
Favoritenstraß ��������� / E186, A-1040 Wien, Austria� �
	 . +43 (1) 58801-18601, Fax +43 (1) 58801-18699
www.cg.tuwien.ac.at

Forschungsbericht /
����

hnical Report

TECHNISCHE UNIVERSITÄT WIEN
Institut für Computergraphik und Algorithmen

Evolutionary Local Search for the

Edge-Biconnectibity

Augmentation Problem

G. R. Raidl, I. Ljubić

TR-186-1-02-02

August 2001

1

Evolutionary local search for the edge-biconnectivity augmentation
problem∗

Günther R. Raidla† Ivana Ljubića

aInstitute of Computer Graphics and Algorithms, Vienna University of Technology,
Favoritenstraße 9–11/186, 1040 Vienna, Austria

This paper considers the problem of augmenting a given graph by a cheapest possible set of additional edges in
order to make the graph edge-biconnected. An application is the extension of an existing communication network
to become robust against single link-failures. An evolutionary algorithm (EA) is presented which includes an
effective preprocessing of the problem data and a local improvement procedure that is applied during initialization,
recombination, and mutation. In this way, the EA searches the space of feasible, locally optimal solutions only.
The variation operators were designed with particular emphasis on low computational effort and strong locality.
Empirical results indicate the superiority of the new approach over two previous heuristic methods.

Keywords: combinatorial problems, graph algorithms, evolutionary algorithms, interconnection networks, connec-
tivity augmentation problems

1. Introduction

In the design of communication networks, ro-
bustness against failure is an important issue. Re-
dundant communication routes are often intro-
duced in order to ensure that any two nodes do
not loose connection in case of a single failure in a
link or relaying node. An undirected graph that
might represent a communication network is said
to be edge-biconnected if at least two edges need
to be removed in order to separate the graph into
disconnected components. In a graph that is not
edge-biconnected, a critical edge whose removal
would disconnect the graph is called uncovered
edge or bridge.

This article focuses on the edge-biconnectivity
augmentation (E2AUG) problem, which is some-
times also called bridge-connectivity augmenta-
tion problem [4]. In it, an undirected, connected
graph G = (V, E) with node set V and edge-set
E and an additional, disjoint set A of edges be-
tween nodes in V are given. Each edge e ∈ A
has associated costs c(e) > 0 and can be used to

∗This work is supported by the Austrian Science Fund
(FWF) under the grant P13602-INF.
†Corresponding author.
E-mail addresses: raidl@ads.tuwien.ac.at (G. Raidl),
ljubic@ads.tuwien.ac.at (I. Ljubic).

augment graph G. The objective is to identify a
subset S ⊆ A of edges with minimum total costs
c(S) =

∑
e∈S c(e) such that the augmented graph

GS = (V,E ∪S) is edge-biconnected. We presup-
pose the fully augmented graph GA = (V,E ∪A)
to be edge-biconnected, since otherwise, no feasi-
ble solution is possible.

Besides in communication network design, this
problem also appears in VLSI floorplanning [15].
A general survey on related graph-connectivity
problems and algorithms is given in [7]. Eswaran
and Tarjan [3] proposed a polynomial-time algo-
rithm for the special case of the E2AUG prob-
lem where all edge costs are equal and GA is a
complete graph. However, for the general case
Eswaran and Tarjan showed the E2AUG prob-
lem to be NP -complete. This even holds when
the edge costs are chosen from {1, 2} only.

The following section gives an overview of pre-
vious heuristic methods for the E2AUG prob-
lem. A new evolutionary approach that includes
an effective preprocessing of problem data and
searches the domain of feasible, locally optimal
solutions only is then proposed in sections 3 and
4. Initialization, recombination, and mutation
operators are specifically designed for the consid-
ered problem. When deriving new offspring so-

2

lutions, these operators preserve a great amount
of parental structures, i.e. the locality is strong.
Furthermore, the operators’ average computa-
tional effort is low, which allows a fast execu-
tion of the EA also on large graphs. Section 5
presents experimental results indicating the effi-
ciency of this approach and its superiority over
two previous heuristic methods.

2. Previous work

As described by Frederickson and Jájá [4], the
problem of augmenting a general connected graph
G can be effectively reduced into the problem of
augmenting a spanning tree by shrinking the node
sets of all already edge-biconnected components
into corresponding single new nodes, Fig. 1(a)
shows an example. Edges in E and A between
nodes of the same edge-biconnected component
are discarded, and among the edges in A connect-
ing the same pair of components only the mini-
mum cost edge is retained. In the example, edge
e2 is therefore removed.

