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Abstract

The fundamental design choices in an evolutionary algorithm are its representation of can-

didate solutions and the operators that will act on that representation. We propose representing

spanning trees in evolutionary algorithms for network design problems directly as sets of their

edges, and we describe initialization, recombination, and mutation operators for this represen-

tation. The operators offer locality, heritability, and computational efficiency. Initialization and

recombination depend on an underlying random spanning tree algorithm; three choices for this

algorithm, based on the minimum spanning tree algorithms of Prim and Kruskal and on random

walks, respectively, are examined analytically and empirically. We demonstrate the usefulness

of the edge-set encoding in an evolutionary algorithm for the NP-hard degree-constrained min-

imum spanning tree problem. The algorithm’s operators are easily extended to generate only

feasible spanning trees and to incorporate local, problem-specific heuristics. Comparisons of

this algorithm to others that encode candidate spanning trees via the Blob Code, with net-

work random keys, and as strings of weights indicate the superiority of the edge-set encoding,

particularly on larger instances.

Keywords

Spanning trees, network design, edge-set representation, One-Max-Tree problem, degree

constraints, evolutionary algorithms, hybridization.

I. Introduction

Let G be a weighted, connected, undirected graph with node set V and edges E. A

spanning tree on G is a maximal, acyclic subgraph of G; that is, it connects all of G’s

nodes and contains no cycles. A spanning tree’s cost is the sum of the costs of its edges;

a spanning tree with the smallest possible cost is a minimum spanning tree (MST) on G.

When the graph’s edge costs are fixed and the search is unconstrained, the well-known

algorithms of Kruskal [1] and Prim [2] identify MSTs in times that are polynomial in the

number of nodes, as do more recent algorithms such as that described by Chazelle [3].

However, many variants of the MST problem are computationally difficult. Some seek to

minimize objective functions other than the simple sum of a tree’s fixed edge weights. For

example, in the optimum communication spanning tree problem [4], a tree’s cost depends

on communication demands between each pair of nodes and on the tree’s structure. In

another version of this problem, edge costs are time-dependent [5].
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Often, only spanning trees that satisfy particular constraints are feasible. Examples

of such constraints include the degree constraint [6], which requires that no node in a

spanning tree have more than d ≥ 2 incident edges; leaf constraints [7], which specify

or bound the number of leaves a spanning tree may have; the diameter constraint [8],

which bounds the longest path in a spanning tree between any two nodes; and capacity

constraints [9], which limit the capacity of edges.

Other combinatorial problems can be mapped to spanning tree problems. These include

the rectilinear Steiner problem [10], which seeks the shortest tree composed of vertical and

horizontal line segments that connects a collection of points in the plane, and the fixed-

charge transportation problem [11], which seeks an economical plan for distributing a

commodity from sources to destinations. Finally, some spanning tree problems seek to

optimize several objective functions simultaneously [12].

Most such problems are NP-hard, and we can apply exact optimization algorithms only

to small instances of them. For larger instances, we turn to heuristic techniques, including

evolutionary algorithms (EAs).

Researchers have described EAs for all the MST-related problems listed above and

others. Most often, these algorithms have used implicit representations to encode span-

ning trees and have applied decoding algorithms to identify the spanning trees that chro-

mosomes represent. They have applied positional operators like k-point crossover and

position-by-position mutation to these chromosomes; these operators exchange, rearrange,

and modify symbols in parent chromosomes.

We propose representing spanning trees for evolutionary search directly as sets of their

edges. Applied to this representation, traditional initialization algorithms and positional

crossover and mutation operators are unlikely to generate edge-sets that form spanning

trees, so we describe new operators that are based on random spanning tree algorithms.

With these operators, the edge-set representation exhibits significant advantages over pre-

vious codings of spanning trees. Evaluating edge-sets is fast, as are both recombination

and mutation; under these operators, edge-sets have strong heritability and locality; it

is usually easy to incorporate problem-specific heuristics into hybrid algorithms; and the

operators can often handle constraints effectively.
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Section II lists desirable qualities of an evolutionary coding and its operators and exam-

ines previous codings of spanning trees in this context. Section III describes the edge-set

representation and initialization, crossover, and mutation operators for it. Section III-A

addresses the surprisingly subtle issue of generating random spanning trees and derives the

probabilities that various algorithms will generate trees of particular shapes. Section IV

examines the impact of the random spanning tree algorithm in an EA for a simple test

problem called One-Max-Tree. Section V describes the specialization of the edge-set rep-

resentation and its operators to the degree-constrained minimum spanning tree problem

and demonstrates how edge-cost-based heuristics can be incorporated. In a comparison

with other spanning tree representations, we find that in general the EA with edge-sets

identifies the best solutions and is fastest for large, hard problem instances. This sug-

gests the general usefulness of the edge-set representation in evolutionary algorithms for

computationally hard spanning tree problems.

II. Representing Spanning Trees

An evolutionary algorithm’s structure and parameter settings affect its performance,

but the primary determinants of an EA’s success or failure are the coding by which its

chromosomes represent candidate solutions and the interaction of the coding with the EA’s

recombination and mutation operators. Debate continues on when, how, and why EAs

work, but most researchers agree on the relevance of the following features of evolutionary

codings and their operators.

• Space: Chromosomes should not require extravagant amounts of memory.

• Time: The time complexities of evaluating, recombining, and mutating chromosomes

should be small. When chromosomes represent spanning trees, evaluation may include

decoding a chromosome to identify the spanning tree it represents.

• Feasibility: All chromosomes, particularly those generated by crossover and mutation,

should represent feasible solutions.

• Coverage: The coding should be able to represent all feasible solutions. The entire

search space, or at least one optimal solution, should be reachable via the EA’s oper-

ators.
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• Bias: In general, representations of all solutions should be equally likely, though bias

may be an advantage if the favored solutions are near-optimal.

• Locality: A mutated chromosome should usually represent a solution similar to that of

its parent. Here, a mutated chromosome should represent a tree that consists mostly

of edges also found in its parent.

• Heritability: Offspring of crossover should represent solutions that combine substruc-

tures of their parental solutions. Here, offspring should represent trees consisting

mostly of parental edges.

• Constraints: Decoding of chromosomes and the crossover and mutation operators

should be able to enforce problem-specific constraints. Here, such a constraint might

bound the degrees of spanning trees’ vertices.

• Hybrids: The operators should be able to incorporate problem-dependent heuristics.

Here, such a heuristic might favor edges of lower cost.

One more consideration is particular to EAs that search spaces of subgraphs.

• Sparse graphs: Some codings can represent spanning trees only on complete graphs.

Can the coding also be used to represent subgraphs of graphs that do not contain

every possible edge?

The following sections describe codings of spanning trees of a graph G = (V,E) on

n = |V | nodes with m = |E| edges in terms of these considerations, except hybridization.

Table I summarizes this discussion and includes entries for the edge-set representation.

A. Characteristic Vectors

A characteristic vector is a binary string whose positions correspond to items in a set.

Each bit indicates whether or not the corresponding item is included in the structure

the string represents. When such a vector represents a spanning tree, the items are the

edges of G, and the vector indicates whether each edge is or is not part of the tree.

Several researchers, including Davis et al. [13] and Piggott and Suraweera [14], have used

characteristic vectors to represent spanning trees in evolutionary algorithms. These EAs

have applied positional operators like k-point crossover and position-by-position mutation.
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A characteristic vector requires space proportional to m. In a complete graph, m =

n(n − 1)/2 and the size of the search space is 2n(n−1)/2. However, only a tiny fraction of

these chromosomes represent feasible solutions, since a complete graph G has only nn−2

distinct spanning trees [15]. Penalizing chromosomes that do not represent spanning trees

has not been effective [14]. Repair strategies have been more successful [16], but they

require additional computation and weaken the coding’s locality and heritability.

