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Abstract

This article presents an evolutionary algo-
rithm (EA) for the capacitated minimum
spanning tree problem occurring in telecom-
munication applications. The EA encodes a
solution by a predecessor vector indicating
for each node the preceding node at the path
to the given central root node. Initializa-
tion, crossover, and mutation operators were
specifically designed to provide strong local-
ity and to enable an effective search in the
space of feasible solutions only. Furthermore,
local heuristics are applied to promote the
inclusion of low-cost links. Empirical results
on a set of standard test problems indicate
that the EA performs better than two other
heuristic techniques.

1 Introduction

The problem of finding a capacitated minimum span-
ning tree (CMST) plays an important role in the de-
sign of telecommunication networks [Gavish, 1991]. In
this problem, a central server and a set of n ≥ 1 client
machines are given. Each client i (i = 1, . . . , n) has
an associated demand di > 0 representing the network
traffic that is supposed to flow between the server and
the client. The objective is to build a cheapest pos-
sible tree-network connecting all nodes, i.e. the server
and the clients, which carries the specified demands.
Between any pair of nodes, a link can be established
for a given cost ci,j > 0 (i, j = 0, . . . , n, i 6= j; node
0 denotes the server). Note that ci,j = cj,i. Besides
its cost, each potential link has associated a maximum
capacity mi,j > 0 restricting the total network traffic
that may go over this link.

More formally, we want to identify a spanning tree T
over all nodes i = 0, . . . , n with minimum total costs

C =
∑

(i,j)∈T

ci,j (1)

that fulfills the additional capacity-constraints

dj +
∑

k∈Sub(j )

dk ≤ mi,j ∀ (i, j) ∈ T , (2)

where Sub(j ) denotes the set of all nodes k 6= 0 and
k 6= j having node j in their communication paths
to the server. In other words, when we look at the
network as a directed tree (more precisely an outgoing
arborescence) with the server node 0 being the root,
Sub(j ) denotes the set of all subnodes of node j.

Figure 1 shows an example of a feasible solution. All
client nodes are supposed to have unit demand (di =
1), and each link’s maximum capacity mi,j is fixed to
3. The link costs ci,j are printed, giving a total of
C = 176. If e.g. node 9 would be reconnected to node
3, the tree would become infeasible since the needed
capacity on link (0, 1) would become 4 and therefore
larger than m0,1 = 3.

In contrast to the unconstrained minimum spanning
tree problem, which can be solved efficiently by well-
known algorithms such as [Prim, 1957], the CMST
problem has been shown to be NP-complete by Pa-
padimitriou [1978]; see also [Garey and Johnson, 1979].

The next section gives a short overview on previous
approaches for the CMST and related problems. In
sections 3 and 4 a new evolutionary algorithm (EA) is
proposed. Its predecessor encoding and specialized ini-
tialization and variation operators, which also include
local heuristics, are described in detail. Although ef-
fective evolutionary techniques have already been de-
veloped for related spanning tree problems, it is to our
knowledge the first time that an EA is applied to the
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Figure 1: An exemplary capacitated spanning tree;
link costs ci,j are shown, di = 1, mi,j = 3.

CMST problem. Section 5 presents empirical results
on a standard test problem set indicating that the new
approach is effective. Finally, conclusions are drawn
and remarks on further research are given in section 6.

2 Prior work

One of the first and best-known heuristics for the
CMST problem has been proposed by Esau and
Williams [1966]. This procedure, which we denote here
as EW heuristic, starts from the root node as initial
tree and iteratively adds links in a greedy fashion based
on a modified cost structure without violating capacity
constraints, until a complete spanning tree is found. In
this process, the original costs of each link are reduced
by the minimum cost of the adjacent nodes’ direct links
to the root node.

Amberg et al. [1996] give a survey on several algo-
rithms published for the CMST problem during the
last decades and present a new heuristic approach that
differs from others in that it is based on partitioning
nodes into subsets instead of focusing on the selection
of links when generating or transforming solutions.
To overcome local optimality, simulated annealing and
tabu search were investigated. Another effective tabu
search approach for the CMST has been proposed by
Sharaiha et al. [1997]. The neighborhood structure in
this approach is based on the exchange of a single node
or a set of nodes between two subtrees. Ahuja et al.
[1998] extended this neighborhood structure by also
allowing exchanges that involve multiple subtrees.

