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ABSTRACT
We consider the generalized assignment problem in which
the objective is to find a minimum cost assignment of a set
of jobs to a set of agents subject to resource constraints.
The presented new approach is based on a previously pub-
lished, successful hybrid genetic algorithm and includes as
new features two alternative initialization heuristics, a modi-
fied selection and replacement scheme for handling infeasible
solutions more appropriately, and a heuristic mutation op-
erator. Tests are performed on standard test instances from
the literature and on newly created, larger and more diffi-
cult instances. The presented genetic algorithm with its two
initialization variants is compared to the previous genetic
algorithm and to the commercial general purpose branch-
and-cut system CPLEX. Results indicate that CPLEX is
able to solve relatively large instances of the general assign-
ment problem to provable optimality. For the largest and
most difficult instances, however, the proposed genetic algo-
rithm yields on average the best results in shortest time.

Keywords
Generalized assignment problem, hybrid genetic algorithm,
linear programming

1. INTRODUCTION
In the generalized assignment problem (GAP), the objec-

tive is to find a minimum costs assignment of n > 0 jobs
to m > 0 agents such that each job is assigned to exactly
one agent, subject to agents’ available capacities. Hereby,
each job/agent assignment may have individual costs and
resource requirements. Several applications of this problem
exist in areas like computer and communication networks,
location problems, vehicle routing, and machine scheduling.
The GAP is known to be strongly NP-hard [6]. Related clas-
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sical problems are the multiple knapsack, the bin packing,
and the set partitioning problem.

More formally, the generalized assignment problem can be
stated as follows. Let I = {1, . . . , m} be the set of agents
and J = {1, . . . , n} the set of jobs. For each agent i we are
given a resource capacity bi > 0. For each i ∈ I and each
j ∈ J we are given costs ci,j > 0 and resource requirements
ri,j > 0 for assigning job j to agent i.

The objective is to find an assignment matrix x = (xi,j),
with xi,j = 1 if agent i performs job j and 0 otherwise,
which minimizes the total costs

c(x) =

mX
i=1

nX
j=1

ci,j · xi,j (1)

subject to

nX
j=1

ri,j · xi,j ≤ bi, ∀i ∈ I, (2)

mX
i=1

xi,j = 1, ∀j ∈ J, (3)

xi,j ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J. (4)

The capacity constraints (2) ensure that the total resource
requirement of the jobs assigned to each agent do not exceed
its capacity. The assignment constraints (3) guarantee that
each job is assigned to exactly one agent.

The GAP has already been approached by several re-
searchers with different optimization techniques. The next
section will provide a brief summary of previous approaches.
Among them is also a successful hybrid genetic algorithm by
Chu and Beasley [4], which forms the basis of the new al-
gorithm proposed in this article. Section 3 describes two
new heuristics for creating promising initial candidate solu-
tions, an alternative selection and replacement strategy that
treats infeasible candidate solutions in a special way, and a
new heuristic mutation operator. In Section 4, results of em-
pirical tests on standard instances and newly created larger
instances are documented. The new approach with its two
initialization variants is compared to Chu and Beasley’s ge-
netic algorithm and the commercial branch-and-cut integer
linear programming solver CPLEX. After the discussion of
the results, Section 5 concludes this article.

2. PREVIOUS WORK
The existing approaches for the GAP can be divided into

exact and heuristic methods. Most exact methods are based



on branch-and-bound and also use heuristics to start with
good initial solutions. The following paragraphs describe
two branch-and-bound approaches, which differ significantly
in the way the bounds are calculated, and the genetic algo-
rithm from Chu and Beasley. An extensive survey on previ-
ous approaches for the GAP can be found in [3].

