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Abstract
Five different representations and associated variation operators are studied in the con-
text of a steady-state evolutionary algorithm (EA) for the multidimensional knapsack
problem. Four of them are indirect decoder-based techniques, and the fifth is a di-
rect encoding including heuristic initialization, repair, and local improvement. The
complex decoders and the local improvement and repair strategies make it practically
impossible to completely analyze such EAs in a fully theoretical way. After compar-
ing the general performance of the EA variants on two benchmark suites, we present a
hands-on approach for empirically analyzing important aspects of initialization, muta-
tion, and crossover in an isolated fashion. Static, inexpensive measurements based on
randomly created solutions are performed in order to quantify and visualize specific
properties with respect to heuristic bias, locality, and heritability. These tests shed light
onto the complex behavior of such EAs and point out reasons for good or bad perfor-
mance. In addition, the proposed measures are also examined during actual EA runs,
which gives further insight into dynamic aspects of evolutionary search and verifies
the validity of the isolated static measurements. All measurements are described in a
general way, allowing for an easy adaption to other representations and combinatorial
problems.
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1 Introduction

Evolutionary algorithms (EAs) have been applied successfully to a great variety of
combinatorial optimization problems. While their performance is affected by general
parameter choices like population size, the used selection scheme, or the application
probabilities of variation operators, the success mainly depends on problem-specific
decisions concerning the representation of solution candidates and the variation op-
erators used. In the design of an EA, these decisions are usually based on intuition
and experience, rather than on detailed formal and empirical analysis of alternative
representations and operators.

We use a formal model to characterize the interplay of representation and variation
operators. The operators work in the search space, which is typically called genotype
space in case of decoder-based EAs. The search space is mapped to the phenotype space,
the set of all solution candidates for the problem at hand. Our model allows to quantify
important aspects of evolutionary search, which are essential for good performance.
Here, we mainly focus on three aspects: locality, heritability, and heuristic bias.

Locality means that small steps in the search space, like those typically performed
by mutation operators, cause small phenotypic changes. Strong locality allows evolu-
tionary search to explore the phenotype space in a meaningful way since variation and
selection cause exploitation of the neighborhoods of promising phenotypes. Intuitively,
we expect these neighborhoods to contain phenotypes of high quality, too, since in most
practical problems minor phenotypic differences typically cause minor fitness differ-
ences. Weak locality prevents evolutionary search from a meaningful exploration of
the phenotype space because small variations often cause strong phenotypic changes.
In the worst case, the search behaves like random search in the phenotype space, which
is usually ineffective.

Heritability refers to the ability of crossover operators to produce children that
combine meaningful features of their parents. Each property of an offspring should
stem from at least one of its parents, and crossover should preserve properties appear-
ing in all parents. This allows the exploitation of successful common substructures in
the parents. Obviously, a perfect preservation of parental phenotypic properties can be
achieved by simply copying the child from one parent. This, however, is not desired
since it contradicts another role of crossover: It should mix the parents’ phenotypic
properties in a creative way, i.e. new phenotypes should be introduced into the search
process. All these aspects are frequently associated with the role of crossover in suc-
cessful evolutionary search, and we capture them with the general term heritability.
Using crossover without sufficient heritability is questionable and often hinders the
search process rather than supporting it.

Heuristic bias concerns the mapping from search space to phenotype space. Evo-
lutionary search explores a search space, which is defined by the representation and
the variation operators. This search space is often only indirectly connected to the phe-
notype space. The efficacy of the search process is strongly influenced by the mapping
between these spaces. Hence, using some heuristic in this mapping yields a certain
distribution of phenotypes, which can help to increase performance if the distribution
is biased towards phenotypes of higher fitness. We refer to this effect as heuristic bias.

Our approach analyzes locality, heritability, and heuristic bias in detail and doc-
uments their effects on evolutionary search. We use the notions of distances in the
search space and the phenotype space for describing the reachability between elements
of the search space and the similarity among phenotypes, respectively. They allow
to formalize locality and heritability by introducing specific measures. Heuristic bias
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is characterized by the fitness distribution obtained by randomly sampling the search
space. Based on these concepts, the main ingredients of evolutionary search can be
analyzed in an isolated, static fashion, or their interplay can be examined dynamically
during actual EA runs. The static analysis is computationally efficient and can predict
the real search dynamics to a large extent. Therefore, it provides a solid basis for decid-
ing which representation and variation operators are suitable for a given problem.

The applicability of our approach is demonstrated on the multidimensional knap-
sack problem (MKP), a well-known NP-hard problem for which several EA-based ap-
proaches have been proposed in the literature. We introduce and compare five different
EAs for this problem, and perform static and dynamic analyses explaining the success
or failure of these algorithms, respectively. Although empirical results are presented
for the MKP only, we remark that the proposed approach is general and can easily be
adapted to other problems by defining appropriate phenotypic distance metrics.

This paper unifies previous work (Raidl and Gottlieb, 1999; Gottlieb and Raidl,
1999, 2000) on this topic and adds significant new results in every aspect. The analysis
does now include a variant of the currently most successful EA for the MKP, which
uses a direct representation, repairing, and local improvement. Furthermore, we con-
sider here the random-key representation that has been successfully applied in several
problem domains like e.g. network design (Rothlauf et al., 2002) or, more generally, per-
mutation optimization (Bosman and Thierens, 2002). Whereas locality and heritability
have already been studied before, heuristic bias has not been explicitly considered. Em-
pirical results are presented for a standard benchmark suite with instances containing
up to 500 items (Chu and Beasley, 1998) and more recent benchmarks with up to 2500
items, which were first used by Vasquez and Hao (2001).

We proceed by introducing the MKP in Section 2, followed by a review of evolu-
tionary algorithms for it in Section 3. A comparison of selected EAs is presented in
Section 4, which focuses on general aspects like solution quality and duplicate ratio.
Basic concepts such as spaces and associated distances are introduced in Section 5. Re-
lated previous work is reviewed in Section 6. Then, the considered EAs for the MKP are
analyzed in detail, in order to explain the results from Section 4: Sections 7 and 8 focus
on static aspects like heuristic bias and locality and heritability, respectively. Section 9
concentrates on dynamic aspects of evolutionary search, thereby cross-checking the re-
sults of the static analyses and gaining new insights into search dynamics. Conclusions
are given in Section 10.

2 The Multidimensional Knapsack Problem

In the multidimensional knapsack problem, the objective is to determine a subset of
n > 0 items, which yields maximum profit and does not exceed the capacities of m > 0
resources. Formally, the problem is stated as

maximize g(x) =
n∑

j=1

pjxj (1)

subject to
n∑

j=1

rijxj ≤ ci, i = 1, . . . , m (2)

xj ∈ {0, 1}, j = 1, . . . , n, (3)

where pj > 0 is the profit of item j, ci > 0 the capacity of resource i, and rij ≥ 0 the
resource consumption of item j w.r.t. resource i. The decision variables x = (x1, . . . , xn)

Evolutionary Computation Volume x, Number x 3



G. R. Raidl and J. Gottlieb

specify for each item j whether it is selected (xj = 1) or not (xj = 0).
Many practical problems can be stated as MKP, like e.g. cargo loading, project

selection, or resource allocation in computer networks. There are lots of theoretical
and empirical studies for numerous variants of knapsack problems (Martello and Toth,
1990; Kellerer et al., 2004). The unidimensional knapsack problem, a special case of the
MKP with m = 1, is only weakly NP-hard and solvable in pseudo-polynomial time.
However, the general case m > 1 is strongly NP-hard (Garey and Johnson, 1979) and
exact techniques are in practice only applicable to instances of small to moderate size.

The MKP belongs to the general class of covering and packing problems, which are
structurally equivalent in the sense that the global optima are located on the boundaries
of the feasible regions (Gottlieb, 1999). In case of the MKP, the boundary contains the
feasible solutions which cannot be improved by inserting more items without violating
resource capacities. We refer to (Chu and Beasley, 1998; Kellerer et al., 2004) for an
overview of heuristic and exact algorithms for the MKP, and continue with a survey on
evolutionary algorithms for it.

3 Evolutionary Algorithms for the Multidimensional Knapsack Problem

3.1 Overview

The choice of an appropriate constraint-handling technique is an important issue when
solving the MKP by an evolutionary algorithm. The most promising approaches are
based on heuristic decoders (Raidl, 1999) or repair algorithms combined with local im-
provement (Chu and Beasley, 1998; Raidl, 1998). A comparison of standard constraint-
handling techniques reveals that the success of evolutionary algorithms for the MKP
strongly depends on their ability to restrict or at least strongly focus the search on the
boundary of the feasible region (Gottlieb, 1999).

Here we consider another critical issue: The choice of the representation and vari-
ation operators. Five classical representations are considered in the following, which
all produce only solutions on the boundary. Four representations are indirect, i.e. new
search spaces are introduced that are mapped to the phenotype space by means of de-
coding procedures. As fifth representation, we consider the direct encoding via bit
strings, which is the most natural representation for the MKP. We present variation
operators for each representation as well as the decoding procedures for the indirect
representations.

3.2 Permutation Representation (PE)

The permutation representation is typically used for sequencing tasks as they appear
in scheduling and routing problems, but it has also been applied to the unidimensional
knapsack problem (Hinterding, 1994) and the MKP (Thiel and Voss, 1994; Raidl, 1998).
The approach considers permutations of all items, π : {1, . . . , n} → {1, . . . , n}, denoted
by π = (π1, . . . , πn). A first-fit algorithm is used to decode such a permutation into
a feasible solution. It starts with the feasible solution x = (0, . . . , 0) and considers
each item in the order determined by the permutation π. Each corresponding decision
variable xπj , j = 1, . . . , n, is increased from 0 to 1 if the inclusion of item πj does not
violate any capacity constraint. The whole procedure runs in time O(m · n), since m
capacity checks must be performed per item.