B. The Predecessor Coding

A more compact representation of spanning trees is the predecessor or determinant

coding, in which an arbitrary node in G is designated the root, and a chromosome lists

each other node’s predecessor in the path from the node to the root in the represented

spanning tree: if pred(i) is j, then node j is adjacent to node i and nearer the root. Thus

a chromosome is a string of length n− 1 over {1, 2, . . . , n}, and when such a chromosome

encodes a spanning tree, its edges can be made explicit in time that is O(n).

Applied to such chromosomes, positional crossover and mutation operators will generate

infeasible solutions, requiring again penalization or repair [17], [18]. Abuali et al. [19]

described a repair mechanism that applies to spanning trees on sparse as well as complete

graphs. Chu et al. [20] used the predecessor coding with both a penalty and repair in a

genetic algorithm for the degree-constrained minimum spanning tree problem. Berry et

al. [21] used it with special variation operators that produced only feasible solutions for

the optimum communication spanning tree problem. Chou et al. [22] performed further

investigations on this encoding with respect to the degree-constrained minimum spanning

tree problem.

C. Prüfer Numbers

Cayley’s Formula identifies as nn−2 the number of distinct spanning trees on a complete

graph with n nodes [15], [23, pp. 98–106]. Prüfer [24] presented a constructive proof of

this result: a pair of inverse mappings between spanning trees on n nodes and vectors of

length n − 2 over integers labeling the nodes. These vectors are called Prüfer numbers,

and they encode spanning trees via Prüfer’s mappings.

This coding is deceptively appealing. Prüfer numbers can be encoded and decoded in



8

times that are O(n log n). Because every Prüfer number represents a unique spanning tree,

they support positional genetic operators like k-point crossover and position-by-position

mutation without requiring repair or penalization. The degree of each node in a spanning

tree is one more than the number of times its label appears in the tree’s Prüfer number.

However, many researchers have pointed out that Prüfer numbers have poor locality

and heritability and are thus unsuitable for evolutionary search [17], [25], [26]. Patterns

of values in Prüfer numbers do not represent consistent substructures of spanning trees,

so the mutation of a single symbol may change many edges in the represented tree, and

crossover often generates offspring whose trees share few edges with their parents’ trees.

Further, Prüfer numbers cannot be easily used on incomplete graphs, and it is difficult to

implement constraints (except on degrees) or local heuristics.

Nonetheless, researchers have encoded spanning trees as Prüfer numbers in evolutionary

algorithms for a variety of problems. These include the degree-constrained minimum

spanning tree problem [18], [27], the minimum spanning tree problem with time-dependent

edge costs [5], the fixed-charge transportation problem [12], and a bicriteria network design

problem [28]. A recent comparison of codings in EAs for several spanning tree problems

demonstrated the inferiority of Prüfer numbers [29].

There are many other mappings like Prüfer’s from strings of n−2 node labels to spanning

trees. Recently, Picciotto [30] and Deo and Micikevicius [31] described several of them.

One, called the Blob Code, exhibits stronger locality and heritability than do Prüfer

numbers, and an EA for the One-Max-Tree problem performed significantly better when

it encoded spanning trees via the Blob Code than with Prüfer numbers [32]. As in Prüfer

numbers, each node’s degree in the spanning tree a string represents via the Blob Code

is one more than the number of times the node’s label appears in the string. The Blob

Code’s decoding takes time that in the worst case is O(n2) but is on average significantly

faster.

D. Link-and-Node Biasing

Palmer and Kershenbaum [17] proposed a versatile coding of spanning trees that they

called link-and-node biasing. In this coding, a chromosome is a string of numerical weights

associated with a graph’s nodes and, optionally, with its edges. The tree such a chromo-
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some represents is identified by temporarily adding each node’s weight to the costs of

all the edges to which the node is incident; if present, edge weights are added to their

edges’ costs, too. Then Prim’s algorithm is used to find a minimum spanning tree from

the modified edge costs. Because of the application of Prim’s algorithm, decoding (when

implemented with a Fibonacci heap) requires time that is Θ(m + n log n). Decoding can

enforce constraints, though at the cost of additional computation. Any string of weights

is a valid chromosome, so positional crossover and mutation operators can be applied.

In general, there exist spanning trees that cannot be represented by node weights alone;

edge weights are necessary to render every spanning tree reachable. Edge weights also

reduce the bias of this representation toward star-like structures [33]. However, edge

weights increase the size of each chromosome on a complete graph from n values to n +

n(n− 1)/2 = n(n + 1)/2.

Raidl and Julstrom [34] proposed a variant of this coding, called weight-coding, in an

EA for the degree-constrained minimum spanning tree problem. In weight-coding, the

weights in each chromosome are initially selected from a log-normal distribution, and

the biasing scheme is multiplicative rather than additive. The decoding algorithm was

modified to yield only trees that satisfy the problem’s degree constraint. Krishnamoorthy

et al. [18] described another variant of link-and-node-biasing, which they called problem

search space, for the degree-constrained minimum spanning tree problem.

E. Network Random Keys

Bean [35] described random keys to encode permutations; Rothlauf et al. [36], [37]

adapted random keys to represent spanning trees and called them network random keys.

In this coding, a chromosome is a string of real-valued weights, one for each edge. To

identify the tree a chromosome represents, the edges are sorted by their weights and

Kruskal’s minimum spanning tree algorithm considers the edges in sorted order. As with

link-and-node-biasing, any string of weights is a valid chromosome and positional crossover

and mutation operators may be used.

Because they represent trees via Kruskal’s algorithm, network random keys are dis-

proportionately likely to encode star-like trees and disproportionately unlikely to encode

path-like trees, a phenomenon that Section III-A.2 below examines. Each chromosome
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requires space that is O(m), and decoding is computationally expensive—O(m log m)—

because it requires sorting the edges. Thus, network random keys are effective only for

small or sparse problems. Rothlauf et al. [36] reported good results with this coding

on instances of the optimum communication spanning tree problem of up to 26 nodes.

Schindler et al. [38] further investigated random network keys in an evolution strategy

framework.

F. Other Representations

Other representations of spanning trees are less often used. In degree-based permuta-

tions [39], a chromosome consists of two strings. The first holds a permutation of the node

labels, and the second holds the nodes’ degrees. The tree this pair represents is obtained

by connecting the nodes in the specified order and with the specified degrees. In Prüfer-

based permutations [40], a chromosome holds indices into a list of multiple copies of the

node labels. These indices specify the order in which labels are removed from the list and

concatenated to an initially empty Prüfer number, which in turn represents a spanning

tree. Not surprisingly, neither of these codings exhibits strong locality or heritability under

positional operators.

Knowles and Corne [25] described a coding of spanning trees whose degrees do not

exceed a bound d ≥ 2. In it, a chromosome is an array of n · d integers that influence the

order in which a variant of Prim’s algorithm attaches the nodes to a growing spanning tree.

On several hard instances of the degree-constrained minimum spanning tree problem, an

EA using this coding outperformed several other heuristics. Section V below compares

this coding with the edge-set representation.

To our knowledge and with the exception of our own recent work [41], [42], only the

following publications have considered EAs for spanning tree problems that represent can-

didate spanning trees directly as sets of their edges. Li and Bouchebaba [43] proposed

crossover and mutation operators based on edges, paths, and subtrees of spanning trees in

an EA for the optimum communication spanning tree problem. Li [44] described the tree

representation in more detail. However, most of the crossover and mutation operators de-

scribed for it require O(n2) time; our operators, which the next section describes, are more

efficient. Recently, Rothlauf has considered representations for genetic and evolutionary
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Fig. 1. A spanning tree on twelve nodes and an edge-set that represents it.

algorithms [37]; he also presents a direct representation of spanning trees.

III. The Edge-Set Representation and its Operators

We propose representing spanning trees directly as sets of their edges; Figure 1 shows a

spanning tree on twelve nodes and an edge-set that represents it. This representation can

be implemented in an array or a hash table whose entries are the pairs of nodes that define

each edge. The latter data structure allows insertion, lookup, and deletion of individual

edges in constant time; both require space that is linear in the number n of nodes.