An exact method based on a branch-and-bound algo-
rithm with column generation and the utilization of
cutting planes to strengthen the formulation is pro-
posed in [Chang and Vance, 1998]. [Hall, 1996] pre-
sented another cutting plane algorithm for the CMST

problem. Due to the complex nature of the problem,
the applicability of such exact techniques is limited to
relatively small problem instances or special problem
subclasses.

Recently, Patterson et al. [1999] proposed a hybrid
memory adaptive reasoning technique (ART) for solv-
ing the CMST problem, see also [Rolland et al., 1998].
In this approach, the classic EW heuristic is iteratively
applied to the problem which is augmented with ad-
ditional non-redundant constraints determined via an
adaptive memory. Empirical results indicate that the
approach performs on par with the best other heuris-
tic techniques, while expending only a small amount
of computational effort.

Although EAs are known to perform very well on sev-
eral other spanning tree related problems, we are not
aware of any published EA for the CMST problem up
to now. EAs for related spanning tree problems dif-
fer mainly in the way how solutions are encoded, see
[Palmer and Kershenbaum, 1994] and [Raidl, 2000] for
overviews.

Primitive encodings such as bit strings indicating di-
rectly which edges are to be included in a solution have
inherent problems with the huge amount of infeasible
solutions that are generated by an EA using traditional
variation operators [Piggott and Suraweera, 1995].

An often applied coding for spanning trees is based
on Prüfer’s proof of Cayley’s formula, which identifies
the number of distinct spanning trees on a complete
graph with k vertices as kk−2 [Cayley, 1889]. The proof
establishes a one-to-one correspondence between span-
ning trees and strings of length k− 2 over an alphabet
of k symbols by describing fast algorithms that derive
a tree from its string and vice versa [Palmer and Ker-
shenbaum, 1994].

Zhou and Gen [1997] proposed an EA based on Prüfer
numbers for the degree-constrained minimum spanning
tree (DegMST) problem in which the maximum num-
ber of edges adjacent to any node is limited. Conven-
tional uniform crossover and mutation by randomly
modifying a symbol were applied. A similar EA for
bicriteria topological network design is described in
[Kim and Gen, 1999]. Two more elaborated variants
of Prüfer-coded EAs for the DegMST problem are pro-
posed in [Krishnamoorthy et al., 1999]. Abuali et al.
[1994] used the Prüfer coding in a GA for the prob-
abilistic minimum spanning tree problem. Operators
included circular left shift, swap of two random posi-
tions, and random modification of a symbol.

However, several researchers have pointed out that the
Prüfer number encoding is problematic due to its weak



locality [Palmer and Kershenbaum, 1994, Knowles and
Corne, 2000, Raidl and Julstrom, 2000]. Rothlauf and
Goldberg [1999] studied the locality properties of the
Prüfer encoding in detail. Patterns of symbols do not
represent consistent substructures of spanning trees.
Usually applied variation operators change represented
trees radically. Often, a generated offspring does not
have many edges in common with its parent(s).

For the DegMST problem, Knowles and Corne [2000]
described a more effective EA in which chromosomes
are sequences of integer values that influence the order
in which a modified version of Prim’s MST algorithm
[Prim, 1957] connects vertices to the growing spanning
tree.

A more general decoder-based technique is the weight-
coded approach, which was first applied by Palmer and
Kershenbaum [1994] to the optimum communication
spanning tree problem and later significantly improved
and applied to the DegMST problem by Raidl and Jul-
strom [2000]: A solution is encoded as a vector of usu-
ally real-valued weights. For obtaining the represented
phenotypic spanning tree, the weights are used to bias
parameters of the problem such as the link costs; in
that way, a temporary modified problem is generated.
A problem specific decoding heuristic is then used to
derive the phenotypic solution, which is finally evalu-
ated using the original problem data. With this ap-
proach significantly better results have been achieved
than when using Prüfer number encoding.