Standard permutation operators can be used, and in particular uniform order
based crossover and swap mutation were reported to yield good results (Hinterding,
1994; Gottlieb, 1999). In general, this representation turned out to perform relatively
well, although inferior to the approaches described in Sections 3.5 and 3.6.
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3.3 Ordinal Representation (OR)

Among other problems, the ordinal representation was studied for the traveling sales-
person problem (Grefenstette et al., 1985), the unidimensional knapsack problem
(Michalewicz and Arabas, 1994), and the MKP (Gottlieb and Raidl, 1999). A solution is
represented by a vector v = (v1, . . . , vn) with vk ∈ {1, . . . , n− k + 1} for k ∈ {1, . . . , n}.
The vector is mapped to a permutation π of the items {1, . . . , n}, which is further de-
coded to a feasible solution via the first-fit heuristic described in Section 3.2.

The mapping of v to a permutation π = (π1, . . . , πn) uses an ordered list initialized
with all the items: L = (L1, . . . , Ln) = (1, . . . , n). Vector v is traversed from its first to
its last position. Each entry vk specifies a position in L; the referenced element Lvk

is
removed from L and represents πk. As an example, assume v = (3, 1, 2, 1). Initially, the
ordered list L = (1, 2, 3, 4). Vector v is decoded by successively removing the elements
3, 1, 4, 2 from L yielding the permutation π = (3, 1, 4, 2). The mapping from v to π takes
time O(n·log n) when implementing L as a balanced search tree in which the number of
elements is stored for each subtree in the corresponding root node. The total decoding
time for obtaining the represented solution is then O(n · (m + log n)).

This representation allows the use of standard variation operators. Typically, the
mutation operator randomly chooses a position k ∈ {1, . . . , n} and then uniformly
draws a new value for vk from {1, . . . , n− k + 1}. Any classical crossover like uniform
or multi-point crossover can be used. Previous studies employed one-point crossover.

The mapping from v to π is a one-to-one mapping, and the search spaces of the
ordinal representation and the permutation representation are therefore equally large.
A closer look at the ordinal representation’s decoding procedure reveals that a change
of one position of v can have dramatic effects on the decoded solution because each item
selection modifies list L and may influence all following item selections. Although bad
results for knapsack problems were already reported (Michalewicz and Arabas, 1994;
Gottlieb and Raidl, 1999), this representation serves as a good example for weak locality
and is primarily considered here for that reason.

3.4 Random-Key Representation (RK)

The random-key approach is based on real-valued vectors w = (w1, . . . , wn), where
each item j is assigned a weight wj ∈ [0, 1]. Inspired by Bean’s work on random
keys (Bean, 1994), Hinterding (1999) used such a representation for the unidimensional
knapsack problem. The decoder sorts all items according to their weights, which yields
a permutation π = (π1, . . . , πn) with wπj ≤ wπj+1 for j ∈ {1, . . . , n − 1}. Again, this
permutation is decoded via the first-fit heuristic already used for the permutation rep-
resentation. The sorting of weights requires time O(n · log n), yielding O(n · (m+log n))
as total decoding time.

Standard operators like two-point crossover and Gaussian mutation were used by
Hinterding (1999), who reported this approach as being inferior to the permutation rep-
resentation. In our experiments we employ uniform crossover and positional mutation,
i.e., one weight is chosen randomly and reinitialized to a new random value.

3.5 Weight-Biased Representation (WB)

Weight-biasing is a general technique that has already been used successfully for a va-
riety of combinatorial optimization problems; Julstrom (1997) gives a survey on several
applications. The general principle is as follows. A solution is represented by a vector
of real-valued weights. For obtaining the phenotype such a weight vector represents,
a two-step process is used: First, the original problem Π is temporarily modified to Π′
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by biasing certain problem parameters according to the weights. Secondly, a problem-
specific heuristic is used to derive a solution for Π′. This solution is interpreted and
evaluated for the original (unbiased) problem Π.

It is relatively easy to adapt this general technique to many combinatorial opti-
mization problems which may even include complex constraints. Classical positional
crossover and mutation operators can be applied, and, when using a suitable biasing
scheme and decoding heuristic, only feasible candidate solutions are created.

Cotta and Troya (1998) and Raidl (1999) studied the weight-biased representation
for the MKP. Different decoding heuristics and techniques for biasing the original prob-
lem have been investigated. The following log-normal distributed multiplicative bias-
ing scheme and surrogate relaxation based heuristic were found to often work best
(Raidl, 1999).

Let w = (w1, . . . , wn) be the weight vector representing a candidate solution;
weight wj is associated with item j of the MKP. Initialization sets each weight to a
log-normally distributed random value:

wj = (1 + γ)N (0,1), j = 1, . . . , n . (4)

N (0, 1) denotes a normally distributed random number with mean 0 and standard de-
viation 1, and γ > 0 is a strategy parameter that controls the average intensity of bias-
ing. The original MKP instance is biased by multiplying each item’s profit pj with the
associated weight:

p′j = pjwj , j = 1, . . . , n . (5)

Thus, the larger the strategy parameter γ, the stronger is the expected modification of
profits and the biasing leading away from the solution the decoding heuristic would
create for the original, unbiased problem. Since the resource consumption values rij

and resource limits ci are not modified, each feasible solution for the biased problem is
also feasible for the original problem.

The heuristic Raidl (1999) suggests for decoding has originally been proposed by
Pirkul (1987) and makes use of the surrogate duality. The m resource constraints (2) are
collapsed into a single constraint using surrogate multipliers ai, i = 1, . . . , m:

n∑

j=1

(
m∑

i=1

airij

)
xj ≤

m∑

i=1

aici . (6)

Suitable surrogate multipliers ai are obtained by solving the linear programming
(LP) relaxation of the MKP, in which the variables xj may get real values from [0, 1].
The values of the dual variables are then used as surrogate multipliers, i.e. ai is set to
the shadow price of the i-th constraint in the LP-relaxed MKP.

Pirkul’s heuristic starts with the “empty” solution x = (0, . . . , 0) and sorts all items
according to decreasing pseudo-utility ratio

uj =
p′j∑m

i=1 airij
, (7)

the ratio of profit and pseudo-resource consumption; a higher pseudo-utility ratio
heuristically indicates that an item is more efficient, while a low ratio reflects low profit
in combination with high resource consumption. Then, the first-fit strategy already
used as decoder in the permutation representation is applied; all items are traversed in
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the predetermined order and each item’s variable xj is set to 1 if no resource constraint
is violated.

To keep the computational effort of decoding a weight vector reasonably small,
the surrogate multipliers ai and the resulting pseudo-resource consumptions are deter-
mined only once for the original problem in a preprocessing step. The computational
effort of the decoder is then only O(n · log n) for sorting the items plus O(n ·m) for the
first-fit strategy, yielding O(n · (m + log n)) in total.

As variation operators, uniform crossover and positional mutation, which chooses
one weight wj randomly and reinitializes it by Equation (4), are applied.

3.6 Direct Representation (DI)

Chu and Beasley (1998) proposed an EA based on a direct representation of solutions by
characteristic bit vectors. Uniform crossover and classical bit-wise mutation are used,
which may cause constraint violations. Infeasible candidate solutions are immediately
repaired by iteratively removing items until all constraints are satisfied. Furthermore,
each solution is locally improved by inserting new items that do not cause constraint
violations. Both phases, repairing and local improvement, are guided by a heuristic
ordering of the items.

Here, we use a variant of the original proposal. Initialization is guided by the
LP relaxation of the MKP, as suggested by Raidl (1998) and refined by Gottlieb (1999).
More specific, let xLP = (xLP

1 , . . . , xLP
n ) ∈ [0, 1]n be the optimal solution of the LP

relaxation, which is calculated during preprocessing. In a first phase, a subset of “elite”
items is selected by including each item j with probability xLP

j . The first-fit heuristic
is then applied to a random permutation of this restricted set. In a second phase, all
remaining items are randomly ordered and also processed by the first-fit heuristic in
order to obtain a solution on the boundary of the feasible region.

Repairing and local improvement use a heuristic ordering of the items according
to their pseudo-utility ratios defined in Equation (7). Again, the dual variables from
the solution of the LP relaxation are used as surrogate multipliers ai.

The repair algorithm removes the least promising items first in order to obtain a
feasible solution of high quality. Thus, the repair phase processes the included items
ordered by increasing pseudo-utility ratio, removing items until all constraints are sat-
isfied.

Local improvement considers all items not appearing in the solution in decreasing
pseudo-utility ratio order and includes an item if no constraints are violated. Thus, the
most promising items are included first in order to increase profit as much as possible.

Due to the employed initialization, repair, and local improvement methods, a can-
didate solution is always located on the boundary of the feasible region. Assuming
the LP relaxation is solved during preprocessing, initialization, repairing, and local
improvement require O(m · n) time. This configuration represents the most effective
evolutionary algorithm for the MKP we are aware of.

3.7 Other Representations

Other representations were proposed, which do not focus the search so strongly on the
boundary of the feasible region. These approaches are discarded from further consider-
ation in our empirical analysis, but, for the sake of completeness, we briefly introduce
them in the following.

