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ABSTRACT

The coding by which chromosomes represent candidate solu-
tions is a fundamental design choice in a genetic algorithm.
This paper describes a novel coding of spanning trees in a
genetic algorithm for the degree-constrained minimum span-
ning tree problem. For a connected, weighted graph, this
problem seeks to identify the shortest spanning tree whose
degree does not exceed an upper bound k ≥ 2. In the cod-
ing, chromosomes are strings of numerical weights associated
with the target graph’s vertices. The weights temporarily
bias the graph’s edge costs, and an extension of Prim’s al-
gorithm, applied to the biased costs, identifies the feasible
spanning tree a chromosome represents. This decoding al-
gorithm enforces the degree constraint, so that all chromo-
somes represent valid solutions and there is no need to dis-
card, repair, or penalize invalid chromosomes. On a set of
hard graphs whose unconstrained minimum spanning trees
are of high degree, a genetic algorithm that uses this coding
identifies degree-constrained minimum spanning trees that
are on average shorter than those found by several compet-
ing algorithms.

Keywords: Degree-constrained minimum spanning trees,
weighted coding, genetic algorithms.

1. INTRODUCTION

The coding by which chromosomes represent candidate so-
lutions to a problem instance is a fundamental design choice
in building a genetic algorithm (GA). Generally, a GA’s de-
signer may choose from several codings, some more con-
ducive to genetic search than others.

Consider a connected, undirected graph G whose edges are
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labeled with numerical costs. A degree-constrained span-
ning tree on G is a spanning tree on G none of whose ver-
tices has degree greater than k ≥ 2. Identifying a minimum-
cost degree-constrained spanning tree is a computationally
difficult problem with applications to the design of telecom-
munication networks and integrated circuits. Because of its
hardness, the problem is addressed by heuristic methods,
including genetic algorithms.

This paper presents a novel coding for spanning trees in a
GA that searches for a degree-constrained minimum span-
ning tree. In this coding, a chromosome is a string of
weights associated with the target problem instance’s ver-
tices. These weights temporarily bias the graph’s edge costs,
and an extension of Prim’s algorithm identifies a degree-
constrained spanning tree using the biased costs; the chro-
mosome’s fitness is the cost of the spanning tree under the
original, unbiased costs. The decoding algorithm enforces
the degree constraint, so that all chromosomes represent
valid solutions and there is no need for the GA to discard,
repair, or penalize invalid chromosomes. On a set of hard
graphs whose unconstrained minimum spanning trees are
of high degree, a steady-state GA that uses the weighted
coding identifies degree-constrained spanning trees that are
on average shorter than those found by several competing
algorithms.

The following sections of this paper describe the degree-
constrained minimum spanning tree problem; some previ-
ous genetic codings of spanning trees; the weighted coding of
spanning trees; the genetic algorithm that uses the weighted
coding; and comparisons of the GA’s performance with that
of several other algorithms on some challenging problem in-
stances.

2. DEGREE-CONSTRAINED MINI-
MUM SPANNING TREES

Given a connected, undirected graph G with n vertices, a
spanning tree T is a subgraph of G that connects all of G’s
vertices and contains no cycles. When numerical costs ci,j

are associated with each edge (i, j), a minimum spanning
tree (MST) is a spanning tree on G with the smallest pos-
sible total edge cost C =

P
(i,j)∈T ci,j . Two well known



algorithms, due to Prim [26] and Kruskal [20], identify a
MST of a connected, undirected graph in polynomial time.

The degree of a vertex is the number of edges in which it
participates, and the degree of a graph is the maximum de-
gree of its vertices. A variation of the MST problem bounds
the degree of the spanning tree with a constant k ≥ 2; it
seeks a spanning tree of minimum cost and degree no more
than k: a k-MST. A 2-MST is a Hamiltonian path of mini-
mum length. Finding such a path is related to the familiar
traveling salesman problem and is NP-hard [12].