Finally, there is a category of EAs which use a rela-
tively simple and direct encoding and specialized ini-
tialization and variation operators to always generate
only feasible solutions. Li and Bouchebaba [1999] de-
scribe such an approach for the optimum communi-
cation spanning tree problem which performs slightly
better than the weight-coded approach of Palmer and
Kershenbaum [1994]. In [Raidl, 2000] an EA using
an edge-list encoding with problem-dependent initial-
ization, recombination, and mutation methods is pre-
sented for the DegMST problem. The operators are
designed in such a way that they are computation-
ally relatively inexpensive. Nevertheless, they produce
only feasible solutions, provide strong locality, and in-
clude effective local heuristics for the particular target
problem. This approach performs even better than the
previous weight-coded approach [Raidl and Julstrom,
2000] and especially scales well to large problem in-
stances.

The many published EAs for spanning tree problems
suggest that an approach which uses an encoding
that directly reflects the spanning tree but includes
problem-dependent, specialized initialization and vari-

ation operators may be the best choice. In the next
sections, we describe an EA that follows these ideas
and exploits the very specific properties of the CMST
problem.

3 Predecessor Encoding

In contrast to the DegMST and optimum communica-
tion spanning tree problems, there exists a designated
root node – the central server – in the CMST problem.
We can therefore see a feasible solution as an outgoing
arborescence, i.e. each link is interpreted as a directed
edge in such a way that there exists a path from the
root to each other node. Each client node has now
exactly one preceding node, and a natural encoding
of the complete tree is the vector p = (p1, p2, . . . , pn),
where pi denotes the predecessor of node i. E.g. the
predecessor vector of the spanning tree in Fig. 1 is
p=(0,1,1,0,4,5,0,7,0).

Note that such a predecessor encoding has already
been used in [Abuali et al., 1994] and discussed in
[Palmer and Kershenbaum, 1994] and [Krishnamoor-
thy et al., 1999]. Especially in the latter two works,
predecessor encoding has been pointed out to be
problematic since an arbitrary vector p with pi ∈
{0, 1, . . . , n} will not usually represent a feasible span-
ning tree but an unconnected graph containing cycles.
This fact can simply be verified, since there are (n+1)n

different predecessor vectors but only (n+1)n−1 differ-
ent spanning trees which are furthermore not all fea-
sible solutions for the CMST problem. An EA using
predecessor encoding in combination with traditional
random initialization and variation operators such as
one-point, two-point, or uniform crossover performs
therefore poorly due to the huge amount of infeasible
solutions that are generated.

4 Specialized Operators

We overcome the described disadvantage of the prede-
cessor encoding by applying specialized initialization
and variation methods which only generate solutions
representing feasible spanning trees. In addition, all
these methods include local heuristics.

4.1 Initialization

A solution p of the initial population is created by the
following algorithm:

1. Let S be the set of already connected nodes to
which other nodes may be connected and U the



set of yet unconnected nodes. Initially, S contains
the root node 0 and U all client nodes.

2. While U is not empty:

2.1. Select a node j from S randomly.
2.2. Try to select a random node i from U which

can be connected to node j without violating
the capacity constraints. If no such node ex-
ists, remove j from S and go to step 2.1 as
long as S is not empty.

2.3. If S becomes empty, the algorithm is not able
to generate a feasible solution due to priorly
fixed links; restart the whole algorithm at
step 1.

2.4. Connect i to j by setting pi = j and moving
i from U to S.

2.5. Continue at step 2.

In order to implement step 2.2 efficiently, informa-
tion about the capacity available for connecting further
subnodes is stored for each node in S. Furthermore,
the selection of node i in step 2.2 is guided by a local
heuristic to favor low-cost links: A series of α uniform
random choices of nodes in U is performed, and the
node with the smallest link costs ci,j is actually se-
lected if the capacity constraints allow it. Otherwise,
this node i is discarded from further consideration as
descendant of node j and the selection process is re-
peated with the remaining nodes in U .

Note that in all test problem instances we used, the
algorithm was able to create a feasible solution with-
out performing any restart due to priorly fixed links
according to step 2.3. In more detail, it can be guar-
anteed that no restart will be necessary if

di ≤ m0,i , i = 1, . . . , n (3)

holds, i.e. connecting all client nodes directly to the
root is a feasible solution. Since this condition also
holds in typical practical applications, step 2.3 can be
said to not degrade performance.