Variable-length representation Besides his proposal to use permutations for the uni-
dimensional knapsack problem, Hinterding (1994) also introduced a variable-length
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representation resembling a selection of items fitting into the knapsack. He calls this
representation a direct encoding; however, many representations of the same solution
exist, since the items are stored in a particular order. The employed injection crossover
and in particular the mutation operator make explicit use of this item ordering when
using the first-fit algorithm.

The variable-length representation is inferior to the permutation representation on
the larger instances examined (Hinterding, 1994), which might be caused by the fact
that the permutation-based decoder produces only solutions on the boundary of the
feasible region, while for the variable-length representation mutation and crossover
may produce feasible candidates to which further items could be added. The used
initialization routine is equivalent to producing a random permutation and applying
the permutation decoder.

Genetic programming Bruhn and Geyer-Schulz (2002) investigated genetic program-
ming over context-free languages with linear constraints and presented results on vari-
ants of the MKP. A candidate solution is represented by a derivation tree produced by
the grammar. Each leaf node selects an item, and each node contains the used and free
capacity of the sub-tree it represents, which allows for checking the capacity constraints
in each sub-tree. The suggested initialization routine, which produces a derivation tree
by iteratively applying a randomly chosen rule of the grammar, is computationally ex-
pensive since infeasible solutions are simply rejected; i.e. the creation of one feasible
individual in the initial population can be preceded by the creation of many infeasi-
ble candidates. Neither the initialization nor the variation operators are guaranteed to
produce feasible solutions on the boundary. The authors claim their approach being su-
perior to a penalty-based EA using a variable-length representation comparable to that
of Hinterding (1994). We believe the inferior performance of the penalty-based EA in
their study is primarily caused by its suboptimal configuration: The initialization rou-
tine produces feasible solutions far away from the boundary, i.e. many additional items
can in general be added without violating capacity constraints, and the employed mu-
tation operator is only able to replace an item by another, but cannot include additional
items.

4 Empirical Comparison

This section empirically compares the different representations and associated varia-
tion operators with respect to their general performance. The following sections anal-
yse the effects of heuristic bias, locality, and heritability – which altogether influence
performance substantially – in more detail in order to gain a better understanding of
why some approach works well or not.

4.1 Experimental Setup

We compare the five representations and associated operators listed in Table 1 and
introduced in the last section in a common steady-state evolutionary algorithm frame-
work. In the following, we refer to the individual EA variants also by the applied
representation’s name.

The common framework is straightforward and has been used in previous studies
on EAs for the MKP by Chu and Beasley (1998), Raidl (1998), Gottlieb (1999) and Lev-
enhagen et al. (2001). In each iteration, two parents are selected from the population by
binary tournaments with replacement. One offspring is created by applying recombi-
nation and mutation. The offspring replaces the worst solution in the population, with
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Table 1: Considered representations and their operators.

Permutation Ordinal Random-Key Weight-Biased DirectRepresentation
(PE) (OR) (RK) (WB) (DI)

randomInitialization random random random
(log-normal)

heuristically

uniformCrossover
order based

one-point uniform uniform uniform

swap one one one flip each
Mutation two position position position pos. with

positions (uniform) (uniform) (log-normal) prob. 1/n

one exception: If the new offspring represents the same phenotype as another candi-
date in the population, the new offspring is discarded. This duplicate elimination is
a simple but effective technique for counteracting premature convergence (Raidl and
Gottlieb, 1999).

The population size is 100, and each run was terminated after 1 000 000 created
solution candidates; rejected duplicates were not counted. This stopping criterion al-
lows each considered EA variant to reasonably converge on all instances. Thus, when
prolonging the runs, further improvements are typically only tiny. In many cases sub-
stantially fewer iterations would also have been sufficient to obtain the final solution.

For the weight-biased representation, multiplication of profits by log-normally dis-
tributed weights with the biasing strategy parameter γ = 0.05 (see Section 3.5) was
applied, as recommended by Raidl (1999).

A standard test suite of MKP benchmark instances introduced by Chu and
Beasley (1998) and available from the OR-Library1 (Beasley, 1996) is used. This test
suite contains 10 instances for each combination of m ∈ {5, 10, 30} constraints, n ∈
{100, 250, 500} items, and tightness ratio α ∈ {0.25, 0.5, 0.75}. Each problem has been
generated randomly such that ci = α ·∑n

j=1 rij for all i = 1, . . . , m. Here, we focus on
the first instances with α = 0.5 for each combination of m and n only, and call them
CB1 to CB9.

In addition, we also use another MKP benchmark suite2, which was first refer-
enced by Vasquez and Hao (2001) and originally provided by Glover and Kochen-
berger. These instances, called GK01 to GK11, range from 100 to 2500 items and from
15 to 100 constraints.

4.2 Solution Quality

For a solution x, the quality is measured by the gap

g(xLP )− g(x)
g(xLP )

between the optimum xLP of the LP-relaxed problem and x. Table 2 displays average
gaps of the final solutions and their standard deviations obtained from 30 runs per
problem instance. Results are also given for a random search (RS) approach, which
creates random permutations of all items and decodes them by the first-fit strategy

1http://mscmga.ms.ic.ac.uk/info.html
2http://hces.bus.olemiss.edu/tools.html
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Table 2: Average gaps of best solutions and their standard deviations.

instance gap [%] (and standard deviation)
name m n PE OR RK WB DI RS

0.425 0.745 0.425 0.425 0.425 7.554CB1 5 100
(0.000) (0.210) (0.000) (0.000) (0.000) (0.412)

0.120 1.321 0.115 0.106 0.106 9.651CB2 5 250
(0.012) (0.346) (0.009) (0.007) (0.006) (0.375)

0.081 2.382 0.065 0.042 0.038 11.393CB3 5 500
(0.016) (0.657) (0.010) (0.008) (0.003) (0.169)

0.762 1.013 0.762 0.761 0.762 8.330CB4 10 100
(0.001) (0.163) (0.003) (0.000) (0.003) (0.401)

0.295 1.498 0.277 0.249 0.261 10.294CB5 10 250
(0.033) (0.225) (0.021) (0.017) (0.008) (0.303)

0.225 2.815 0.200 0.131 0.112 11.628CB6 10 500
(0.040) (0.462) (0.029) (0.014) (0.007) (0.240)

1.372 1.800 1.338 1.319 1.336 9.323CB7 30 100
(0.134) (0.182) (0.123) (0.093) (0.091) (0.399)

0.608 2.076 0.611 0.535 0.519 11.809CB8 30 250
(0.048) (0.346) (0.072) (0.031) (0.013) (0.266)

0.429 3.267 0.376 0.306 0.288 12.965CB9 30 500
(0.058) (0.442) (0.037) (0.024) (0.012) (0.245)

0.377 0.683 0.384 0.308 0.270 3.344GK01 15 100
(0.068) (0.098) (0.080) (0.077) (0.028) (0.170)

0.503 0.959 0.521 0.481 0.460 3.293GK02 25 100
(0.062) (0.144) (0.068) (0.045) (0.007) (0.182)

0.517 1.002 0.531 0.452 0.366 3.237GK03 25 150
(0.060) (0.140) (0.077) (0.042) (0.007) (0.118)

0.712 1.164 0.748 0.669 0.528 3.133GK04 50 150
(0.090) (0.143) (0.098) (0.081) (0.021) (0.095)

0.462 1.124 0.552 0.397 0.294 3.424GK05 25 200
(0.072) (0.153) (0.118) (0.046) (0.004) (0.068)

0.703 1.236 0.751 0.611 0.429 2.943GK06 50 200
(0.070) (0.141) (0.108) (0.060) (0.018) (0.092)

0.523 1.468 0.651 0.382 0.093 3.566GK07 25 500
(0.088) (0.092) (0.087) (0.082) (0.004) (0.059)

0.749 1.517 0.835 0.534 0.166 2.840GK08 50 500
(0.086) (0.109) (0.125) (0.066) (0.006) (0.051)

0.890 2.312 1.064 0.558 0.029 3.524GK09 25 1 500
(0.075) (0.113) (0.133) (0.042) (0.001) (0.030)

1.101 1.883 1.177 0.727 0.052 2.702GK10 50 1 500
(0.065) (0.076) (0.082) (0.070) (0.003) (0.021)

1.237 1.677 1.246 0.867 0.052 2.115GK11 100 2 500
(0.060) (0.056) (0.067) (0.061) (0.002) (0.035)

0.605 1.597 0.631 0.493 0.329 6.353average
(0.057) (0.215) (0.068) (0.043) (0.012) (0.187)
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used for the permutation representation. The best of 1 000 000 such random samples is
considered the final solution of a RS run, and the results of 30 runs were averaged.

All EAs performed on all instances substantially better than random search. The
EAs with the direct (DI) and weight-biased (WB) representations returned in general
the best results, followed by the permutation representation (PE), random-keys (RK),
and finally the ordinal representation (OR).

Especially on the largest instances GK07 to GK11, DI clearly outperformed all other
approaches. Heuristic initialization, local improvement, and heuristic repair obviously
play an important role. For the smaller instances, differences in the gaps of DI and WB
are only small. Due to the small standard deviations these differences are nevertheless
significant in most cases: t-tests with an error level of 1% reveal that DI is better than
all other representations – in particular also WB – on all instances but CB1, CB2, CB4,
CB5, and CB7. Only on CB5, WB was significantly better than DI.

Among the evolutionary algorithms, OR performed consistently worst (on 0.1%
error level). On CB1 – the smallest instance – all approaches except OR and random
search always identified the known optimal solution.

