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Abstract. Many graph problems seek subgraphs of minimum weight
that satisfy the problems’ constraints. Examples include the degree-
constrained minimum spanning tree and traveling salesman problems.
Low-weight edges predominate in optimal solutions to these problems,
and the performance of evolutionary algorithms for them is often im-
proved by biasing their operators to favor these edges. From the distri-
butions of edges’ ranks in optimal solutions to these two problems, we
identify probabilities for edges that minimize the average expected time
until mutation chooses them for inclusion in a solution. On instances of
the degree-constrained minimum spanning tree problem, an evolution-
ary algorithm performs better with this operator than with alternative
mutations. These results are not replicated on instances of the traveling
salesman problem, where the inclusion of one edge in a tour requires the
inclusion of another dependant edge.

1 Introduction

Given a weighted, undirected graph, many graph problems seek a subset S of the
graph’s edges that satisfies a set of constraints and has minimum total weight.
These include the familiar traveling salesman problem (TSP), in which the edges
in S form a Hamiltonian tour; the degree-constrained minimum spanning tree
problem (d-MSTP) [6, 7], in which S is a spanning tree with degree no greater
than a bound d; the leaf-constrained spanning tree problem [1], in which S is a
spanning tree with at least L leaves; the biconnectivity augmentation problem
[8], in which S augments a spanning tree so that the resulting network is 2-
connected; and many others.

Some of these problems, such as the unconstrained minimum spanning tree
problem and the identification of the shortest path between two vertices, can
be solved to optimality in polynomial time. Most, including those listed above,
are NP-hard. It is not likely that fast algorithms exist to solve these problems
exactly, so we turn to heuristics, including evolutionary algorithms (EAs).

It is not surprising—and we verify below—that low-weight edges predominate
in optimal solutions to such problems. This suggests that in EAs, crossover and
mutation, which build representations of novel solutions from existing represen-
tations, should be biased so as to favor edges of lower weight. Several researchers
have investigated such schemes [3, 4, 9, 10].
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Among them, Julstrom and Raidl examined weight-biased crossover opera-
tors in EAs for the TSP and the d-MSTP [5]; favoring low-weight edges improved
the performance of these algorithms. We extend that inquiry to mutation and de-
rive probabilities for selecting edges to be incorporated into candidate solutions.
These probabilities are optimal in the sense that they minimize the expected
time to include edges of optimal solutions. For the d-MSTP, we compare a mu-
tation based on this analysis to four others. This theoretically approximately
optimal scheme increases the probability of finding optimal solutions and re-
duces the number of iterations usually used. Applied to the TSP, the advantages
of weight-biased approaches are generally smaller because mutation that intro-
duces one edge into a tour necessarily introduces a second as well.

2 Distribution of Edges in Optimal Solutions

It is reasonable that optimally low-weight trees, tours, and other structures in
weighted graphs should contain high proportions of low-weight edges. This sec-
tion confirms and quantifies this observation for the degree-constrained minimum
spanning tree and traveling salesman problems on complete graphs G = (V, E)
with n = |V | nodes and m = |E| = n · (n− 1)/2 edges. Let S be the set of edges
in a solution, so that |S| = n− 1 for the d-MSTP and |S| = n for the TSP.

We examine two kinds of instances of both problems. Euclidean instances
consist of distinct points chosen randomly in a square region of the plane; edge
weights are the Euclidean distances between each pair of points. Uniform in-
stances consist of edge weights chosen randomly and independently from a spec-
ified interval. 1 000 instances of each type were generated with n = 20, 50, and
100 nodes. For the d-MSTP, the degree bound d was set to three for the Euclidean
instances; note that for such instances there always exists an unconstrained mini-
mum spanning tree whose degree does not exceed five. On the uniform instances,
we consider d = 3 and d = 5.

All these instances were solved to optimality by an algorithm found in the
ABACUS branch-and-cut solver [11]. We assign each edge a rank r, 1 ≤ r ≤ m,
by sorting the edges of an instance according to increasing weights (ties are
broken randomly). Figure 1 plots the probabilities p(r) that an edge of rank r
appears in an optimal solution. Only the portions of the curves where p(r) is
significantly larger than zero are plotted.