An evolutionary algorithm requires an initial population of diverse chromosomes. For

the edge-set representation, we therefore need an algorithm that generates spanning trees

at random. This algorithm is also the basis for the recombination operator. Recombination

of two parent spanning trees merges their edge-sets and derives a new random spanning

tree from this union. Recombination can be considered an extension of uniform crossover

into the domain of spanning trees.

Since creating random spanning trees is such a fundamental task, Section III-A describes

several algorithms for this purpose and examines them analytically. Section III-B compares

these algorithms empirically. Section III-C describes recombination of parent edge-sets

based on the generation of random spanning trees, and Section III-D presents mutation

for edge-sets that represent spanning trees.

A. Creating Random Spanning Trees

When an evolutionary algorithm searches a space of spanning trees, its initial population

consists of chromosomes that represent random trees. It is not as simple as it might seem to

choose spanning trees of a graph so that all are equally likely. Techniques based on Prim’s

and Kruskal’s minimum spanning tree algorithms do not associate uniform probabilities
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with spanning trees; techniques that do are limited in their application, computationally

tedious, or not guaranteed to terminate.

A.1 Extending Prim’s Algorithm

Prim’s algorithm [2] greedily builds a minimum spanning tree from a start node by

repeatedly appending the lowest-cost edge that joins a new node to the growing tree.

Choosing each new edge at random rather than according to its cost yields a procedure

we call PrimRST:

procedure PrimRST(V ,E):

T ← ∅;
choose a random starting node s ∈ V ;

C ← {s}; (* set of connected nodes *)

A ← {e ∈ E | e = (s, v), v ∈ V }; (* eligible edges *)

while C 6= V do

choose an edge (u, v) ∈ A, u ∈ C at random;

A ← A− {(u, v)};
if v 6∈ C then (* connect v to the partial tree *)

T ← T ∪ (u, v);

C ← C ∪ {v};
A ← A ∪ {e ∈ E | e = (v, w) ∧ w 6∈ C};

return T .

Representing the graph G = (V,E) with adjacency lists [45, pp. 232–233] allows fast

identification of the edges adjacent to each newly connected node and the implementation

of PrimRST in time that is O(m). If G is complete, it is necessary only to keep track of

the set of nodes currently in the spanning tree (C in the sketch above) and its complement

V − C; each new edge is identified by choosing one node at random from each set, and

the algorithm’s time and space are both only O(n).

Not only is PrimRST simple and efficient, but it can easily be extended to return

only trees that satisfy various constraints. Constraints on a tree’s degree, diameter, and

capacity, for example, can be honored by accepting only edges whose inclusion does not

render the tree invalid.
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Unfortunately, PrimRST yields trees of some structures with much higher probabilities

than others. The edges adjacent to PrimRST’s starting node are in the set A of eligible

edges from the beginning and are therefore more likely to be included in the tree than

are edges adjacent to later nodes. Thus, the trees that have the highest probability under

PrimRST are stars, in which one root node connects to all the others.

More formally, consider the probabilities that PrimRST returns a star and a Hamiltonian

path on a complete graph G of n nodes; the tendencies these probabilities indicate also

hold for incomplete graphs.

The first two edges PrimRST fixes always share a node. A star is created if in each

following step i = 3, . . . , n− 1, a new node is connected to this common root, which is the

case with probability 1/i. The probability that PrimRST returns a star is therefore

1 · 1 · 1

3
· 1

4
· 1

5
· · · 1

n− 1
=

2

(n− 1)!
.

There are n distinct stars on n nodes, so the probability of a particular star is

pstar =
1

n
· 2

(n− 1)!
=

2

n!
.

The number of distinct spanning trees on n nodes is nn−2 [15]; an unbiased algorithm

would assign each the probability

punif =
1

nn−2
.

The probability pstar that PrimRST generates a particular star is greater than this

uniform probability for any n ≥ 4:

2

n!
>

1

nn−2
⇐⇒ 2 >

n!

nn−2
.

Conversely, the trees that have the smallest probabilities are (Hamiltonian) paths, in

which all nodes, except two leaves, have degree two. The probability that PrimRST returns

any path is

1 · 1 · 2

3
· 2

4
· 2

5
· · · 2

n− 1
=

2n−2

(n− 1)!
.

The first two edges chosen will always form part of a path; each subsequent edge must be

incident to one of the leaves of the partial path.
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Fig. 2. PrimRST: Normalized probabilities of creating a particular path or a particular star for a complete

graph on n nodes.

A complete, undirected graph on n nodes contains n!/2 Hamiltonian paths, so the

probability that PrimRST will return a particular one of them is

ppath =
2

n!
· 2n−2

(n− 1)!
=

2n−1

(n− 1)! n!
.

This probability is less than the uniform probability punif = 1/nn−2 for n ≥ 4; see Ap-

pendix A for a proof of this result.

Figure 2 shows the normalized probabilities pstar/punif and ppath/punif plotted against the

number n of nodes in the graph. Even for small n, the probability of a particular path

is several orders of magnitude smaller than that of a particular star, and the difference

increases dramatically with n. The probability that PrimRST returns a particular general

tree always lies between the probabilities of a path and a star.

On the other hand, the probability that PrimRST will return some path is greater than

the probability that it will return some star by a factor of 2n−3, because there are so many

more paths than stars.

A.2 Extending Kruskal’s Algorithm

Kruskal’s algorithm [1] also applies a greedy strategy to build a minimum spanning tree

of a graph G. It examines G’s edges in order of increasing cost and includes in the tree

those that connect previously unconnected components. Examining the edges in random

order yields a procedure we call KruskalRST :
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procedure KruskalRST(V ,E):

T ← ∅;
A ← E;

while |T | < |V | − 1 do

choose an edge (u, v) ∈ A at random;

A ← A− {(u, v)};
if u and v are not yet connected in T then

T ← T ∪ {(u, v)};
return T .

By using a union-find data structure with weight balancing and path compression [45,

pp. 183–189], the determination that two nodes are or are not connected in the devel-

oping spanning tree can be carried out in nearly constant time. Thus the total time for

KruskalRST is O(m), as with PrimRST in its general case.

Also like PrimRST, KruskalRST is more likely to generate some trees than others. We

examine some probabilities in complete graphs, but the tendencies apply generally, as

before.

Consider the probability that KruskalRST returns a particular star. There are n − 1

edges in the star and
(

n
2

)
edges in G, so the probability that the first edge KruskalRST

chooses is in the star is (n − 1)/
(

n
2

)
. At each following step, one of the star’s remaining

unchosen edges must be included in T , and the total number of eligible edges is
(

n
2

)−(|T |
2

)
;

an edge is eligible unless it joins two nodes already in the star.

Thus the probability that KruskalRST identifies the star is

pstar =
n− 1(

n
2

) · n− 2(
n
2

)− 1
· n− 3(

n
2

)− (
3
2

) · n− 4(
n
2

)− (
4
2

) · · · 1(
n
2

)− (
n−1

2

) =
(n− 1)!∏n−1

i=1

((
n
2

)− (
i
2

)) .

Since

n−1∏
i=1

((
n

2

)
−

(
i

2

))
=

1

2n−1
·

n−1∏
i=1

(n(n− 1)− i(i− 1))

=
1

2n−1
·

n−1∏
i=1

(n− i)(n + i− 1)

=
1

2n−1
· (n− 1)! · (2n− 2)!

(n− 1)!
=

(2n− 2)!

2n−1
,
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Fig. 3. KruskalRST: Normalized probabilities of creating a particular star and a lower bound for the

creation of any particular structure for a complete graph on n nodes.

we can write

pstar =
2n−1(n− 1)!

(2n− 2)!
.

This probability is again larger than punif , but smaller than the probability that PrimRST

returns the same star.