Differences between PE and RK are small and not consistent. On some instances
from Chu and Beasley (CB3, CB5, CB6, and CB9), RK obtained significantly smaller
gaps on a 1% error level, whereas on some instances from Glover and Kochenberger
(GK05 and GK07 to GK10), PE performed better. Observed differences were insignifi-
cant in the other cases.

4.3 Convergence and Speed

Figure 1 shows the gap of the best solution per iteration for exemplary runs of each
EA variant and random search on problem instance CB5. Most remarkably, WB and DI
already started with relatively low gaps in the initial populations, which is due to the
heuristic bias in the decoding (WB) and the heuristic initialization (DI), respectively. All
other EAs started with random solutions on the boundary of the feasible region, and
therefore their gaps were initially nearly identical and much higher. PE and RK con-
verged similarly to reasonably small final gaps. Among the EAs, OR converged slowest
and yielded the worst final solution. However, even OR performed substantially better
than random search.

Averaged over the 30 runs for instance CB5, DI converged fastest and found its
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Figure 1: Qualities of so-far best solutions plotted over the iterations for typical runs of
the different EA variants and random search on problem instance CB5.
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best solution after 179 742 iterations, followed by WB (444 070 iterations), RK (646 632
iterations), PE (689 398 iterations), and finally OR (886 232 iterations). Random search
identified its best solution on average in iteration 502 133, which is close to the expected
value 500 000.

In our implementation of the EAs, the CPU times on a Pentium-III/500MHz PC
for a single run varied from some seconds for the smallest instance CB1 up to about
seven hours for the largest instance GK11. DI was generally fastest (on average 4 329
seconds for GK11); PE, RK, and WB needed roughly the same time (≈16 000 seconds),
and OR was slowest (25 126 seconds).

4.4 Duplicate Ratio

Newly created offsprings are rejected when they are phenotypically identical to a solu-
tion already contained in the population. Creation of these duplicates causes additional
computational costs and does not contribute to the progress of the search. These ad-
ditional computational costs are measured by the duplicate ratio, which is the ratio of
rejected duplicates among all solutions created.

Table 3 lists the average duplicate ratios for each EA variant and instance. We ob-
serve that the high CPU time reported for OR in the previous section is mainly caused
by the creation of many duplicates. While OR’s duplicate ratio ranges from 29.3% to
40.1%, this ratio is substantially smaller for all the other representations. PE produces
on average the least number of duplicates (4.0%), followed by RK (4.7%), WB (5.8%),

Table 3: Average duplicate ratios.

instance duplicate ratio [%]
name m n PE OR RK WB DI
CB1 5 100 4.0 30.5 5.7 10.8 14.2
CB2 5 250 2.5 29.3 3.0 4.8 8.3
CB3 5 500 2.6 30.3 2.9 3.8 8.2
CB4 10 100 2.7 32.9 3.6 6.3 8.7
CB5 10 250 2.8 31.9 3.3 4.6 6.9
CB6 10 500 3.0 32.9 3.5 4.1 7.0
CB7 30 100 3.6 35.5 4.7 6.0 9.7
CB8 30 250 3.8 35.2 4.3 6.2 8.3
CB9 30 500 4.8 35.7 5.4 6.8 10.1
GK01 15 100 3.0 34.0 3.8 4.6 5.6
GK02 25 100 3.1 34.4 3.8 4.7 5.8
GK03 25 150 3.5 33.8 4.3 4.9 9.3
GK04 50 150 3.8 34.9 4.8 5.4 5.1
GK05 25 200 4.3 34.9 5.5 6.5 7.8
GK06 50 200 4.4 35.4 5.3 5.4 7.9
GK07 25 500 4.9 36.0 5.6 5.8 7.1
GK08 50 500 5.0 36.5 5.6 5.8 6.3
GK09 25 1 500 6.1 38.8 6.5 6.7 7.6
GK10 50 1 500 5.9 38.7 6.4 6.4 9.4
GK11 100 2 500 5.8 40.1 6.4 6.6 6.9

average 4.0 34.6 4.7 5.8 8.0
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and DI (8.0%).
For PE, OR, RK, and partly WB, we observe the trend that the duplicate ratio in-

creases with the problem size. The reason is that with increasing n, the number of
solutions on the boundary of the feasible region does not grow as quickly as the size
of the search space. For larger n, on average more elements of the search space are
mapped to one phenotype. The smallest instance CB1 is an exception: All EAs except
OR find the (known) global optimum usually early during a run. CB1 is therefore a
“simple” instance in the sense that there are only few local optima, good local optima
are located close to each other, or the global optimum has a large basin of attraction.
These conditions cause a fast convergence and the loss of diversity, which is expressed
by the high duplicate ratio. A reason for the generally higher ratios of WB and DI in
comparison to PE and OR is the heuristic bias of the former representations, which
supports the creation of more similar candidate solutions.

5 Basic Concepts

5.1 Spaces

Evolutionary search can be characterized by three spaces, which are shown in Figure 2:
the search space S, the phenotype space P , and the fitness space F . In each space, similarity
among the elements can be characterized by the notion of distance. The fitness space,
which reflects solution quality, is typically scalar and ordered.

In case of decoder-based EAs, a candidate solution is represented by its genotype
which is mapped to its phenotype by a decoder. Variation operators work in the geno-
type space, the set of all possible genotypes, and the EA searches for genotypes mapped
to phenotypes of high fitness. Therefore, it is reasonable to use the term search space for
the genotype space. Here, the search space is obviously different from the phenotype
space.

In case of EAs with a direct representation, where variation operators directly work
on phenotypes, the search space consists of the same elements as the phenotype space.
The distinction between search space and phenotype space is nevertheless important,
since different meanings and definitions of distance may be associated to them.

For the MKP, P = {0, 1}n and F = IR+
0 , and the search space depends on the repre-

sentation and associated variation operators. Considering for example the permutation
representation, the search space S is the set of all permutations of {1, . . . , n}.

X

Y

x f(x)

dF (f(x), f(y))

f(y)

dS(X, Y )

y

dP (x, y)

fitness space Fphenotype space Psearch space S

Figure 2: Spaces and associated distances.

5.2 Distances

For judging the similarity or dissimilarity of two elements from a certain space Z, a dis-
tance metric is usually defined (Ronald, 1997a). In general, a function dZ : Z × Z → IR+

0

is called a distance metric if it satisfies the conditions of non-negativity (8), symmetry
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(9), and the triangle-inequality (10)

dZ(x, y) ≥ 0 and dZ(x, y) = 0 ↔ x = y , (8)
dZ(x, y) = dZ(y, x) , and (9)
dZ(x, y) ≤ dZ(x, z) + dZ(z, y) (10)

for all x, y, z ∈ Z. In the following, we discuss distances for the three spaces, the search
space, the phenotype space, and the fitness space.

Phenotypic distance dP This distance is defined on the phenotype space P and cap-
tures the semantic difference of candidate solutions. It is independent of the used rep-
resentation, but depends on the problem to be solved.

Definition 5.1 We quantify the distance of two arbitrary phenotypic solutions x, y ∈ P as the
total number of elementary phenotypic properties in which they differ. For the MKP, elementary
properties are the items packed into the knapsack, and the phenotypic distance is the Hamming
distance

dP (x, y) :=
n∑

j=1

|xj − yj | . (11)

Obviously, dP satisfies the metric conditions (8–10), and dP (x, y) ≤ n for all
x, y ∈ P . For many discrete optimization problems, such as the MKP, a phenotypic
distance can be defined in a straightforward way. E.g. in case of the traveling sales-
person problem, the total number of different edges would be an appropriate measure
since edges can be seen as the most important phenotypic properties. Ronald (1997a,
1998) proposed several distance measures for order-based problems.

Search distance dS The distance for the search space S is supposed to reflect how
easily or likely one element can be reached from the other via the variation operator(s).
In previous work, dS(X, Y ) was often defined as the minimum number of mutations
necessary to transform one element X ∈ S into another Y ∈ S. Such a definition
is suitable, for example, when considering bit strings and a mutation operator that
always changes exactly one bit. Also in case of a permutation representation and swap
mutation, the minimum number of necessary operations can be efficiently determined.
However, sometimes the task of determining this minimum number turns out to be
difficult. For example, calculating the minimum number of inversions to transform
one permutation into another is NP-hard (Caprara, 1999).

Beside the computational difficulty, this definition of a search distance is not al-
ways meaningful. In classical genetic algorithms, each bit is mutated with a certain,
low probability. Although only few bits are modified in the expected case, each ele-
ment of the search space can be reached from each other with a probability greater than
zero. Thus, the search distance would be one for all pairs of different elements, which
is obviously meaningless.

In other cases, genes do not receive all possible value equally likely; consider the
weight-biased representation and its mutation operator based on a log-normal distribu-
tion. In such a situation, the minimum number of operations to transform one element
into another does not adequately reflect reachability, because different transitions in the
search space have different probabilities of being performed.

Alternatively, we may turn to a definition of the search distance which relies on
the probability with which one element of the search space will be transformed into the
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other. Such definitions, however, often have difficulties in fulfilling the metric condi-
tions. Furthermore, the computation is in practice often difficult or even impossible, in
particular when more complex variation operators including repair or local improve-
ment mechanisms with Lamarckian write-back are applied. The MKP’s direct repre-
sentation illustrates this situation.

Due to the described difficulties, we cannot explicitly define meaningful search
distances in a consistent way for all the MKP representations we consider here. In-
stead, we only make the following implicit definition, which is sufficient for our further
investigations.

