
Greedy Heuristics and an Evolutionary Algorithm for
the Bounded-Diameter Minimum Spanning Tree Problem

Günther R. Raidl
Institute of Computer Graphics and Algorithms

Vienna University of Technology
1040 Vienna, Austria

raidl@ads.tuwien.ac.at

Bryant A. Julstrom
Department of Computer Science

St. Cloud State University
St. Cloud, MN 56301 USA

julstrom@eeyore.stcloudstate.edu

ABSTRACT
Given a connected, weighted, undirected graph G and a
bound D, the bounded-diameter minimum spanning tree
problem seeks a spanning tree on G of lowest weight in which
no path between two vertices contains more than D edges.
This problem is NP-hard for 4 ≤ D < n− 1, where n is the
number of vertices in G. An existing greedy heuristic for
the problem, called OTTC, is based on Prim’s algorithm.
OTTC usually yields poor results on instances in which the
triangle inequality approximately holds; it always uses the
lowest-weight edges that it can, but such edges do not in
general connect the interior nodes of low-weight bounded-
diameter trees. A new randomized greedy heuristic builds
a bounded-diameter spanning tree from its center vertex or
vertices. It chooses each next vertex at random but attaches
the vertex with the lowest-weight eligible edge. This algo-
rithm is faster than OTTC and yields substantially better
solutions on Euclidean instances. An evolutionary algorithm
encodes spanning trees as lists of their edges, augmented
with their center vertices. It applies operators that main-
tain the diameter bound and always generate valid offspring
trees. These operators are efficient, so the algorithm scales
well to larger problem instances. On 25 Euclidean instances
of up to 1 000 vertices, the EA improved substantially on
solutions found by the randomized greedy heuristic.

Keywords
Bounded-diameter spanning tree, edge-list encoding, greedy
heuristics, randomized heuristics, local improvement.

1. INTRODUCTION
In a tree, the eccentricity of a vertex v is the maximum
number of edges in the tree from v to any other vertex.
The diameter of a tree is the maximum eccentricity of its
vertices, thus the maximum number of edges on any path
in the tree. The center of a tree is the single vertex (if

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

SAC 2003, Melbourne, Florida, USA.
c©2003 ACM 1-58113-624-2/03/03. . .$5.00

the tree’s diameter is even) or the two connected vertices (if
the diameter is odd) of minimum eccentricity [4, p. 113] [9].
Given a connected, undirected graph G = (V, E) on n = |V |
vertices and an integer bound D ≥ 2, a bounded-diameter
spanning tree (BDST) is a spanning tree T ⊆ E on G whose
diameter does not exceed D. Figure 1 shows BDSTs on
n = 19 vertices of diameter D = 4 and D = 5 and their
centers.

If weights w(e) ≥ 0 are associated with each edge e ∈ E,
a bounded-diameter minimum spanning tree (BDMST) is
a BDST of minimum weight w(T) =

P
e∈T w(e). Such

trees are also called diameter-constrained minimum span-
ning trees and shallow-light spanning trees.

The search for a BDMST finds applications in such areas as
telecommunications network and linear lightwave network
design [2], distributed system design when considering mu-
tual exclusion [17], and bit-compression for information re-
trieval [3]. A special case occurs when D = 4 and a root
vertex is specified. This is called the 2-hop problem [5]

The BDMST problem is NP-hard for 4 ≤ D < n − 1 [7,
p. 206], and no exact algorithm is known that identifies op-
timum solutions on large problem instances. Kortsarz and
Peleg [12] have shown that, unless P = NP , no polynomial-
time algorithm can be guaranteed to find a tree whose weight
is within log n of optimum. Thus we turn to heuristics to
seek good approximate solutions.

Kortsarz and Peleg [11, 12] described an algorithm that
identifies a BDST whose weight exceeds the optimum by a
factor that is O(D log n). The algorithm combines a greedy

(a) (b)

Figure 1: (a) A tree of even diameter D = 4 on n = 19
vertices; the vertex v is its center, and (b) a tree of
odd diameter D = 5 on the same vertices; v1 and v2

together form its center.

heuristic and exhaustive search. Unfortunately, its time is
O(n2D), so it is suitable only for small problem instances.