Note that the sum of the probabilities p(r) is |S|:
m∑

r=1

p(r) = |S| . (1)

As predicted, the optimal solutions consist mostly of low-rank—i.e., short—
edges. Further, for each kind of problem and each fraction k ∈ (0, (n−1)/2], the
probability p(dk · ne) is approximately constant across all values of n À 1.

Table 1 illustrates this by listing, for each problem kind and size, the number
R of least-cost edges among which α = 50, 90, and 99 percent of the edges of an
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Fig. 1. The probability that an edge appears in an optimal solution as a function of
its rank, shown for the 3-MSTP, the 5-MSTP, and the TSP on Euclidean and uniform
instances of size n = 20, 50, and 100.

Table 1. Numbers R of least-cost edges for each problem class and size n = 20, 50, 100
among which α = 50%, 90%, and 99% of optimal solutions’ edges are found and
corresponding fractions k = R/n.

3-MSTP/Euc. 3-MSTP/uni. 5-MSTP/uni. TSP/Euc. TSP/uni.

α \ n 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100

50% R 12 31 63 11 27 54 10 25 51 15 37 72 16 40 80
k 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.8 0.7 0.7 0.8 0.8 0.8

90% R 33 89 179 24 63 126 23 60 120 53 134 257 41 107 217
k 1.7 1.8 1.8 1.2 1.3 1.3 1.2 1.2 1.2 2.7 2.7 2.6 2.1 2.1 2.2

99% R 63 165 323 41 113 228 40 110 223 107 296 586 67 183 373
k 3.2 3.3 3.2 2.1 2.3 2.3 2.0 2.2 2.2 5.4 5.9 5.9 3.4 3.7 3.7

optimal solution are located, i.e., the smallest rank R for which the cumulated
probability

R∑
r=1

p(r) ≥ α · |S| . (2)

Table 1 also shows corresponding fractions k = R/n, which are quite independent
of n for each problem class and each α.

An effective heuristic mutation operator should introduce edges depending
on the probabilities with which they appear in optimal solutions. To do this, we
identify a closed-form expression pA(r) that approximates p(r).
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Fig. 1 shows that p(r) decreases approximately exponentially with r, partic-
ularly in the Euclidean instances of the two problems. Thus we choose

pA(r) = ar with 0 < a < 1 . (3)

The base a should be chosen so that

m∑
r=1

pA(r) =
m∑

r=1

ar =
a− am+1

1− a
= |S| . (4)

Since am+1 is negligible for problems of even moderate size, we ignore it to obtain

m∑
r=1

pA(r) ≈ a

1− a
⇒ a ≈ |S|

|S|+ 1
. (5)

Fig. 2(a) in Sect. 3.2 plots pA(r) = ar with a = |S|/(|S|+1) for the 3-MSTP
instances with 100 nodes. It approximates the empirical probabilities p(r) with
high accuracy; the mean square error is less than 0.076%. For the 100-node
Euclidean instances of the TSP, the mean square error is less than 0.014%. For
uniform instances, the error is slightly larger.

3 Optimal Edge-Selection Probabilities

In genetic algorithms, mutation is understood to (re)introduce into the popula-
tion novel or lost genetic material. In graph problems like the d-MSTP and the
TSP, the m =

(
n
2

)
edges of the graph comprise the pool from which this material

is drawn.
Purely random mutation chooses each edge to include in a solution according

to uniform probabilities; each edge may be chosen with probability 1/m. We
apply the analysis of Section 2 to identify non-uniform probabilities, associated
with the edges’ ranks, that are optimal in the following sense: Over all edges e∗

in an optimal solution S∗, the average expected number of edge selections until
e∗ is chosen is minimal.