Martello and Toth [9] proposed an algorithm which starts
with the following heuristic—denoted by MTH—in order to
obtain a good initial solution. Let µi,j be a heuristic mea-
sure of the desirability of assigning job j to agent i. MTH
iteratively considers all the unassigned jobs and determines
a job j∗ with maximum difference between the largest and
the second largest µi,j . Hereby, only valid agents are consid-
ered, i.e. the capacity constraints may not be violated. Job
j∗ is then assigned to the agent i with the largest µi,j∗ . In
the second part of the heuristic, the current solution is even-
tually improved by a local search procedure. So-called shift
operations are applied until the solution cannot further be
improved. The shift operation considers each job and tries
to reassign it to another feasible agent with smaller costs
ci,j . Four different desirability measures are applied: (a)
µi,j = −ci,j , (b) µi,j = −ci,j/ri,j , (c) µi,j = −ri,j , and (d)
µi,j = −ri,j/b′i, where b′i is the remaining capacity of agent
i. The best solution obtained after trying each of them is
the final MTH solution. Note, however, that this heuristic
is not guaranteed to terminate with a feasible solution, since
the algorithm may run out of feasible agents for a job in its
first part.

If a feasible heuristic solution is found, it is used as an ini-
tial global upper bound for the following depth-first branch-
and-bound scheme. At each node of the decision tree, a
lower bound is obtained by solving the relaxed problem (1),
(2), and (4). Thus, the assignment constraints (3) are ig-
nored. This subproblem corresponds to m individual 0–1
single knapsack problems, which can be efficiently solved
by dynamic programming [8]. If the solution of the relaxed
problem satisfies constraints (3), the node generates no de-
scendants; otherwise the infeasibility can be of two types:
(a) a job j is not assigned, i.e.

P
i∈I xi,j = 0, or (b) a job

j is assigned more than once, i.e.
P

i∈I xi,j > 1. At every
node of the branch-and-bound tree a reduction phase is used
to further reduce the size of the search space.

Savelsbergh [11] described an approach that employs col-
umn generation together with branch-and-bound to obtain
optimal solutions to a set partitioning formulation of the
GAP. Column generation is used to solve the linear pro-
gramming relaxation of the disaggregated formulation for
the GAP. Branching is performed if the solution to the linear
programming relaxation is not feasible for the integer pro-
gram. To further reduce the size of the branch-and-bound
tree, a heuristic similar to MTH is used and a surrogate re-
laxation of the capacity constraints is performed as proposed
by Jörnsten and Näsberg [7].

The mentioned branch-and-bound algorithms are only ef-
fective on certain GAP instances of small and medium size.
Larger and more complex instances are tackled by applying
meta-heuristics to obtain approximate solutions.

Osman [10] developed a hybrid of simulated annealing and
tabu search, and experimented with several variants of local
search descent methods.

Amini and Racer [1] described a variable-depth neigh-
borhood search heuristic based on a two-phase local search
descent method. Phase one generates an initial solution.

Algorithm 1 Heuristic Improvement (S)

1: compute accumulated resource requirements:
Ri =

P
j∈J|Sj=i ri,j , ∀i ∈ I;

2: /* Phase 1: improve feasibility */
3: for i = 1 to m do
4: if Ri > bi then
5: T ← {j ∈ J | Sj = i};
6: repeat
7: randomly select a j ∈ T ; T ← T − {j};
8: search for an agent i∗ ∈ I | ri∗,j ≤ bi∗ −Ri∗ ;
9: if such an i∗ exists then

10: Sj ← i∗;
11: Ri ← Ri − ri,j ; Ri∗ ← Ri∗ + ri∗,j ;
12: end if
13: until T = ∅ ∨Ri ≤ bi;
14: end if
15: end for
16: /* Phase 2: improve total costs */
17: for j = 1 to n do
18: i ← Sj ;
19: i∗ = argmini′∈I {ci′,j | ci′,j < ci,j ∧ ri′,j ≤ bi′ −Ri′};
20: if such an i∗ exists then
21: Sj ← i∗;
22: Ri ← Ri − ri,j ; Ri∗ ← Ri∗ + ri∗,j ;
23: end if
24: end for

Phase two consists of a doubly-nested refinement procedure
in which either a feasible shift of a job from one agent to
another or a feasible swap of two jobs is performed.

To our knowledge, Jörnsten and Värbrand [7] developed
the first genetic algorithm (GA) for the GAP using a pivot
and complement heuristic.