Abdalla, Deo, and Gupta [1, 6] described two heuristics for
the BDMST problem, without approximation guarantees.
One iteratively refines an unconstrained minimum span-
ning tree. This heuristic is computationally expensive and
does not always find a feasible solution (even on a complete
graph), particularly when D is small. The second greed-
ily constructs a low-weight BDST, in imitation of Prim’s
algorithm for unconstrained minimum spanning trees [14],
though its greediness leads it away from the best trees, as
Section 2 below describes.

A new, more effective greedy heuristic also imitates Prim
but begins at the tree’s center and chooses each vertex to
connect to the spanning tree at random. Section 3 describes
this heuristic.

An evolutionary algorithm (EA) for the BDMST problem
encodes candidate spanning trees as lists of their edges, with
their center vertex or vertices specified. Crossover imitates
Prim’s algorithm, using parental edges unless none are fea-
sible. Four different mutation operators take advantage of
the structure imposed on trees by the diameter constraint.

The greedy heuristic of Abdalla, Deo, and Gupta, the ran-
domized greedy heuristic, and the evolutionary algorithm
were compared on 25 instances of the BDMST problem
of 50 to 1 000 vertices with diameter bounds from five to
25. The randomized algorithm returned significantly lower-
weight trees than did the completely greedy heuristic, and
the EA identified the best trees.

The following sections of the paper describe the greedy
heuristic of Abdalla, Deo, and Gupta and how it fails; the
randomized greedy heuristic; the EA’s coding and operators;
the EA’s structure and parameters; and the comparison of
the three algorithms.

2. A COMPLETELY GREEDY HEURISTIC
Prim’s algorithm [14] begins at an arbitrary start vertex
and builds an unconstrained minimum spanning tree by re-
peatedly appending the lowest-weight edge that connects a
vertex in the tree with one not in the tree. The diame-
ter of the spanning tree at each step can always be known;
modifying Prim’s algorithm to accommodate the diameter
bound yields greedy heuristics for the BDMST problem on
complete graphs. One such has been described by Abdalla,
Deo, and Gupta [1]. They called it One Time Tree Con-
struction (OTTC).

Beginning at a specified start vertex, OTTC repeatedly ex-
tends the growing tree with the lowest-weight edge between
a tree vertex and a non-tree vertex whose inclusion does
not violate the diameter bound. The algorithm keeps track
of the path lengths between and the eccentricities of the
vertices in the tree. Appending each new edge in general
changes several of these values, so that updating the al-
gorithm’s data structures requires, in the worst case, time
that is O(n2). This step is repeated n−1 times, so the algo-
rithm’s time is O(n3). The quality of the tree the algorithm
identifies depends heavily on the start vertex. To identify
a low-weight BDST, the algorithm should be run starting
from each vertex in the target graph in turn. The time

Figure 2: The best BDST of diameter D = 5 the
OTTC heuristic finds for an Euclidean instance with
n = 250 vertices.

of the entire process is then O(n4). On massively parallel
hardware, Deo and Abdalla [6] obtained bounded-diameter
spanning trees on complete, randomly created graphs on up
to 1 000 vertices.

2.1 Greediness Misleads OTTC
When OTTC is applied to problem instances whose vertices
are points in Euclidean space and whose edge weights are
the distances between the points, the heuristic in general
yields spanning trees whose weights are much larger than
minimum. This is particularly true when D is small com-
pared to n, as Figure 2 illustrates.

The figure shows a spanning tree, identified by OTTC, of
diameter D = 5 on n = 250 points in the unit square. Short
edges connect only a few vertices near the center of this tree.
The remaining vertices connect via longer edges to this core,
forming a star-like structure. Let the backbone of a tree be
the subgraph induced by all the tree’s non-leaf vertices. In
a low-weight BDST, the backbone is longer, so that leaves
can connect to it via shorter edges.

A good heuristic for the BDMST problem will not prefer
lower-weight edges as it builds the backbone. OTTC always
uses the lowest-weight edge available, and so is misled. This
observation holds for almost all BDMST problem instances
in which the triangle inequality is approximately satisfied,
thus for most applications of the problem.