Often the vertices on which we seek MSTs are points in the
plane, and edge costs are the Euclidean distances between
these points. For this case, Monma and Suri [21] showed
that there always exists a MST with degree no more than
five. Papadimitriou and Vazirani [24] proved that finding
a k-MST in the Euclidean plane is NP-hard when k = 3,
and conjectured that it remains NP-hard when k = 4. More
generally, the costs associated with the graph’s edges are
arbitrary; that is, we do not think of the vertices as residing
in the plane, and the costs between them need not satisfy
the triangle inequality. In this case, a minimum spanning
tree on n points may have degree up to n− 1.

While polynomial-time heuristics exist for finding k-MSTs
in the plane [11; 31], they are less effective on the general
problem. One simple but effective heuristic is due to Narula
and Ho [22]: They modified Prim’s algorithm so that at each
step it includes the cheapest eligible edge—one connecting a
vertex currently in the (partial) spanning tree with one not
yet connected—that does not violate the degree constraint.
We refer to this heuristic as k-Prim.

3. GENETIC CODINGS OF SPAN-
NING TREES

A deceptively appealing coding of spanning trees for genetic
search is based on Prüfer’s proof of Cayley’s Formula, which
identifies the number of distinct spanning trees on a com-
plete graph of n vertices as nn−2 [7], [10, pp. 103–104]. The
proof establishes a one-to-one correspondence between span-
ning trees on n vertices and strings of length n− 2 over an
alphabet of n symbols by describing algorithms that derive
a tree from its string and vice versa [10, pp. 104–106].

Despite its elegance, the Prüfer coding is problematic in
GAs. As several observers have pointed out, symbols’ mean-
ings depend on their predecessors. Patterns of symbols do
not represent consistent substructures of spanning trees, so
that crossover may generate offspring whose trees do not re-
semble the trees of their parents, and the mutation of even
one symbol may change the represented tree radically [23;
30].

Nonetheless, several researchers have used the Prüfer cod-
ing to represent candidate solutions in GAs for spanning
tree problems. For example, Abuali, Schoenefeld, and Wain-
wright [1] used the Prüfer coding in a GA for the probabilis-
tic minimum spanning tree problem. Operators included
circular left shift, swap of two random positions, and ran-
dom modification of a symbol. Zhou and Gen [32] presented
a Prüfer-coding-based GA for the k-MST problem. This

algorithm applied conventional genetic operators: uniform
crossover and mutation by randomly modifying a symbol.
Solutions that violated the degree constraint were repaired.

Kim and Gen [17] extended the Prüfer coding in a GA for
a network design problem. A Prüfer string represented a
spanning tree of service centers, and a second string indi-
cated clusters of users the centers served. Again, chromo-
somes whose trees violated the problem’s degree constraint
were repaired. Gargano, Edelson, and Koval [13] extended
the Prüfer coding with permutations in a GA for the time-
dependent minimum spanning tree problem, in which edge
costs depend on when the edges are included in the span-
ning tree; the Prüfer string represented a spanning tree, and
the permutation the order in which vertices, and thus edges,
were added to the tree.

Other projects have used more general codings whose repre-
sented structures can include spanning trees, such as adja-
cency matrices [14], indexes into lists of edges [8], and edge
codings in which when the value of the ith symbol is j, the
represented tree contains the edge (i, j) [3].

Knowles and Corne [18] described a GA for the k-MST prob-
lem. In their algorithm, chromosomes are sequences of inte-
ger values that influence the order in which k-Prim connects
vertices to the growing spanning tree. Experiments on large,
misleading graphs indicated the superiority of this approach
to a dual simplex heuristic proposed by Boldon et al. [4].
Section 6 below compares our GA with both the algorithm
of Corne and Knowles and the heuristic of Boldon et al.