Let q(r) be the probability that an edge-selection scheme chooses the edge
er whose rank is r. The expected number of selections until er is chosen for the
first time is

EX (er) = 1/q(r) . (6)

Let e∗ be an edge in an optimal solution S∗. The probability that e∗ has rank
r (1 ≤ r ≤ m) is p(r)/|S|, where p(r) is the probability that er appears in an
optimal solution. The expected number of edge selections until e∗ is chosen for
the first time is the weighted sum

EX (e∗) =
m∑

r=1

p(r)/|S|
q(r)

=
1
|S|

m∑
r=1

p(r)
q(r)

. (7)
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Because
∑m

r=1 q(r) = 1, we can replace q(m) by 1−∑m−1
i=1 q(i) in (7) and write

EX (e∗) =
1
|S|

(
m−1∑
r=1

p(r)
q(r)

+
p(m)

1−∑m−1
i=1 q(i)

)
. (8)

To identify selection probabilities q(r) that minimize EX (e∗), we partially
differentiate EX (e∗) with respect to each q(r) and set these derivatives equal to
zero:

∂EX (e∗)
∂q(1)

=
1
|S|

(
− p(1)

q(1)2
+

p(m)
(1−∑m−1

i=1 q(i))2

)
= 0

∂EX (e∗)
∂q(2)

=
1
|S|

(
− p(2)

q(2)2
+

p(m)
(1−∑m−1

i=1 q(i))2

)
= 0

· · ·
∂EX (e∗)
∂q(m− 1)

=
1
|S|

(
− p(m− 1)

q(m− 1)2
+

p(m)
(1−∑m−1

i=1 q(i))2

)
= 0 (9)

This system of m− 1 equations can be simplified to

p(1)
q(1)2

=
p(2)
q(2)2

= · · · = p(m− 1)
q(m− 1)2

=
p(m)

(1−∑m−1
i=1 q(i))2

=
p(m)
q(m)2

. (10)

Let ϕ = p(r)/q(r)2. Then

q(r) =

√
p(r)
ϕ

(11)

and since
m∑

i=1

q(i) = 1 =
1√
ϕ

m∑

i=1

√
p(i) , (12)

we conclude that

ϕ =

(
m∑

i=1

√
p(i)

)2

and q(r) =

√
p(r)∑m

i=1

√
p(i)

. (13)

3.1 EX (e∗) for Three Edge-Selection Strategies

The optimal edge-selection probabilities q(r) identified in (13), when substituted
into equation (7), yield the following average expected number of edge-selections
until an edge e∗ of an optimal solution is chosen:

EX ∗(e∗) =
1
|S|

m∑
r=1

p(r)
√

p(r)
/∑m

i=1

√
p(i)

=
1
|S|

(
m∑

r=1

√
p(r)

)2

. (14)
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We replace p(r) by the approximation pA(r) = ar to obtain

EX ∗(e∗) ≈ 1
|S|

(
m∑

r=1

√
ar

)2

=
1
|S|

(√
a− a(m+1)/2

1−√a

)2

. (15)

Since a(m+1)/2 is orders of magnitudes smaller than
√

a even for moderate prob-
lem sizes, we ignore it. Further, replacing a by |S|/(|S|+1) according to (5), we
obtain:

EX ∗(e∗) ≈ a

|S| (1−√a)2
=

1

(|S|+ 1)
(
1−

√
|S|
|S|+1

)2 = (16)

=
(√

|S|+
√
|S|+ 1

)2

. (17)

Thus, EX ∗(e∗) = O(|S|) = O(n).
Consider the same expected value when edges are selected according to uni-

form probabilities: for all r = 1, . . . , m, qU (r) = 1/m. Since
∑m

r=1 p(r) = |S|,

EX U (e∗) =
1
|S|

m∑
r=1

p(r)
1/m

=
m

|S|
m∑

r=1

p(r) = m . (18)

Similarly, let edges’ probabilities be proportional to p(r): for all r = 1, . . . ,m,
qP (r) = p(r)/|S|. Then

EX P (e∗) =
1
|S|

m∑
r=1

p(r)
p(r)/|S| =

|S|
|S|

m∑
r=1

1 = m. (19)

For both, uniform and p(r)-proportional probabilities, EX (e∗) = m = O(n2),
while for the optimal probabilities, EX ∗(e∗) = O(n).

