 60 12| 110 22 3-MSTP/Euc. 1.78 099 0.84 - - -
100| 51 05| 120 12| 223 22 5-MSTP/unif. 942 911 9.17 - - -
5-MSTP/Euc.| 20| 12 06| 33 16| 63 3.1 5-MSTP/Euc. 179 1.00 0.85 - - -
50| 31 06| 89 18| 165 3.3 TSP/unif. 1.80 231 239 - - -
100| 63 06| 178 18| 323 3.2 TSP/EuC. 028 025 0.17 - - -
TSP/uni. 20| 16 08| 41 20| 67 34

50 40 08| 107 21| 183 3.7
100 80 08| 217 22| 373 37

TSP/Euc. 20 15 038 53 26| 107 53 BecauseZ:ll g(r) = 1, we can rep|acal(m) by 1 —
50 37 07 134 27| 297 59 Z?izl q(l) in (9) and write

100 73 07| 257 26| 587 59
L (& p(r) p(m)
EX(e*) = S (Z; ORI Zm_lq(i)> . (10)

of selections untik,. is chosen the first time has a geometric =1

distribution with the expected value To identify selection probabilitieg(r) that minimize the
1 expectationEX (e*), we partially differentiateEX (e*) with
EX(er) = ) () respect to each(r) and set these derivatives equal to zero:
Let p(r) be the probability that the edge. appears in  9EX (e 1 p(1) p(m)
the optimum solutionS™, and lete* be a specific edge from 5 1y (1) ‘ | q(l) (1= 37 Tq(i)? =0
S*. The following theorem establishes the probabilities with i=1 4
which edges should be selected frdfrto achieve a minimum 3EX 1 p(2) p(m) _0
waiting time for selecting:*. T 9q(2) \ | q(2) (1= ()2 B

Theorem 1:The expected numbeEX (e*) of edge-selec-
tions until a specific edge* € S* is chosen for the first time

is minimized by the edge-selection probabilities OEX (e") _
@ dq(m —1)
ar) = = —. (®) 1 pm-1 p(m) _
2 V) IS ( (m =17 " (1 z;’:lq@)?) —he

Proof: The probability thate* has rankr is p(r)/|S|. This system ofn — 1 equations can be simplified to
The expected number of edge-selections uiitiis chosen for

the first time is the weighted sum (1) _ P2 _  _ pm-1)
|S| . q(1)?  q(2)? q(m — 1)
p(r p(r) p(m) p(m)
T 2 oy 9) = = . (12
Z (r) 18l z:: ) (1= g(0)? amy? 42
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Let ¢ = p(r)/q(r)?. Then A-EX*(e*) for any A > 0 with probability greater than
1—1/2%=1-o0(1).
q(r) = lﬂ (13) Consider the same expected value when edges are selected
) according to uniform probabilities: for alt = 1,...,m,
and since QU(T) = 1/m' SinCGZT,1 p(r) = |S|1

20l =1= 723 V(). (14 pxv(e |5|Zl/m %me:m. (20)

i=1 ’L:1

we conclude that Similarly, let edges’ probabilities be proportional pgr):

o - (i \/pu-)) and g(r) = Zn@ as) A= qP@: (TMS" ren
2 m p |S| m B
. EXP ‘S| Z /|S\ E7%217771. (22)

. . . That is, for both uniform angh(r)-proportional probabil-
A. EX(e") for Three Edge-Selection Strategies ities, EX (e*) = m, which is @(ng)), while for the optimal

The following corollary establishes the expected waitingrobabilities, EX*(e*) is ©(n).
time until selecting an edge from the optimum solution when
approximatingp(r) as in Sect. II.

Corollary 1: Under the assumption that(r) is approxi-
mated well byp 4 () = a” with a = || /(]S|+1) according to The preceding observations lead to the following result.
Eqs (3) and (5) and when us|ng the Correspond|ng approx| Theorem 2:Under the aSSUmpt|0n as in Corollary 1 that
mately optimal edge-selection probabilitigs(r), the average »(r) is approximated well by (r) = a* with a = |S]/(|S|+
expected number of edge-selections until choosing an etigel), optimal edge-selection probabilitiegr) that minimize
from the optimum solution is EX (e*) can be closely approximated by

2 5
X~ (VB VETFL) . e i)~ (525 ( |S||S+|11>. 22

Thus, BX™(e") ~ 4|S\.and thereford—)(rf). . Proof: Replacingp(r) by the approximatiop4(r) =

Proof: The optimal edge-selection probabilitiegr) iy Eq. (8) of Theorem 1 yields a closed-form expressmn for
from Theorem 1, when substituted into Eq. (9), yield thg,e optimal edge-selection probabilitigs (r):
following expected number of edge-selections:

B. Approximately Optimal Edge-Selection Probabilities

1 & p(r) qa(r) = p‘L ) T - G
* (% r r - m m 7 Ja—a(m+D/2 T
EX(e") = [S] = Z /p( /Zm - (1 \fI;Ar/z =T

= e aR (23)

Again, a(m*+1)/2 is negligible compared t¢/a, and we ignore

= I (2_;F> (17)