Further, Frederickson and Jájá [4] proposed an
approximation algorithm which is guaranteed to
give a solution with total costs being at most
twice the costs of the optimum solution. This
algorithm directs all edges in the spanning tree
G towards a chosen root node and adds for each
edge in A two corresponding oppositely directed
edges. A minimum cost branching algorithm [5]
is then used to find a directed spanning tree out
of the root. The set of augmenting edges S ⊆ A
can finally be derived from this tree.

Subsequently, this algorithm was improved by
Khuller and Thurimella [8] with regards to the
time-complexity and recently by Zhu et al. [16,
17]. Although the latter approach has the same
worst-case approximation factor of two, it gives in
practice significantly better results than the pre-
vious methods. Instead of deriving all augment-
ing edges from a single minimum cost branching,
Zhu et al. use an iterative process which fixes only
one augmenting edge at a time based on some
heuristic measurement of how useful each edge is.
After fixing one edge, its costs are reduced to zero
and a new minimum cost branching is derived.
This process continues until the minimum cost

branching contains only edges with zero costs and
a complete set of augmenting edges is obtained.

Evolutionary algorithms (EAs) are known to
be robust optimization techniques that have al-
ready been successfully applied to several hard
network design problems. Most previous works
in this domain deal with spanning tree structures,
e.g. [9,14], or Steiner trees, e.g. [2].

Recently, we described a straight-forward hy-
brid EA for the E2AUG problem [11]. In this
approach, a candidate solution is represented by
a binary vector of length |A|. Each bit is associ-
ated with an edge in A and indicates whether the
edge is used for augmentation, i.e. the edge is con-
tained in S, or not. Candidates of an initial pop-
ulation are created by independently setting each
bit to a random value. New offspring solutions are
derived from pairs of parental solutions by means
of traditional uniform crossover and bit-flip mu-
tation [6]. In this way, generated candidates can
be infeasible, i.e. the corresponding augmented
graphs GS may not be edge-biconnected. Such
solutions are transformed into feasible ones by
applying a greedy repair strategy that identifies
bridges and covers them one by one by adding
the cheapest appropriate edges. On a set of dif-
ferently structured test problem instances, this
hybrid EA obtained in most cases significantly
better final solutions than the iterative method
from Zhu et al. [17].

Nevertheless, this EA has also disadvantages:
Since an encoded solution has always size |A|,
the variation operators, repair, and evaluation be-
comes computationally expensive for larger com-
plete or very dense graphs GA. The required
space and time is in this case at least O(|V |2),
while an optimal set of augmenting edges consists
always of less than |V | edges according to Mader’s
theorem [12]. Furthermore, many different solu-
tions created by recombination and/or mutation
are mapped to one and the same feasible solu-
tion by the repair operator. This effect decreases
efficiency and endangers the EA to converge too
quickly to suboptimal solutions.

In the next two sections, we present a new evo-
lutionary local search approach which overcomes
these disadvantages by using a compact edge set
representation, problem specific variation oper-

3

(c)

(b)(a)

e4

∈ E

∈ A

e3

c(e4) ≤ c(e1), c(e5)c(e1) < c(e2)

e3 e4
e5

e1

e5

e1

e4
e3

e2

Figure 1. Preprocessing: (a) shrinking, (b) edge
elimination, and (c) fixing of edges.

ators, and a stochastic local improvement algo-
rithm. Preliminary results of this method are also
published in [10].

3. Preprocessing

In the new evolutionary local search approach,
an extended preprocessing is performed which ap-
plies the following three rules to the graph G and
the additional edge set A in order to reduce |A|
and therefore the actual search space size.

Shrinking: All maximal edge-biconnected com-
ponents of G are identified and shrinked
into single new super-nodes as described in
[4]. Among the edges from A that con-
nect the same components, only the cheap-
est ones are retained. Edges connecting
nodes of the same component are always
discarded. After shrinking, G is always a
tree whose edges are the bridges of the origi-
nal graph. Note that now, E and A may not
be disjoint anymore, and GS and GA are
multi-graphs that may contain up to two
edges for any pair of nodes. Fig. 1(a) shows
an example in which the shaded subgraph
will be shrinked into a super-node and e2
will be discarded.