3. A RANDOMIZED GREEDY HEURISTIC
A new randomized greedy heuristic for the BDMST problem
on complete graphs avoids the pitfall the previous section
described. Rather than always extending the tree with the
nearest unconnected vertex, it chooses each next vertex at
random and connects this vertex to the tree via the lowest-
weight edge that maintains the diameter constraint.

The algorithm also differs from OTTC in that it begins by
fixing the tree’s center. The start vertex v0 is chosen at
random. If D is even, v0 is the center. If D is odd, another

T ← ∅;
v0 ← a random vertex from V ;
U ← V − {v0};
C ← {v0};
depth[v0] ← 0;
if D is odd then

v1 ← a random vertex from U ;
T ← {(v0, v1)};
U ← U − {v1};
C ← C ∪ {v1};
depth[v1] ← 0;

while U 6= ∅ do
v ← a random vertex from U ;
u ← vertex from C with smallest w((u, v));
T ← T ∪ {(u, v)};
U ← U − {v};
depth[v] ← depth[u] + 1;
if depth[v] < bD/2c then

C ← C ∪ {v};
return T .

Figure 3: A randomized greedy heuristic that builds
a low-weight BDST with diameter bound D on a
complete graph with vertices V .

vertex v1 is chosen at random and {v0, v1} is the center;
the edge joining them is the first in the tree. Instead of
maintaining the eccentricities of and path lengths between
vertices, the randomized heuristic stores the depth of each
connected vertex: the number of edges on the path from it
to the center. This value is set when a vertex joins the tree
and does not subsequently change. No vertex may have a
depth greater than bD/2c; otherwise the diameter constraint
is violated or v0 (v1) is displaced from the center.

Figure 3 presents a sketch of the randomized heuristic. In it,
U is the set of unconnected vertices and C is the set of tree-
vertices of depth less than bD/2c, thus the set of vertices to
which new edges may be connected. In each iteration, the
algorithm randomly picks a vertex v from U and determines
its nearest vertex u in C. The edge (u, v) is added to the
tree. The vertex v is removed from U and, if its depth is
less than bD/2c, added to C. The depth of a new vertex is
always one more than the depth of the vertex to which it
connects.

Identifying the vertex u ∈ C that is nearest to v requires
time that is O(|C|) = O(n). This operation is repeated
n−1 or n−2 times, so the time of the algorithm is O(n2), a
factor of n less than that of OTTC. Running the randomized
greedy heuristic n times and taking the best solution, as with
OTTC, is then O(n3). Tests in Section 6 demonstrate that
the randomized greedy heuristic yields substantially better
solutions on Euclidean problem instances than does OTTC.

4. AN EVOLUTIONARY APPROACH
Evolutionary algorithms have proven effective on several
hard spanning tree problems, and much work was been done
on representing spanning trees for evolutionary search (e.g.
[13, 15, 18]). Recent studies have indicated the general use-
fulness of representing spanning trees directly as lists of their
edges and applying operators that always yield feasible trees
[8, 10, 16]. We adopt the edge-list coding here, but augment

F1 ← edges appearing in both parents;
F2 ← edges appearing in only one parent;
T ← ∅;
// Determine the center:
if D is even then

v0 ← the first parent’s v0;
U ← V − {v0};
C ← {v0};
depth[v0] ← 0;

else (D is odd)
(v0, v1) ← two random vertices from the union

of the parents’ centers;
T ← {(v0, v1)};
U ← V − {v0, v1};
C ← {v0, v1};
depth[v0] ← 0;
depth[v1] ← 0;

A1 ← all edges from F1 incident to the center;
A2 ← all edges from F2 incident to the center;

// Add other nodes iteratively:
while U 6= ∅ do

if A1 6= ∅ then
pick an edge (u, v) ∈ A1 at random;
A1 ← A1 − {(u, v)};

else if A2 6= ∅ then
pick an edge (u, v) ∈ A2 at random;
A2 ← A2 − {(u, v)};

else
pick u ∈ C at random;
pick v ∈ U at random;

if v ∈ U then
T ← T ∪ {(u, v)};
U ← U − {v};
depth[v] ← depth[u] + 1;
if depth[v] < bD/2c then

A1 ← A1 ∪ all edges from F1 incident to v;
A2 ← A2 ∪ all edges from F2 incident to v;
C ← C ∪ {v};

return T .