Using the approximatiop 4 (r) = a” for p(r), we obtain itr.] Again, we replacex with |S]/(|S| + 1) according to (5);
thus
m 2
Va — a(m+1)/2 (1-Va) ar/? 1
EX ] . ~ S T
"SI (Zd |s( I-Va R et
(18) ;
Sincea™*+1/2 is orders of magnitude smaller thafz even — < 1] > ISI+1 ) (24)
for moderate problem sizes, we disregard it. Further, replacing 5] +1 S|
a by |S]/(|S] + 1) according to (5), we obtain: -
EX*(e") w~ a _ Fig. 3 plots the probabilitieg4(r), qu(r), and ¢p(r) for
[S] (1 — v/a)? instances of the 3-MSTP om = 100 vertices.
1
B (15| + 1) (1 _ S| )2 B V. EXPECTEDRUNNING TIMES OF A (1+1)-EAFOR THE
IS1+1 MSTP UsSING DIFFERENTEDGE-SELECTION STRATEGIES
_ 2 This section develops the expected times that a (1+1)-
B ( 151+ V19| +1) ' (19) EA requires to find an unconstrained MST on a complete

m graph G = (V,E), using five different edge-selection and
By Tschebyscheff’s inequality [14], when considering theeplacement strategies in mutation.
variance of the geometric distribution, the deviation from Neumann and Wegener [15] investigated simple randomized
this expected number of needed edge-selections is less tlwmal search (RLS) and an unbiased (1+1)-EA for the MSTP
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1 - - - - - « Naive edge-replacemerfNA): Edgese € E — T and
08 | 3323 — e’ € T are chosen uniformly at randora;replacese’ in
‘ T'. This operator may yield solutions that are not spanning
T 06} 4 trees; such solutions are never accepted.
= « Uniform-uniform edge-replacemeiilU): Again, an edge
5 04 . e = (u,v) € E —T is chosen for inclusion at random.
The edge:’ to be removed is randomly chosen from the
02 r il path inT that connects: andv, so that the offspring is
0 . . . . always a spanning tree.
0 100 200 300 400 500 600 « Uniform-greedy edge-replacemeftG): UG-mutation is

rank r of edge identical to UU-mutation, except that the edgeto be
, _ _ _ removed is always the edge of largest weight on the path
Fig. 3. Edge-selection probabilitiess (r) (approximately optimal)g (r)

(uniform), andgp () (proportional top 4 (r)) for instances of the 3-MSTP erm u o 1_); ties are broken arbitrarily.
onn = 100 vertices. « Biased-uniform edge-replacemegidU): An edgee € FE

is chosen according to the theoretically derived proba-
bility ¢4 (r) from Sect. Ill. If e is already contained in
T, the solution is not modified. Otherwise, an edges
chosen at random from the path that connestwvertices

(as in UU) and replaced by.

Biased-greedy edge-replacemé¢BG): The biased selec-

on general (including incomplete) graphs. Their algorithms
encoded candidate subgraphs as bit-strings that indicated the
inclusion or exclusion of each edged# large penalties in the
fitness functions encouraged, first, the formation of connected® = ) . )
subgraphs, then their pruning to trees. The neighbor operator 10N Of an edgee € £ from BU is combined with the
of the RLS algorithm flipped one or two randomly chosen bits.  9r€€dy choice from UG of the edge to be removed.
The EAs mutation operator flipped each bit independently While NA can be implemented so that its tirtf), is ©(1),
with probability 1/m (m = |E|). The expected times of the other methods run in linear time in the worst case, when
both algorithms to find MSTs wer@ (m?(log n+log wmay)), 1 i @ path. The diameter of a random spanning tree-on
wheren = |V| and wyay is the largest edge weight i6. however, is©(,/n) with overwhelming probability [16], [17],
Neumann and Wegener also showed that MSTP instances eXi# thus, on non-degenerate instances, these mutation variants
for which their algorithms’ expected times af&n*logn).  are expected to run in imegy, tu, thy,, andpd that
We assume here that all edge weights in each graph &fé allO(y/n).
distinct, so that each MST is unique. Furthermore, we restrictTO identify the expected times the (1+1)-EA, with each
our analysis tmon-degenerate MSTsith the following prop- Mutation operator, requires to find the MST on an average
erties: instance of the MSTP, we begin by describing the expected
1) The diameter of the MST is bounded I(,/n); this number of edges that the EAs initial tree and the MST have

holds for randomly created ing t ith ovef? common. .
w%elsmiggr; Largbgg}l?;yc[rle(?] e[17s]pann|ng rees with ove Lemma 1:Let G be a complete weighted graph. The num-

. . ) : ...ber of edges in which a random spanning tree(rand a
2) The approximately optimal edge-selection prObabIIIt'?pecified target tree differ is at lea®h/3 with probability

ga(r) of each edge from the MST is not less tha 1

the uniform selection probability/m. This assumption =~ Oé )- t Each edge i . d :

is fulfiled by most randomly created spanning trees r.or?. ba(t:)'l'e g€ In- appears in a random spanning
as long as they are not too small, as our empiricctz{lee with probability

investigations in Sect. Il documented. For example, for a n—-1 2

MST onn = 1(_)0 nodes, all .edges must have ranks less nin—1)/2 n’