Definition 5.2 When applying k ≥ 0 successive mutations (plus repair and local improvement
in case of the direct encoding) to a search space element X ∈ S, each element Y ∈ S is created
with a certain probability P k

X(Y ) ∈ [0, 1]. We assume to have a distance function dS , for which
∑

Y ∈S

P k
X(Y ) · dS(X, Y ) = k . (12)

In other words, the average distance from X to an infinite set of search space ele-
ments sampled according to the probability distribution P k

X is assumed to be k. A finite
(but large) set of search space elements created in this way approximates the exact case,
and thus, its average distance is said to be approximately k.

Note that the above assumption may lead to asymmetric distance functions, which
do not fulfill the metric conditions. However, this just reflects the actual situation that
the probability for performing a certain transition is not always identical to the proba-
bility of the reverse transition.

Fitness distance dF The definition of a distance on the fitness space F satisfying the
metric conditions (8–10) is straightforward:

dF (f(x), f(y)) := |f(x)− f(y)|. (13)

We note that we give this definition here only for the reason of completeness, since our
methodology focuses on the search distance dS and the phenotypic distance dP ; the
fitness distance dF is actually not needed in our analysis.

6 Related Work

There are many important properties an evolutionary algorithm usually must fulfill in
order to be effective in practice, see e.g. Liepins and Vose (1990). Here, we focus on
locality, heritability, and heuristic bias, which we perceive as some of the most essential
problem-dependent ingredients for success.

Literature contains some empirical studies about these properties and relation-
ships between the search space, the phenotype space, and the fitness space. In the
following, we give an overview of this related work and emphasize differences to our
approach.

Manderick et al. (1991) studied correlation coefficients for the fitness values of so-
lutions before and after variation. They conclude that a strong dependency usually
exists between these coefficients and performance. Their approach characterizes lo-
cality by the relation between the search space and the fitness space, and is therefore
generally applicable. Our approach is based on phenotypic distances instead of fitness
differences. We feel this is a more accurate basis when the aim is to analyze the inter-
nal behavior of an EA, since the phenotypic distance reflects structural differences of

Evolutionary Computation Volume x, Number x 15



G. R. Raidl and J. Gottlieb

phenotypes, whereas the fitness difference considers only the (scalar) solution quality
associated to the phenotypes. As a consequence, a phenotypic distance of zero implies
identical fitness, but identical fitness does not imply phenotypic similarity. Anyway,
the correlation coefficients proposed by Manderick et al. (1991) may also be interesting
measures for our purpose if the locality between phenotype space and fitness space is
weak or if the definition of a phenotypic distance is not straightforward.

Jones and Forrest (1995) suggested the fitness distance correlation as a measure
of search difficulty, based on the intuition that the fitness should resemble the search
distance from a global optimum. This measure correctly predicted difficulty for some
problems, but it is not directly applicable to problems with unknown global optima.
The search distance to global optima can be approximated, but this may lead to incor-
rect predictions, as demonstrated by Altenberg (1997).

Fitness landscapes describe the relation between search space and fitness (Jones,
1995), the environment in which local search and evolutionary algorithms are working.
Although properties of fitness landscapes – like e.g. the number of local optima or the
sizes of their basins of attraction – give insight into potential search dynamics, the total
outcome of search remains difficult to predict, even for easy problems (Reeves, 1999).
The choice of the representation and operators for a given problem could be based on
the difficulties of the corresponding fitness landscapes. However, we are not aware
of reliable and generally applicable measures of difficulty for fitness landscapes. For
the usefulness of fitness landscapes and the fitness distance correlation in the design of
memetic algorithms, see (Merz and Freisleben, 1999).

A locality concept based on the explicit relation between genotypes and pheno-
types was suggested by Sendhoff et al. (1997). They used probabilistic measures for
mutation operators and claimed that small genotypic changes should imply small phe-
notypic changes. Their approach was investigated on continuous parameter optimiza-
tion and structure optimization problems, respectively.

Rothlauf (2002) used genotypic and phenotypic distances to study the impact of
the representation on the search complexity, particularly from the perspective of build-
ing blocks. Weak locality between genotypes and phenotypes indicates that the rep-
resentation induces a complexity differing from the original problem’s complexity, in
terms of the relation between the phenotype space and the fitness. Furthermore, lo-
cality in the neighborhood of global optima appeared to be essential for the success of
evolutionary search.

Another aspect of evolutionary search, which is related to locality, heritability and
heuristic bias, is the redundancy of a representation. It can be defined as the average
number of genotypes mapped to the same phenotype. Although redundancy affects
the search process (Rothlauf and Goldberg, 2003), its usefulness was disputed (Ronald,
1997b; Knowles and Watson, 2002). In particular, our previous study (Raidl and Got-
tlieb, 1999) revealed that decoder-based EAs for the MKP suffer significantly from re-
dundancy. The best option was to reduce the effects of redundancy by removing phe-
notypic duplicates. Therefore, we do not study redundancy here in more detail, but
only make the following observations.

Among the representations we consider for the MKP, DI has the lowest redun-
dancy. The permutation representation and the ordinal representation have identical
redundancy, which is significantly higher than the redundancy of DI. WB and RK have
the highest redundancy due to their real-valued genes.
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7 Heuristic Bias

Evolutionary algorithms explore the phenotype space by iteratively applying variation
and selection, where the former is responsible for generating new phenotypes and the
latter yields a focus on better phenotypes. In addition to selection, which typically
works problem-independently by only considering fitness values, there are often var-
ious kinds of bias that may support (or hinder) evolutionary search in finding better
solutions more quickly.

In the unbiased case, each element of the phenotype space has the same proba-
bility of being represented when either randomly choosing an element of the search
space or when applying the variation operators to randomly chosen parents. In such
EAs, selection is the only force driving the search towards specific phenotypes of high
quality.

If some phenotypes have higher probabilities to be created when sampling the
search space without any selection pressure, we call this a bias towards these pheno-
types; other phenotypes are then created with lower probability.

Such bias can be helpful if it favors solutions near optimal solutions. The sampling
by evolutionary search – and in particular random search – may benefit from such bias
because the expected average fitness of created solutions is higher than without bias.
Such kind of bias can be induced by heuristics in the mapping from the search space to
the phenotype space or by problem-specific variation operators. Therefore we refer to
it as heuristic bias.

Usually, heuristic bias has the side effect of reducing diversity. Therefore, it is
typically used together with methods that ensure a certain level of diversity, like e.g.
phenotypic duplicate elimination.

Whereas heuristic bias can support evolutionary search, bias towards phenotypes
with low fitness or towards local optima located far away from global optima with
respect to the search distance can obviously be counteractive. Therefore, introducing
bias into the search process must be done carefully and in a balanced way.

7.1 Discussion

Only a simple EA applying a direct representation without repair and local improve-
ment but a penalty function for considering constraint violations would be unbiased.
All the EA variants we consider here make use of different kinds of heuristic bias. We
can order the the approaches by their degree of heuristic bias.

7.1.1 Permutation, Ordinal, and Random-Key Representation
These approaches generate only solutions on the boundary of the feasible region. This
fact can be considered as a strong bias, since all other feasible and infeasible solutions
have probability zero of being created. The solutions on the boundary have positive
probabilities, but these are not identical. This additional unintended bias towards some
solutions is due to the items’ individual resource consumptions and the first-fit heuris-
tic used to decode permutations. Consider the example of n = 3 items, m = 1 resource
with capacity c1 = 2, and the items’ resource consumptions r11 = 2, r12 = 1, and
r13 = 1. Among all permutations of the items {1, 2, 3}, the permutations (1, 2, 3) and
(1, 3, 2) are both decoded into the phenotype (1, 0, 0), and the four remaining permu-
tations (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1) are decoded into the phenotype (0, 1, 1).
Thus, the phenotype (0, 1, 1) is twice as likely as (1, 0, 0). Note that this effect is caused
by the resource constraints only and is independent of the profits of the items. In gen-
eral, these representations are therefore not particularly biased towards fitter pheno-
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types on the boundary.

7.1.2 Weight-Biased Representation
This representation only produces phenotypes on the boundary of the feasible region,
too. The initialization, based on a log-normal distribution of the weights, and the so-
phisticated decoding procedure together provide a strong heuristic bias, since locally
optimal solutions near the solution obtained by Pirkul’s surrogate duality heuristic for
the original problem are favored. The effects of different values for the biasing parame-
ter γ in the weight’s initialization function (4) have been studied by Raidl (1999). It was
observed that the weight-biased approach works well for a wide range of values for γ,
as long as γ is larger than some minimum working bound. Obviously, if γ is too small,
the solution created by Pirkul’s heuristic for the unbiased problem is favored too much
and evolutionary search gets trapped at or near it quickly. For a larger γ, the heuristic
bias is smaller and the EA will converge slower but behave robust. If γ → ∞, the bias
towards the solution of Pirkul’s heuristic for the original problem diminishes, and the
total heuristic bias is similar to the approaches discussed in Section 7.1.1.

7.1.3 Direct Representation
EAs with a direct representation in which infeasible solutions created by the initial-
ization or variation operators are immediately repaired have the obvious bias towards
feasible solutions. If local improvement is applied as well, the heuristic bias is even
stronger since only solutions on the boundary of the feasible region are created.

The idea of introducing heuristic bias by local optimization is the key factor for
the success of memetic algorithms (Moscato, 1999). Since this technique reduces the
actually considered parts of the phenotype space dramatically, care must be taken to
prevent the search from getting trapped at poor local optima too easily.

