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Abstract- The representation of candidate solutions and
the variation operators are fundamental design choices
in an evolutionary algorithm (EA). This paper proposes
a novel representation technique and suitable variation
operators for the degree-constrained minimum spanning
tree problem. For a weighted, undirected graphG(V, E),
this problem seeks to identify the shortest spanning tree
whose node degrees do not exceed an upper boundd ≥ 2.
Within the EA, a candidate spanning tree is simply repre-
sented by its set of edges. Special initialization, crossover,
and mutation operators are used to generate new, al-
ways feasible candidate solutions. In contrast to previ-
ous spanning tree representations, the proposed approach
provides substantially higher locality and is nevertheless
computationally efficient; an offspring is always created
in O(|V |) time. In addition, it is shown how problem-
dependent heuristics can be effectively incorporated into
the initialization, crossover, and mutation operators with-
out increasing the time-complexity. Empirical results are
presented for hard problem instances with up to 500 ver-
tices. Usually, the new approach identifies solutions supe-
rior to those of several other optimization methods within
few seconds. The basic ideas of this EA are also applicable
to other network optimization tasks.

1 Introduction

The problem of identifying aminimum spanning tree(MST)
of a connected, undirected graph is a classical combinato-
rial optimization problem which can be solved efficiently in
polynomial time by greedy heuristics like Kruskal’s [14] or
Prim’s [22]. Unfortunately, there are several practically rel-
evant variants of the MST problem that have been shown to
beNP-complete and therefore computationally expensive to
solve in exact ways. One of these related problems is the
degree-constrained MSTproblem, in which a minimum span-
ning tree is searched none of whose vertices has a degree
greater thand ≥ 2. This problem has applications in the de-
sign of telecommunication networks and integrated circuits.

Due to the hardness of the degree-constrained MST prob-
lem, it is addressed by heuristic methods including evolution-
ary algorithms (EAs). In contrast to several previous evolu-
tionary approaches, we present here a new, straight-forward
technique involving a simple edge-set representation in com-

bination with specialized initialization, crossover, and muta-
tion operators. In this way, only feasible candidate solutions
are always produced, and a high level of locality is guar-
anteed. Nevertheless, the computational effort of crossover
and mutation is low. The proposed EA has further been im-
proved by including heuristics based on the general idea to
prefer low-cost edges over others. Empirical comparisons
with other optimization methods on several hard graphs in-
dicate a superior behavior of the new approach. Besides the
usually higher quality of final solutions, the new EA is faster
especially for problems involving large graphs.

The following section describes the degree-constrained
MST problem. A brief summary of tree representations used
in previous EAs for MST related problems is given in Sect. 3.
The new edge-set representation together with the appropriate
initialization, crossover, and mutation operators is presented
in Sect. 4. Section 5 describes how edge-cost based heuris-
tics can be incorporated into the EA. Several implementation
details of the overall EA can be found in Sect. 6, and an em-
pirical comparison to other optimization techniques is given
in Sect. 7. Some concluding remarks are made in Sect. 8.

2 The Degree-Constrained Minimum Spanning
Tree Problem

A spanning tree of an undirected, complete graphG(V,E)
is a cycle-free subgraphT (V,ET), ET ∈ E, such that all
vertices inV are connected. Note that a spanning tree al-
ways consists of|V | − 1 edges, and a complete graphG has
|V ||V |−2 spanning trees [4]. When numerical costsci,j ≥ 0
are associated with each edge(i, j) ∈ E, i, j ∈ V , a mini-
mum spanning tree (MST) is a spanning tree with minimum
total edge cost

C =
∑

(i,j)∈ET

ci,j .

In the degree-constrained MST problem, we consider the
additional constraint that the degreedeg(i) of every vertex
i ∈ V , i.e. the number of edges adjacent to every vertex,
must be less than or equal to a given upper boundd. Thus we
seek from all spanning trees fulfilling the degree constraint
(d-STs) one that minimizes the total edge cost (ad-MST).