??/Tgf tﬁ’nwilclho ggg pneon dselsm(38d5§3e%rac1):1lil, I r%issist.)elzzcljersgf then — 1 edges in the target spanning tree, the expected
than 15.65n, which happens with probability: 99.8%. humber that also appear in a random tree is then

Consider a standard (1+1)-EA for the MSTP that encodes (;, — 1)2 _9n” 1 and lim QL_l =2. (25
n

)

spanning trees directly as edge-sets [8]; these edge-sets can be n n n—eo
implemented efficiently by, for example, hash tables. The EAthus the expected number of edges in which a random
initial solution is an unbiased random spanning tree, generaggghnning tree differs from the target(is— 1) — (2 —o(1)) =
via a random walk in the target graph as described by Broder- 3+ o(1), and by Markov’s inequality [14], the probability
[18]. The expected time of this step @3(nlogn) for almost that there are at leain/3 such edges is at least— (6 —
all graphs, including complete graphs. Each iteration of the EA1))/n = 1 — o(1) for largen. ]
applies mutation to its current solution to create one offspring. To derive the total expected running time, we make use of
The offspring replaces the incumbent solution if it representgle following observation based on two results of Neumann
valid spanning tree of weight no greater than the incumbentand Wegener [15].

In the EA, we compare the following five mutation strate- Lemma 2:For a non-minimum spanning tree of weight
gies, in whichT' C FE'is the algorithm’s current spanning treew(7") and the MSTT™ of weight w(7™), there always exists
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a set ofn — 1 goodedge-exchanges ifi such that the averageexchanges by the expected waiting time for each such ex-

weight decrease of these edge-exchanges is at (ed%t) — change.

w(T*))/(n —1). Recall that the set of edges to be inserted byral- 1
Proof: The proof is constructive. Let= |T*—T|. There good edge-exchanges is identical%6, and letp;(e*) be the

exists a bijectionv : T* — T' — T — T* such thatx(e) lies on average probability of selecting a specific edgec T* for

the cycle created by includingin T' and the weight ofx(e) insertion. When choosing an edge uniformly at random from

is not less than the weight ef[19]. The total weight decreaseE — T, as in NA, UU, and UG,

when all z edge-exchanges described by the bijectioare

applied toT is w(T) — w(T*). pri(e) =pV(e") =p%(e) =
To make the edge-exchanges independent of the number of 1
edges irl", extend the set of edge-exchanges thatspecifies e O(1/n?). (26)

with n — z — 1 dummy exchanges specified by the bijection
o/(e) = e, Ve € T NT*. These exchanges replace an edg&hen choosing the edge to be inserted according to the ap-
that is in both7 and T* by itself and so do not modifii” Proximately optimal edge-selection strategy, as in BU and BG,
and w(T). From a and o’ together, we obtaim — 1 good BU, - BG, . 1
edge-exchanges with an average weight decrease of at least D1 (e") =pr(e") =~ m =0(1/n) (27)
(w(T) = w(T"))/(n = 1). L ,
The next result establishes an upper bound on the expeciégording to corollary 1.
number of good edge-exchanges we must perform. Assume an edge* € T* has been selected for insertion
Lemma 3:The expected number of good edge-exchangi¥o 7', and an edge’ is to be selected for removal froffi.
required to transform a random spanning tree into the nd-e* is already contained if’, no matter which edge will
degenerate MST i®(nlogn). be chosen for’, the treeT will remain unchanged: Either
Proof: The proof imitates that of Theorem 2 in [15]. Ite’ = ¢* and a (good) dummy edge-exchange is performed,
begins by replacing each edge weighte) in G = (V,E) or the resulting edge set is not a spanning tree and therefore
with the edge’s rank:(e). Note that the MST based on thenot accepted by the (1+1)-EA. In case of the NA-variant, the
ranks will also be the MST based on the original weightprobability of performing the dummy edge-exchange is
Assume that each of the— 1 good edge-exchanges is equally NA/
likely. Let (T) = Y, cpr(e) and r(T*) = 32, .y 7(e). A pr-(€7) =1/(n—1) = 6(1/n). (28)
good edge-exchange d*ecreases the differe(iCg—»(7") on | the other variants, the edge to be removed is alwAayse*,
average by(r(T) — r(T*))/(n — 1)_, which 9orresponds 10 agg that
factor not larger tharl — 1/n. This holds independently of
previous good edge-exchanges. Aftegood edge-exchanges,  pRU(e*) = ppC(e*) = pRV(e*) = pRC(e®) = 1.  (29)
the expected value of the differeneél’) — »(T*) is at most _ ) _
(1—1/n)? - (r(T) — r(T*)). If e* = (u,v) is not yet inT, there exists exactly one
Sincer(T) < (n — 1) - m, wherem is the largest edge edgee” ¢ T* on the path connecting andv whose removal
rank, andr(T*) > 1, we obtain the upper bound — 1/n)” - results in a good edge-exchange. The probability of choosing
n-m. If p= mn 2) - n - (log(n - m) + 1)], this bound is this edge ag’ depend's on the edge—gxchange strategy. When
at most 1/2. By Markov’s inequality, the probability that th&h0osing an edge uniformly froffi as in the NA-case,
bound is less than 1 is at least 1/2. Sin¢&) — »(T*) is an NA/ i1y _ T
integer, the probability of having found the MST is at least 1/2. pro(e") = 1/(n = 1) = 6(1/n). (30)
Repeating these arguments, the expected number of good stefghen choosing an edge uniformly from the path connecting
until the MST is found is bounded Bp = O(nlog(n-m)) = 4 andv, as in UU and BU, the probability depends on the
O(nlogn). B length of the path, which is, — 1 = O(n) in the worst case.
So far, we have assumed that each good edge-exchanggd@ever, if we assume that is non-degenerate, as it is with
equally likely. This does not hold under biased edge-selectigferwhelming probability in the average case, the diameter