3.2 Approximately optimal edge-selection probabilities

Replacing p(r) by the approximation pA(r) = ar in (13) yields a closed-form
expression for the optimal edge-selection probabilities qA(r):

qA(r) =

√
pA(r)∑m

i=1

√
pA(i)

=
√

ar

∑m
i=1

√
ai

=
√

ar

√
a−a(m+1)/2

1−√a

=
(1−√a) ar/2

√
a− a(m+1)/2

(20)

Again, a(m+1)/2 ¿ √
a, and we ignore it. Again, we replace a with |S|/(|S|+ 1)

according to (5). Thus:

qA(r) ≈ (1−√a) ar/2

√
a

= a
r
2

(
1√
a
− 1

)
=

( |S|
|S|+ 1

) r
2

(√
|S|+ 1
|S| − 1

)
(21)

Fig. 2(b) plots the probabilities qA(r), qU (r), and qP (r) for instances of the
3-MSTP on n = 100 nodes.
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Fig. 2. (a) Approximation of p(r) by pA(r) = ar for the 3-MSTP on n = 100 nodes, and
(b) corresponding edge-selection probabilities qA(r) (approximately optimal), qP (r)
(proportional to pA(r)), and qU (r) (uniform).

4 Biasing Mutation for the d-MSTP

We consider an EA for the d-MSTP as described in [9]. Mutation is performed
by including a random new edge into a feasible solution and removing another
randomly chosen edge from the introduced cycle such that the degree constraint
is never violated. If a selected edge already appears in the current solution or
the degree constraint cannot be met, the selection is repeated. We apply the
following strategies for selecting the edge to be included.

UNIF: Each edge is randomly chosen with probability qU (r) = 1/m.

OPTEX: Edges are selected according to the approximately optimal selection
probabilities qA(r) with respect to EX (e∗).

To perform this edge-selection efficiently, we derive a random edge-rank R ∈
{1, 2, . . . ,m} from a uniformly distributed random number U ∈ [0, 1).

In order to ensure that R has the approximate probability density qA(r) of
(21), we use the inverse of the corresponding cumulative distribution function
F (r):

F (r) =
r∑

i=1

qA(i) ≈
r∑

i=1

a
i
2

(
1√
a
− 1

)
=
√

a− a(r+1)/2

1−√a

(
1√
a
− 1

)
=

= 1− ar/2 = 1−
( |S|
|S|+ 1

) r
2

. (22)

The inverse of F (r) is

r =
2 log(1− F (r))

log |S| − log(|S|+ 1)
. (23)

R can be calculated from U by setting F (r) = U in (23) and rounding:

R =
⌊

2 log(1− U)
log |S| − log(|S|+ 1)

⌋
mod m + 1 . (24)

Finding the modulus and adding one ensures that R will be a valid edge rank.
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PROPP: Each edge is selected with probability qP (r) = p(r)/|S| ≈ ar/|S|. As
with OPTEX, the implementation uses a uniform random number U transformed
by the inverse of the distribution function:

F (r) =
r∑

i=1

ai

|S| = 1−
( |S|
|S|+ 1

)r

. (25)

This yields

R =
⌊

log(1− U)
log |S| − log(|S|+ 1)

⌋
mod m + 1 . (26)

Nβ: This edge-selection strategy is based on normal distributions as proposed
in [9]. The rank of a selected edge is

R = b|N · β · n|c mod m + 1 , (27)

where N is a normally distributed random number with mean zero and standard
deviation one. β controls the biasing towards low-cost edges.

INVW: Each edge e ∈ E is selected according to probabilities inversely pro-
portional to the edge weights w(e). Such a technique was used in [3] for choosing
edges during recombination for the TSP.