In case of the direct representation for the MKP, the heuristic ordering in which
items are considered during repair and local improvement introduces a further level
of heuristic bias. This bias favors solutions on the boundary, which are similar to the
LP-relaxed solution.

Last but not least, the special initialization of DI yields another heuristic bias, com-
parable to repairing and local optimization.

7.2 Comparison

The previous paragraphs discussed the heuristic bias of evolutionary algorithms for
the MKP in a qualitative way. Now, we analyze the selected approaches empirically
in more detail and quantify heuristic bias. ¿From Chu and Beasley’s benchmarks with
n = 250 items and m = 10 constraints, we consider the first instance for each tightness
ratio α ∈ {0.25, 0.5, 0.75}. Note that the instance with α = 0.5 is the one named CB5 in
Section 4.

For each representation and each of the three instances, 1 000 000 phenotypes were
randomly created by the initialization methods. Two different variants are considered
in case of DI: In the first one, repair and local improvement were applied to random
bit strings (random initialization), while in the second variant, solutions were created
by the special heuristic initialization function described in Section 3.6. This allows to
separately investigate the heuristic bias of repair combined with local improvement on
the one side and the heuristic initialization on the other side.

Figure 3 shows the frequencies with which the solutions’ gaps fall into the 0.1%-
wide intervals [0, 0.1%), [0.1%, 0.2%), etc. The main tendencies are the same for all three
tightness ratios. The gaps are always approximately Gaussian distributed. Mean gaps
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Figure 3: Frequencies of gaps from random solutions on instances with tightness ratios
α ∈ {0.25, 0.5, 0.75} to fall into intervals of 0.1% width.

and standard deviations are subsumed in Table 4. PE, OR, and RK exhibit identical dis-
tributions with the largest mean values and standard deviations. This is not surprising
since these three representations use the same first-fit heuristic in their decoders and
have no further heuristic bias. The heuristic initialization of DI exhibits the smallest
mean gaps and standard deviations, which indicates its strongest heuristic bias. The
combination of DI’s random initialization with repair and local improvement exhibits
particularly less heuristic bias than DI’s heuristic initialization and WB’s decoder.

For each representation, the mean gaps of random solutions differ significantly for
the three tightness ratios. However, we may not generally conclude that the heuristic
bias is stronger for instances with larger tightness ratios. Usually, the solution of the
LP-relaxed MKP, on which the definition of the gap relies, represents a tighter bound
to the discrete optimum for problem instances where the tightness ratio is large.

Therefore, instead of comparing absolute values of gaps, we should consider rela-
tive differences among the different representations and initializations. For PE, OR, RK,
WB, and DI’s heuristic initialization, the relations between the mean gaps, respectively
the standard deviations, remain roughly the same over the three tightness ratios. We
conclude that in these cases, the heuristic bias does not strongly depend on the tight-
ness ratio. In contrast, DI’s random initialization behaves significantly different on the
three instances; the reason is explained in the following.

We first consider the instance with tightness ratio α = 0.25. Feasible solutions usu-
ally contain only relatively few – about n/4 – items due to the low resource capacities.
However, in DI’s random initialization, 50% of the variables xj are expected to be ini-
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Table 4: Observed mean gaps [%] and corresponding standard deviations σ for random
solutions on instances with tightness ratios α ∈ {0.25, 0.5, 0.75}.

α = 0.25 α = 0.5 α = 0.75Representation
gap [%] σ gap [%] σ gap [%] σ

PE 26.21 2.50 16.86 1.67 9.85 1.10
OR 26.21 2.51 16.86 1.67 9.85 1.11
RK 26.21 2.51 16.86 1.67 9.84 1.10
WB 5.35 1.52 3.00 0.91 1.57 0.45
DI / rand. init. 13.12 2.56 14.77 1.89 4.79 1.22
DI / heur. init. 2.29 0.81 1.07 0.37 0.81 0.34

tially set to 1. The heuristic repair operator has to reset many of them to 0 in order to
make the solution feasible. Then, local improvement will typically find only few vari-
ables that can be set to 1. Repair therefore dominates the construction of solutions in
this case, and it is mainly responsible for the significantly higher heuristic bias of DI’s
random initialization in comparison to PE, OR, and RK.

In case of α = 0.75, the resource capacities are large, and about 3/4 of all variables
are expected to be set to 1 in feasible, locally optimal solutions. Starting from a ran-
dom selection of items, repair has usually almost nothing to do, but local improvement
includes many additional items. Therefore, the heuristic bias comes mainly from local
improvement.

When α = 0.5, about n/2 variables xj are expected to be set to 1 in a feasible, locally
optimal solution. Since this corresponds to the expected number of variables initially
set to 1 by DI’s random initialization, both, repair and local improvement make usually
only small changes. The total heuristic bias is in this case therefore smallest, and the
empirically observed mean gap is only a bit smaller than that of PE, OR, and RK. This
small difference, however, is nevertheless caused by repairing and local improvement.

To conclude, the stronger heuristic bias of DI and WB is a significant condition
for the high performance and quick convergence of the EAs based on these represen-
tations. The heuristic bias of DI lies mainly in its special heuristic initialization and
only secondly in the repair and local improvement operators, whose impacts depend
on the tightness ratio. Nevertheless, repairing and local improvement contribute to the
overall heuristic bias of DI, too.

Obviously, heuristic bias does not solely determine performance. In particular, it
does not explain the performance differences between PE, OR, and RK observed in
Section 4.2. In the next section, we will focus on further important properties, namely
locality and heritability of the variation operators.

8 Locality and Heritability

In order to gain insight into the locality and heritability properties a representation with
its variation operators provides, several measures and empirical techniques to obtain
estimations are discussed in this section. These measures were originally introduced in
(Gottlieb and Raidl, 1999). Later, they were adapted to the fixed charge transportation
problem (Gottlieb and Eckert, 2000; Eckert and Gottlieb, 2002).

Here and in the remaining parts of this article, problem instance CB5 (n = 250,
m = 10, α = 0.5) is used in all empirical investigations, but the general trends remain
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also valid for other instances of different size and tightness ratios, as more extensive
tests have confirmed.

8.1 Mutation Innovation MI

Mutation operators work in the search space, but their semantic effect can only be an-
alyzed in the phenotype space, which contains structural information about solution
candidates. Therefore, we characterize the effect of mutation by the distance between
the involved phenotypes. Let X ∈ S be an element from the search space and Xm ∈ S
the resulting element after applying mutation. In case of the direct representation,
we consider repair and local improvement as part of the mutation operator; further-
more, the original solution X is assumed to be feasible and to lie on the boundary, and
x, xm ∈ P shall be the phenotypes represented by X and Xm, respectively.

Definition 8.1 The mutation innovation is the phenotypic distance between solution x and the
mutated solution xm,

MI := dP (x, xm) . (14)

MI is a random variable that describes how much “innovation” is introduced into
a solution by mutation. Its distribution immediately reflects several important aspects
concerning locality.

We investigated the mutation innovation of the five representations on problem
instance CB5 empirically by randomly creating 100 000 elements of the search space
and applying mutation to all of them. Figure 4 shows a histogram for the resulting
distributions of the mutation innovation.

First, we consider the case MI = 0, occurring with probability P (MI = 0), in which
mutation does not affect the phenotype at all. Large values for P (MI = 0) indicate
that either mutation often does not make moves in the search space, or many different
elements of the search space map to the same phenotype. The latter possibility reflects
a high degree of redundancy or strong heuristic bias.

In all five considered representations, the probabilities P (MI = 0) are relatively
high, mainly because the search space is mapped to phenotypes lying on the boundary
of the feasible region only. As might be expected, the stronger heuristic bias of WB
and DI results in even higher values for these two representations. In general, the high
values for P (MI = 0) demonstrate the importance of phenotypic duplicate elimination
for maintaining a minimum diversity in the population.

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12

p M
I  

[%
]

MI

PE
OR
RK
WB
DI

Figure 4: Histograms for the empirical distributions of mutation innovation MI .
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There is no possibility that MI = 1 in any of the five representations, since
dP (x, y) ≥ 2 for any pair of distinct solutions x, y ∈ P lying on the boundary of the
feasible region.

When mutation actually modifies the phenotype, thus, MI > 0, the distributions
of MI become roughly binomial and it makes sense to calculate mean values as esti-
mations for the conditional expected values E(MI |MI > 0) and standard deviations
σ(MI |MI > 0). In general, a small E(MI |MI > 0) indicates high locality – a single
mutation changes the phenotype only slightly – and should therefore be aspired. Large
expected values signalize that highly different solutions are frequently generated, lo-
cality is weak, and hence the search of the EA tends towards random search.

Table 5 lists empirically obtained values for the considered representations. OR
yields substantially higher values for E(MI |MI > 0) and σ(MI |MI > 0) than the
other representations: 27.83 items, about 11% of all n = 250 items, must be expected to
change when mutation creates a new, non-duplicate solution. Thus, locality is weak in
OR’s mutation. All other representations exhibit relatively low expected values. With
E(MI |MI > 0) = 2.46, which is remarkably close to the lower bound 2 on the distance
between two phenotypes on the boundary, DI provides the highest locality, followed
by WB, RK and PE with mean values around 5.

In the EA, mutation is – together with crossover, which is the topic of the
next section – iteratively applied. How does the distribution of mutation inno-
vation change when k > 1 successive mutations are applied? We investigated
this case again empirically on instance CB5 by randomly creating 100 000 solu-
tions and mutating each of them 1 000 times. In each sequence of mutations, the
phenotypic distance between the original solution and the one created after k ∈
{1, 2, 3, 4, 8, 16, 32, 64, 128, 256, 512, 1 000} mutations were calculated, i.e. the mutation
innovations over k mutations, denoted by MI k.