4.2 Edge-Crossover

The major design goals for this binary crossover oper-
ator were computational efficiency, to provide strong
locality, i.e. a new solution should primarily be built
with links already contained in the two parents, and
to create new feasible solutions with high probability.

Given two parental predecessor vectors p and q, a new
solution r is derived in the following way:

1. Initialize r by setting all elements to the value -1
indicating that no links are selected up to now.

1 2 4 7

3 9 5 8

6

0

Figure 2: An exemplary offspring r=(0,0,1,0,4,5,0,7,2)
created by recombining parents p=(0,1,1,0,4,5,0,7,0)
and q=(0,0,1,7,4,1,0,0,2) with edge-crossover.

2. Adopt all links that are identical in both parents
p and q, i.e. for all client nodes i, if pi = qi, also
set ri ← pi.

3. Let U be the set of all client nodes having no
predecessor yet, i.e. U = {i | ri = −1}.

4. While U is not empty:

4.1. Select a random node i from U .
4.2. Choose j ∈ {pi, qi} randomly.
4.3. If nodes i and j are already connected some-

how or the link (j, i) would violate any capac-
ity constraints in r, go to step 4.4. Otherwise,
add the link by setting ri ← j and removing
i from U and continue at step 4.

4.4. Try to adopt the predecessor of i from the
other parental solution in the same way; if
this is also not possible, move i from U to a
queue Q storing nodes that cannot be con-
nected via parental edges.

4.5. Continue at step 4.

5. Finally, all nodes i ∈ Q are processed as follows:

5.1. Try to find a random node j ∈ {0, 1, . . . , n}\
{i} to which node i can be connected without
introducing a cycle or violating any capacity
constraint.

5.2. If a feasible node j has been found, connect
i to j by setting ri = j and continue at step
5 with the next node i.

5.3. Otherwise, no feasible solution can be gener-
ated; make r a copy of p and terminate.

Figure 2 shows an exemplary offspring created from
p=(0,1,1,0,4,5,0,7,0) and q=(0,0,1,7,4,1,0,0,2). This
offspring r=(0,0,1,0,4,5,0,7,2) inherited edges (0,1),
(1,3), (4,5), and (0,7) from both parents, edges (0,4),



(5,6), and (7,8) from parent p and edges (0,2) and
(2,9) from parent q. Since after the completion of step
4 all nodes are connected to a feasible tree, it is not
necessary to add entirely new edges (step 5) in this
example.

A union-find data structure [Kingston, 1990] is used for
efficiently checking whether two nodes are already con-
nected via some link(s) or not (steps 4.3 and 5.1). This
data structure is initialized with a set of n+1 indepen-
dent elements representing all the nodes including the
root. If a link is established in r, the corresponding
elements of the data structure are united.

For an efficient check of the capacity constraints in
steps 4.3 and 5.1, we furthermore store for each node i
to which there has not yet been assigned a predecessor
the total demand, i.e. the demand of the node itself
and all its connected subnodes. The total demand of
node i needs to be updated when any new node is
connected to i or any of its subnodes.

If no feasible predecessor can be found for a client node
(step 5.3), the crossover operator degenerates to a re-
production operator, but no infeasible solution is ever
returned. This behavior might reduce the actual prob-
ability of producing new solutions by crossover in the
EA significantly. However, in our empirical tests the
amount of successful crossovers always remained rela-
tively high.

As a local heuristic, low-cost edges are again favored
when choosing the parental predecessor to try first
(step 4.2): With a probability of 50%, the predecessor
inducing the smaller link costs is tried first; otherwise,
a uniform random decision is made. Furthermore, we
also favor low-cost edges in step 5.1 by checking first
the nodes being the source of the n/8 cheapest edges
to node i.

4.3 Edge-Mutation

The aim of the mutation operator is mainly to intro-
duce new links for avoiding premature convergence.
The following algorithm tries to randomly modify a
solution p in such a way that it remains feasible. In
the worst case, i.e. when no feasible alternative can be
found, the original solution remains unmodified.

1. Select a random client node i ∈ {1, . . . , n}.

2. We think of removing the edge connecting node i
with its predecessor pi; this divides the tree into
two unconnected components; determine the set
S of all nodes that remain connected to the root
by depth-first search (including the root node).