Figure 4: The recombination operator.

each chromosome with the center vertex or vertices of the
spanning tree it represents.

The fitness of a chromosome is the total weight of its tree,
which can be found, by scanning the edge-list, in time that
is O(n). The diameter bound renders the initialization and
variation operators of the prior EAs inapplicable or ineffec-
tive. The following sections describe operators appropriate
to the BDMST problem on complete graphs.

4.1 Recombination
An EA’s recombination operator should provide strong her-
itability. Here, this means that the tree produced by recom-
bining two parent trees should consist mostly of parental
edges. It is also beneficial to favor edges that are common
to both parents [16].

Figure 4 presents a sketch of a recombination operator,
based on the randomized greedy heuristic, that satisfies

these goals. The operator selects a center vertex or vertices
at random from the parental centers. Like the heuristic, it
maintains a set U of unconnected vertices and a set C of tree
vertices of depth less than bD/2c. Edges may be attached
to the vertices in C. The operator also maintains two sets
A1 and A2 of edges incident to vertices in C that may be
used to extend the tree. A1 contains edges found in both
parents, and A2 contains edges found in just one.

To extend a partial tree, the operator chooses an edge at
random from A1 or—if A1 is empty—from A2. If A2 is also
empty, it creates an edge joining a random vertex in C and
a random vertex in U . Only in this last case does recombi-
nation introduce non-parental edges into an offspring tree.

Temporary adjacency lists representing the parent trees al-
low quick identification of the parental edges adjacent to
a vertex and thus the quick updating of A1 and A2. The
recombination operator can run in time that is O(n).

EA’s for the degree-constrained minimum spanning tree
problem and the traveling salesman problem have been more
effective when their recombination operators probabilisti-
cally favored low-weight edges [16]. Here, however, such
bias was not helpful because, as described in Section 2.1,
a low-weight tree’s backbone does not in general consist of
low-weight edges.

4.2 Mutation Operators
The EA applies four mutation operators, which complement
each other to search the space of BDSTs. All four always
generate valid trees. The last two improve a solution locally
and significantly speed up the search for low-weight trees.

4.2.1 Edge-delete mutation
This operator removes a random edge from the parent tree.
(When D is odd, this edge cannot be the one that con-
nects the two center vertices.) Using the parent’s center, it
then builds a new BDST as in recombination, using parental
edges when possible and new edges when necessary. The op-
erator runs in time that is O(n).

4.2.2 Center-move mutation
Edge-delete mutation preserves the parent tree’s center; this
operator changes it. It chooses at random a vertex va ad-
jacent to the parent’s center. If D is even, va becomes the
center of the offspring tree; if D is odd, va and one of the
parental center vertices form the offspring’s center. The op-
erator builds the offspring from this center as in edge-delete
mutation. The time of center-move mutation is also O(n).

4.2.3 Greedy-edge-replace mutation
This operator is a greedy version of edge-delete mutation. It
too begins by removing a random edge from the parent tree
(except for the center edge when D is odd). This disconnects
a subtree rooted at a vertex r. Let S be the set of vertices
in this subtree, including r. The operator reconnects the
tree with the lowest-weight edge (u, r) with u ∈ V − S that
maintains the diameter bound.

The operator begins with a depth-first search that identifies
the depth of each vertex in the parent tree. It also identifies
the height h of the disconnected subtree. An edge (u, r) may

be used to reconnect the tree if depth[u] + h < bD/2c. The
operator’s time is O(n).

4.2.4 Subtree-optimize mutation
This operator chooses a vertex r at depth bD/2c− 1 at ran-
dom in the parent tree and optimally rearranges the subtree
rooted at r. Let S be the set of vertices in this subtree and p
the predecessor of r on its path to the center. The operator
tries each vertex v in S as the root of the subtree, connect-
ing the vertices in S − {v} to v. The weight of the subtree
with root v is

wS(v) = w((p, v)) +
X

u∈S−{v}
w((v, u)) ,

and the subtree that minimizes this weight becomes part of
the offspring BDST.