The exact probability that KruskalRST returns a path is much harder to identify. In-

stead, we derive a lower bound pany for the probability that KruskalRST returns a partic-

ular spanning tree of any structure, including a path.

Consider the cases in which KruskalRST identifies the n − 1 edges of the target tree

before any others. The orders in which the target tree’s edges and the
(

n
2

) − (n − 1)

remaining edges are examined are irrelevant, so the bound we seek is

pany =
(n− 1)! (n(n− 1)/2− n + 1)!

(n(n− 1)/2)!
=

1(
n(n−1)/2

n−1

) .

This computation ignores the cases in which KruskalRST discards edges before the tree

is finished, so the bound is not tight. Still, it shows that KruskalRST returns paths (in

particular) with substantially higher probabilities than does PrimRST. Figure 3 plots the

ratios of probabilities pstar/punif and pany/punif against the number n of nodes in G for

KruskalRST. Comparing this figure with Figure 2 makes clear that KruskalRST is much

less biased than PrimRST.

KruskalRST can honor constraints by rejecting edges that would render partial solutions

invalid, but it is not as flexible as PrimRST. Local constraints, as on nodes’ degrees (Sec-
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tion V), can be maintained in this way, but constraints involving large parts of spanning

trees, as on trees’ diameters or the capacities of edges in a communications network [46],

usually cannot. In the latter cases, KruskalRST may generate valid, unconnected subtrees

that cannot be connected to form a feasible solution.

A.3 A Random Walk through G

Both PrimRST and KruskalRST associate non-uniform probabilities with the spanning

trees of a graph G, though the latter is less biased than the former. This section describes

three mechanisms that generate spanning trees in an unbiased way.

Section II-C described Prüfer numbers: vectors of length n − 2 over an alphabet of n

node labels that are in one-to-one correspondence with the spanning trees on n nodes.

It is easy to generate random Prüfer numbers with uniform probabilities; decoding them

yields unbiased random spanning trees. This is an effective and efficient mechanism when

the underlying graph G is complete.

Guénoche [47] described a random spanning tree algorithm for general graphs. It is

based on the fact that the number of distinct spanning trees in a graph can be found by

computing a determinant of size n× n, and it requires time that is O(n5). Colbourne [48]

modified the algorithm to require fewer determinant computations and reduced its time

to O(n3). This might be acceptable for the initialization of an EA’s population, but is too

expensive to be the basis of a recombination operator.

Broder [49] described a probabilistic method based on a random walk in G. A particle

begins at an arbitrary node in G. At each step, it moves over a randomly chosen adjacent

edge to one of its neighbors. When the particle visits a node for the first time, the edge it

traverses joins the spanning tree. The algorithm terminates when the particle has visited

every node and thus completed a spanning tree. We call this algorithm RandWalkRST :
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procedure RandWalkRST(V ,E):

T ← ∅;
v0 ← a random node of G;

mark v0 as visited;

while |T | < n− 1 do

v1 ← a random neighbor of v0;

if v1 has not yet been visited then

T ← T ∪ {(v0, v1)};
mark v1 as visited;

v0 ← v1;

return T .

Broder showed that this process returns spanning trees with uniform probabilities.

While its worst-case time is unbounded—the particle may never visit some nodes—its

expected time is O(n log n) for almost all graphs and O(n3) for a few special cases.

Like PrimRST, RandWalkRST can honor constraints by disallowing edges that would

violate them, though such a strategy will in general render non-uniform the probabilities

of valid spanning trees.

Broder [49] also described a mechanism that walks randomly not through the graph

but through the space of spanning trees on it. It begins with an arbitrary spanning tree,

then repeatedly replaces a random edge with a new one that reconnects the tree. The

distribution of spanning trees generated by this scheme converges to a uniform distribution

even if G is incomplete, and the distribution is nearly uniform after a number of steps that

is polynomial in n.

B. An Empirical Comparison

To further examine properties of spanning trees created by PrimRST and KruskalRST,

we applied these algorithms and RandWalkRST to complete graphs of different sizes and

measured the diameters of the resulting general spanning trees. A tree’s diameter is the

number of edges in a longest path in the tree. This value expresses the similarities of the

tree to a star, which has the minimum diameter of two, and to a path, which has the
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random spanning trees created by PrimRST, KruskalRST, and RandWalkRST on complete graphs

of n nodes.

maximum diameter of n− 1.

In the experiments, the number n of nodes ranged from three to 1 000, and each random

tree algorithm was called 500 times for each size. Figure 4 summarizes the results of these

trials; it plots the average diameters of the trees the three algorithms returned against the

size of the underlying graph.

The results conform to the analyses in the preceding sections. At each number of nodes

greater than three, PrimRST returned trees of the smallest average diameter, thus the

most like stars. KruskalRST returned trees of larger average diameter, thus less like stars

than those of PrimRST. RandWalkRST returned trees of the largest average diameter,

thus the least like stars and the most like paths.

These differences were consistent and increased with n. When n = 1 000, the average

diameter of the PrimRST trees was about a quarter of that of RandWalkRST’s trees,

and the average diameter of KruskalRST’s trees was about 2/3 of the latter value. Both

KruskalRST and especially PrimRST are biased toward shallow, star-like structures.
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Fig. 5. Recombination of spanning trees by applying a random spanning tree algorithm to the union of

the parental edge-sets.

C. Recombination

To provide good heritability, a recombination operator must build an offspring spanning

tree that consists mostly or entirely of edges found in the offspring’s parents. This can

be done by applying any of the random tree algorithms described in the previous section

to the graph Gcr = (V, T1 ∪ T2), where T1 and T2 are the edge-sets of the parental trees.

Figure 5 illustrates this operation.

When recombination applies PrimRST, it builds adjacency lists from the two parental

edge-sets. In this case, |T1 ∪ T2| ≤ 2n − 2, and the time recombination requires is O(n).

Recombination based on KruskalRST also requires time that is linear in n.

In the absence of constraints, it is always possible to build an offspring spanning tree

using only edges from the two parents. However, when a problem constrains spanning

trees, recombination using only parental edges, whether based on PrimRST, KruskalRST,

or some other algorithm, may generate infeasible trees. When recombination runs out

of feasible edges from T1 ∪ T2, it must include feasible edges from E − (T1 ∪ T2); i.e.,

edges found in neither parent. Usually, only a few non-parental edges are necessary to

build a valid offspring, and this strategy avoids complex repair and penalty mechanisms.

Section V demonstrates this for degree-constraints on the nodes.

We distinguish variants of the recombination operator by the random spanning tree al-

gorithms they use and their treatment of edges appearing in both parents. Recombination

may favor such common edges, always including them in an offspring, or it may treat all

parental edges equally. Section IV below compares these alternatives. As demonstrated

in Section V, recombination may also modify edges’ probabilities heuristically, favoring,

for example, feasible edges of lower cost.
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(a)

(b)

Fig. 6. Mutation by either (a) including a new edge and removing another from the introduced cycle or

(b) by removing a randomly chosen edge, determining the separated components, and reconnecting

them by a new edge.

D. Mutation

Mutation (re-)introduces genetic information into the population. To provide high lo-

cality, a mutation operator should usually make a small change in a parent solution. Here,

the smallest possible change is the replacement of one spanning tree edge with another

feasible edge.

This replacement can be implemented in two ways. The first, which Figure 6(a) depicts,

chooses an edge at random from E − T and includes it in T . This creates a cycle. The

operator then chooses a random edge in the cycle and removes it from T . If T is temporarily

represented by adjacency lists, a depth-first search can quickly identify the cycle, and the

operator’s time is O(n).

The second approach, which Figure 6(b) illustrates, deletes a random edge from T and

replaces it with a random new edge that reconnects the tree. On a complete graph and

without constraints, this operation’s time is also O(n), but it may be computationally

more expensive on an incomplete graph or under constraints.