2.1 Genetic Algorithm from Chu and Beasley
Another hybrid GA for the GAP is due to Chu and

Beasley [3, 4]. In extensive experiments, it was shown to
outperform several of the previous algorithms in terms of
solution quality, including in particular MTH, branch-and-
bound according to [9] with a given time-limit, and the vari-
ants of simulated annealing and tabu search from [10].

This GA represents a candidate solution by a vector
S = (S1, . . . , Sn) ∈ IJ . For each j = 1, . . . , n, the value
Sj indicates the agent to which job j is assigned to. This
representation is compact and ensures that the assignment
constraints (3) are always satisfied.

Initial candidate solutions are created uniformly at ran-
dom. The GA’s variation operators are standard one-point
crossover and the exchange of two randomly chosen positions
representing mutation. Each offspring solution is heuristi-
cally improved by Algorithm 1. In its first phase, this proce-
dure attempts to repair infeasible solutions violating capac-
ity constraints. This is done by trying to reassign jobs from
agents with exceeded capacities to other agents. Note, how-
ever, that this approach is not always successful in making
a solution feasible, since the problem of finding any feasible
solution is in general already NP-hard. The second phase
of Algorithm 1 aims on improving total costs by reassign-
ing jobs without further violating capacity constraints. The
whole algorithm runs in time O(m2n).

To treat infeasible solutions, the GA calculates for each



solution the total capacity excess

u(S) =

mX
i=1

max

0@0,
X

j∈J|Sj=i

ri,j − bi

1A (5)

in addition to the total costs c(S) =
Pn

j=1 cSj ,j correspond-

ing to equation (1). Binary tournament selection is used
for selecting the parents for reproduction. In these tourna-
ments, only the total costs are considered. In a steady state
manner, a newly created and locally improved offspring im-
mediately replaces another solution in the population. The
solution to be replaced is the one with the highest capacity
excess; only if all solutions in the population are feasible,
costs are considered and the worst solution is replaced.

3. NEW APPROACHES
This section describes novel extensions, respectively mod-

ifications, to the GA from Chu and Beasley. They improve
the average quality of final solutions and the run-time for
large, hard problem instances significantly, as documented
in Section 4.

3.1 Constraint-Ratio Heuristic
The constraint-ratio heuristic (CRH) is used to create can-

didate solutions for the initial population and replaces the
pure random initialization. Its purpose is to provide the
GA with more meaningful starting solutions. In particular,
the proportion of feasible solutions is significantly increased.
Nevertheless, the initial population’s diversity remains rela-
tively high. The heuristic consists of two separate strategies
which are alternately applied, namely the constraint heuris-
tic and the ratio heuristic.

The constraint heuristic represents a more intelligent ran-
dom initialization which takes the capacity constraints of
the agents into account, trying to find a feasible solution.
The jobs are considered in random order. For each job, the
procedure determines those agents to which the job may
be assigned without exceeding resource capacities. From
these agents, one is chosen at random, and the assignment
is performed. If no such agent exists, a capacity violation
cannot be avoided, and an agent is randomly picked from all
agents. The creation of one solution by this heuristic takes
time O(mn).

The ratio heuristic considers the relative cost-resource in-
dex γi,j of the assignment of job j to agent i as well as the
capacity constraints of the agents. γi,j can be interpreted
as a heuristic measure for the desirability of an assignment
and is calculated from the costs ci,j and the relative resource
consumption r∗i,j :

γi,j = ci,j · r∗i,j with r∗i,j =
ri,j

bi
. (6)

The algorithm repeatedly chooses a yet unassigned job j
at random and searches for the agent i having enough free
resource capacity left for processing job j and having the
smallest index γi,j∗ . If no such agent exists, some other
agent is randomly chosen as in the constraint heuristic. This
procedure also can be implemented in time O(mn).