If good edge-exchanges often involve the inclusion of edggfd the expected length of the path &ré,/n). Thus,
whose selection probability is less than the uniform selection

probability 1 /m, the required number of good edge-exchanges pr°(e”) =pRV (") = Q(1/Vn). (31)

may be considerably larger. Since we consider only nopn-

degenerate MSTs, whose edges have selection probabili%f);[‘GQenhthe edge tobe remglved i; gr:ezdily selec_ted aiin U(?, ar:]d
ga(r) of at leastl/m, and since the proof does not relyﬁ’ , the maximum possible weight decrease Is achieved; the

on the specifically chosen dummy edge-exchanges (ev +1)-EA either performs a good edge-exchange or an edge-

edge-exchange that does not change the current tree carPBg'ange res_ulting in an even larger weight decrease, which
considered a dummy edge-exchange), the assumption thyye;may consider an alternate good edge-exchange. Therefore,
good edge-exchange decreas€f) — r(7*) by a factor not pUC(e") = pBC(e”) = 1. (32)
larger thanl — 1/n is still valid.

To obtain an upper bound for the expected optimizéNote thatpgr(e”) < pr(e*) for all mutation variants. These
tion time, we multiply the required number of good edgesbservations lead to the following result.
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Theorem 3:Excluding preprocessing, the total expected To perform this edge-selection efficiently in practice, we de-
time for the (1+1)-EA to find the MST for average case inrive a random edge-rarR € {1,2,...,m} from a uniformly
stances is bounded above depending on its mutation operatiistributed random numbér < [0, 1).

In order to ensure thak has the approximate probability

NA _ 3

EX(tyst) = O(n”logn) (33)  densityga(r) of Theorem 2, we use the corresponding cumu-

EX(tysy) = O(n’logn) (34) Ilative distribution functionF'(r):

EX(tyer) = O(n°?logn) (35) , T

EX (%) = O(n’logn) (36) F(r)=) qa(i)~ ) _a? <ﬁ - 1)

EX(thygr) = O(n**logn) (37) = =

Proof: Since there are always— 1 good mutations, the _ Va—arthe (1 3 1)
probability of performing a good mutation (or an even better 1—+Va Vva
one) is bounded below by — 1) - p1(e*) - pr(e”). This yields g z
the expected waiting time —1-—qg/2=1— < 15| ) . (40)
. |S|+1
EX (¢ -0 mut > ) 38 . .
(t1) (n R s (38) The inverse ofF (r) is
for performing a good mutation. Therefore, an upper bound for r= 2log(1 — F(r)) ) (41)
the total expected waiting time to find the MST when starting log |S] —log(|S|+1)
from a random spanning tree is R can be calculated frof by settingF(r) = U in (41) and
EX(tust) = O(EX (1) - nlogn) — rounding:
2log(1 —U) J
tout < logn = d 1. 42
=0 <tog”) . (39) Log ST~ log(js] + 1)) ™4™ (42)
pi(e*) - pr(e”)

) -~ _ Finding the modulus and adding one ensures tatill be a
Replacingpr(e*), pr(e”), andty,: by the specific complexi- \4ig edge rank.
ties above yields the five results. [ ]
With BU and BG, the (1+1)-EA must begin by sorting the i .
graph’s edges and determining their ranks. This takes time thipPortional Edge-Selection (PROPP)
is O(n?logn) and dominates the EAs running time for these Each edge is selected with probability (r) = p(r)/|S| ~
two mutation variants. Note that a classical implementation of /|.S|. This operator’'s implementation uses a uniform random
Kruskal's algorithm in which all edges are initially sorted alsmumber ¢/ transformed by the inverse of the distribution
has timeO(n?logn), and there exist randomized algorithmgunction:

that identify a MST in expected times that avén?) [20]. U 1S\
F(r)= — =1- . 43
=351 () “
V. SELECTION STRATEGIES FOREDGE-INSERTION IN =1
MUTATION This yields
Assume an evolutionary algorithm that seeks a constrained B log(1 —U) d 1 44
subgraph of minimum total weight in a complete gra@has = log|S|—log(|S] + 1) | "™ +1. (44)

in the problems listed in the introduction. The EA's mutation

operator inserts a new edge into a feasible solution amrmal—Distribution-Based Edge-Selection N

guarantees the offspring’s feasibility by applying a problem- __ ) , o
dependent repair such as the removal of another edge in cas-Eh'S edge-;elechon strategy is based on normal Q|str|but|ons
of the MSTP. In the experiments the next sections descrif® proposed in [21]. The rank of a selected edge is

we compare the following strategies for selecting a new edge R=|[N-B-n|] modm+1, (45)

to be inserted.
where is a normally distributed random number with mean

. ) zero and standard deviation ong.controls the bias towards
Uniform Edge-Selection (UNIF) low-cost edges