IV. The One-Max-Tree Problem

We compare the techniques just described in a steady-state EA for a simple spanning tree

problem called One-Max-Tree. In the well-known One-Max problem [50], a bit string’s

fitness is the number of 1’s it contains. In the One-Max-Tree problem [51], a target

spanning tree on a complete base graph is specified, and the fitness of any other tree is the

number of edges that it shares with the target. An EA that supports meaningful building

blocks should be able to solve this problem easily.
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The evolutionary algorithm for One-Max-Tree is conventional. At each step, it selects

two parents in binary tournaments with replacement. It recombines them to generate

one offspring, which is then mutated. The resulting solution replaces the worst in the

population, except when it duplicates an existing solution. In the latter case, to preserve

diversity in the population, the EA discards the offspring.

Initialization of the population and recombination are based on PrimRST, KruskalRST,

or RandWalkRST, as the previous section described. In recombination, either all parental

edges are treated equally, or edges appearing in both parents are favored and automatically

appear in their offspring. We identify the latter variants with the symbol ‘*’.

The resulting six versions of the EA were applied to instances of One-Max-Tree of 10 to

100 nodes. The target trees were randomly chosen stars, general trees (generated by Rand-

WalkRST), and paths. The EA’s population size was 100 throughout, and the algorithm

was run 50 independent times for each combination of initialization and recombination

technique, problem size, and target tree structure. The EA always identified the target

tree, though the number of evaluations it required to do so varied. Table II lists the

average numbers evals of evaluations required to identify the target and their standard

deviations s.

The most prominent result is that regardless of the RST-algorithm used for initialization

and recombination, the EA usually identified stars more quickly than general trees and

much more quickly than paths, and the differences became larger as the number of nodes

increased. Figure 7 plots the average numbers of iterations needed to identify the target

against the problem size for the EA with RandWalkRST. Since RandWalkRST does not

favor stars, we might be surprised that it identifies them most rapidly. The explanation

lies in the fact that the space of spanning trees is most sparse near stars; the EA can reach

them from nearby structures most easily.

More formally, let G be a complete graph on n nodes and let two spanning trees be

neighbors if they differ in exactly one edge. If G is complete, a star has only (n−1)(n−2) =

O(n2) neighbors, while a path has 1
6
n(n− 1)(n + 1)− n + 1 = O(n3) neighbors [52].

Due to the large differences in the probabilities of KruskalRST and especially PrimRST

for creating star- versus path-like structures, one might expect that the random spanning
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TABLE II

Average numbers of iterations needed by the EA using PrimRST, KruskalRST, or

RandWalkRST during initialization and recombination to solve the One-Max-Tree

problem for different target structures; in the ∗-variants, recombination favored

edges appearing in both parents.

PrimRST KruskalRST RandWalkRST
Struct. n

evals s evals s evals s
δP,K αP,K δK,R αK,R

star 10 446 113 737 180 797 172 -65% 0.0% -8% 4.6%

20 1 062 247 2 512 552 2 906 504 -137% 0.0% -16% 0.0%

50 14 742 4 973 27 823 7 759 29 267 7 221 -89% 0.0% -5% 16.9%

100 113 654 29 018 192 248 45 193 196 431 41 498 -69% 0.0% -2% 31.5%

tree 10 836 196 813 187 890 217 3% 27.0% -10% 2.9%

20 3 318 796 3 598 1 210 3 626 1 108 -8% 8.7% -1% 45.2%

50 66 353 28 546 74 092 25 102 69 994 25 333 -12% 7.7% 6% 20.9%

100 625 461 138 955 717 727 193 749 792 127 207 169 -15% 0.4% -10% 3.3%

path 10 1 026 254 821 199 784 236 25% 0.0% 5% 19.8%

20 5 314 1 445 3 654 574 3 254 732 45% 0.0% 12% 0.1%

50 127 065 56 306 111 331 52 128 98 801 40 056 14% 7.5% 13% 9.0%

100 1 188 204 358 886 1 166 542 387 468 1 234 315 296 382 2% 38.6% -6% 16.4%

PrimRST* KruskalRST* RandWalkRST*
Struct. n

evals s evals s evals s
δP∗,K∗ αP∗,K∗ δK∗,R∗ αK∗,R∗

star 10 393 69 540 102 488 99 -37% 0.0% 11% 0.6%

20 1 243 402 1 922 728 1 530 315 -55% 0.0% 26% 0.0%

50 10 616 3 133 13 232 3 475 11 777 3 292 -25% 0.0% 12% 1.7%

100 64 444 15 352 64 895 12 427 66 431 15 375 -1% 43.6% -2% 29.2%

tree 10 507 121 513 131 486 108 -1% 41.2% 5% 13.8%

20 1 485 395 1 527 325 1 714 545 -3% 28.2% -12% 2.0%

50 17 514 5 890 15 514 4 764 16 479 4 458 13% 3.2% -6% 14.9%

100 101 661 26 280 108 767 26 427 98 116 25 471 -7% 9.0% 11% 2.1%

path 10 531 109 461 110 471 89 15% 0.1% -2% 67.9%

20 1 479 504 1 386 383 1 503 473 7% 15.1% -8% 8.8%

50 16 559 4 778 16 841 4 435 19 162 7 327 -2% 38.0% -14% 2.9%

100 129 456 35 014 124 792 43 770 110 784 25 648 4% 27.9% 13% 2.7%
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Fig. 7. Average numbers of iterations needed by the EA with RandWalkRST to solve the One-Max-Tree

problem with stars, random trees, or paths as target.

tree algorithm underlying initialization and recombination would substantially affect the

EA’s performance. However, Table II indicates that this is not the case. Columns δP,K and

δK,R list the relative differences (evals1 − evals2 )/ min(evals1 , evals2 ), where evals1 and

evals2 are the numbers of evaluations needed to identify the target tree when the EA used

PrimRST and KruskalRST, respectively KruskalRST and RandWalkRST. In general, the

differences are small and the variances are large. Columns αP,K and αK,R list the error

probabilities in t-tests of the hypotheses that differences exist; we may conclude with high

confidence only that PrimRST is the best choice when searching for star-like trees.

Thus the EA is robust with respect to the probabilities associated with spanning trees

during initialization and recombination. We have investigated this robustness in more

detail [53] and concluded that the probabilities associated with edges play a much more

significant role than do the probabilities associated with trees. If the underlying graph is

complete, edges are equally likely regardless of which of the three RST algorithms is used.

The lower half of Table II summarizes the trials in which the EA used the *-variants of

recombination, which favor edges that appear in both parents. Differences among these

versions of the EA were small and similar to the differences among the non-* recombina-

tion operators. However, compared to those operators, the *-variants enabled the EA to

identify target trees using substantially fewer evaluations. For example, when targets were

general random trees on 100 nodes, the EA required only about 15% as many evaluations
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to find them with the *-recombinations as it did with the non-* operators.

We conclude that the three random spanning tree algorithms are about equally effective

in this EA, and that recombination should conserve edges found in both parents. The bias

toward stars of PrimRST and KruskalRST is unimportant compared to the good locality

and heritability of the edge-set coding of spanning trees and the operators applied to it.

Another important comparison between the three random spanning tree algorithms is

the time they require, particularly in recombination. We have seen that PrimRST and

KruskalRST can be implemented in time that is essentially linear in the number n of nodes,

but RandWalkRST has expected time that is O(n log n) for most graphs and O(n3) for

some cases, and its time is unbounded in the worst case.

Figure 8 plots the average CPU time per iteration through 10 000 iterations of the

EA using PrimRST*, KruskalRST*, and RandWalkRST* in recombination against the

number of nodes in the graph. The curves for PrimRST* and KruskalRST* confirm their

linear times. They also illustrate the larger constant in the time of PrimRST*, which uses

more complex data structures than does KruskalRST*, in particular a temporary array of

adjacency lists. The computational effort of RandWalkRST* is slightly greater than linear,

but still reasonable. In our implementation, only for n > 350 does RandWalkRST*’s time

exceed that of PrimRST*, and the difference is still less than 20% when n = 1 000. All

three *-variants of the EA scale well to larger problem instances; KruskalRST* holds an
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advantage due to its simpler data structures.