Edge elimination: Let for each edge e ∈ A the
set Q(e) ⊆ E be the set of all fixed edges
that are covered by e, i.e. the path in G

procedure EA:
create random initial population P of solutions;
do

select S1, S2 ∈ P via tournament selection;
create Schild via recombination of S1, S2;
mutate Schild;
if Schild 6∈ P then

replace worst solution in P by Schild;
until no new best solution for Ω iterations;

Figure 2. The steady-state EA framework.

connecting the end-nodes of e. If there are
two edges e, e′ ∈ A with Q(e) ⊂ Q(e′) and
c(e) ≥ c(e′), then e is obsolete and can be
removed forever from A. Figure 1(b) shows
an example in which edges e1 and e5 are
obsolete due to edge e4. All such obso-
lete edges can be identified in O(|V |2) time
as a byproduct from a dynamic program-
ming algorithm that computes distance val-
ues needed for the approximation algorithm
from Frederickson and Jájá [4, pp. 276–277].

Fixing of edges: We determine for each fixed
edge e0 ∈ E the set of edges that cover e0:
Cov(e0) = {e ∈ A | e0 ∈ Q(e)}. Each edge
e ∈ A that appears as the only element in
any set Cov(e0) must be contained in any
feasible solution in order to cover e0 and is
therefore fixed forever by moving it from A
to E; see Fig. 1(c) where edge e3 could be
fixed.

The fixing of edges introduces new edge-bi-
connected components into G, which are further
shrinked into new super-nodes. This shrinking,
however, might enable further edge eliminations
and/or a further fixing of edges. Therefore, all
three parts of preprocessing are repeated until no
more edges can be fixed.

4. Evolutionary local search

Although preprocessing can reduce |A| signifi-
cantly, it is in general not able to solve the prob-
lem completely. The steady-state EA framework

4

[1] shown in Fig. 2 is applied for further optimiza-
tion.

Candidate solutions are represented by directly
storing the set of selected edges S in form of
a hash-table. In this way, only O(|S|) space is
needed, where |S| is always less than |V | in our
case, and an edge can be added or deleted in con-
stant time.

In each iteration, one new offspring solution is
created by selecting two parents S1 and S2 and
performing recombination and mutation. The off-
spring always replaces the worst solution in the
population with one exception: A new solution
that is a duplicate of a solution already contained
in the population is discarded to ensure a mini-
mum degree of diversity and, thus, to counteract
premature convergence.

The tournament selection used for obtaining a
parent chooses a group of k solutions from the
population independently at random (multiple
choices of the same solution are allowed), and the
solution with the smallest total costs c(S) is the
selected one.

4.1. Stochastic local improvement
As a central element of the EA, a stochastic

local improvement procedure is used during ini-
tialization, recombination, and mutation. In this
way, the proposed EA searches the space of lo-
cally optimal solutions only; compare memetic
algorithms [13], which follow a similar principle.

Our stochastic local improvement removes re-
dundant edges from a feasible edge set S in a ran-
dom way until S becomes locally edge-minimal,
i.e. no further edges can be removed without mak-
ing S infeasible by introducing bridges into GS .

Figure 3 shows the detailed algorithm of local
improvement. It starts by determining for each
edge e0 ∈ E the number ncov(e0) of edges in S
that cover it. The needed path Q(e) ⊆ E of fixed
tree edges that are covered by edge e can be deter-
mined efficiently in O(|Q(e)|) time if during pre-
processing a complete depth-first search starting
from an arbitrary root node is once performed on
the tree G and each node’s predecessor and depth
are stored. In the second part, local improvement
checks each edge e ∈ S in a random order, if the
edge is for some fixed edge e0 ∈ Q(e) the only

procedure locally improve S:
∀e0 ∈ E : ncov(e0) ← 0;
for each e ∈ S do
∀e0 ∈ Q(e) : ncov(e0) ← ncov(e0) + 1;

T ← S;
do

select e ∈ T via tournament selection
(prefer more expensive edges);

T ← T \ {e};
if ∀e0 ∈ Q(e) : ncov(e0) ≥ 2 then

S ← S \ {e};
∀e0 ∈ Q(e) : ncov(e0) ← ncov(e0)− 1;

while T 6= ∅.