3.2 Linear Programming Initialization
The linear programming (LP) initialization is an alterna-

tive to the constraint-ratio heuristic for creating a variety

of meaningful initial solutions. The linear programming re-
laxation of the GAP is obtained by replacing the integer
constraints (4) by 0 ≤ xi,j ≤ 1. This linear program can be
solved efficiently by methods like the simplex algorithm. In
general, this yields a solution xLP with some fractional vari-
able values. The following randomized rounding procedure
is then applied to obtain an integral solution S.

In a first step, S adopts all integral assignments from xLP:
Sj = i ↔ xLP

i,j = 1. For each job j being fractionally as-

signed to several agents in xLP, the agent i∗ with the largest
contribution is determined, and job j is completely assigned
to this agent in S: Sj = argmaxi∈I xLP

i,j .
This integral solution is typically highly infeasible due to

capacity constraint violations. We apply the randomized
heuristic improvement operator from Chu and Beasley (Al-
gorithm 1), to derive a variety of more meaningful and often
feasible initial solutions for the GA.

3.3 Selection and Replacement
In contrast to Chu and Beasley’s cost-based parental se-

lection and excess-based replacement scheme, we suggest a
more traditional penalty-based mechanism.

Each candidate solution S gets assigned a fitness value
f(S) > 0. If a solution is feasible, its fitness is identical to
its total costs c(S). For an infeasible solution, we calculate
the average relative capacity excess

uR(S) =
1

m
·

mX
i=1

max

0@0,
X

j∈J|Sj=i

ri,j

bi
− 1

1A (7)

and scale it in order to ensure that this value is always larger
than the fitness of any feasible solution:

f(S) = Cmax · (1 + uR) with Cmax =

nX
j=1

max
i∈I

{ci,j}. (8)

Based on this fitness, binary tournament selection with
replacement is performed for choosing parents. A newly
created offspring always replaces the worst solution in the
population. To guarantee a minimum diversity, created du-
plicates are always immediately discarded.

Extensive preliminary experiments indicated the advan-
tages of this selection and replacement strategies over the
one proposed by Chu and Beasley. In particular the more
aggressive preference of feasible solutions and the rating of
infeasible solutions by means of their relative capacity excess
only turned out to be crucial.

3.4 Heuristic Mutation
Instead of using standard position-wise mutation, the fol-

lowing more intelligent heuristic operator is proposed. A
certain number nmut of jobs is randomly chosen and released
from the agents. These jobs are then reassigned according
to Martello and Toth’s heuristic (MTH), see Section 2. The
main advantage of this mutation is its smaller probability
to make a feasible solution infeasible or to worsen the ca-
pacity excess of an infeasible solution. Experimental results
indicate that, despite the strong heuristic bias of this opera-
tor, enough random variation is introduced in order to avoid
getting trapped prematurely at some poor local optimum.



4. EMPIRICAL COMPARISON
This section compares the proposed GA with its two

variants for initialization to Chu and Beasley’s GA and
to the commercial general purpose branch-and-cut system
CPLEX.

4.1 Test Problem Instances
We use the “large-size” standard test problem instances

of type A to D from Chu and Beasley [4], which are elec-
tronically available at the OR-Library [2]. These instances
contain up to 20 agents and 200 jobs. Since it turned
out that these instances are not challenging enough for
nowadays algorithms and computers, we extended the li-
brary with new instances up to 80 agents and 400 jobs.
Furthermore, two new types of instances, called E and
F, were derived from Chu and Beasley’s most challenging
type D. All new instances are electronically available at
http://www.ads.tuwien.ac.at/pub/gap.

Type D instances were created by choosing resource re-
quirements ri,j from {1, . . . , 100} uniformly at random.
Costs were correlated to the resource requirements by set-
ting them to ci,j = 111 − ri,j + U , where U is a random
integer from {−10, . . . , 10}. Resource capacities were set to
bi = 0.8

m

P
j∈J ri,j . The new type E and F instances were de-

rived from the type D instances by copying resource require-
ments and assignment costs and setting resource capacities
bi to 70% and 200% of the corresponding type D values, re-
spectively. Therefore, instances of type E have significantly
stronger capacity constraints, while type F instances are sig-
nificantly looser constrained.