4. THE WEIGHTED CODING

The coding the present GA employs is based on an ingenious
coding of spanning trees described by Palmer and Kershen-
baum [23]. They encoded spanning trees as strings of nu-
merical weights associated with the graph’s vertices. To
identify the tree such a chromosome represents, each weight
wi is temporarily added to the costs of every edge in which
vertex i participates:

c′i,j = ci,j + wi + wj .

Prim’s algorithm then identifies a spanning tree from the
biased costs. The chromosome’s fitness is the cost of the
tree using the original costs. Initial chromosomes consist of
weights chosen at random from a uniform distribution. Mu-
tation randomly resets a weight, and traditional crossover
operators like uniform crossover can recombine chromo-
somes.

Palmer and Kershenbaum found that a weight-coded GA
outperformed a good heuristic on the optimal communica-
tions spanning tree problem, and Abuali, Schoenefeld, and
Wainwright [2] obtained better results with both a weighted
coding and an edge coding than with the Prüfer coding in a
GA for the probabilistic minimum cost spanning tree prob-
lem.

More generally, researchers have used weighted codings in
GAs for a variety of combinatorial problems. These include
the rectilinear Steiner problem [15], the shortest common su-
persequence problem [5], the 3-satisfiability problem [9], the
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Figure 1: (a) A set of points in the plane and their coordinates; (b) a minimum cost spanning tree (of length 280.78) on the
points; and (c) the spanning tree of degree 3 on the points corresponding to the chromosome (1.3, 0.4, 1.8, 1.5, 0.9, 0.8, 1.6,
2.1, 0.7, 0.5, 0.6, 1.8, 7); it has length 359.44. The chromosome’s last entry indicates that k-Prim began building the tree at
vertex 7.

traveling salesman problem [16], and the multiple container
packing problem [27]. In each of these, chromosomes are
strings of weights that temporarily bias parameters of the
problem instance. A decoding algorithm identifies the struc-
ture a chromosome represents using the biased parameters,
and the chromosome’s fitness is that structure’s fitness un-
der the original parameters. Searching the space of weights
implements a search of the target problem’s search space.

One of us investigated biasing techniques in a weight-coded
GA for the multiconstraint knapsack problem [28]. He found
that multiplying parameters by weights selected from a log-
normal distribution led to better solutions more quickly than
did adding weights chosen from a uniform distribution.

We adopt the multiplicative scheme here. Weights are cho-
sen from the distribution (1 + γ)N (0,1), where N (0, 1) is the
normal distribution with mean 0 and variance 1, and γ is a
parameter called the biasing strength. Edge costs are biased
multiplicatively by these weights:

c′i,j = ci,j · wi · wj .

The k-Prim heuristic, applied to the biased edge costs, iden-
tifies the spanning tree a chromosome of such weights rep-
resents.

k-Prim grows a spanning tree from a start vertex, and in
general it will not identify the same tree from different start
vertices. The start vertex is particularly influential when
a graph’s underlying MST contains vertices of high degree.
Clearly, fixing the start vertex might restrict the GA’s search
to poorer regions of the search space, so the coding is ex-
tended with an integer that represents the start vertex. The
GA then adapts this choice along with the weights.

For example, Figure 1(a) depicts a set of 12 points in the
plane and lists their coordinates. Figure 1(b) shows an un-
constrained MST on these points; it has degree 5 and cost
280.78. A weighted chromosome that represents a 3-MST
on these points consists of 12 float values and an integer,
say

(1.3, 0.4, 1.8, 1.5, 0.9, 0.8, 1.6, 2.1, 0.7, 0.5, 0.6, 1.8, 7).

Vertex 1 has weight 1.3, vertex 2 has weight 0.4, and so on.
The distance between vertices 1 and 2 isp

(34− 5)2 + (93− 80)2 ≈ 31.78,

so the biased distance between them is

31.78 · 1.3 · 0.4 ≈ 16.53.