Figure 3. Stochastic local improvement.

cover (ncov(e0) = 1). If this is not the case, e is
considered redundant and removed from S; ncov

is updated accordingly.
Note that the order of checking the edges in S

is crucial. Edges processed first will in general be
removed with higher probability. Since we are in-
terested in making solutions as cheap as possible,
we heuristically bias the ordering towards more
expensive edges coming first: The next edge to be
processed is always chosen by performing a tour-
nament selection on all yet unprocessed edges in
S, i.e. from a group of klocimp randomly chosen
edges, the most expensive edge is selected.

The average computational effort of the com-
plete procedure is O(|S| log |V |) since |Q(e)| =
O(log |V |) in average.

4.2. Initialization
Local improvement can immediately be used

to generate the EA’s initial solutions by calling
it with S = A. Enough diversity is provided in
such an initial population due to the randomness
of the edge processing order as long as klocimp is
not too large.

4.3. Recombination
Recombination is performed by applying lo-

cal improvement to the union S1 ∪ S2 of both
parents’ edge sets. In this way, a new feasible
and locally optimal offspring is always created
containing only edges that already appeared in

5

procedure mutate S:
do nmut times:

choose e ∈ S randomly;
S ← S \ {e};
∀e0 ∈ Q(e) : ncov(e0) ← ncov(e0)− 1;
for each e0 ∈ Q(e) s.t. ncov(e0) = 0

in random order do
select e′ ∈ Cov(e0) \ {e}

(prefer cheaper edges);
S ← S ∪ {e′};
∀e′0 ∈ Q(e′) : ncov(e′0) ← ncov(e′0) + 1;

locally improve S; end.

Figure 4. Mutation.

one of the parental solutions. Thus, meaningful
building-blocks [6] can effectively be transported
from parents to offsprings, and strong locality is
provided. Since joining the parental edge sets
takes O(|S1|+ |S2|) time and |S| < |V | for any lo-
cally improved solution S due to Mader’s theorem
[12], the overall computational effort of recombi-
nation is O(|V | log |V |) in average.

4.4. Mutation
The purpose of mutation in the proposed EA

is to vary solutions slightly. It counteracts a pre-
mature convergence by introducing edges from A
that are not contained in any solution of the pop-
ulation. Figure 4 shows the detailed algorithm.

The procedure chooses an edge e ∈ S randomly
and removes it. Each fixed edge e0 ∈ Q(e) which
is now uncovered (ncov(e0) = 0) is determined
and covered anew by adding a replacement edge
from Cov(e0) (the set of all edges from A cover-
ing e0, see section 3). Since edges from S might
become redundant when adding new replacement
edges, local improvement is again performed as
final step. The whole mutation is repeated nmut

times, where nmut is a strategy parameter con-
trolling how disruptive mutation is.

As an additional heuristic, the random choice
of a replacement edge from Cov(e0) is biased to-
wards cheaper edges by using tournament selec-
tion again.

Provided that Cov(e0) is determined for all

e0 ∈ E already during preprocessing, the av-
erage computational effort of mutation is again
O(|V | log |V |) due to the final local improvement.

5. Empirical results

We present empirical results for the most diffi-
cult problem instances from [11], which have been
created using a generator from Zhu [16], and some
new, larger instances. Since shrinking can always
effectively reduce the problem of augmenting a
general connected graph G to the problem of aug-
menting a tree, G is always a spanning tree in
these test instances and |E| = |V | − 1.

Table 1 shows properties of the considered in-
stances. All graphs were randomly created. For
instances A3 to R2, costs of all edges e ∈ A
were randomly chosen integers from the intervals
printed in column c(e). Instances E1 to E3 are
Euclidean problems where nodes are randomly
placed points in a square region of the plane, and
edge costs correspond to the points’ Euclidean
distances. G is a random spanning tree in case of
instances A3 to R2 and a minimum-cost spanning
tree in the Euclidean cases.

Furthermore, Table 1 shows the impacts of pre-
processing. Especially when the fully augmented
graph GA is sparse, as in instances A3, B1, and
B6, the fixing of edges together with the iterative
shrinking can dramatically reduce the number of
nodes and therefore the problem size. In this case,
or when G is similar to a star, edge elimination is
usually less effective. On the other hand, if GA is
dense as in the remaining instances, none or only
few edges can typically be fixed and no substan-
tial shrinking is therefore possible, but the edge
elimination step reduces A often dramatically.

In average, preprocessing could shrink A to
about the half of its original size. Especially for
larger problem instances, times tpre for prepro-
cessing are neglectable in comparison to the EA’s
total execution times.