For problems computationally more challenging than One-Max-Tree, we suggest con-

sidering all three random spanning tree algorithms and choosing the one that can best be

adapted to a problem’s constraints and hybridized with local heuristics, as the following

section demonstrates using the degree-constrained minimum spanning tree problem.

V. The Degree-Constrained Minimum Spanning Tree Problem

In a graph, the degree of a node is the number of edges adjacent to it, and the degree

of the graph is the maximum degree of its nodes. In a weighted, undirected graph G,

consider all the spanning trees whose degrees do not exceed a bound d ≥ 2. Among

these, a tree of minimum cost is a degree-constrained minimum spanning tree (d-MST);

the degree-constrained minimum spanning tree problem seeks such a tree. That is, if c(e)

is the cost of an edge e ∈ E, it seeks a spanning tree T ⊆ E that minimizes

C =
∑
e∈T

c(e),

subject to the constraint

degree(T ) ≤ d.

This problem is clearly NP-hard: When d = 2, it becomes the search for a Hamiltonian

path of minimum cost [54, p. 206].

Nevertheless, when the nodes are points in the plane and the edge costs are the Euclidean

distances between them, the problem is relatively easy. In this case, there always exists

an unconstrained minimum spanning tree of degree no more than five [55]. Finding a

d-MST in the plane is NP-hard when d = 3 and is conjectured to remain so when d = 4

[56]. Branch-and-bound techniques can find exact solutions for problem instances of several

hundred points in reasonable computing times [6], [18], and several authors have described

effective polynomial-time approximation schemes and heuristics [57], [58].

In general, however, edge costs need not satisfy the triangle inequality. An unconstrained

minimum spanning tree may have degree up to n − 1, and when a graph has a high-

degree unconstrained MST, identifying a d-MST for it is usually hard. Even for graphs of

moderate size, exact algorithms and many heuristics are slow, and evolutionary algorithms

are useful.
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(b) partial T(a) T1 ∪ T2 (c) completed T

(d = 3)

Fig. 9. Recombination with KruskalRST for the 3-MST problem: The partial solution in (b) cannot

feasibly be completed with parental edges shown in (a). Therefore, an edge from E − (T1 ∪ T2) must

be included (c).

As in most previous work on the d-MST problem, we consider the case in which the

underlying graph G is complete. However, our approach can be modified for incomplete

graphs.

A. Satisfying the Degree Constraint

An EA employing the edge-set representation can guarantee that every tree it generates

satisfies the degree constraint if we appropriately modify the initialization, recombination,

and mutation operators.

To create spanning trees of degree no more than d for the algorithm’s initial population,

each of PrimRST, KruskalRST, and RandWalkRST accepts a newly-chosen edge only if its

inclusion does not violate the degree constraint. Since the underlying graph is complete,

this does not prevent each algorithm from always returning a spanning tree. Checking the

feasibility of each new edge can be done quickly; it does not increase the time complexity

of the random spanning tree algorithms.

For recombination, the random spanning tree algorithms are modified in the same

way, but because of the degree constraint, it may become impossible to complete an off-

spring spanning tree using only parental edges. Figure 9 shows an example of this under

KruskalRST.

In such a case, recombination must include non-parental edges. How this is done depends

on the random spanning tree algorithm.

• Under PrimRST, two nodes are chosen at random, one from the nodes in the spanning

tree T whose degrees are less than d and the other from the unconnected vertices.

The edge connecting these two nodes is included in the set of eligible edges. With

this modification, recombination can still be implemented in time that is linear in n.
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• Under KruskalRST, after the parental edges have been exhausted, it is simple to

examine the non-parental edges in random order until the offspring tree has been

completed. The resulting algorithm’s time is, however, O(m) = O(n2).

A more efficient technique identifies the unconnected components of the incomplete

solution. These are connected by repeatedly adding edges between random nodes from

different components and with degrees less than the bound. This process requires time

that is only O(n).

• Under RandWalkRST, when the tree cannot be expanded with a parental edge, the

walk proceeds from a random connected node of degree less than d to any unconnected

node. This scheme requires keeping track of the unconnected nodes that may yet be

connected to the tree via a feasible parental edge; depending on the implementation,

maintaining this information can increase the algorithm’s expected time considerably.

During mutation, it is straightforward to ensure that the new edge does not violate the

degree constraint. If mutation inserts a new random edge before deleting one from the

cycle it completes, the following two special cases must be considered.

• If the new edge violates the degree constraint at both of its end-nodes, the edge is not

suitable for insertion and is therefore discarded; the selection of a new edge is repeated.

The probability of this case is small, so it does not much affect performance.

• If the new edge violates the degree constraint at one of its end-nodes, the edge to be

removed must be the other edge adjacent to this node in the cycle.

B. Heuristics Based on Edge-Costs

Including problem-specific knowledge in an EA often improves its performance. We

consider here a technique that is useful for many spanning tree problems: Choose edges

to be included in candidate spanning trees according to probabilities that are higher for

edges of lower cost.

We have previously investigated empirically the probability that an edge appears in a

near-optimal degree-constrained spanning tree as a function of the edge’s cost-based rank

[59]. On a complete graph of 100 nodes with several different cost structures, for example,

it was consistently the case that about 98% of the edges in near-optimal trees with d = 3
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had ranks less than 300 = 3n; that is, they were among the cheapest 6.1% of all the edges

in the graph. These results support the intuition that candidate solutions should favor

low-cost edges. The following sections describe computationally efficient implementations

of this favoritism in KruskalRST initialization, KruskalRST* recombination, and mutation

via insertion-before-deletion.

Heuristic Initialization. To favor low-cost edges when generating the initial population,

KruskalRST begins by sorting all the edges by their costs. It builds the population’s first

spanning tree by examining edges in sorted order; that is, in order of increasing costs. The

remaining trees are created with less heuristic bias by randomly permuting the cheapest

k edges in the sorted list, before KruskalRST scans it. The number of edges permuted

increases with each tree according to the formula

k = α(i− 1)n/P,

where P is the population size, i is the index of the next tree (i = 1, . . . , P ), and α is a

parameter that controls the heuristic bias, thus the diversity of the initial population.

Heuristic Recombination. To build an offspring spanning tree, KruskalRST* recombi-

nation includes edges common to both parents, examines in random order the remaining

parental edges E ′ = (T1 ∪ T2)− (T1 ∩ T2), and completes the offspring with non-parental

edges if necessary. To favor low-cost edges, the operator chooses each next edge from E ′ in

a 2-tournament with replacement; the contestant with lower cost is examined next. This

technique is simple and efficient, it favors low-cost edges without excluding more expensive

ones, and it does not increase the time complexity of the operator.

We have compared several similar heuristic recombination operators in EAs for the

traveling salesman and d-MST problems [59]. While an absolutely greedy strategy that

always selects the cheapest edge in E ′ performed slightly better on problem instances

that were simple or small, tournament-based selection was better on large and misleading

instances.

Heuristic Mutation. Mutation via insertion-before-deletion is also extended to favor the

insertion of low-cost edges. The edge to be inserted can be selected via a tournament on
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E − T , but this set is large, so such a tournament must also be large to reliably return

edges of low cost. In several experiments, the following strategy was more effective.

Sort the edges in E by their costs; then each edge has a rank, with ties broken randomly.

Identify a rank, thus an edge, by sampling the random variable

R = b|N (0, β n)|c mod m + 1 ,

where N (0, β n) is a normally distributed random variable with mean 0 and standard

deviation β n. Note that the values of R are integers between 1 and m = |E|. The

parameter β controls the strength of the scheme’s bias towards low-cost edges; Figure 10

shows the probability density function of R for various values of β, assuming that n À 1

and m À n.