A 2-MST is a Hamiltonian path of minimum length. Find-
ing such a path is related to the familiar traveling salesman
problem and isNP-hard [8]. Often the vertices on which we



seek MSTs are points in the plane, and edge costs are the Eu-
clidean distances between these points. For this case, Monma
and Suri [17] showed that there always exists a MST with de-
gree no more than five. Although Papadimitriou and Vazirani
[20] proved that finding ad-MST in the Euclidean plane is
NP-hard whend = 3, and conjectured that it remainsNP-
hard whend = 4, Euclidean problems are relatively simple
to solve. Exact branch-and-bound techniques as described by
Narula and Ho [18] and Krishnamoorthy et al. [13] can find
optimal solutions even for large problem instances including
several hundred vertices in reasonable computing times. Fur-
thermore, there exist effective polynomial-time heuristics for
findingd-MSTs in the plane [7, 25].

In the more general case, the costs associated with the
graph’s edges are arbitrary and need not satisfy the triangle
inequality. In this case, a minimum spanning tree may have
degree up to|V |−1. Finding ad-MST in a graph with such a
high-degree MST is usually a hard task. Exact approaches are
too time-consuming, and many existing heuristics are either
not applicable or less efficient.

Narula and Ho [18] proposed a simple but relatively effec-
tive heuristic: They modified Prim’s algorithm so that at each
step it includes the cheapest eligible edge—one connecting a
vertex currently in the (partial) spanning tree with one not yet
connected—that does not violate the degree constraint. We
refer to this heuristic asd-Prim.

3 Representations of Trees in EAs

Another appealing approach is to use evolutionary algorithms
for identifying low-costd-STs. A crucial decision is how
to represent potential solutions in an EA. Several approaches
can be found in the literature for representing spanning trees
of graphs.

Piggott and Suraweera [21] use a bit string of size|E|
to represent a solution. Even when they ensure that each
bit string always contains exactly|V | − 1 set bits, there is
only a small chance that such a bit string actually repre-
sents a valid spanning tree. In addition, each bit string needs
O(|E|) = O(|V |2) memory for a complete graphG and also
the computational effort to go back and forth between the en-
coding and the tree isO(|V |2).

Palmer and Kershenbaum [19] and Krishnamoorthy et al.
[13] describe a predecessor encoding in which a root vertex
is designated, and for each other vertex, the immediate pre-
decessor on the path to this root is stored. Although only
O(|V |) memory is needed, this encoding does also represent
subgraphs that are not feasible trees. Chu et al. [5] presented
a variant of predecessor encoding for thed-MST problem. In-
feasible solutions are repaired if possible or penalized other-
wise. Another encoding that allows also non-trees to be rep-
resented is the determinant factorization encoding described
by Abuali et al. [1].

A deceptively appealing coding of spanning trees for evo-
lutionary search is based on Prüfer’s proof of Cayley’s For-

mula, which identifies the number of distinct spanning trees
on a complete graph as|V ||V |−2 [4], [6, pp. 103–104]. The
proof establishes a one-to-one correspondence between span-
ning trees and strings of length|V | − 2 over an alphabet of
|V | symbols by describing algorithms that derive a tree from
its string and vice versa [6, pp. 104–106].

Despite its elegance, the Prüfer coding is problematic in
EAs due to its weak locality. As several observers have
pointed out, a symbol’s meaning depends on all its prede-
cessors [12, 13, 19, 24]. Patterns of symbols do not represent
consistent substructures of spanning trees, so that crossover
may generate offsprings whose trees do not resemble the trees
of their parents, and the mutation of even one symbol may
change the represented tree radically.