3. Remove pi from S.

4. While S is not empty:

4.1 Select a node j from S randomly.
4.2 If the inclusion of edge (j, i) would violate

any capacity constraint, remove j from S and
continue at step 4.

4.3 Actually include the edge (j, i) by setting
pi ← j; terminate with p as solution.

5. No alternative predecessor could be found for
node i; return original solution p.

As a local heuristic, low-cost edges are again favored
when selecting the new predecessor in step 4.1. This is
done as in step 5.1 of the crossover operator by select-
ing first the nodes being the source of the n/8 cheapest
edges to node i.

5 Empirical Results

This section contains a description of the remaining
parts of the EA, the test data and the obtained em-
pirical results.

We applied a steady-state replacement scheme, where
in every generation not the whole population is re-
newed, but only one new individual is created by cross-
ing over two selected parents and eventually perform-
ing mutation. Such a new solution replaces always the
worst individual of the population with one important
exception: If a solution is generated that is already
contained in the population, this new solution is im-
mediately discarded to avoid premature convergence
[Raidl and Gottlieb, 1999]. The parents are selected
via tournament selection.

Suitable strategy parameters for the EA were deter-
mined in preliminary test runs. For the results pre-
sented in this section, the following settings had been
used:

• The population size was 500 individuals.
• The parameter α, which controls how strongly

cheaper edges are preferred when generating ini-
tial solutions, was set to n/2.

• The crossover operator was always carried out.
• The mutation probability was set to 70%.
• The group size for the tournament selection was

set to 5 individuals.
• As termination condition a convergence criterion

was used: If no progress had been made (i.e. no
better solution had been found) within the last
20,000 generations, a run was terminated.



Table 1: Results for the tc and te problem instances with n = 40 and n = 80.

Problem mi,j Copt Best(C) Avg(C) σ(C) t [s] Best(gap) Avg(gap) ART: gap EW: gap

tc40-1 3 742 opt 742 742.0 0.00 43.1 0.00 0.00 0.00 4.31
tc40-2 3 717 lb 717 718.1 1.52 47.8 0.00 0.15 0.98 4.46
tc40-3 3 716 lb 716 716.2 0.42 54.4 0.00 0.03 0.42 1.68
tc40-4 3 775 lb 778 779.3 1.70 51.0 0.39 0.55 0.65 3.74
tc40-5 3 741 opt 741 741.2 0.63 39.9 0.00 0.03 0.00 2.56

tc40-1 5 586 opt 586 587.0 1.05 32.0 0.00 0.17 0.34 1.54
tc40-2 5 578 lb 579 579.2 0.63 35.7 0.17 0.21 0.87 1.73
tc40-3 5 577 opt 577 577.0 0.00 36.4 0.00 0.00 0.69 4.33
tc50-4 5 617 opt 617 617.1 0.32 30.3 0.00 0.02 0.00 4.54
tc40-5 5 600 lb 602 604.5 1.08 34.5 0.33 0.75 0.83 2.50

tc40-1 10 498 opt 498 498.0 0.00 21.2 0.00 0.00 0.00 3.61
tc40-2 10 490 opt 490 490.4 0.84 24.6 0.00 0.08 0.41 3.06
tc40-3 10 500 opt 500 501.8 2.90 25.8 0.00 0.36 0.00 3.40
tc40-4 10 512 opt 512 512.4 0.70 22.3 0.00 0.08 0.39 2.34
tc40-5 10 504 opt 504 504.0 0.00 22.7 0.00 0.00 0.00 7.14
Average gaps 0.06 0.16 0.37 3.40

te40-1 3 1190 lb 1190 1191.1 0.88 91.4 0.00 0.09 0.08 2.10
te40-2 3 1103 lb 1103 1109.7 6.80 111.6 0.00 0.61 1.00 2.81
te40-3 3 1115 opt 1115 1115.0 0.00 69.6 0.00 0.00 0.36 2.78
te40-4 3 1132 lb 1134 1134.8 1.62 87.3 0.18 0.25 0.62 1.86
te40-5 3 1104 lb 1104 1108.1 1.97 130.2 0.00 0.37 1.09 3.89