Finding the weight of a subtree requires time that is O(|S|)
and there are |S| subtrees to examine, so the time of subtree-
optimize mutation is O(n + |S|2). Since the number of ver-
tices in a subtree is usually small, this operator is not sig-
nificantly less efficient than the other three mutations.

5. THE EA FRAMEWORK
The representation and operators that the last section de-
scribed were implemented in a conventional steady-state
evolutionary algorithm. The EA applies the randomized
greedy heuristic to generate candidate solutions for its ini-
tial population, so it starts with a diverse collection of rela-
tively good solutions. It selects parents in tournaments with
replacement. Recombination generates some offspring, but
every offspring is mutated with one of the four mutation
operators. Each offspring replaces the worst solution in the
population, except that duplicates are discarded.

For the tests the next section describes, the EA’s parameters
were set according to experience gained from preliminary
tests. In particular, its population contained 400 chromo-
somes, the size of its selection tournaments was three, and it
applied recombination with a probability of 60%. It applied
edge-delete and center-move mutation with probabilities of
20%, and greedy-edge-replace and subtree-optimize muta-
tion with probabilities of 30%. The EA terminated when
the population’s best solution did not improve over 100 000
new chromosomes.

6. TESTS
The OTTC heuristic, the randomized greedy heuristic
(RGH), and the evolutionary algorithm (EA) were com-
pared on 25 Euclidean instances of the BDMST problem,
five instances each of n = 50, 100, 250, 500, and 1 000 ver-
tices. The instances are found in Beasley’s OR-library1,
listed as instances of the Euclidean Steiner problem. The
library contains fifteen instances of each size; we used the
first five from each group. The instances consist of points in
the unit square. We consider the points to be the vertices
of complete graphs whose edge weights are the Euclidean
distances between the points. When n = 50, the diameter
bound D is set to 5; when n = 100, D = 10; when n = 250,
D = 15; when n = 500, D = 20; and when n = 1 000,
D = 25.

1http://mscmga.ms.ic.ac.uk/info.html

Table 1: Results of OTTC, the randomized greedy heuristic (RGH), and the evolutionary algorithm (EA) on
25 Euclidean instances of the BDMST problem.

Instance OTTC RGH EA
n D nr. best mean stddev best mean stddev best mean stddev iterations time [s]
50 5 1 13.84 21.18 4.82 9.34 12.82 2.48 7.60 7.93 0.22 33 947 8.6
50 5 2 14.20 18.15 2.75 8.98 11.56 1.56 7.68 7.87 0.14 36 403 9.2
50 5 3 12.53 18.06 2.79 8.76 11.54 1.90 7.24 7.51 0.15 27 919 7.1
50 5 4 11.04 15.81 2.78 7.47 10.57 1.66 6.59 6.75 0.15 31 382 7.9
50 5 5 13.04 17.77 2.32 8.79 10.91 1.61 7.32 7.49 0.09 349 24 8.9

100 10 1 18.79 29.01 6.53 9.35 10.77 0.81 8.00 8.30 0.12 189 026 105.0
100 10 2 17.69 25.24 4.54 9.41 10.80 0.81 8.10 8.41 0.16 205 891 114.6
100 10 3 20.16 24.25 4.35 9.75 11.25 0.90 8.22 8.61 0.19 176 043 97.0
100 10 4 17.64 26.40 6.27 9.55 11.03 0.89 8.27 8.57 0.17 163 142 90.3
100 10 5 16.63 28.63 5.65 9.78 11.36 1.06 8.48 8.72 0.15 164 651 90.5
250 15 1 42.09 68.50 14.54 15.14 16.51 0.69 12.93 13.36 0.19 471 803 809.0
250 15 2 52.38 71.21 10.67 15.20 16.33 0.67 12.86 13.25 0.20 466 047 796.7
250 15 3 43.40 65.38 13.63 15.08 16.19 0.56 12.69 13.06 0.20 464 618 796.8
250 15 4 46.76 72.45 10.52 15.49 16.77 0.62 13.22 13.65 0.19 442 446 758.3
250 15 5 39.54 64.63 13.68 15.42 16.53 0.58 13.02 13.40 0.19 497 450 856.9
500 20 1 90.67 147.49 33.85 21.72 22.86 0.51 18.33 18.77 0.29 527 659 2 140.0
500 20 2 85.34 141.09 29.96 21.46 22.52 0.46 18.17 18.60 0.19 652 009 2 672.2
500 20 3 69.37 148.40 32.66 21.51 22.78 0.50 18.33 18.76 0.28 504 315 2 050.6
500 20 4 89.34 144.11 30.81 21.82 22.85 0.47 18.32 18.74 0.18 654 871 2 658.5
500 20 5 85.35 145.69 38.78 21.37 22.52 0.51 17.80 18.40 0.28 648 148 2 673.7