This method corresponds to the edge-selection strategy used

in the UU and UG mutation variants of Sect. IV. The new edqﬁverse-Weight-ProportionaI Edge-Selection (INVW)

is randomly chosen with probability;; (r) = 1/m from E. - o )
The probability of each edgec E is inversely proportional
] ) . to its weight w(e). Greffenstette used this technique for
Approximately Optimal Edge-Selection (OPTEX) choosing edges during recombination in a genetic algorithm
The new edge is selected according to the approximatdty the TSP [6]. This selection can be implemented efficiently
optimal selection probabilitieg4(r), as in the BU and BG by applying binary search to an array of cumulated weights
mutation strategies of Sect. IV. we(e;) = Z;Zl wlej), i=1,...,m.
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VI. EMPIRICAL RESULTS FOR THE(1+1)-EAON THE to satisfy the degree-constraint. Each (feasible) offspring is
MSTP always generated by applying crossover to two parents, then

To support the theoretical results from Sect. IV and fBlutating the resulting tree. . . _
compare the approximately optimal edge-selection strategy td“utation selects an edge to be included in a tree according
the others presented in the previous section, we performed tR@ne Of Sect. V's five strategies. To guarantee that offspring
following experiments with the (1+1)-EA. satisfy the dggree constraint, the followm_g two special cases

Fifty uniform instances and fifty Euclidean instances of thgXt€nd the simple edge-exchange mutation from the uncon-
MSTP were randomly created om — 20, 50, 100, 200, Strained MSTP.

500, andl 000 vertices. We applied the (1+1)-EA to all these < If the insertion of the selected edge violates the degree
instances, using each strategy for selecting a new edge with constraint at both of its end-vertices, the edge is not
both uniform and greedy selection of the edge to be removed. suitable for insertion and is therefore discarded; another

For the normal-distribution-based edge-selection N was edge is selected. _

sett0 0.75, 1, 1.5, 2, and 3. A run was terminated when either If the new edge violates the degree constraint at one of

the MST was found oi0 iterations had been performed. its end-vertices, the edge to be removed must be the other
Table IlI lists the median numbers of iterations until termi- ~ €dge incident to this vertex in the introduced cycle.

nation. In addition, Table IV shows the corresponding erron all other cases, the edge to be removed is always chosen
probabilities in percent for the hypothesis that on averagecording to the U-variant; i.e., at random from all edges on
OPTEX yields a smaller number of iterations than each of thiee induced cycle, excluding the newly inserted edge. The
other edge-selection strategies. These error probabilities wgreedy variant, which always removes the edge of highest
determined by paired one-sided Wilcoxon rank-sum tests. weight, is not useful here; in preliminary experiments, this

For all mutation variants, greedy edge removal allows ttepproach almost always led to premature convergence at
EA to use substantially fewer iterations. When using OPTEXpor, locally optimum solutions. On the unconstrained MSTP,
it was always able to find the MST in fewer thad\ iterations; greedy selection of the edge to be removed exploits the fact
the increase in the number of iterations with respect to thigat a targeted edge could not belong to an optimum solution;
problem size is only moderate. This could be expected; tttés condition does not hold in thé MSTP.
derived upper bounds for the expected number of iterationsEach offspring replaces the worst solution in the population
are O(n?logn) and O(n3/?logn) for uniform random and except when it is identical to an existing solution; duplicates
greedy edge removal, respectively. are discarded to maintain diversity.

As the small error probabilities in Table IV indicate, OPTEX We considered 50 random Euclidean instances of sizes
speeds up the EA in comparison to the other edge-selectior= 50, 100, and 200. For all these instances, we determined
strategies, in most cases with high statistical significance.olptimum solutions by branch-and-cut, again using ABACUS
always outperforms UNIF, N and INVW with error prob- [13] and CPLEX 8.1. The EAs population size was, and
abilities less than 0.1%. On the smaller instances, PROR#R EA terminated if an optimum solution had been reached
No.75. N1, and N 5 were occasionally better than OPTEXpr the number of evaluations exceede@)O n.
in particular on uniform instances. This sometimes poorer We performed 50 runs on each instance with each mutation
performance of OPTEX on uniform instances can be explainedriant. Table V shows, for each sizeand each operator, the
by the error resulting from the approximatign, (r) of the percentage of runs that identified optimum solutions and the
probabilities pr(r) with which an edge of a certain rankaverage number of evaluations over all runs.

appears in the optimum solution. On uniform instanges’) In all but the uniform case witlh = 200, OPTEX solved
tends to underestimategz(r) for » < n and overestimate the largest number of instances to optimality. In that one
pe(r) for r > n; note Figs. 1 and 2. case, PROPP, N5, and N solved one more instance. With
Generally, OPTEX is almost always superior on Euclideaespect to average numbers of required iterations, OPTEX
instances and on large uniform instances. again outperformed the other mutation variants in every case
but one. For uniform instances of size = 50, N; gave
VIl. EXPERIMENTS ON THE3-MSTP better results. Table VI shows error probabilities for the

potheses that on average, OPTEX vyields smaller numbers
iterations than each other mutation method; again, these
values were calculated by paired one-sided Wilcoxon rank-
sum tests. In most cases, these error probabilities are less than
1%, indicating high significance.