te40-1 5 830 lb 830 833.9 2.18 87.8 0.00 0.47 2.05 3.25
te40-2 5 792 lb 792 797.4 8.11 90.2 0.00 0.68 1.01 5.39
te40-3 5 797 lb 801 806.0 3.77 113.1 0.50 1.13 2.76 2.89
te40-4 5 814 lb 814 822.0 4.81 75.6 0.00 0.98 2.21 4.91
te40-5 5 784 lb 784 784.4 1.26 96.6 0.00 0.05 1.15 4.08

te40-1 10 596 lb 596 599.4 4.99 50.6 0.00 0.57 5.70 10.40
te40-2 10 573 lb 581 581.0 0.00 40.7 1.40 1.40 0.70 10.30
te40-3 10 568 lb 568 569.1 1.66 51.6 0.00 0.19 1.94 4.93
te40-4 10 596 lb 596 597.6 0.84 37.8 0.00 0.27 1.34 7.05
te40-5 10 572 opt 572 575.2 1.93 51.3 0.00 0.56 1.22 4.37
Average gaps 0.14 0.51 1.55 4.77

Average over all instances with n = 40 0.10 0.34 0.96 4.09

Problem mi,j Copt Best(C) Avg(C) σ(C) t [s] Best(gap) Avg(gap) ART: gap EW: gap

tc80-1 5 1094 lb 1112 1124.9 8.97 262.1 1.64 2.82 3.75 8.04
tc80-2 5 1090 lb 1106 1111.3 2.54 250.9 1.47 1.95 3.76 7.34
tc80-3 5 1067 lb 1078 1089.8 5.05 268.0 1.03 2.14 2.72 6.00
tc80-4 5 1070 lb 1093 1100.4 5.80 297.1 2.15 2.84 4.39 7.57
tc80-5 5 1268 lb 1296 1306.8 6.68 293.3 2.21 3.06 2.52 5.52

tc80-1 10 878 lb 896 897.6 0.84 83.1 2.05 2.23 2.28 4.78
tc80-2 10 875 lb 889 891.1 2.02 92.0 1.60 1.84 1.83 4.80
tc80-3 10 869 lb 882 885.2 2.53 88.2 1.50 1.86 2.42 5.41
tc80-4 10 863 lb 876 876.0 0.00 93.0 1.51 1.51 3.36 6.03
tc80-5 10 998 lb 1029 1031.7 2.54 107.7 3.11 3.38 4.01 7.11

tc80-1 20 834 opt 838 841.2 1.69 58.9 0.48 0.86 0.48 2.64
tc80-2 20 820 opt 824 825.8 0.63 61.2 0.49 0.71 0.73 1.95
tc80-3 20 828 opt 828 831.2 2.53 69.1 0.00 0.39 1.45 3.38
tc80-4 20 820 opt 824 825.6 2.07 62.9 0.49 0.68 0.98 5.61
tc80-5 20 916 opt 928 936.6 7.18 69.8 1.31 2.25 2.73 6.00
Average gaps 1.40 1.90 2.49 5.48

te80-1 5 2531 lb 2571 2599.8 13.36 1100.7 1.58 2.72 1.34 2.88
te80-2 5 2522 lb 2596 2602.6 5.13 1489.6 2.93 3.20 1.94 4.40
te80-3 5 2593 lb 2647 2683.4 23.30 1609.6 2.08 3.49 2.93 5.01
te80-4 5 2539 lb 2577 2594.7 12.76 1491.0 1.50 2.19 1.89 3.35
te80-5 5 2458 lb 2487 2494.7 4.40 958.2 1.18 1.49 0.90 5.49

te80-1 10 1631 lb 1722 1754.3 18.63 265.0 5.58 7.56 3.92 7.05
te80-2 10 1602 lb 1659 1676.7 13.75 306.9 3.56 4.66 5.24 9.11
te80-3 10 1660 lb 1727 1742.6 18.57 361.0 4.04 4.98 4.58 10.12
te80-4 10 1614 lb 1652 1686.7 25.43 332.3 2.35 4.50 3.41 4.40
te80-5 10 1586 lb 1618 1655.1 23.41 347.5 2.02 4.36 3.91 7.94

te80-1 20 1256 lb 1291 1311.0 22.79 131.9 2.79 4.38 4.38 5.89
te80-2 20 1201 lb 1250 1260.8 5.18 159.9 4.08 4.98 4.41 7.33
te80-3 20 1257 lb 1280 1292.0 8.08 130.7 1.83 2.78 3.74 6.60
te80-4 20 1247 lb 1280 1290.8 9.95 152.6 2.65 3.51 6.26 7.70
te80-5 20 1231 lb 1248 1255.2 6.25 147.2 1.38 1.97 2.19 8.37
Average gaps 2.63 3.78 3.40 6.38