The chromosome’s last entry specifies vertex 7 as the start
vertex. Figure 1(c) shows the tree k-Prim (with k = 3)
identifies from the chromosome; using unbiased costs, it has
cost 359.44.

Because k-Prim always identifies a spanning tree with degree
no more than k, all chromosomes represent valid solutions,
and there is no need for the GA to implement any of the
usual constraint-handling strategies: discarding, repairing,
or penalizing invalid chromosomes.

5. THE GENETIC ALGORITHM

The weighted coding of spanning trees was implemented
in an otherwise conventional steady-state GA. The algo-
rithm selects chromosomes to be parents in tournaments of
size three, and generates offspring from them via uniform
crossover and a mutation that resets each gene to a new
random value with a small probability (position-by-position
mutation). Each new chromosome replaces the population’s
current worst chromosome, with one exception: To preserve
phenotypic diversity, the GA discards any new chromosome
that encodes a spanning tree already represented in the pop-
ulation [29].

The GA initializes its population with randomly generated
chromosomes, except for one in which all the weights are
1.0 and only the starting vertex is selected at random. This
chromosome represents the unbiased case and decodes to a
spanning tree that k-Prim would find on its own. Early
experiments confirmed that seeding the population in this
way dramatically speeds the optimization process. Other
preliminary experiments seeded the population with several



Table 1: 4-MST results for 9 randomly generated graphs
(Ck−MST/CMST). k-Prim indicates the k-Prim heuristic
alone; DS the dual simplex method of Boldon et al.; K-GA
the genetic algorithm of Knowles and Corne; and W-GA the
weight-coded GA.

K-GA W-GA
Graph Vert. k-Prim DS Best Avg. Best Avg.

R1 50 1.77 1.94 1.74 1.74 1.73 1.74
R2 50 1.83 2.00 1.83 1.83 1.83 1.83
R3 50 1.79 1.89 1.77 1.78 1.75 1.75
R4 100 1.78 1.94 1.73 1.73 1.73 1.73
R5 100 1.64 1.68 1.60 1.60 1.60 1.60
R6 100 1.71 1.88 1.68 1.69 1.67 1.68
R7 200 1.66 1.85 1.63 1.64 1.62 1.63
R8 200 1.61 1.79 1.59 1.59 1.59 1.59
R9 200 1.67 1.79 1.65 1.65 1.64 1.65

Average 1.72 1.86 1.69 1.69 1.68 1.69
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Figure 2: Average 4-MST results for the 9 randomly gener-
ated graphs (Ck−MST/CMST).

chromosomes whose weights were all 1.0 but whose start
vertices differed. This technique reduced the population’s
diversity and led to inferior results.

In the tests the following section describes, γ was set to
1.5, the GA’s population held 100 chromosomes, and the
probability of mutating any one weight was 2/n, where n is
the number of vertices in the target graph.

6. EXPERIMENTAL COMPARISONS

Boldon et al. [4] observed that when a large matrix of edge-
costs is generated at random, the degree of a MST on the
resulting graph rarely exceeds 3 or 4. They constructed more
demanding problem instances from MSTs of high degree.
Knowles and Corne [18] applied this approach to generate
two sets of challenging k-MST instances, which we adopted
to test the weight-coded GA.

The first problem set contains nine complete graphs of 50
to 200 vertices. Their unconstrained MSTs have degree 14
or 15. k-MSTs of maximum degree k = 4 were sought with

Table 2: 5-MST results for 9 misleading random graphs
(Ck−MST/CMST). Again, k-Prim indicates the k-Prim
heuristic alone; DS the dual simplex method of Boldon et
al.; K-GA the genetic algorithm of Knowles and Corne; and
W-GA the weight-coded GA.

K-GA W-GA
Graph Vert. k-Prim DS Best Avg. Best Avg.