4.2 Setup of Algorithms
The new GA starts by creating initial solutions either via

the constraint-ratio heuristic or the LP heuristic. In the fol-
lowing we refer to these two variants of the GA as CRH-GA
and LP-GA, respectively. In any case, Chu and Beasley’s
heuristic improvement (Algorithm 1) is also applied to these
initial solutions.

In its main loop, the GA creates one new candidate so-
lution by always applying one-point crossover (as in Chu
and Beasley’s GA), the heuristic mutation operator of Sec-
tion 3.4, and Chu and Beasley’s local improvement. In con-
trast to Chu and Beasley’s GA, the selection and replace-
ment scheme described in Section 3.3 is used.

In the experiments documented in the next paragraphs,
the population size was always 100. The number of jobs
to be reassigned by mutation was nmut = 2. A run was
terminated when 500 000 new candidate solutions had been
created without improving on the so far best solution. Each
GA variant performed 10 runs on each problem instance.

Chu and Beasley’s GA has been re-implemented as de-
scribed in [4] in order to be able to make comparisons of
running times. The parameters of this GA were set accord-
ing to the suggestions of Chu and Beasley.

CPLEX 8.0 from ILOG is a commercial general purpose
branch-and-cut system for solving integer linear programs
(ILPs). We applied it to the standard ILP-formulation (1)
to (4) of the GAP without any further specific tailoring;
i.e. CPLEX’s standard configuration parameters were used.
CPLEX was terminated after either a provable optimal so-
lution was found, the running time exceeded three hours,
or one gigabyte RAM had been exhausted. All experiments
were performed on a 1.9 GHz Pentium PC.

4.3 Results
Table 1 presents average results on the 24 standard test

instances of type A to D from Chu and Beasley. CPLEX was
able to solve all instances of type A to C and the smallest
instance of type D to provable optimality. Column IP/LP-
Copt denotes the corresponding integer solution values in
these cases. When CPLEX was terminated due to the run-
ning time or memory limits, the value in this column de-
notes the optimum value of the LP-relaxation, which is a
lower bound for the integer solution value.

The quality of a solution is indicated in the table as per-
centage gap between the solutions’s total costs c(S) and ei-
ther the optimum solution value (if available) or the LP-
bound: %-gap(S) = (c(S) − Copt)/Copt · 100%. The table
shows for CPLEX these percentage gaps of the best solutions
obtained when it had been aborted. For Chu and Beasley’s
GA and CRH-GA, the table contains for each problem in-
stance the average percentage gap of the runs’ final solu-
tions, the corresponding standard deviation (stddev), the
percentage gap of the best run’s solution (%-gapbest), and
the average number of iterations and average CPU-time un-
til the final solutions had been identified (iter , respectively
t).

Both GAs could find optimum solutions for all instances of
type A. For the other test cases, it can be observed that the
average qualities of final solutions of CRH-GA are almost
always better than those of Chu and Beasley’s GA. The last
column of the table (%-p) lists error probabilities obtained
from statistical t-tests for the assumption that there exist
differences in the average percentage gaps of the two GAs.
For more than the half of the instances of type B to D,
these error probabilities are smaller than 1%. Furthermore,
it can be observed that CRH-GA is often significantly faster
than Chu and Beasley’s GA. CPLEX, however, is a strong
competitor. Even for the instances where it could not find
the optimum, its final solutions were better than those of
both GAs with only a single exception.