As might be expected when considering the mutations to be independent, the
probability that the process leaves the phenotype unchanged drops approximately ex-
ponentially with increasing k according to the formula

P (MI k = 0) ≈ P (MI = 0)k . (15)

Figure 5 plots empirically obtained mean values E(MI k|MI k > 0) and standard
deviations σ(MI k|MI k > 0) over the number of mutations k. OR exhibits much higher
mean values and standard deviations than the other representations as long as k is
less than 100. Again, this is a strong indication for OR’s weak locality with respect to
mutation. For large k, the mean values of PE, OR, and – to slightly lesser degrees DI
and RK – approach values around n/2 = 125, which is approximately the expected
phenotypic distance of two random phenotypes. WB approaches a significantly lower
value around 35 due to its strong heuristic bias. In particular, we observe here a signif-
icant difference to DI, which is also strongly heuristically biased by its repair and local

Table 5: Characteristic values for the mutation innovation MI .
Measure PE OR RK WB DI
P (MI = 0) [%] 48.90 49.12 50.32 86.57 76.09
E(MI |MI > 0) 5.31 27.83 4.66 4.35 2.46
σ(MI |MI > 0) 1.56 23.14 1.46 1.35 0.74
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Figure 5: Empirical estimations for E(MI k|MI k > 0) and σ(MI k|MI k > 0) plotted over
the number of mutations k.

improvement, but where iterated mutation is also able to create solutions much far-
ther away. This can be an advantage for DI, since it reduces the probability for getting
trapped at a local optimum.

8.2 Crossover Innovation CI

The ability of crossover to mix the parents’ phenotypic properties in a creative way can
be quantified by distances in the phenotype space. In binary crossover, an offspring
Xc ∈ S is created from two parents Xp1, Xp2 ∈ S. Let xc, xp1, xp2 ∈ P be the cor-
responding phenotypes. For the direct representation, we again assume that Xp1 and
Xp2 are feasible and lie on the boundary and repair and local improvement of the off-
spring is performed after crossover. We adopt the concept of the mutation innovation
for crossover in the following way.

Definition 8.2 The crossover innovation CI is the phenotypic distance between an offspring
and its phenotypically closer parent:

CI := min(dP (xc, xp1), dP (xc, xp2)) . (16)

The parents Xp1 and Xp2, respectively xp1 and xp2, can be interpreted as random
variables, and xc and CI are then dependent random variables.

Obviously, CI is 0 if either xc = xp1 or xc = xp2, thus, if crossover is not able to
create a new solution.

In general, the expected value of CI strongly depends on the distance between the
parents dS(Xp1, Xp2), respectively dP (xp1, xp2). Larger parental distances will usually
induce larger crossover innovations. The practical meaning is that in an EA, crossover
will be able to create more different solutions when the population’s diversity is high
than when its solutions are similar.

We empirically investigated the crossover innovation for the five representations
on randomly created pairs of parent solutions. To consider the dependency on the
parental distance in a reasonable way, only each Xp1 is created independently at ran-
dom, and the second parent Xp2 is derived from Xp1 via k > 0 consecutively ap-
plied mutations. In case of DI, Xp2 was also repaired and locally improved. Fur-
thermore, the duplicate elimination of the EA framework was taken into account
by discarding all pairs of phenotypically identical parents; thus, dP (xp1, xp2) > 0
always holds. The expected phenotypic distance between the parents is therefore
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Figure 6: Crossover innovation: Empirically observed probabilities for CI k = 0 and
estimated expectations E(CI k|CI k > 0) with standard deviations σ(CI k|CI k > 0).

E(dP (xp1, xp2)) = E(MI k|MI k > 0), as it was shown in Figure 5.
In the following, we denote the crossover innovation for the case where the sec-

ond parent was derived from the first via k mutations by CI k. 100 000 pairs of parents
were created for each k ∈ {1, 2, 3, 4, 8, 16, 32, 64, 128, 256, 512, 1000}. Figure 6 plots the
observed probabilities for CI k = 0 and the empirically estimated conditional expecta-
tions E(CI k|CI k > 0) with standard deviations σ(CI k|CI k > 0) over k.

If k = 1, the one-point crossover of OR and the uniform crossover of RK and
WB are unable to produce new solutions; thus P (CI 1 = 0) = 100%, and no values
therefore exist for E(CI 1|CI 1 > 0) and σ(CI 1|CI 1 > 0). In case of PE and k = 1,
swap mutation is used to derive the second parent, and in combination with uniform
order based crossover, solutions different to the parents can be created with probability
P (CI 1 > 0) ≈ 47%. DI uses uniform crossover, as RK and WB do, but it is able to create
new solutions for k = 1 with probability P (CI 1 > 0) ≈ 20%. This is possible since
repair and local improvement are applied and mutation changes each bit with a certain
probability.

The generally relatively high probabilities P (CI k = 0) for small k emphasize the
importance of taking care of the population diversity in the EA, as the considered EA
framework does by discarding phenotypically identical solutions. In general, P (CI k =
0) decreases with increasing k. Whereas it approaches 0 in case of PE, RK, WB and
DI, it remains relatively high (> 45%) for OR. The reason is OR’s one-point crossover
which frequently exchanges only genes in the rear part of the genotype that have no
effect during decoding. In OR, the phenotype is mainly determined by the genes in the
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front. The large duplicate ratios of OR observed in Section 4.4 can now be explained by
the high probabilities of both, CI k = 0 and MI = 0.

The plots for E(CI k|CI k > 0) and σ(CI k|CI k > 0) are indicators for locality of
crossover. E(CI k|CI k > 0) should be small for small k and become larger for increasing
k. In more detail, the distance of the offspring to both of its parents should usually not
be larger than the distance between the parents, i.e. E(CI k|CI k > 0) ≤ E(MI k|MI k >
0) should hold for any k.

This condition holds for all considered representations. Thus, CI k gives no in-
dication for weak locality of any of our representations concerning crossover. OR’s
E(CI k|CI k > 0) is particularly larger than those of the other representations, but this
follows from the large phenotypic distances of the parents (E(MI k|MI k > 0)) due to
the weak locality of mutation. WB’s E(CI k|CI k > 0) is very low, which coincides with
its low mutation innovation displayed in Figure 5. The reason is the strong heuristic
bias of WB.

8.3 Crossover Loss CL

A meaningful crossover operator should be able to create offsprings mostly out of
substructures from the parental phenotypes. The following measure quantifies how
strongly this condition is violated.

Definition 8.3 The crossover loss CL is the total size of phenotypic substructures (the amount
of phenotypic properties) in an offspring xc that is not inherited from either of the parents xp1

and xp2 but newly introduced.

For the MKP this means

CL :=
n∑

j=1

δ(xc
j , x

p1
j , xp2

j ) (17)

with δ(xc
j , x

p1
j , xp2

j ) =
{

0 if xc
j = xp1

j or xc
j = xp2

j ,

1 otherwise.
(18)

Based on the definition of the phenotypic distance metric, this can also be written as

CL :=
1
2
(dP (xc, xp1) + dP (xc, xp2)− dP (xp1, xp2)) . (19)

Note that CI = 0 implies CL = 0, but not vice versa. We preclude the case
where crossover is not able to create a new solution and consider the expected value
E(CL|CI > 0) and its standard deviation σ(CL|CI > 0).

Empirical estimations were calculated based on the experiments described in the
previous section. CLk denotes the crossover loss when the second parent is created out
of the first, randomly generated one by k mutations. Figure 7 shows these estimated
E(CLk|CI k > 0) and σ(CLk|CI k > 0) plotted over k for the five representations.

In general, DI exhibits the smallest expected crossover loss and standard deviation,
and thus, the strongest heritability. The corresponding values of WB, RK, and PE are
slightly larger, especially for k ≥ 10, but still reasonable. OR exhibits substantially
larger values for E(CLk|CI k > 0), and they increase significantly with increasing k.
The standard deviation σ(CLk|CI k > 0) follows this trend. We conclude that OR’s
heritability is particularly poor when the parents are very different. The reason is again
the strong dependency of the meaning of each gene on all its preceding genes. In case of
k = 1 000, about 28 variables receive on average new values that are not inherited from
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Figure 7: Crossover loss: Empirically estimated E(CLk|CI k > 0) and σ(CLk|CI k > 0).

the parent solutions. These are ≈ 11% of all 250 variables, and they account for about
the half of the differences between the offspring and its closer parent, i.e. E(CLk|CI k >
0) ≈ 1/2 · E(CI k|CI k > 0).

9 Search Dynamics

The previous section investigated the representations in combination with their varia-
tion operators and decoders, respectively repair and local improvement. That analysis
revealed strong indicators for various conditions that affect performance. All these
static investigations were done without performing complete runs of evolutionary al-
gorithms. Obviously, the iterated interplay of selection, variation operators, and re-
placement strategy in the EA exhibits its own dynamics. Therefore, this section studies
the complete dynamic case and confirms that the results obtained by the static measure-
ments remain valid and accurate.

In evolutionary search, the behavior of the variation operators is expected to de-
pend on the current population’s properties. Therefore, we observed the measures
introduced in the previous section also during actual runs of the EA. At each it-
eration t of such a run, the phenotypic distance of parents selected for crossover
PD t = dt

P (xp1, xp2), the crossover innovation CI t, the crossover loss CLt, and the mu-
tation innovation MI t were calculated.