We now evaluate biased mutation in more sophisticated E%%
for two NP-hard problems, théd-MSTP and the TSP. We
consider thed-MSTP first, with the maximum degre¢ set
to three. 0

The EA is the steady-state algorithm described in [21], and
it represents candidate spanning trees as sets of edges. Random
spanning tree generation based on Kruskal's algorithm fills the
population with feasible initial solutions [22]. The EA selects The EA framework used for thé¢ MSTP was also applied to
parents for crossover in binary tournaments with replacemetiite TSP. The EA represented candidate tours as permutations
and crossover builds an offspring degree-constrained spannirighe vertices. It applied unbiased random initialization, stan-
tree from the union of the parents’ edge-sets. Only if necedard edge recombination crossover (ERX) [23], and mutation
sary, edges not appearing in the parents are added in ofdiesed according to the five edge-selection strategies.

VIIl. EXPERIMENTS ON THETSP
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TABLE IlI
MEDIAN NUMBERS OF ITERATIONS REQUIRED TO FIND THEMST BY THE (1+1)-EA.

Mutation Uniform random choice of edge to be removed (U) Greedy choice of edge to be removed (G)

n=20 n=50 n=100 n=200 mn=500 m=1000 | n=20 n=50 nmn=100 n=200 n=>500 n=1000

Uniform random instances
UNIF 2008 24513 186378 1055184 > 107 > 107 544 5077 24566 112391 815387 3535240
OPTEX 359 2022 6561 24344 119389 396 044 90 322 853 2083 6340 14360
PROPP 290 1571 8099 25789 164687 499 716 60 268 740 2029 7764 18124
No.75 198 2921 48129 510473 > 107 > 107 47 433 4221 33599 1011781 3413491
N1 195 1631 9681 86262 755918 > 107 51 234 885 4797 48964 370644
Ni.5 321 1831 6881 27355 164353 5754p4 78 290 722 1909 6778 19572
N2 525 2339 7552 24988 129 466 445749 113 370 950 2128 6087 16 950
N3 598 3570 12272 37362 183666 564766 187 633 1503 3496 10021 20738
INVW 581 4412 18345 86950 446253 > 107 111 684 2132 6238 22821 59729
Euclidean instances
UNIF 1324 20294 106648 845683 9772113 > 107 536 4676 23945 107050 766805 3800496
OPTEX 292 1826 7933 23342 175904 643915 110 422 1094 2836 8774 19924
PROPP 301 5420 25388 108910 666924 2934556 106 557 1667 6122 24578 50717
No.75 2159 985295 > 107 > 107 > 107 > 107 432 90346 2453202 > 107 > 107 > 107
Ny 545 33516 413170 2894652 > 107 > 107 154 3509 33062 110399 1524522 > 107
N1i.5 373 4988 24649 161841 1411807 > 107 106 599 1859 8439 28952 112709
N2 401 2882 16379 64448 336576 1707227 121 452 1158 2997 9763 35700
N3 541 2981 11663 37254 227970 844947 206 624 1649 3759 10558 25222
INVW 790 6350 39911 181224 1785180 > 107 209 1455 5484 18841 93982 286671
TABLE IV

THE (1+1)-EAFOR THEMSTP: ERROR PROBABILITIESpPerr [%] OF THE HYPOTHESIS THAT ON AVERAGEOPTEXYIELDS A SMALLER NUMBER OF
ITERATIONS THAN THE OTHER MUTATION METHODS

Mutation Uniform random choice of edge to be removed (U) Greedy choice of edge to be removed (G)
n = 20 n=50 m=100 n=200 n=500 n=1000| n=20 n=50 n=100 n=200 n=>500 n=1000
Uniform random instances
UNIF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PROPP 82.3 97.2 0.2 26.0 0.0 0{3 100.0 99.7 98.0 38.3 0.0 0.0
No.75 100.0 0.1 0.0 0.0 0.0 0/0 100.0 5.5 0.0 0.0 0.0 0{0
N1 100.0 91.5 0.1 0.0 0.0 0/0 100.0 99.7 32.3 0.0 0.0 0[0
Ni5 63.7 78.3 15.1 5.0 0.0 0/0 97.6 88.8 99.7 67.8 4.8 0[0
N2 0.0 0.2 0.1 5.2 15.6 45 0.0 0.0 0.5 22.7 33.2 0{0
N3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
INVW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Euclidean instances