In Table 2, CPLEX is compared to CRH-GA and LP-GA
on the newly created larger instances of type D, E, and F.
For the two GAs and each problem instance, average val-
ues are listed again for the percentage gaps of the runs best
solutions and the number of iterations and CPU-times to
find them. Now, CPLEX was able to solve 9 smaller in-
stances to provable optimality. For larger instances, CRH-
GA yielded occasionally better results than CPLEX. LP-GA
turned out to be superior in most cases. For 27 out of all 45
instances, LP-GA returned on average the best results. The
last column %-p shows error probabilities of t-tests for the
assumption that there exist differences in the average per-
centage gaps of CRH-GA and LP-GA. The generally small
values strongly indicate LP-GA’s superiority. Furthermore,
LP-GA was almost always significantly faster than CRH-
GA. The reason is the LP initialization’s stronger ability to
create highly fit, feasible initial solutions. On average over
the six type D instances of Chu and Beasley, about 99% of
the solutions created by the LP initialization were feasible,
while for the CRH initialization, this factor is only ≈ 90%.
The average percentage gap of the solutions created by the
LP initialization was 1.6%, while it was 12.1% when using
the CRH initialization. This substantially higher solution
quality of the LP initialization obviously also compensates
the disadvantage of the smaller diversity in the initial pop-
ulation.



Table 1: Computational results of CPLEX, Chu and Beasley’s GA, and CRH-GA for Chu and Beasley’s
instances of type A to D; ◦: integer optimum reached, i.e. %-gap = 0.

Prob. Size IP/LP CPLEX Chu and Beasley’s GA CRH-GA
Type m n Copt %-gap %-gap stddev %-gapbest iter t [s] %-gap stddev %-gapbest iter t [s] %-p
A 5 100 1 698 ◦ ◦ 0.00 ◦ 1 469 1.9 ◦ 0.00 ◦ 524 1.0 50.00

200 3 235 ◦ ◦ 0.00 ◦ 173 7.0 ◦ 0.00 ◦ 181 25.9 50.00
10 100 1 360 ◦ ◦ 0.00 ◦ 356 7.3 ◦ 0.00 ◦ 9 046 97.1 50.00

200 2 623 ◦ ◦ 0.00 ◦ 1 447 28.5 ◦ 0.00 ◦ 2 531 10.2 50.00
20 100 1 158 ◦ ◦ 0.00 ◦ 404 28.5 ◦ 0.00 ◦ 688 22.2 50.00

200 2 339 ◦ ◦ 0.00 ◦ 444 112.7 ◦ 0.00 ◦ 712 24.2 50.00
B 5 100 1 843 ◦ 0.35 0.31 ◦ 309 088 59.3 0.03 0.08 ◦ 210 424 51.2 0.61

200 3 552 ◦ 0.30 0.15 0.03 780 172 240.9 0.12 0.05 0.03 362 588 165.4 0.22
10 100 1 407 ◦ 0.07 0.07 ◦ 76 341 20.9 ◦ 0.00 ◦ 42 048 30.9 0.75

200 2 827 ◦ 0.34 0.13 0.14 807 095 335.0 0.26 0.14 0.07 509 780 381.8 10.20
20 100 1 166 ◦ 0.07 0.06 ◦ 101 031 58.2 0.14 0.21 ◦ 120 872 189.3 18.89

200 2 339 ◦ 0.10 0.05 0.04 167 451 204.0 0.12 0.08 0.04 212 798 378.5 25.50
C 5 100 1 931 ◦ 0.38 0.21 ◦ 612 830 104.1 0.15 0.18 ◦ 165 421 39.2 1.25

200 3 456 ◦ 0.23 0.11 0.06 1 063 783 335.8 0.07 0.03 0.03 707 290 320.0 0.06
10 100 1 402 ◦ 0.29 0.26 0.07 556 707 123.4 0.11 0.09 0.07 137 447 54.1 4.14

200 2 806 ◦ 0.48 0.13 0.29 1 203 979 492.4 0.22 0.16 0.04 408 855 304.6 0.06
20 100 1 243 ◦ 0.51 0.26 0.08 363 620 142.7 0.26 0.13 ◦ 342 068 289.6 0.99

200 2 391 ◦ 0.62 0.19 0.25 930 809 649.6 0.56 0.18 0.21 827 683 1 140.1 23.79
D 5 100 6 353 ◦ 0.66 0.21 0.31 989 664 195.3 0.31 0.06 0.19 1 248 014 327.4 0.03