The descriptive values E(PD t), P (MI t = 0), E(MI t|MI t > 0), P (CI t = 0),
E(CI t|CI t > 0), σ(CI t|CI t > 0), E(CLt|CI t > 0), and in addition the probability
that the created offspring is a duplicate P (dupt) were estimated in dependence of t.
We divided the whole run into consecutive observation intervals and calculated the
proportions, respectively conditional mean values and standard deviation for each in-
terval.

The steady-state framework with the properties described in Section 4 was used,
and again, we consider instance CB5 as representative example. Since the population
dynamics usually change faster in early phases of a run, the size of the observation
intervals is small at the beginning and increases with t. We start with intervals of size
10 and multiply this size by 10 after iterations 100, 1 000, 10 000, and 100 000. In order
to further increase the confidence of the results, 20 independent runs were performed,
and all sample values of the corresponding intervals were merged.
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Figure 8: Dynamic investigations: Average phenotypic distance of crossover’s parents
PD t and estimated probability of creating duplicates P (dupt).

9.1 Mean Distance of Crossover Parents and Probability of Duplicates

Figure 8 shows for all five representations the dynamics of the phenotypic mean dis-
tance of crossover parents E(PD t) and the probability of duplicates P (dupt) plotted
over t. E(PD t) is a good indicator for the diversity in the population. PE, OR, and RK
start with large values, thus, high diversity. We already know that the initial diversity
is significantly smaller for WB and in particular DI due to their strong heuristic bias,
and the initial E(PD t) is therefore also much smaller in these cases. After about 10 000
iterations, the diversity has decreased substantially in all other representations as well.
The curves of PE, RK, WB, and DI meet at the same value of about 9.5. Obviously,
the duplicate elimination scheme avoids significantly smaller average parent distances
and, thus, the total loss of diversity.

A surprise may be the behavior after this point, which we call post-convergence
diversity increase: E(PD t) increases in all cases to a final value of ≈ 12. The reason
for this behavior is that the population has already converged in highly fit regions of
the search space during the first phase of a run; the neighborhoods of identified local
optima have been searched well, and the best solutions of these regions are contained in
the population. Due to the used replacement strategy, new solutions will only remain
in the population if they are at least as good as the other population members and
phenotypically different. This implies that such accepted new solutions usually do not
lie in the already well searched regions. Thus, these solutions are typically farther away
from the rest of the population, and diversity is increased.

The population’s diversity is also reflected by the observed probabilities of creating
duplicates P (dupt). In case of PE, RK, and WB, this probability is low at the beginning
and increases after some thousand iterations. Due to the post-convergence diversity
increase, P (dupt) decreases during the last phase of a run. The duplicate ratio of OR is
generally much larger (as already observed in Section 4), but otherwise behaves simi-
larly. Considering DI, P (dupt) is particularly high at the beginning due to the strong
heuristic bias of initialization, but decreases strongly after about thousand iterations.

9.2 Mutation Innovation

Figure 9 shows the dynamics of mutation innovation. The measures P (MI t = 0) and
E(MI t|MI t > 0) do not change significantly during a run and closely correspond to
the values obtained in the static measurements, compare Table 5. This is quite intuitive
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Figure 9: Dynamic investigations: Mutation innovation MI t.

and proves that mutation innovation does not depend on the population dynamics and
in particular the population diversity.

9.3 Crossover Innovation and Crossover Loss

Figure 10 shows dynamic results for crossover. The probability of creating an offspring
that is identical to one of its parents P (CI t = 0) is always low for PE, RK, and WB,
and relatively high for OR. In case of DI, P (CI t = 0) is high at the beginning of a run
due to DI’s low initial diversity, but it decreases after about thousand iterations. For
all representations except DI, the conditional mean value E(CI t|CI t > 0) is relatively
large at the beginning of a run and decreases to ≈ 5. The smaller initial values of
WB and in particular DI are due to their heuristic biases and the lower diversity. The
conditional mean crossover loss E(CLt|CI t > 0) is small in all cases except OR, which
exhibits relatively large values during the first few thousand iterations because of the
poor heritability of its crossover.

9.4 Comparison with Static Analysis

The observations and differences in the search dynamics among the representations are
not surprising, since they conform to the results of the previous static measurements.
During the static measurements for crossover, the degree of population diversity was
modeled by deriving the second parent from the first via k mutations. Figure 5 showed
the conditional mean mutation innovation E(MI k|MI k > 0) for such a sequence of k
mutations, and thus, the phenotypic mean distances of crossover parents E(PDk). We
use E(MI k|MI k > 0) to find values for k that induce approximately the same pheno-
typic mean parent distances as observed during the dynamic measurements.

At the beginning of an EA run, initial solutions are created independently at ran-
dom. With the exception of DI, the highest average parent distance E(PD t) is provided
at this point. In our static investigations, k = 1 000 yields the best approximation of
this case. For PE, OR, RK, and WB, all dynamically observed measures P (CI t = 0),
E(CI t|CI t > 0), σ(CI t|CI t > 0), and E(CLt|CI t > 0) with t = 10 are approxi-
mately equal to the corresponding static values with k = 1 000. DI is an exception
since it applies heuristic initialization. It starts with a particularly lower parent dis-
tance E(PD t) ≈ 5, which is approximately reached in the static measurements with
k = 10. With this value, DI’s static measures for crossover innovation and crossover
loss also almost correspond with its dynamic ones.

28 Evolutionary Computation Volume x, Number x



Empirical Analysis of Locality, Heritability and Heuristic Bias

 0

 10

 20

 30

 40

 50

 60

 70

 10  100  1000  10000  100000  1e+06

P
(C

I t
=

0)
  [

%
]

iteration t

PE
OR
RK
WB
DI

 0

 10

 20

 30

 40

 50

 60

 70

 10  100  1000  10000  100000  1e+06

E
(C

I t
 | 

C
I t

>
0)

iteration t

PE
OR
RK
WB
DI

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10  100  1000  10000  100000  1e+06

σ(
C

I t
 | 

C
I t

>
0)

iteration t

PE
OR
RK
WB
DI

 0

 5

 10

 15

 20

 25

 30

 35

 10  100  1000  10000  100000  1e+06

E
(C

L
t |

 C
I t

>
0)

iteration t

PE
OR
RK
WB
DI

Figure 10: Dynamic investigations: Crossover innovation CI t and crossover loss CLt.

Next, we consider as example iteration t = 2 000 of the dynamic measurements.
The observed values for the phenotypic parent distance are reached in the static mea-
sures when k ≈ 64 for PE, k ≈ 16 for OR, k ≈ 100 for RK and WB, and k ≈ 10 for
DI. Again, static measures with these k-values almost correspond with the dynamic
measures at t = 2 000.

This approximate conformity of dynamic and static results holds consistently for
any iteration. There is only one restriction regarding OR: Due to the poor local-
ity of OR’s mutation, the static measurements were not able to model the situation
of very low diversity. The average phenotypic distance of crossover parents in the
static measurements is never less than the expected innovation of a single mutation
E(MI |MI > 0) ≈ 27.83. However, in the dynamic measurements E(PD t) becomes
smaller than this value after about 6 000 iterations.

10 Conclusions

We have compared five different representations and associated variation operators for
the MKP. Four of them are decoder-based, and the fifth is a direct encoding including
local improvement and repair. The basic ideas of these representations have already
been applied to a variety of other combinatorial optimization problems, too. The com-
plex decoders, respectively local improvement and repair strategies, of these represen-
tations make it practically impossible to analyze an EA applying these representations
in a fully theoretical way.

This article proposed a hands-on approach to study properties of the representa-
tion and its variation operators that substantially influence the performance of such
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EAs. Inexpensive static measurements based on randomly created solutions were ap-
plied to gain insight into the behavior of decoder, initialization, repair, local improve-
ment, mutation, and crossover. The key properties we focused on are heuristic bias,
locality, and heritability. Based on a phenotypic distance metric, measures were intro-
duced for mutation innovation, crossover innovation, and crossover loss in order to
quantify and “visualize” different aspects of mutation and crossover. The distribution
of fitness values was used to characterize heuristic bias.

In addition to the static measurements, observations during actual EA runs were
performed. More information about dynamic aspects, mainly concerning diversity,
could be gathered, and it was shown that the results of the isolated static measure-
ments remain valid in the dynamic case.

From the five considered MKP representations, DI exhibits the highest heuristic
bias and strongest locality and heritability. Its diversity is generally low, but the vari-
ation operators in combination with the phenotypic duplicate elimination of the used
EA framework guarantee the necessary amount of innovation for making progress in
the search process. This combination of good properties explains why DI achieves the
best performance among the considered representations. The weaker effectivity of the
other considered EAs can be mainly explained by their weaker locality and heritability
(in particular OR) and their weaker heuristic bias.

Specific results were mainly shown for a single problem instance. For other in-
stances, absolute values of results are obviously different. However, extensive tests on
differently structured instances have consistently shown the same qualitative trends
for the five considered representations.

The introduced measures quantify essential aspects of evolutionary search, which
are often used intuitively without formalization. In general, the described measure-
ments represent a framework that can aid the design process of EAs. Performing the
static measurements on candidates of representations and operators allows for a rel-
atively inexpensive pre-evaluation without performing extensive complete EA runs.
In this way, particular strengths or weaknesses can be noticed early, and the general
performance of an EA can be predicted to some degree. The decision of which repre-
sentation and combination of operators one should finally use is supported.

The proposed approach can easily be applied to various other combinatorial opti-
mization problems. Basically, only an appropriate phenotype distance metric is needed
to analyze representations and variation operators for other problems.
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