UNIF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PROPP 8.3 0.0 0.0 0.0 0.0 0.0 52.1 0.0 0.0 0.0 0.0 0.0
No.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N1 0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.0 0.0 0.0 0.0 0.0
Ni5 0.3 0.0 0.0 0.0 0.0 0.p 80.2 0.0 1.0 0.0 0.0 0.0
N2 0.0 0.0 0.0 0.0 0.0 0.0 8.3 0.8 2.8 13.7 6.3 0.0
N3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
INVW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

In comparison to thel-MSTP, incorporating specific edge-above example, the eddd, ¢)). This second edge cannot be
selection techniques into mutation in an EA for the TSEhosen according to the edge-selection strategy, but depends
is more complex. A commonly used mutation operator fan the first edge and the current tour. Furthermore, two edges
permutations is inversion. This operator can be modified that directly depend on the pair of inserted edges are removed
include a specific new edge selected by one of the aboi(e, d) and(f,g) in the example). These side-effects strongly
strategies: Invert the substring beginning after the selectiefluence the performance of biased mutation.

edge’s first vertex and ending with the selected edge’s secongpe experiments were performed on 50 random Euclidean

vertex. For example, lef' = (a,b,¢,d ¢, f, 9,h) be the tour jnqances of each size= 20, 40, and 60, using a population
to be mutated, and Igt, f) be the edge selected for insertionys 9, tours. The EA halted when it reached an optimum

The mutated tour iga, b, ¢, f, e,d, g, h). solution or performed 000 n evaluations.

Note, however, that mutation for the TSP necessarily in- Tables VII and VI list the results of these trials. In contrast
cludes a second edge in addition to the selected one (in thehed-MSTP, they do not in general show significant differ-
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TABLE V

RESULTS OF THEEA FOR THE3-MSTPWITH EACH MUTATION :

PERCENTAGE OF RUNS THAT FOUND OPTIMUM SOLUTION$%-hits) AND
AVERAGE NUMBERS OF ITERATIONS(iter).

TABLE VI

RESULTS OF THEEA FOR THETSPWITH EACH MUTATION ON

EUCLIDEAN INSTANCES: PERCENTAGE OF RUNS THAT FOUND OPTIMUM

SOLUTIONS (%-hits) AND AVERAGE NUMBERS OF ITERATIONS(iter).

11

Mutation n =50 n = 100 n = 200 Mutation n =20 n =40 n = 60
%-hits iter %-hits iter %-hits iter %-hits iter %-hits iter %-hits iter
Uniform random instances UNIF 86 18349 30 150169 4 298993
UNIF 54 173522 2 498396 0 1000000 OPTEX 88 14955 30 145812 10 276288
OPTEX 96 46265 64 281021 5 963850 PROPP 92 11213 18 165133 8 278601
PROPP 88 53203 46 325680 6 971200 No.75 84 19805 12 176786 4 294130
No.75 78 69740 48 350353 6 974948 N1 88 14756 14 172602 4 288515
N1 96 35979 60 284833 6 975521 Ni5 90 14069 30 144882 6 282637
Ni.s 88 53781 40 342982 4 976387 N2 90 12720 36 130448 4 295192
No 86 60941 32 398460 4 971030 N3 88 13899 22 159152 6 283035
N3 76 83164 32 390116 0 1000000 INVW 86 16958 22 159466 4 289819
INVW 76 83127 26 411267 0 1000000
Euclidean instances
TABLE VIII
UNIF 98 57900 66 360199 8 990999 )
OPTEX 100 11698 100 49088 96 230771 THE EA FOR THETSP: ERROR PROBABILITIESperr (%] OF THE
PROPP 100 16877 88 118942 78 411953 HYPOTHESIS THAT ON AVERAGEOPTEXNEEDS A SMALLER NUMBER OF
No.75 48 149643 20 432160 6 967138 ITERATIONS THAN THE OTHER MUTATION METHODS
N1 68 96968 46 314193 46 715735 Mutation “ n—20 n—40 n—60 l
Ni.5 94 25005 82 166909 64 503273
No 100 15007 90 92152 76 404871 ;J;IICI):PP 92(5) igi :1%(;2
N3 98 16216 94 87970 66 468987 N 93.8 2'4 11'1
0.75 . . .
INVW 98 24980 86 169252 46 824540 Ny 08.1 59 13.3
N1i.5 97.3 68.6 26.0
TABLE VI N2 67.9 87.3 11.1
THE EA FOR THE3-MSTP: ERROR PROBABILITIESperr [%] OF THE N3 10.8 19.1 24.6
INVW 13.7 19.1 11.7
HYPOTHESIS THAT ON AVERAGEOPTEXYIELDS SMALLER NUMBERS OF

ITERATIONS THAN THE OTHER MUTATION METHODS

ences among the edge-selection methods. The only excep
with high statistical significance is that OPTEX perform

better than unbiased mutation when= 20.