Nonetheless, several researchers use the Prüfer coding to
represent candidate solutions in EAs for spanning tree prob-
lems. Zhou and Gen [26] presented a Prüfer-coding based EA
for thed-MST problem. This algorithm applies conventional
genetic operators: uniform crossover and mutation by ran-
domly modifying a symbol. Solutions that violate the degree
constraint are repaired. Two other variants of genetic algo-
rithms that employ Pr̈ufer coding for solving thed-MST prob-
lem are presented by Krishnamoorthy et al. [13]. The better
variant (F-EA) simply discards infeasible spanning trees vi-
olating the degree constraint and uses standard single point
crossover.

Kim and Gen [10] extended the Prüfer coding in an EA for
another network design problem. A Prüfer string represents a
spanning tree of service centers, and a second string indicates
clusters of users the centers serve. Gargano et al. [9] extended
the Pr̈ufer coding with permutations in an EA for the time-
dependent minimum spanning tree problem, in which edge
costs depend on when the edges are included in the span-
ning tree; the Pr̈ufer string represents a spanning tree, and
the permutation the order in which vertices, and thus edges,
are added to the tree.

Li and Bouchebaba [15] presented an EA for the optimal
communication spanning tree problem. This approach repre-
sents trees in a direct way via their adjacency lists. Special-
ized operators such as path crossover and path mutation are
used to generate always feasible new solutions. Although this
approach works well for the optimal communication span-
ning tree problem, it seems difficult to adapt the genetic oper-
ators for thed-MST problem. Depending on the implemen-
tation, the proposed recombination and mutation operators
seem to have a computational effort of at leastO(|V |2).

Knowles and Corne [12] described another EA for the
d-MST problem. In their algorithm, chromosomes are se-
quences of integer values that influence the order in which
d-Prim (see Sect. 2) connects vertices to the growing span-
ning tree. Experiments on large, misleading graphs indicated
the superiority of this approach over several other heuristics
including simulated annealing and a dual simplex heuristic
proposed by Boldon et al. [3]. We refer to this EA as K-EA.

Another efficient, indirect encoding of spanning trees was



originally proposed by Palmer and Kershenbaum [19]. Raidl
and Julstrom [23] improved this technique and adapted it to
the d-MST problem. In this weight-coded approach, a fea-
sible spanning tree is represented by a string of numerical
weights associated with the verticesV . During decoding,
these weights temporarily bias the graph’s edge costsci,j ,
andd-Prim, applied to the biased costs, identifies the feasi-
ble spanning tree a chromosome represents. In an experimen-
tal comparison, this weight-coded EA outperformed Knowles
and Corne’s approach. We refer to this EA as W-EA.

Although K-EA and W-EA work well, a disadvantage of
both is the high computational effort. Both approaches use
d-Prim for decoding a solution, and the computational com-
plexity of d-Prim isO(|V |2 log |V |). Therefore, the running
time increases dramatically for larger problem instances.

4 The Edge-Set Representation

Following the general rules of designing EAs [2, 16] and con-
sidering the experiences with previous approaches, we stated
the following properties as our primary design goals for a
new, efficient EA for thed-MST problem:

(1) Only feasibled-STs should be generated by the EA,
and all possibled-STs should be representable.

(2) A 1:1 correspondence between chromosomes andd-
STs seems to be desirable, i.e. eachd-ST should be repre-
sented by a unique chromosome and vice versa.

(3) The decoding of a chromosome, the crossover opera-
tor, and the mutation operator should be computationally ef-
ficient in order to be able to practically apply the EA also to
large problem instances.

(4) The encoding together with the crossover and mutation
operators has to provide a high level of locality, i.e. ad-ST
generated by the crossover operator should inherit most edges
from its parents, and mutation should change only few edges.

(5) It should be easy to incorporate problem specific
heuristics or local improvement operators. Many EAs for
combinatorial optimization problems benefit from such a hy-
bridization in terms of shorter running times or better final
solutions.

The following straight-forwardedge-set representationin
combination with specialized initialization, crossover, and
mutation operators fulfills all these criteria.