The following EA setup was used since it
proved to work well in most situations accord-
ing to extensive preliminary tests. Population
size: |P |=100; group size for main tournament
selection: k = 5, for edge-selection during local
improvement: klocimp = 5, and for edge-selection

6

Table 1
Problem instances and results of preprocessing.

Instance |V | |A| c(e) |Vpre| |Apre| tpre [s]
A3 40 29 [1,780] 12 13 0.1
B1 60 55 [1,1770] 8 4 0.1
B6 70 81 [1,2415] 31 39 0.2
D3 90 366 [1, 4005] 90 278 0.3
D5 100 398 [1,4950] 100 301 0.4
M1 70 290 [1,2415] 70 227 0.2
N1 100 1104 [10,50] 100 687 0.6
N2 110 1161 [10,50] 110 734 0.6
R1 200 9715 [1,100] 200 3995 11.2
R2 200 9745 [5,100] 200 3702 10.9
E1 200 19701 Euclidean 200 4104 25.8
E2 300 11015 Euclidean 300 4462 31.5
E3 400 7621 Euclidean 400 4806 51.6

during mutation: kmut = 4; number of edges re-
moved during mutation: nmut = 5. A run of the
EA was terminated when no new best solution
had been found during the last Ω = 10, 000 iter-
ations.

Table 2 shows results of the iterative heuris-
tic (ITH) from Zhu et al. (reprinted from [16]),
our previous hybrid EA (HEA) [11], and the
new evolutionary local search (ELS). For each
problem instance, the total costs c(S∗) of the
best known solution S∗ are listed in the table.
Qualities of solutions S obtained by the three
approaches are printed as percentage gaps with
respect to these best known solutions: gap =
(c(S) − c(S∗))/c(S∗) · 100% . Results were ob-
tained by averaging over 100 runs per instance in
case of ELS and 10 runs per instance in case of
HEA. ITH gives always the same solutions due to
its determinism. The success rate sr denotes in
how many of the performed runs a solution having
costs c(S∗) could be identified. It is remarkable
that ELS was able to find best known solutions
S∗ in all 100 runs for instances A3 to M1, N2, and
R1. ELS’s success rates and average gaps are for
all considered instances significantly better than
those of HEA and ITH, with the exception of A3,
B1, B6, and M1 for which HEA could also identify
best known solutions in all runs.

For HEA and ELS, Table 2 shows also average

numbers of created and evaluated candidate so-
lutions evals and CPU-times t (in seconds) until
the finally best solutions had been obtained. ELS
needed always significantly fewer evaluations and
less time than HEA. For E1, the instance with
the largest set A, ELS was more than 100 times
faster than HEA.

6. Conclusions

The main features of the proposed evolution-
ary local search for the E2AUG problem are: (a)
the deterministic preprocessing of problem data,
which is able to reduce the number of edges un-
der question dramatically, (b) the stochastic local
improvement with its cost-based heuristic, and
(c) the specifically designed recombination and
mutation operators which are based on local im-
provement and provide strong locality. Because
of these, the EA focuses on the hard core of the
problem and efficiently searches the space of feasi-
ble, locally optimal solutions only. Due to the rel-
atively low computational effort of O(|V | log |V |)
for recombination and mutation, the EA scales
well to larger problem instances.

Future work will include a generalization of the
approach for k-edge connectivity and vertex con-
nectivity augmentation.

7

Table 2
Average results of ITH, HEA, and ELS.

Instance c(S∗) ITH HEA (10 runs) ELS (100 runs)
gap gap sr evals t [s] gap sr evals t [s]

A3 6607.0 2.98% 0.00% 100% 380 0.1 0.00% 100% 0 0.1
B1 15512.0 0.00% 0.00% 100% 50 0.1 0.00% 100% 0 0.1
B6 19022.0 0.02% 0.00% 100% 9415 4.5 0.00% 100% 7 0.2
D3 20321.0 0.44% 0.15% 60% 4130 7.5 0.00% 100% 607 2.6
D5 19355.0 1.28% 0.35% 80% 18160 32.2 0.00% 100% 499 2.7
M1 2940.0 2.38% 0.00% 100% 15405 14.7 0.00% 100% 181 1.2
N1 383.0 3.92% 2.61% 10% 95335 230.4 0.47% 42% 3998 10.4
N2 429.0 4.90% 2.38% 0% 120385 545.0 0.00% 100% 3793 11.3
R1 121.4 – 1.12% 40% 244325 12398.3 0.00% 100% 12410 135.3
R2 320.5 – 6.73% 0% 243085 11434.4 0.67% 13% 38912 218.5
E1 2873.8 – 12.84% 0% 236305 20740.1 0.98% 23% 34129 191.0
E2 9355.2 – 8.93% 0% 236480 22602.5 0.42% 2% 97764 731.0
E3 21329.1 – 8.38% 0% 246640 23970.4 0.55% 2% 113831 1451.4

REFERENCES

1. T. Bäck, D. B. Fogel, and Z. Michalewicz.
Handbook of Evolutionary Computation. Ox-
ford University Press, New York, 1997.