1 000 25 1 184.49 320.80 74.86 30.97 32.19 0.41 26.13 26.72 0.31 501 047 4 535.3
1 000 25 2 189.50 321.37 69.94 30.90 32.05 0.42 26.14 26.58 0.27 464 397 4 191.6
1 000 25 3 184.24 294.56 68.95 30.69 31.77 0.42 25.47 26.21 0.29 554 601 5 018.4
1 000 25 4 192.30 312.01 73.06 30.93 32.18 0.43 26.13 26.65 0.22 508 038 4 589.1
1 000 25 5 193.02 310.08 56.18 30.85 31.93 0.42 25.91 26.29 0.27 647 818 5 911.8

On each instance, OTTC was run n times, starting from
each vertex in turn. RGH was also run n times, with random
start vertices. The EA was run 50 times on each instance.
Table 1 summarizes the results of these trials. For each
instance, the table lists n, D, and the instance’s number.
For OTTC and RGH, it lists the weight of the best BDST
found, the average weight, and the standard deviation of
the weights. For the EA, it lists the weight of the best tree
found in 50 trials, the mean of the trial’s smallest weights,
and the mean number of iterations and mean CPU-time (in
seconds on a Pentium-III/800 Mhz PC) to a trial’s best tree.

The results are consistent across all the instances, and dif-
ferences in the mean weights of the three algorithms’ best
trees are significant at the 1% level. RGH identified sub-
stantially better solutions with much smaller standard devi-
ations than did OTTC. The BDSTs OTTC identified were
up to five times longer than those RGH found. OTTC’s
greediness in its selection of backbone vertices accounts for
its poor performance, as we observed in Section 2.1.

The EA’s solutions are on average never worse than those
of RGH, since the EA applies RGH to build its initial pop-
ulation. The mean weights of the EA’s trees were 10% to
15% (on average 13%) smaller than the weights of the best
trees RGH found on the same instances. The CPU-times
and numbers of iterations show that the EA scales well to
larger instances. The mean time per iteration increases ap-
proximately linearly with the number of vertices.

Figure 5 shows the lowest-weight trees the three algorithms
found on the second instance with n = 250 and D = 15.
They clearly illustrate the advantage of RGH over OTTC
and the superiority of the EA to both.

7. CONCLUSION
Given a connected, weighted, undirected graph G and a
bound D, the bounded-diameter minimum spanning tree
problem seeks a spanning tree on G of lowest weight in
which no path between two vertices contains more than D
edges. A Prim-inspired greedy heuristic for the problem
identifies high-weight, though valid, trees; the backbone of
a low-weight tree of bounded diameter does not in general
consist of the low-weight edges the heuristic chooses.

A randomized greedy heuristic connects vertices to the tree
in random order, but each with the valid edge of lowest
weight. This simpler and more efficient heuristic identifies
trees of much lower weight on Euclidean problem instances
than does the completely greedy heuristic.

An evolutionary algorithm encodes spanning trees as lists
of their edges, augmented with their center vertices, and
applies operators that maintain the diameter bound; their
offspring always represent valid trees. The recombination
operator imitates Prim’s algorithm and uses parental edges
whenever possible. Of four mutation operators, two perform
local improvements. All the variation operators can be im-
plemented to require only linear or near-linear time, so the
EA scales well to larger problem instances. On instances of

(a) (b) (c)

Figure 5: The lowest-weight BDSTs found by the three algorithms on the second problem instance with
n = 250 and D = 15: (a) OTTC, weight: 52.38; (b) randomized greedy heuristic, weight: 15.20; and (c)
evolutionary algorithm, weight: 12.86.

up to 1 000 points, the EA identified lower-weight trees than
did either greedy heuristic. In particular, it always improved
significantly the solutions provided for its initial population
by the randomized greedy heuristic.