A candidate solution of the EA, i.e. ad-ST, is directly rep-
resented by the setET of edges forming the tree. In an ef-
ficient implementation, a hash-table storing each pair of ver-
tices connected by an edge ((i, j) ∈ ET) can be used for this
purpose. In this way, the insertion or deletion of an edge and
the test whether a given edge is contained in the tree or not
can be performed with expected constant effort, and travers-
ing all edges needsO(|V |) time.

4.1 Initialization

In order to create only feasible solutions for the initial popula-
tion of the EA, an algorithm that creates valid randomd-STs

procedure initialize;
begin

ET ← ∅;
for all edges(i, j) ∈ E in random orderdo

if deg(i) < d and deg(j) < d
and not(connected(i, j, ET)) then

ET ← ET ∪ {(i, j)};
if |ET| = |V | − 1 then

return ET;
end;

Figure 1:Creating an initial, randomd-ST.

is needed. Figure 1 shows the pseudo-code of a procedure
derived from Kruskal’s MST algorithm [14]. First,ET is ini-
tialized to the empty set, and a random ordering of all edges in
E is determined. One edge after the other is then checked in
the predetermined order for an eventual inclusion in the span-
ning tree. Edge(i, j) is included inET if it does not violate
the degree constraint in verticesi and j, and these vertices
are not yet connected via other edges inET. The procedure
terminates when a complete spanning tree has been built, i.e.
when the number of edges inET is one less than the number
of vertices. Note that this procedure will always produce a
valid d-ST since only edges that do not introduce a cycle or
degree violation are included.

For an efficient implementation of the test whether two
vertices are already connected via some edges or not, a union-
find data structure should be used [11]. In this way, the test
can be performed with constant expected time effort, and the
whole procedure runs inO(|E|) = O(|V |2) time.

Assuming we have a feasible parental population, new
solutions are generated by means of the followingedge
crossoverandedge insertion mutationoperators.

4.2 Edge Crossover

The development of the crossover operator was substantially
guided by the idea to produce a newd-ST by inheriting as
many edges as possible from two parentald-STs. Figure 2
shows an illustrative example, and a detailed pseudo-code of
the procedure is given in Fig. 3.

In a first step,ET is initialized to the set of edges con-
tained in both parentsE1

T andE2
T. These edges will always

be included in the new solution. In a second step, all edges
contained either inE1

T or E2
T (but not in both) are checked

for inclusion. As in the initialization procedure, these edges
are processed one after the other in a random order and only
edges that do not introduce a degree violation or a cycle are
included inET. If a completed-ST with |V | − 1 edges can
be constructed in this way, the procedure returns this solution
and terminates. Unfortunately, this may not always be the
case due to the degree constraint, see Fig. 2. Such a partial
spanning tree must be completed by including also edges not
contained in the parents.

For this purpose we could proceed by checking all re-
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Figure 2:An example for edge crossover (d = 3).

maining edgesE \ (E1
T ∪ E2

T) for inclusion as before, but
this would lead to a computational effort ofO(|V |2). In or-
der to complete a partial solution in a more efficient way, all
unconnected components are determined in a first step, i.e.
V is partitioned into disjointed setsUk containing vertices
only connected to each other. Then, these components are
connected to the finald-ST by repeatedly choosing two ran-
dom vertices with a degree smaller thand in two unconnected
components and including an edge between these vertices in
ET. In this way, the completion step and therefore the whole
edge crossover can be implemented with a computational ef-
fort of only O(|V |).