2. H. Esbensen. Finding (near-)optimal Steiner
trees in large graphs. In L. J. Eshelman, ed-
itor, Proceedings of the Sixth International
Conference on Genetic Algorithms, pages
485–491. Morgan Kaufmann, 1995.

3. K. P. Eswaran and R. E. Tarjan. Augmenta-
tion problems. SIAM Journal on Computing,
5(4):653–665, 1976.

4. G. N. Frederickson and J. Jájá. Approxima-
tion algorithms for several graph augmenta-
tion problems. SIAM Journal on Computing,
10(2):270–283, 1981.

5. H. N. Gabow, Z. Galil, T. Spencer, and R. E.
Tarjan. Efficient algorithms for finding min-
imum spanning trees in undirected and di-
rected graphs. Combinatorica, 6(2):109–122,
1986.

6. D. E. Goldberg. Genetic Algorithms
in Search, Optimization, and Learning.
Addison-Wesley, Reading, Massachusetts,
1989.

7. S. Khuller. Approximation algorithms for
finding highly connected subgraphs. In

D. Hochbaum, editor, Approximation Algo-
rithms for NP-hard Problems, pages 236–265.
PWS Publishing, Boston, MA, 1996.

8. S. Khuller and R. Thurimella. Approxi-
mation algorithms for graph augmentation.
Journal of Algorithms, 14(2):214–225, 1993.

9. J. Knowles and D. Corne. A new evolutionary
approach to the degree constrained minimum
spanning tree problem. IEEE Transactions
on Evolutionary Computation, 4(2):125–134,
2000.

10. I. Ljubić and G. R. Raidl. An evolution-
ary algorithm with stochastic hill-climbing for
the edge-biconnectivity augmentation prob-
lem. In E. Boers, J. Gottlieb, P. Lanzi,
R. Smith, S. Cagnoni, E. Hart, G. Raidl,
and H. Tijink, editors, Applications of Evolu-
tionary Computation, volume 2037 of LNCS,
pages 20–29. Springer, 2001.

11. I. Ljubić, G. R. Raidl, and J. Kratica. A
hybrid GA for the edge-biconnectivity aug-
mentation problem. In K. Deb, G. Rudolph,
X. Yao, and H.-P. Schwefel, editors, Pro-
ceedings of the 2000 Parallel Problem Solving
from Nature VI Conference, volume 1917 of
LNCS, pages 641–650. Springer, 2000.

12. W. Mader. Minimale n-fach kantenzusam-
menhängende Graphen. Math. Ann., 191:21–

8

28, 1971.
13. P. Moscato. Memetic algorithms: A short

introduction. In D. C. et al., editor, New
Ideas in Optimization, pages 219–234. Mc-
Graw Hill, Berkshire, England, 1999.

14. C. C. Palmer and A. Kershenbaum. Rep-
resenting trees in genetic algorithms. In
D. Schaffer, H.-P. Schwefel, and D. B. Fogel,
editors, Proceedings of the First IEEE Con-
ference on Evolutionary Computation, pages
379–384. IEEE Press, 1994.

15. S. Tsukiyama, K. Kioke, and I. Shirakawa.
An algorithm to eliminate all complex tri-
angles in a maximal planar graph for use
in VLSI floorplanning. In M. Sarrafzadeh
and D. T. Lee, editors, Algorithmic Aspects
of VLSI Layout. World Scientific Publishing,
1993.

16. A. Zhu. A uniform framework for ap-
proximating weighted connectivity problems.
B.Sc. thesis, University of Maryland, MD,
May 1999.

17. A. Zhu, S. Khuller, and B. Raghavachari.
A uniform framework for approximating
weighted connectivity problems. In Proceed-
ings of the 10th ACM-SIAM Symposium on
Discrete Algorithms, pages 937–938, 1999.

	tr
	e2aug