200 12 736.2 0.09 0.71 0.15 0.47 1 894 286 676.4 0.39 0.16 0.24 1 635 381 814.7 0.02
10 100 6 323.4 0.72 1.65 0.38 0.88 2 016 763 591.4 1.24 0.22 0.78 1 083 907 472.6 0.74

200 12 418.3 0.30 1.68 0.15 1.47 3 816 928 2 085.8 1.17 0.18 0.95 2 259 536 1 909.7 < 0.01
20 100 6 142.5 2.37 2.70 0.37 2.06 2 491 521 1 272.0 2.36 0.31 1.90 1 126 251 902.3 2.41

200 12 217.7 1.03 2.54 0.30 1.92 5 294 138 5 039.3 2.00 0.33 1.38 2 457 659 3 825.7 0.09

Figure 1: Average qualities of final solutions from
CPLEX, CRH-GA, and LP-GA for type F instances.

Instances of type F, which have the loosest capacity con-
straints, seem to be hardest because the gaps of final solu-
tions are generally significantly larger than those of type D
or type E instances. Figure 1 shows the (average) qualities
of final solutions from CPLEX, CRH-GA, and LP-GA for
type E instances graphically.

More detailed results of further experimental investiga-
tions can be found in [5]. In particular, Chu and Beasley’s
GA performed consistently worse than CRH-GA and LP-
GA also on the new instances, and LP-GA yielded consis-
tently better results than both other GAs also on Chu and
Beasley’s smaller instances. Furthermore, it could be proven
that each of the suggested new approaches of Section 3, i.e.
the new initialization schemes, the new selection and re-
placement scheme, and heuristic mutation, lead to an im-
provement of Chu and Beasley’s original GA independently
of each other.

5. CONCLUSIONS
This article proposes several improvements for a previ-

ously published, successful genetic algorithm from Chu and
Beasley for the generalized assignment problem. Firstly, the
suggested constraint-ratio and linear programming heuris-
tics create more promising initial solutions which are mostly
feasible. Starting with these solutions usually speeds up the
genetic algorithm and leads to significantly better final so-
lutions. In particular on larger and more difficult problem
instances, the LP heuristic turned out to be superior to the
constraint-ratio heuristic, despite it results in a smaller di-
versity of the initial population.

The second proposed improvement lies in the modified
selection and replacement strategy, which assigns infeasible
solutions a fitness value depending only on the relative ca-
pacity excess and always ranks them worse than any feasible
solution. In this way, infeasible solutions are more aggres-
sively eliminated. Finally, a new effective mutation operator
based on the heuristic of Martello and Toth has been pro-
posed.

Empirical results indicate that today’s general purpose
branch-and-cut systems are able to solve relatively large in-
stances of the general assignment problem to provable op-
timality. For hard problem instances in which resource re-
quirements are correlated to costs, the number of agents
exceeds 5, and the number of jobs exceeds 100, the used
branch-and-cut solver CPLEX was, however, not able any-
more to identify global optimal solutions. In these cases, the
proposed genetic algorithm, in particular the variant using
LP initialization, yields significantly better results in typi-
cally shorter time.
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Prob. Size IP/LP CPLEX CRH-GA LP-GA
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10 100 6 323.5 0.72 1.24 1 083 907 472.6 0.75 299 368 132.2 < 0.01
200 12 418.4 0.30 1.17 2 259 536 1 909.7 0.26 588 684 511.9 < 0.01
400 25 274.8 0.18 1.31 4 061 815 7 042.7 0.16 633 166 1 139.7 < 0.01

20 100 6 142.5 2.37 2.36 1 126 251 902.3 1.67 656 233 515.2 < 0.01
200 12 217.7 1.03 2.00 2 457 659 3 825.7 0.81 633 267 1 038.3 < 0.01
400 24 546.8 0.51 1.97 4 041 905 13 049.6 0.44 876 090 2 988.9 < 0.01

40 100 6 092.0 3.96 3.72 1 361 463 2 072.9 3.37 784 784 1 206.7 0.48
200 12 244.9 2.22 3.06 2 357 294 7 116.2 1.63 902 377 3 034.4 < 0.01
400 24 371.8 1.10 2.81 3 574 368 23 374.1 0.86 1 325 198 9 049.5 < 0.01