4.3 Edge Insertion Mutation

The edge insertion mutation is based on the principle of in-
serting a randomly chosen new edge and deleting another
edge lying on the cycle introduced by the insertion, see Fig. 4.

procedureedge-crossover(E1
T, E2

T);
begin

ET ← E1
T ∩ E2

T;
F ← E1

T ∪ E2
T \ ET;

for all edges(i, j) ∈ F in random orderdo
if deg(i) < d and deg(j) < d

and not(connected(i, j, ET)) then
ET ← ET ∪ {(i, j)};
if |ET| = |V | − 1 then

return ET;
(* determine all unconnected componentsUk: *)
U ← {Uk} with ∀i, j ∈ V, i 6= j :

i ∈ Uk ∧ connected(i, j, ET) −→ j ∈ Uk,
i ∈ Uk ∧ not(connected(i, j, ET)) −→ j 6∈ Uk,⋃

k Uk = V ;
(* connect components randomly: *)
for all Uk ∈ U \ {U1} in random orderdo

choosei ∈ U1 | deg(i) < d randomly;
choosej ∈ Uk | deg(j) < d randomly;
ET ← ET ∪ {(i, j)};
U1 ← U1 ∪ Uk;

return ET;
end;

Figure 3:Edge crossover.

The detailed procedure in Fig. 5 starts by randomly choos-
ing two different verticesi andj to be connected with a new
edge. Care must be taken that not both vertices have degree
d, since inserting such an edge would lead to an unavoidable
degree constraint violation in the final tree. Therefore, we
restrict the choice ofj to vertices of degree less thand. In
the next step, we determine the setL of edges lying on the
path from vertexi to vertexj in the original tree. This can be
done inO(|V |) time by temporarily building an adjacency list
representation of the tree and performing a depth-first search.
Together with edge(i, j) the edges inL describe the cycle
that would arise when inserting(i, j) into ET. Therefore, an
edge(a, b) ∈ L must be chosen for deletion. In case vertexi
already has degreed, the edge adjacent toi must be selected
to avoid a degree constraint violation; otherwise, we make a
random choice. Finally, edge(i, j) is inserted into the solu-
tion while (a, b) is deleted from it. The computational effort
of the whole procedure is againO(|V |).

5 Inclusion of Edge-Cost Based Heuristics

Often, an EA can be improved by incorporating problem spe-
cific heuristics or local optimization techniques [2, 16]. For
the proposed EA employing the edge-set representation, we
consider the heuristic assumption that usually an inclusion of
edges with small costsci,j should be prefered over an inclu-
sion of more expensive edges. This basic idea is incorporated
into the procedures for initialization, crossover, and mutation
in the following ways.
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Figure 4: An example for the edge insertion mutation with
d = 3. The short-circuited path isL={(2,6), (3,6), (3,9),
(9,10), (10,11), (11,12), (4,12)}.

procedureedge-insertion-mutation(ET);
begin

(* choose edge(i, j) for insertion: *)
choosei ∈ V randomly;
choosej ∈ V \ {i} | deg(j) < d ∧ (i, j) 6∈ ET randomly;
(* choose edge(a, b) for deletion: *)
L ← {(k, l) ∈ ET | (k, l) lies on path fromi to j};
if deg(i) = d then

(a, b) ← (a, b) ∈ L | a = i ∨ b = i;
else

choose(a, b) ∈ L randomly;
ET ← ET ∪ {(i, j)} \ {(a, b)};
return ET;

end;

Figure 5:Edge insertion mutation.

Heuristic initialization. Instead of processing all edges in
a completely random order, we sort all edges according to in-
creasing costs. The first candidate solution of the initial pop-
ulation is then created using this processing order. To ensure
diversity, all following initial solutions are created with less
heuristic bias by randomly permuting the cheapestk edges
from the initial, sorted edge processing order. In this pro-
cess, the numberk of shuffled edges is increased with the
time, i.e. thei-th initial solution of a population of sizeP
(i = 1, . . . , P ) is created with

k = α (i− 1) |V | /P .

α is considered a strategy parameter which controls the av-
erage heuristic bias, respectively the diversity, of the initial
population.

Heuristic edge crossover. During crossover, the order of
checking edges fromF = E1

T ∪ E2
T \ (E1

T ∩ E2
T) for inclu-

sion into the offspringET is crucial. We use an edge-order
that gives low-cost edges higher probabilities to be processed
before more expensive edges and, therefore, to be included in
ET: As long asF is not empty, the next edge is determined
via a binary tournament selection on the edges inF , i.e. a

group of two edges is chosen randomly and the cheaper edge
is selected. This edge is then removed fromF and checked
for inclusion intoET.