Acknowledgments
This work is supported by the Austrian Science Fund (FWF)
under grant P13602–INF.

8. REFERENCES
[1] A. Abdalla, N. Deo, and P. Gupta. Random-tree

diameter and the diameter constrained MST.
Congressus Numerantium, 144:161–182, 2000.

[2] K. Bala, K. Petropoulos, and T. E. Stern.
Multicasting in a linear lightwave network. In IEEE
INFOCOM’93, pages 1350–1358, 1993.

[3] A. Bookstein and S. T. Klein. Compression of
correlated bit-vectors. Information Systems,
16(4):110–118, 1996.

[4] G. Chartrand and O. Oellermann. Applied and
Algorithmic Graph Theory. McGraw-Hill, New York,
1993.

[5] G. Dahl. The 2-hop spanning tree problem. Technical
Report 250, University of Oslo, 1997.

[6] N. Deo and A. Abdalla. Computing a
diameter-constrained minimum spanning tree in
parallel. In G. Bongiovanni, G. Gambosi, and
R. Petreschi, editors, Algorithms and Complexity,
number 1767 in LNCS, pages 17–31. Springer, Berlin,
2000.

[7] M. R. Garey and D. S. Johnson. Computers and
Intractibility: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York, 1979.

[8] J. Gottlieb, B. A. Julstrom, F. Rothlauf, and G. R.
Raidl. Prüfer numbers: A poor representation of
spanning trees for evolutionary search. In L. Spector,
E. Goodman, A. Wu, W. Langdon, H.-M. Voigt,
M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Garzon,
and E. Burke, editors, Proceedings of the 2001 Genetic
and Evolutionary Computation Conference, pages
343–350. Morgan Kaufmann, 2000.

[9] C. Jordan. Sur les assemblages des lignes. J. Reine
Angew. Math., 70:185–190, 1869.

[10] B. A. Julstrom. Encoding rectilinear Steiner trees as
lists of edges. In G. Lamont, J. Carroll, H. Haddad,
D. Morton, G. Papadopoulos, R. Sincovec, and
A. Yfantis, editors, Proceedings of the 16th ACM
Symposium on Applied Computing, pages 356–360.
ACM Press, 2001.

[11] G. Kortsarz and D. Peleg. Approximating
shallow-light trees. In Proceedings of the 8th
Symposium on Discrete Algorithms, pages 103–110,
1997.

[12] G. Kortsarz and D. Peleg. Approximating the weight
of shallow Steiner trees. Discrete Applied
Mathematics, 93:265–285, 1999.

[13] C. C. Palmer and A. Kershenbaum. Representing
trees in genetic algorithms. In D. Schaffer, H.-P.
Schwefel, and D. B. Fogel, editors, Proceedings of the
First IEEE Conference on Evolutionary Computation,
pages 379–384. IEEE Press, 1994.

[14] R. C. Prim. Shortest connection networks and some
generalizations. Bell System Technical Journal,
36:1389–1401, 1957.

[15] G. R. Raidl. An efficient evolutionary algorithm for
the degree-constrained minimum spanning tree
problem. In C. Fonseca, J.-H. Kim, and A. Smith,
editors, Proceedings of the 2000 IEEE Congress on
Evolutionary Computation, pages 104–111. IEEE
Press, 2000.

[16] G. R. Raidl and B. A. Julstrom. Edge-sets: An
effective evolutionary coding of spanning trees. IEEE
Transactions on Evolutionary Computation, 2003. To
appear.

[17] K. Raymond. A tree-based algorithm for distributed
mutual exclusion. ACM Transactions on Computer
Systems, 7(1):61–77, 1989.

[18] F. Rothlauf, D. Goldberg, and A. Heinzl. Network
random keys – a tree network representation scheme
for genetic and evolutionary algorithms. Evolutionary
Computation, 10(1):75–97, 2002.