5 Experiments on the d-MSTP

The five mutation operators were compared in a steady-state EA for the 3-MSTP
as described in [9]. The algorithm represents candidate solutions as sets of their
edges. Feasible initial solutions are created by a random spanning tree algorithm
based on Kruskal’s MST algorithm. A new feasible offspring is always derived
by performing edge-crossover and mutation. Edge-crossover is based on a ran-
dom spanning tree algorithm applied to the united edge-sets of two parents. In
contrast to [9], no heuristics are used during initialization and recombination.
Parents for crossover are selected in binary tournaments with replacement. Each
offspring replaces the worst solution in the population except when it duplicates
an existing solution.

In the experiments, we considered 50 randomly created Euclidean instances
of each size n = 50, 100, and 200. The population size was 2 n, and the EA
terminated if an optimal solution (determined by branch-and-cut) had been
reached or the number of evaluations exceeded 5000 n.

Runs were performed on each instance with each mutation. For normal-
distribution-based edge-selection Nβ , β was set to 0.75, 1, 1.5, 2, and 3. Table 2
shows, for each size n and each operator, the percentage of runs that identified
optimal solutions and the average number of evaluations in these runs. The best
values are printed in bold.
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Table 2. Results of the EA for the 3-MSTP with each mutation on Euclidean instances
of size n = 50, 100, and 200: percentages of runs that found optimal solutions (%-hits)
and average numbers of evaluations of those runs in thousands (eval/1000).

n UNIF OPTEX PROPP N0.75 N1 N1.5 N2 N3 INVW

50 %-hits 98 100 100 48 68 94 100 98 98
eval/ 1000 54.0 11.7 16.9 40.9 25.0 10.6 15.0 11.4 20.4

100 %-hits 66 100 88 20 46 82 90 94 86
eval/ 1000 288.2 49.1 67.0 160.8 96.1 93.8 46.8 61.7 115.4

200 %-hits 8 96 78 6 46 64 76 66 46
eval/ 1000 887.5 198.7 246.1 452.3 382.0 223.9 216.9 195.4 618.6

OPTEX performed best on all three sizes; it found optimal solutions on nearly
all the instances, and its average numbers of evaluations are among the lowest.
Those mutations with lower numbers of evaluations exhibit significantly poorer
hit rates. UNIF needed on average the most evaluations, followed by INVW and
N0.75. Experiments on uniform instances showed similar tendencies.

6 Biased Mutation for the TSP

In comparison to the d-MSTP, incorporating biased edge-selection techniques
into mutation of an EA for the TSP is more difficult. A commonly used mutation
operator for the TSP acting on a permutation representation is inversion.

This operator can be modified to include a specific new edge selected by
one of the above strategies: We invert the substring beginning after the selected
edge’s first node and ending with the selected edge’s second node.

Note, however, that in addition to the selected edge, a second new edge is
implicitly included. This second edge depends on the first edge and the current
tour; it cannot be chosen according to the edge-selection strategy.

This side-effect strongly influences the idea of biased mutation and is ex-
pected to affect performance. Experiments with the TSP similar to those with
the d-MSTP did not show significant differences among the edge-selection meth-
ods.

7 Conclusions

The rank-based probabilities with which edges appear in optimal solutions of
Euclidean and uniform instances of the d-MSTP and the TSP were empirically
analyzed and approximated by an exponential function. We then derived proba-
bilities qA(r) for selecting edges to be incorporated into candidate solutions of an
EA during mutation such that the average expected number of edge-selections
until finding an edge of an optimal solution is minimized.

Using the degree-constrained minimum spanning tree problem, five different
edge-selection strategies for mutation were described and compared. With the
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scheme using the approximately optimal probabilities qA(r), the EA identified
optimal solutions most often and with comparatively few iterations.

On the traveling salesman problem, however, mutation that introduces one
edge always introduces a second as well. While the first may be chosen according
to certain probabilities, the second depends on the first and on the current
tour. This side-effect overwhelms the differences between the various mutation
operators. This analysis nonetheless suggests that mutation that includes edges
according to probabilities derived in the proposed way might be effective in EAs
for graph problems in which the introduction of one edge does not require the
inclusion of others.
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