80 100 6 110.5 6.60 7.01 846 320 2 878.6 7.01 948 131 3 047.5 49.15
200 12 132.3 2.87 3.76 2 001 149 13 075.6 3.05 1 377 981 9 664.6 0.01
400 24 177.0 2.00 3.02 3 195 382 55 945.1 1.57 2 370 939 41 258.3 < 0.01

E 5 100 7 757 ◦ 0.24 552 212 147.1 0.07 232 404 65.3 < 0.01
200 15 611 ◦ 0.23 1 281 834 669.8 0.04 211 499 120.6 < 0.01
400 30 794 ◦ 0.28 2 744 401 3 026.7 0.03 192 115 231.9 < 0.01

10 100 7 387.8 0.61 0.91 1 005 960 447.3 0.60 359 258 170.3 0.04
200 15 039.8 0.25 0.96 1 807 355 1 557.2 0.24 437 348 408.9 < 0.01
400 29 977.9 0.09 0.94 3 390 020 6 136.3 0.11 591 807 1 126.7 < 0.01

20 100 7 348.2 1.32 1.74 1 458 153 1 171.4 0.97 891 059 746.0 < 0.01
200 14 765.2 0.89 1.70 1 955 937 3 119.4 0.61 1 041 321 1 742.7 < 0.01
400 29 500.3 0.34 1.60 4 255 476 14 462.3 0.33 787 977 2 892.4 < 0.01

40 100 7 316.1 3.32 3.11 976 572 1 573.5 2.86 976 760 1 600.8 3.18
200 14 630.4 1.85 2.20 1 889 586 6 061.5 1.32 1 164 883 3 899.2 < 0.01
400 29 186.6 0.69 2.14 2 997 713 20 536.8 0.63 1 099 475 8 387.9 < 0.01

80 100 7 650 ◦ 0.78 737 647 2 614.1 0.57 806 626 2 862.6 0.04
200 14 566.7 2.17 2.93 1 584 730 11 078.3 2.43 1 360 348 9 879.0 0.03
400 29 161.3 1.57 2.49 3 063 944 56 250.8 1.20 2 063 900 34 618.8 < 0.01

F 5 100 2 755 ◦ 0.41 507 714 123.0 0.18 90 928 21.6 2.36
200 5 294 ◦ 0.35 647 177 293.2 0.06 307 978 137.0 0.03
400 10 745 ◦ 0.25 1 235 605 1 130.0 0.05 199 224 196.7 < 0.01

10 100 2 276.8 1.99 3.95 1 019 383 386.4 2.88 365 538 135.9 < 0.01
200 4 644.6 1.13 3.12 1 565 513 1 127.4 1.22 702 420 505.4 < 0.01
400 9 372.7 0.46 2.78 2 897 607 4 207.9 0.65 1 154 144 1 663.1 < 0.01

20 100 2 145.1 8.15 8.38 1 514 783 1 010.3 5.64 536 732 362.1 < 0.01
200 4 310.1 4.73 6.55 2 227 943 2 878.4 2.96 760 128 1 021.5 < 0.01
400 8 479.4 2.38 7.15 3 984 825 10 390.0 1.51 1 090 608 3 034.6 < 0.01

40 100 2 110.1 21.28 18.27 1 191 719 1 572.9 16.94 1 090 204 1 395.7 1.64
200 4 086.5 10.14 12.86 2 461 344 6 228.2 7.02 788 030 2 213.0 < 0.01
400 8 274.3 4.05 10.36 3 676 777 19 192.9 3.80 1 202 311 7 212.2 < 0.01

80 100 2 064.4 31.37 26.77 1 620 919 3 640.1 26.57 1 092 314 2 932.0 32.82
200 4 123.4 19.05 17.33 1 738 801 9 828.6 15.67 2 624 327 13 613.2 0.32
400 8 167.1 9.18 12.55 2 661 273 32 432.1 7.12 1 457 916 22 542.5 < 0.01
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