Heuristic edge insertion mutation. The mutation operator
is hybridized by giving low-cost edges higher probabilities
for being selected for the insertion intoET. For this purpose,
a tournament selection could be performed on the set of all
allowed edges, but since this set is huge, a large group size
depending on|V | would be necessary for the tournament se-
lection to favor the cheapest edges in an appropriate way. The
following different strategy turned out to be more effective:
We choose thei-th cheapest edgeei ∈ E with

i = b|N (0, β |V |)|cmod (|V |(|V | − 1)/2) + 1 .

N (0, β |V |) is a normally distributed random number with
mean 0 and standard deviationβ |V |. By determining the ab-
solute value, rounding, calculating the modulus, and finally
adding 1, we obtain a positive random integer in[1, |V |(|V |−
1)/2] = [1, |E|] with a distribution that favors low-cost edges
depending on the strategy parameterβ. Smaller values forβ
will lead to a stronger bias towards cheaper edges. Unfortu-
nately, there is the possibility that the chosen edge is already
contained in the solutionET or the edge connects two ver-
tices having already reached the maximum degree. Since the
probability of this case is only small, we repeatedly determine
new edges in the described way until a feasible edge is found.

In a proper implementation, all edges ofE are sorted ac-
cording to their costs only once at the beginning of a run,
since this edge-order is needed during each initialization and
mutation. In this way, the proposed hybrid operators can be
efficiently implemented, i.e. especially crossover and muta-
tion run as before in linear time.

6 The Evolutionary Algorithm

The new edge-set representation and its operators were imple-
mented in an otherwise conventional steady-state EA. Strat-
egy parameters were tuned by performing preliminary test
runs. In the tests the next section describes, the following
configuration was used. The EA’s population holdsP = 100
solutions. Offsprings are generated by selecting parents via
binary tournaments and applying crossover with probability
pc = 0.8 and additionally also mutation with probability
pm = 0.8. A new offspring replaces the population’s current
worst solution, with one exception: To preserve diversity, the
EA discards any offspring that is identical to a solution al-
ready contained in the population. The parametersα andβ,
which control the heuristic bias during initialization and mu-
tation respectively, were both set to 1.5.

7 Empirical Comparisons

The proposed approach was tested on problem instance sets
of different characteristics. As already indicated by Knowles



Table 1: Average results (quality gains overd-Prim [18] in %) on hard problem instances of two Prüfer-coded EAs (F-EA
and P-EA) [13], problem space search (PSS) [13], simulated annealing (SA) [13], branch-and-bound terminated after 10min
CPU-time (B&B) [13], the weight-coded EA (W-EA) [23], and the new EA employing the edge-set representation (S-EA).

Problem |V | d F-EA P-EA PSS SA B&B W-EA S-EA
avg. avg. avg. avg. avg. avg. best time avg. best time

SHRD150 15 3 13.66 15.07 16.62 14.93 18.03 14.20 16.76 3.1s 18.03 18.03 1.2s
4 10.83 0.39 12.99 11.61 14.76 11.42 11.42 3.0s 15.35 15.35 1.2s
5 4.00 -1.07 9.60 9.07 9.60 3.53 9.33 2.9s 9.60 9.60 1.2s

SHRD200 20 3 11.32 5.38 10.91 10.43 10.91 12.29 12.68 5.1s 12.43 12.60 1.4s
4 6.82 0.80 7.05 5.57 7.05 8.50 8.75 4.9s 8.78 8.86 1.5s
5 6.28 1.46 7.30 7.74 7.30 7.96 8.03 4.8s 8.44 8.47 1.4s