M1 50 4.35 3.30 2.78 3.15 2.46 2.49
M2 50 4.48 3.84 2.51 2.99 2.23 2.30
M3 50 3.53 3.94 2.37 2.58 2.37 2.50
M4 100 3.43 2.82 2.26 2.44 2.03 2.07
M5 100 4.13 4.71 2.50 2.84 2.12 2.18
M6 100 3.89 4.55 2.73 2.86 2.03 2.10
M7 200 2.75 2.24 1.92 2.04 1.84 1.88
M8 200 3.31 2.99 2.25 2.47 1.86 1.90
M9 200 2.25 2.12 1.68 1.71 1.69 1.70

Average: 4.19 3.39 2.33 2.56 2.07 2.12
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Figure 3: Average 5-MST results for the 9 misleading ran-
dom graphs (Ck−MST/CMST).

k-Prim alone, the dual simplex method of Boldon et al.,
Knowles and Corne’s GA, and the weight-coded GA. Both
genetic algorithms were run 20 times through 10,000 eval-
uations on each instance; the deterministic heuristics were,
of course, each applied once.

Table 1 summarizes the results of these trials, reported as
ratios of the lengths of shortest 4-MSTs to the lengths of
unconstrained MSTs. Figure 2 shows these average re-
sults graphically. The two GAs performed almost identi-
cally, slightly better than k-Prim alone and the dual simplex
method.

The second problem set consists of nine graphs made more
difficult by the inclusion of edge weights intended to mislead
heuristics. Again the graphs contain from 50 to 200 vertices;
their unconstrained MSTs have degrees from 9 to 13. The
algorithms sought k-MSTs with k = 5.

Table 2 and Fig. 3 summarize the results of these trials. On
these graphs, k-Prim performed poorly, the dual simplex
method better, and the two GAs best. On average, the
weight-coded GA identified significantly shorter trees than
did Knowles and Corne’s GA, indicating that the weight-
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Figure 4: The effect of the biasing strength γ on the weight-
coded GA’s average performance.

coded GA more often escapes from local minima; the relative
costs Ck−MST/CMST are 17% smaller for the weight-coded
approach. Further, the best solutions of the weight-coded
GA are usually better and, except for M9, never worse then
the corresponding best solutions of Knowles and Corne’s
GA.

Figure 4 shows how the biasing strength γ affects the quality
of the weight-coded GA’s solutions. Each value in the graph
was determined by averaging the results of 20 runs on each
of the misleading problems M1 to M9. For values of γ less
than 0.5, the weighted coding is not able to represent so-
lutions significantly different from those k-Prim would find
on its own. With larger γ, the GA can examine more of
the problem’s search space. As γ increases above 2.0, the
solution quality again decreases; the search becomes more
diffuse. Choosing γ ∈ [1, 2] yields the best results on aver-
age, and in general it is better that γ be too large than too
small.

The weight-coded GA was also applied to the 9-vertex graph
used by Zhou and Gen [32]. Their Prüfer-coded GA found
an optimal solution 67% of the time in 25000 evaluations.
In contrast, this problem turned out to be trivial for the
weight-coded GA, which usually found an optimal solution
in the initial population.

7. CONCLUSIONS

This paper has described the k-MST problem and a steady-
state GA that encodes candidate solutions to the problem
in a novel way. Each chromosome is a string of weights
associated with the vertices of the target graph. These
weights temporarily bias the graph’s edge costs, and a mod-
ification of Prim’s algorithm identifies the degree-k span-
ning tree a chromosome represents; this tree is evaluated
using the original edge costs. Each chromosome also en-
codes a starting vertex for the decoding algorithm. In tests
on hard and misleading k-MST instances, the weight-coded
GA found degree-constrained spanning trees that are on av-
erage shorter than those identified by other heuristics.

More generally, this investigation and others illustrate the

utility of weighted codings in GAs for combinatorial prob-
lems, particularly those with constraints. When, as here, the
decoding algorithm enforces constraints, all chromosomes
represent valid solutions, and there is no need to discard,
repair, or penalize invalid chromosomes.
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