This scheme may select an edge already in T or an otherwise infeasible edge, but the

probability that this will happen is small; such an edge is discarded and the selection

repeated. If the graph’s edges are sorted in a pre-processing step, this scheme can select

each edge in constant expected time, and the expected time of mutation remains O(n).

C. Empirical Comparisons

The edge-set representation of spanning trees, with and without the cost-based heuristics

just described, was compared to three competing codings in a steady-state EA for the

d-MST problem. When the algorithm represents candidate spanning trees by their edge-
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sets and non-heuristic operators are used, we identify it as ES-EA. The variant that

includes edge-cost-based heuristics is called HES-EA. The competing codings represent

spanning trees as strings via the Blob Code [32] (Section II-C), as network random keys

[36] (Section II-E), and as strings of real-valued weights that influence a decoding algorithm

[34] (Section II-D). We identify the variants of the EA that use these codings as BC-EA,

NRK-EA, and WE-EA, respectively.

All five variants initialize their populations with random solutions, according to their

codings of spanning trees. They select parents from the population in binary tournaments

with replacement. They create offspring via crossover with a probability of 80% and by

always applying one mutation. Each offspring, if it does not duplicate an existing solution,

replaces the worst solution in the population.

The algorithms’ populations always contain 500 candidate trees. In HES-EA, the param-

eters α and β, which control the degree of heuristic bias in initialization and mutation, are

both 1.5. BC-EA applies uniform crossover, position-by-position mutation, and to comply

with the degree constraint, the initialization and repair strategies described by Zhou and

Gen [7] for Prüfer numbers. NRK-EA uses uniform crossover and position-by-position

mutation as suggested in [51]; the degree constraint is enforced by decoding solutions via

a variant of Kruskal’s algorithm that accepts only feasible edges. WE-EA selects the val-

ues in its initial solutions from a normal distribution, and generates offspring via uniform

crossover and a mutation operator that resets weights to new normal random values, as

described by Raidl and Julstrom [34]. All five variants stop when the best solution has

not improved for 100 000 iterations.

Knowles and Corne [25] have observed that simple greedy heuristics can usually find

near-optimal solutions to instances of the d-MST problem with Euclidean or randomly

distributed edge costs. Similarly, HES-EA and WE-EA can in most cases identify optimal

solutions to such problems with few evaluations. We compare the EA variants on more

challenging instances that have high-degree unconstrained minimum spanning trees and

low-cost edges chosen to mislead greedy heuristics.

From Krishnamoorthy et al. [18] we adopt the “structured hard” instance set, which

contains four d-MST instances from 15 to 30 nodes with unconstrained MSTs of high
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degree. Here, the maximum degree d was set in turn to 3, 4, and 5, and each EA variant

was run 50 times on each of the resulting twelve instances.

Table III shows the results of these trials, along with optimal values generated by a com-

putationally expensive branch-and-cut algorithm, not yet published, and the previously

published results of the problem-space-search EA (PSS) of Krishnamoorthy et al. [18].

A trial’s percentage gap %-gap is the percentage by which the cost C of the trial’s best

tree exceeds the optimum cost Copt of the problem instance:

%-gap =
C − Copt

Copt

· 100%.

For each EA-variant on each problem instance, Table III displays the average %-gap over

the corresponding trials and the standard deviation s of the gaps. For ES-EA and HES-

EA, columns Opt show the number of trials that found an optimal spanning tree (out of

50 trials per instance).
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Table III reveals clear differences in performance among the EA variants. The edge-

set representation with and without heuristics (HES-EA and ES-EA) gave in general the

best results, followed by the weighted coding (WE-EA), network random keys (NRK-EA),

problem space search (PSS), and the Blob Code (BC-ES). The latter’s performance was

decisively the worst. ES-EA and HES-EA returned similarly good results, which were the

best on all the instances except SHRD300, where WE-EA sometimes performed slightly

better. On SHRD250 with d = 5, all three, HES-EA, ES-EA, and WE-EA, found optimum

solutions in all trials. On the remaining instances, of 15, 20, and 25 nodes, t-tests indicate

the superiority of ES-EA and HES-EA to WE-EA at a significance level much smaller than

1%. NRK-EA performed as well as (H)ES-EA only on the smallest instance SHRD150,

where it also identified optimum solutions most of the time. HES-EA was usually the

fastest of the competing algorithms, though all terminated on average within 15 seconds

on a Pentium-III/800MHz PC.

Because operations on edge-sets are fast, (H)ES-EA scales well to larger problem in-

stances. We demonstrate this, and further compare the five EA-variants, on a set of

larger “hard and misleading” d-MST instances. Nine of these instances, of 50, 100, and

200 nodes, were developed by Knowles and Corne [25]; we created three more instances

with similar structure of 300, 400, and 500 nodes. These instances are hard for simple

greedy algorithms because they contain low-cost edges that do not appear in optimum

solutions. These edges mislead greedy heuristics—e.g., Prim’s MST algorithm modified to

accept only edges that satisfy the degree constraint [6]—so that they produce only poor

solutions. Knowles and Corne [25] describe the creation of such instances in detail. In all

twelve instances, the degree constraint was set to d = 5. Each EA was run 50 times on

each instance.

Table IV reports the results of these trials and reprints the results of the EA of Knowles

and Corne [25] (Section II-F) on the first nine instances. For these instances, the costs

of optimal trees were again determined by branch-and-cut and were used to compute the

percentage gaps of the EA-results. For the remaining three instances, percentage gaps

were computed in terms of the lowest costs observed in all the trials on them; these costs

are marked by ‘*’ in the table.
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TABLE V

Average numbers of evaluations and CPU times until the best solutions for runs on

hard misleading problem instances. The runs of NRK-EA and WE-EA on M11 and M12

were terminated after 100 000 evaluations.

Instance BC-EA NRK-EA WE-EA ES-EA HES-EA

name n evals t [s] evals t [s] evals t [s] evals t [s] evals t [s]

M1 50 122 332 17 59 133 74 26 732 36 68 534 17 5 331 2

M4 100 221 378 58 113 504 633 78 824 408 202 678 97 12 958 7

M7 200 386 840 222 200 625 5 188 98 551 2 373 475 084 466 16 415 20

M10 300 531 862 506 249 008 15 723 265 684 16 793 969 885 1 396 36 124 69

M11 400 665 009 905 99 166 14 179 99 519 12 631 1 321 372 2 585 47 290 140

M12 500 848 315 1 525 99 268 27 341 99 801 19 026 1 793 420 8 466 60 701 240

Differences in the algorithms’ performances are readily apparent and without exception

significant at a level far less than 1%. HES-EA always returned the best results; on

instances of up to 200 nodes it often found optimal trees, as column Opt documents.

It is followed by WE-EA, ES-EA, the algorithm of Knowles and Corne (KC-EA) and,

trailing far behind, NRK-EA and finally BC-EA. The superiority of HES-EA becomes

more decisive as the instances become larger. Here, local heuristics based on edge-costs,

as they appear in HES-EA and implicitly in WE-EA, are an obvious advantage.

In the experiments Table IV summarizes, the trials of NRK-EA and WE-EA on the

400- and 500-node instances exceeded their allotted run-times and were terminated after

a total of 100 000 evaluations. Table V shows the EAs’ average numbers of evaluations

and average CPU times until the best solutions have been identified on instances of six

sizes. While the times of HES-EA, BC-EA, and ES-EA increase relatively slowly with

n, the times WE-EA and NRK-EA require grow rapidly. Decoding strings of weights to

degree-constrained spanning trees requires modifying all the edge costs and then applying

a variant of Prim’s algorithm that considers the degree-constraint; its time is O(n2 log n).