Average gaps over all instances with n = 80 2.02 2.84 2.95 5.93



We tested the described EA on a standard test data
set, which we obtained from the OR-Library1 of J. E.
Beasley. This set has already been used in several
other works, such as [Amberg et al., 1996, Ahuja et al.,
1998, Rolland et al., 1998]. There are two categories
of problem instances named tc and te. In all prob-
lem instances nodes have unit demands (di = 1) and
links have identical capacities mi,j . In both categories,
there are five cost matrices for instances with n = 40
and n = 80 client nodes. Together with three different
values for the link capacities this yields 30 (= 5 · 2 · 3)
problem instances for each of the two categories tc and
te.

The link costs ci,j are in both problem categories
distances in the 2-dimensional Euclidean space, i.e.
the costs satisfy the triangle inequality. In the tc-
problems the server node was set near the center of
all client nodes, whereas in the te-problems the server
was placed somewhere near the border of the convex
hull of the client node set. Because of this difference
the te-problems have larger optimal objective values
and are usually harder to solve to optimality.

Table 1 shows results obtained for all tc and te problem
instances. 10 independent EA-runs were performed
per problem instance. Column Copt shows known op-
timum objective values or lower bounds as indicated
(taken from [Rolland et al., 1998]). The third group
of columns contains the best objective values out of
10 runs per instance, the average values, the standard
deviations, and average CPU times in seconds on a
300MHz Intel Pentium-II PC. Note that these CPU
times include the 20,000 generations needed for de-
tecting convergence; thus the actual times for finding
the best solutions are smaller.

In the last group of columns the results are given as
percentage gaps to the values Copt according to the
formula gap = (C/Copt − 1) · 100%. For comparison
purposes, we also provide gaps obtained by the Esau-
Williams (EW) heuristic and the adaptive reasoning
technique (ART) as given in [Rolland et al., 1998].

The results for the problem instances of size n = 40 can
be summarized as follows. In both problem categories,
tc and te, the best as well as the average objective
values achieved with the EA are significantly smaller
than those of ART and EW. The average gap over
all 30 problem instances is 0.34% in comparison to
0.96% of ART and 3.40% of EW. Copt was reached at
least once for 24 problem instances or in 80% of the
cases. The EA’s computational effort is about a factor
of 2 higher for the te-problems than for category tc,

1http://mscmga.msc.ic.ac.uk/info.html

but decreases in both cases as the link capacity ci,j

increases. The higher CPU-times for the te instances
emerge from the placement of the server nodes that
makes these problems harder.

Considering the problem instances of size n = 80,
the EA finds better solutions than EW and ART for
category tc. For the te-problems the average gaps
are slightly worse than those of ART, especially for
ci,j = 10. The average gap over all problem instances
of size n = 80 is nevertheless smaller than that of ART.
The computational effort for the te-problems is again
higher, the factor varies – depending on the capacities
– between about 2.5 and 5.

6 Conclusions and Further Work

In this article, we described an EA which can compete
with one of the best heuristics for the CMST prob-
lem, the adaptive reasoning technique. Slightly bet-
ter results have been achieved by the EA on a set of
standard test problems. A careful design of the en-
coding and the specialized initialization and variation
operators led to an EA that effectively searches in the
space of feasible solutions only. In contrast to other
encodings such as the Prüfer number encoding, this
approach provides strong locality – an important ba-
sis for an efficient EA. Furthermore, the inclusion of
local heuristics which promote the selection of cheap
links turned out to be crucial.

Future work should include more tests using also other
categories of problem instances, e.g. with nodes having
unequal demands and edges having unequal capacities,
to characterize the performance of the new approach
in more detail.
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