IX. CONCLUSION

Mutation|| Uniform random instances Euclidean instances

n =250 n=100 n=200|n=>50 n=100 n =200 solution is minimized. Using these probabilities, the expected
UNIF 0.0 0.0 0.0 0.0 0.0 0.0 number of edge-selections until each edge in an optimum
PROPP 6.1 0.0 459 85 8.3 0.1 solution is chosen is asymptotically linear in the number of
m(l”f’ 8;2 1%.% ?;Z'j 8:8 8:8 8:8 vertices instead 0®(n?) with uniform selection.
Ni s 4.9 0.0 314 00 0.0 0.2 Next, we analyzed a (1+1)-EA, with five variants of edge-
No 0.1 0.0 28d 172 73 1.4 exchange mutation, for the unconstrained MSTP. The edge
N3 0.0 0.0 00 24 15.3 0.1 to be inserted was selected either at random or according to
INVW 0.0 0.0 09 00 0.0 0.0  the probabilitiesg4(r). The edge to be removed is chosen

uniformly or greedily. We obtained upper bounds for expected
running times of the (1+1)-EA on non-degenerate instances.

Iﬂen using the approximately optimal edge-selection strategy
or choosing the edge to be inserted, the expected running
time is dominated by the initial sorting of the edges to
determine ranks, and the (1+1)-EA is, on a non-degenerate
instance, asymptotically as fast, as a classical implementation
of Kruskal's MST algorithm.

We empirically analyzed the rank-based probabilifiggr) The edge-selection strategies were further compared to
with which edges appear in optimum solutions of Euclidegeroportional, normal-distribution-based, and inverse-weight-
and uniform random instances of the MSTP of sizes 20 msoportional schemes on uniform and Euclidean MSTP in-
1000, of the 3-MSTP and the 5-MSTP of sizes 20 to 100, astances with up to 1 000 vertices. The results support the theory
of the TSP of sizes 20 to 100. These probabilities are closeind indicate that the new approximately optimal edge-selection
approximated by exponential functionps;(r) with absolute scheme is in practice superior to the other methods.
mean square errors less than 1% and relative mean squamithough we considered Euclidean and uniform random
errors less than 10%. instances only, we conjecture that the same biasing towards

Based on this approximation, we derived probabilitigér) low-weight edges also works well on other instance classes
for selecting edges to be incorporated into candidate soluticsiguctured in different ways. A preliminary study on the “hard
of an EA during mutation such that the average expected nuand misleading” instances from [1] supports this.
ber of edge-selections until choosing an edge of an optimumWe further considered EAs with larger populations and re-
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combination operators without specific biases for two NP-hajth] S. Thienel, “ABACUS — A Branch-And-CUt System,” Ph.D. dissertation,
graph problems, the 3-MSTP and the TSP. With approximately = Lnversty of Cologne, Cologne, Germany, 1995.

h . s R. Motwani and P. Raghavamandomized Algorithms Cambridge
optimal edge-selection probabilities, the EA for the 3-MST ] University Press 1995_9 R 9 9

identified optimum solutions significantly more often and witfi5] F. Neumann and I. Wegener, “Randomized local search, evolutionary
fewer iterations. On the TSP, however, mutation that introduces 90rithms, and the minimum spanning tree problem.Genetic and

. . . . Evolutionary Computation — GECCO 200der. LNCS, K. Delet al,
one new edge introduces a second edge as well. While the first 45 o1 3%02. gprmger 2004, pp. 723_724.

edge may be chosen according to specific probabilities, the] A. Réenyi and G. Szekeres, “On the height of treedgurnal of the

second edge depends on the first edge and on the current tour, Australian Mathematical Societyol. 7, pp. 497-507, 1967.
dt tronaly dependent edages are removed. These SE]7—G' Szekeres, “Distribution of labelled trees by diameter,"Liecture
and two strongly dep g . Notes in Mathemati¢s1983, vol. 1036, pp. 392-397.

effects overwhelm the differences between the various ed@ss] A. Broder, “Generating random spanning trees,IEE 30th Annual
selection strategies. Symposium on Foundations of Computer SciendEEE Press, 1989,

More generally, we conclude that for various problems, ) pp. 4427447,

X v ) . E. W. Mayr and C. G. Plaxton, “On the spanning trees of weighted
detailed study of probabilities with which features appear in  graphs,”Combinatorica vol. 12, pp. 433-447, 1992.

optimum or nearly optimum solutions may allow the deriva?20] D.R. Karger and R. E. Tarjan, "A randomized linear time algorithm for

. . S L . finding minimum spanning treesJournal of the ACMvol. 42, no. 2,
tion of theoretically well-justified biasing schemes. Mutation 331—32& 1995? g trees) M

operators that are biased in this way are likely to find (nege1] G. R. Raidl, “An efficient evolutionary algorithm for the degree-

Yoptimum solutions more often and more quickly. While we constrained minimum spanning tree problem,”Rroceedings of the
2000 IEEE Congress on Evolutionary Computati@h Fonseca, J.-H.

focused here on certain subset-selection problems, the basic

Kim, and A. Smith, Eds.

IEEE Press, 2000, pp. 104-111.

idea is generally applicable. Future work will consider biasgeb] B. A. Julstrom and G. R. Raidl, “Initialization is robust in evolutionary

recombination operators and other application areas.
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