SHRD250 25 3 13.07 13.41 15.40 14.73 15.40 16.51 16.91 7.8s 16.75 17.34 1.6s
4 4.84 1.59 6.79 5.56 6.79 6.83 7.37 7.4s 7.69 7.80 1.6s
5 5.37 5.92 6.74 5.19 8.29 9.01 9.02 7.2s 9.01 9.02 1.6s

SHRD300 30 3 6.51 6.51 11.27 9.53 11.27 12.50 12.78 10.8s 12.17 12.78 1.9s
4 7.30 3.79 10.58 8.45 10.58 11.76 11.92 10.4s 10.80 11.87 1.9s
5 2.18 0.19 4.74 2.50 4.74 5.77 5.93 10.1s 4.79 5.74 1.9s

Total average: 7.68 4.45 10.00 8.78 10.39 10.02 10.91 6.5s 11.15 11.46 1.5s

and Corne [12] and Krishnamoorthy et al. [13], Euclidean
and purely randomly generated instances are usually easy
to solve. As Knowles and Corne’s K-EA and the weight-
coded approach W-EA [23], but in contrast so several Prüfer-
coded EAs [13, 26], the new EA with edge-set encoding had
no problem in identifying optimal or the best-known solu-
tions for these easy problem instances within short time. To
point out the differences of the considered EAs and other ap-
proaches, we present here results for particularly demanding
problem instances with high-degree unconstrained spanning
trees and low-cost edges that mislead simple heuristics.

Table 1 shows results for the “structured hard” (SHRD)
problem instance set of [13]. The number of vertices ranges
from 15 to 30, the maximum degree was set to 3, 4, and 5.
The solution quality is measured by the relative difference
between the final objective valueC obtained by a specific ap-
proach and the objective valueCd−Prim of the solution found
by the simpled-Prim heuristic1 [18] in percent:

quality gain = (Cd−Prim − C)/Cd−Prim · 100% .

In other words, we used-Prim as a reference algorithm
and calculate relative quality improvements for the other ap-
proaches; larger values indicate better results.

The results for the two Prüfer-coded EA-variants F-EA
and P-EA (they differ in the handling of infeasible solutions
violating degree constraint, the crossover method, the re-
placement strategy, and the termination criterion), problem
space search PSS (an EA with a similar basic idea as W-
EA), simulated annealing SA, and branch-and-bound B&B
are adopted from [13] and printed for reference purposes only.

1The first vertex is used as starting point. If two or more vertices can be
concatenated to the partially built spanning tree via edges having the same
costs, the vertex labeled with the smallest number is always prefered.

Note that branch-and-bound, which is in general an exact
technique, was in these cases used as a heuristic: Since com-
plete runs would have been too time-demanding, each run had
been terminated after 10min CPU-time, and the best solution
found so far was reported as final solution.

With the weight-coded EA and the new approach based on
the edge-set representation (S-EA), 20 independent runs were
performed for each problem instance and maximum degree
d ∈ {3, 4, 5}. Each run terminated after 10,000 evaluations.
Besides average gains, the gains of the best runs and average
CPU-times in seconds are reported in Table 1.

For each problem instance the largest obtained average
gains are printed bold. Nearly always, S-EA performed best.
Only for the instances with 30 vertices, W-EA found solu-
tions with slightly larger gains. Due to its computationally
efficient variation operators, S-EA is particularly faster than
W-EA.

Table 2 shows results for larger “misleading” problem in-
stances M1 to M9 from Knowles and Corne [12]. In ad-
dition, we generated ourself even larger, equivalently struc-
tured problem instances M10 to M12 with up to 500 ver-
tices (124,750 edges). The results included in the table for
the dual-simplex heuristic from Boldon et al. [3] (DS) and
Knowles and Corne’s EA (K-EA) are adopted from [12] for
reference purposes. Note that DS cannot compete with the
other approaches; it gives in case of M3, M5, and M6 even
worse results thand-Prim, which is indicated by the nega-
tive quality gains. While W-EA is superior to K-EA in most
cases, S-EA consequently gives the best results. Note also the
generally small differences between average and best gains
of S-EA, which indicate high confidence in identifying high
quality solutions. Furthermore, S-EA is in all cases substan-
tially faster than W-EA (for M12 over a factor of 100!). For



Table 2:Average results (quality gains overd-Prim [18] in %) on large, misleading problems with maximum degreed = 5 of
the dual simplex heuristic (DS) [3], the EA of Knowles and Corne (K-EA) [12], the weight-coded EA (W-EA) [23], and the
new EA employing the edge-set representation (S-EA).