Similarly, sorting edges according to network random keys and applying Kruskal’s algo-

rithm requires O(m log m) time.
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VI. Conclusion

The most important factor in an evolutionary algorithm’s performance is the interaction

of its coding of candidate solutions with the operators it applies to them. We have proposed

that spanning trees be represented directly as sets of their edges, and we have described

initialization, recombination, and mutation operators for the edge-set encoding. These

operators offer strong locality and heritability and computational efficiency.

For the initialization and recombination operators, three algorithms that generate ran-

dom spanning trees were investigated. PrimRST and, to a lesser degree, KruskalRST

are disproportionately likely to yield star-like trees, but RandWalkRST generates span-

ning trees with uniform probabilities. Nonetheless, tests using the One-Max-Tree prob-

lem indicate that an EA’s performance depends little on this choice. Operators that use

KruskalRST are slightly faster because of its simpler data structures, but the choice should

be based on how easily operators can accommodate problem-specific constraints and be

hybridized with other heuristics.

Recombination of spanning trees should always include in the offspring edges that are

common to both parents. Our studies indicate the clear benefits of this strategy, regardless

of the underlying random spanning tree algorithm, target tree structure, or problem size.

The edge-set representation was applied in an EA for the degree-constrained minimum

spanning tree problem. With small modifications, the initialization, recombination, and

mutation operators all efficiently maintained the degree constraint, and they were easily

extended to accommodate heuristics that probabilistically prefer low- to high-cost edges.

These heuristics substantially improve the EA’s performance.

Tests on two sets of hard d-MST problem instances indicate the superiority of edge-

sets, particularly when the variation operators implement edge-cost-based heuristics, to

several other codings of spanning trees—the Blob Code, network random keys, and strings

of weights—in evolutionary search. The edge-set-coded EA identified better solutions on

most instances, and it scaled up more efficiently to larger problem sizes.



38

Acknowledgments

This work is supported by the Austrian Science Fund (FWF) under the grant

P13602–INF.

References

[1] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman problem,” Proceedings

of the American Mathematics Society, vol. 7, no. 1, pp. 48–50, 1956.

[2] R. Prim, “Shortest connection networks and some generalizations,” Bell System Technical Journal, vol. 36,

pp. 1389–1401, 1957.

[3] Bernard Chazelle, “A minimum spanning tree algorithm with inverse-Ackermann type complexity,” Journal

of the Association for Computing Machinery, vol. 47, no. 6, pp. 1028–1047, 2000.

[4] T. C. Hu, “Optimum communication spanning trees,” SIAM Journal of Computing, vol. 3, pp. 188–195,

1974.

[5] M. L. Gargano, W. Edelson, and O. Koval, “A genetic algorithm with feasible search space for minimal

spanning trees with time-dependent edge costs,” in Genetic Programming 1998: Proceedings of the Third

Annual Conference, John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo,

David B. Fogel, Hitoshi Iba, and Rick L. Riolo, Eds. 1998, p. 495, Morgan Kaufmann.

[6] S. C. Narula and C. A. Ho, “Degree-constrained minimum spanning trees,” Computers and Operations

Research, vol. 7, pp. 239–249, 1980.

[7] G. Zhou and M. Gen, “Genetic algorithms on leaf-constrained minimum spanning tree problem,” Beijing

Mathematics, vol. 7, no. 2, pp. 50–62, 1998.

[8] L. R. Esau and K. C. Williams, “On teleprocessing system design,” IBM Systems Journal, vol. 5, pp. 142–147,

1966.

[9] C. H. Papadimitriou, “The complexity of the capacitated tree problem,” Networks, vol. 8, pp. 217–230, 1978.

[10] M. Hanan, “On Steiner’s problem with rectilinear distance,” SIAM Journal of Applied Mathematics, vol. 14,

no. 2, pp. 255–265, 1966.

[11] G. M. Guisewite and P. M. Pardalos, “Minimum concave-cost network flow problems: Applications, com-

plexity and algorithms,” Annals of Operations Research, vol. 25, pp. 75–100, 1990.

[12] M. Gen and Yinzhen Li, “Spanning tree-based genetic algorithm for the bicriteria fixed charge transportation

problem,” In Angeline et al. [60], pp. 2265–2271.

[13] L. Davis, D. Orvosh, A. Cox, and Y. Qiu, “A genetic algorithm for survivable network design,” in Proceedings

of the Fifth International Conference on Genetic Algorithms, Stephanie Forrest, Ed. 1993, pp. 408–415,

Morgan Kaufmann.

[14] P. Piggott and F. Suraweera, “Encoding graphs for genetic algorithms: An investigation using the minimum

spanning tree problem,” in Progress in Evolutionary Computation, Xin Yao, Ed., LNAI 956, pp. 305–314.

Springer, 1995.

[15] A. Cayley, “A theorem on trees,” Quarterly Journal of Mathematics, vol. 23, pp. 376–378, 1889.

[16] Les Berry, Bruce Murtagh, and Steve Sugden, “A genetic-based approach to tree network synthesis with cost

constraints,” in Proceedings of the Second European Congress on Intelligent Techniques and Soft Computing,

H. Zimmermann, Ed., Aachen, Germany, 1994, pp. 626–629.

[17] C. C. Palmer and A. Kershenbaum, “Representing trees in genetic algorithms,” in Proceedings of the First



39

IEEE Conference on Evolutionary Computation, David Schaffer, Hans-Paul Schwefel, and David B. Fogel,

Eds. 1994, pp. 379–384, IEEE Press.

[18] Mohan Krishnamoorthy and Andreas T. Ernst, “Comparison of algorithms for the degree constrained mini-

mum spanning tree,” Journal of Heuristics, vol. 7, pp. 587–611, 2001.

[19] F. N. Abuali, R. L. Wainwright, and D. A. Schoenefeld, “Determinant factorization: A new encoding scheme

for spanning trees applied to the probabilistic minimum spanning tree problem,” in Proceedings of the

Sixth International Conference on Genetic Algorithms, Larry J. Eshelman, Ed. 1995, pp. 470–477, Morgan

Kaufmann.

[20] C.-H. Chu, G. Premkumar, C. Chou, and J. Sun, “Dynamic degree constrained network design: A genetic

algorithm approach,” in Proceedings of the 1999 Genetic and Evolutionary Computation Conference, Wolfgang

Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E.

Smith, Eds. 1999, pp. 141–148, Morgan Kaufmann.

[21] Les Berry, Bruce Murtagh, Steve Sugden, and Graham McMahon, “Application of a genetic-based algorithm

for optimal design of tree-structured communication networks,” in Proceedings of the Regional Teletraffic

Engineering Conference of the International Teletraffic Congress, South Africa, 1995, pp. 361–370.

[22] Hsinghua Chou, G. Premkumar, and Chao-Hsien Chu, “Genetic algorithms for communications network

design—An empirical study of the factors that influence performance,” IEEE Transactions on Evolutionary

Computation, vol. 5, no. 3, pp. 236–249, 2001.

[23] S. Even, Algorithmic Combinatorics, The Macmillan Company, New York, 1973.
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Appendix

A. Proof that ppath < punif for PrimRST

We show by induction that

ppath =
2n−1

(n− 1)! n!
< punif =

1

nn−2
for n ≥ 4 . (1)

This inequality is trivially true for n = 4.
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We assume it holds for any n ≥ 4 and derive its validity for n + 1:

2n

n! (n + 1)!
<

1

(n + 1)n−1
⇐⇒ 2

n(n + 1)︸ ︷︷ ︸
A

· 2n−1

(n− 1)! n!
<

1

nn−2

︸ ︷︷ ︸
assumption

· nn−2

(n + 1)n−1

︸ ︷︷ ︸
B

(2)

Since
A

B
=

2(n + 1)n−2

nn−1
=

2n

(n + 1)2

(
1 +

1

n

)n

and the infinite sequence {(1 + 1/n)n} is monotonically increasing with n and converges

to Euler’s number e, it follows that

A

B
<

2e · n
(n + 1)2

< 1 (for n ≥ 4)

and inequalities (2) and (1) are true.
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