Problem |V | DS K-EA W-EA S-EA
avg. avg. best avg. best time avg. best time

M1 50 24.14 27.59 36.09 42.76 43.45 25.7s 43.59 43.59 2.6s
M2 50 14.23 33.22 43.94 48.63 50.19 25.8s 50.59 50.59 2.6s
M3 50 -11.51 26.98 32.93 29.25 32.93 25.6s 33.33 33.34 2.6s
M4 100 17.81 28.89 34.13 39.67 40.84 99.1s 42.21 42.41 4.9s
M5 100 -14.03 31.25 39.48 47.22 48.68 99.2s 49.50 49.66 4.8s
M6 100 -16.92 26.51 29.85 46.04 47.84 98.4s 49.02 49.21 4.8s
M7 200 18.43 25.72 30.09 31.54 33.00 400.9s 34.68 34.82 10.0s
M8 200 9.74 25.43 32.08 42.64 43.85 401.8s 44.73 45.81 10.1s
M9 200 5.88 24.09 25.42 24.53 24.97 389.1s 25.56 25.61 10.3s
Total average: 5.31 27.74 33.78 39.14 40.64 174.0s 41.47 41.67 5.9s
M10 300 – – – 10.66 13.26 964.3s 26.85 27.16 15.9s
M11 400 – – – 22.01 24.34 1835.7s 37.00 38.00 22.5s
M12 500 – – – 14.98 16.25 3092.0s 31.29 34.14 29.7s

W-EA, the CPU-time increases dramatically when the prob-
lem is getting larger, since the computational complexity of
the decoding isO(|V |2 log |V |). In contrast, the measured
CPU-times of S-EA confirm its linear time complexity.

8 Conclusions and Future Work

We presented a new evolutionary approach for the problem
of identifying a degree-constrained minimum spanning tree
of a complete, undirected graph. While the genotypic rep-
resentation of a candidate solution is simply the set of all
edges included in the spanning tree, specialized initialization,
crossover, and mutation operators are used. Altogether, they
fulfill the stated design goals for an effective EA. Most im-
portantly, S-EA produces only feasible candidate solutions
and provides substantially stronger locality than most previ-
ous approaches, especially the various Prüfer-coded EAs.

Above that, the suggested operators are computationally
efficient. The suggested initialization function has time-
complexityO(|V |2), and via selection, crossover, and muta-
tion, a new, meaningful candidate solution can always be cre-
ated and evaluated inO(|V |) time. This distinguishes S-EA
from the also well working, but significantly slower weight-
coded EA [23].

In addition, we have described how local heuristics can ef-
fectively be incorporated into the initialization, crossover, and
mutation operators without increasing the time-complexities.
The basic idea of these heuristics is simple and always the
same: Low-cost edges are included into a candidate solution
with higher probabilities than more expensive edges. These
heuristics speed-up the EA essentially and usually lead also
to significantly better final results.

We presented empirical results for several hard problem

instances from the literature with up to 500 vertices. These
results clearly indicate the superiority of S-EA over several
other, also non-evolutionary approaches regarding the quality
of final solutions and running times. High-quality solutions
are typically obtained within few seconds.

It seems possible to adapt the proposed edge-set represen-
tation together with its operators also to other network opti-
mization problems. The diameter-constrained MST problem,
the capacitated MST problem, and the optimum communi-
cation spanning tree problem [8, 19] are examples which we
currently investigate.
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